北师大版三角形测试题
北师大七级下第四章三角形单元测试题(一)含答案
北师大版七年级下册三角形单元测试题(一)一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为( )A.10B.12C.14D.162.满足下列条件的△ABC中,不是直角三角形的是()A、∠B+∠A=∠CB、∠A:∠B:∠C=2:3:5C、∠A=2∠B=3∠CD、一个外角等于和它相邻的一个内角3.一个三角形的三个内角中,锐角的个数最少为 ( )A.0B.1C.2 D.34.三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B、钝角三角形C、直角三角形D、无法确定5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )A.中线B.角平分线C.高线D.三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是 ( )A.∠1B.∠2C.∠B D.∠1、∠2和∠B7.下列命题中的真命题是()A、锐角大于它的余角B、锐角大于它的补角C、钝角大于它的补角D、锐角与钝角之和等于平角8.已知:a、b、c是△ABC三边长,且M=(a+b+c)(a+b-c)(a-b-c),那么( )A.M>0 B. M=0C.M<0 D.不能确定9.锐角三角形中,最大角α的取值范围是()A、00<α<900ºB、600<α<900ºC、600<α<1800D、600º≤α<900º10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A.5个B.4个C.3个D.2个二、填空题1.直角三角形中两个锐角的差为20º,则两个锐角的度数分别为.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________.3.把下列命题“对顶角相等”改写成:如果 ,那么 .4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________. 5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c≥b≥a>0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.如下图左,DH ∥GE ∥BC ,AC ∥EF ,那么与∠HDC 相等的角有 .8.如图5—13,在△ABC 中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是△ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC 中,∠A=60°,∠ABC、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC=_____.MHGFED CBA11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图:(1) 画△ABC 的外角∠BCD ,再画∠BCD 的平分线CE. (2) 若∠A=∠B ,请完成下面的证明:已知:△ABC 中,∠A=∠B ,CE 是外角∠BCD 的平分线 求证:CE ∥AB5.如图5—21,△ABC 中,∠B=34°,∠ACB=104°,AD 是BC 边上的高,AE 是∠BAC 的平分线,求∠DAE 的度数.6.如图5—22,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,AB =13cm ,BC =12cm ,AC =5cm ,求:(1)△ABC 的面积;(2)CD 的长.7.看图填空:(1) 如下图左,∠A +∠D =180º(已知)∴∥( )CBA∴∠1= ( ) ∵∠1=65º(已知)∴∠C =65º( )(2) 如上图右,已知,∠ADC =∠ABC ,BE 、DF 分别平分∠ABC 、∠ADC ,且∠1=∠2,求证:∠A=∠C.证明:∵BE 、DF 分别平分∠ABC 、∠ADC (已知)∴ ∠1=21∠ABC ,∠3=21∠ADC ( ) ∵∠ABC =∠ADC (已知) ∴21∠ABC =21∠ADC ( ) ∴∠1=∠3( ) ∵∠1=∠2(已知)∴∠2=∠3( )∴( )∥( )( ) ∴∠A +∠=180º ,∠C +∠=180º( ) ∴∠A =∠C ( )8.已知:如图5—24,P 是△ABC 内任一点,求证:AB +AC >BP +PC .1DCB A答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C二、1.3; 2.; 3.锐角(等腰锐角); 4.;5.10; 6.和; 7.; 8.;9.; 10.; 11.; 12.. 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是的平分线.3.假设此零件合格,连接BD ,则;可知.这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线, ∴ D 为BC 的中点,. ∵的周长-的周长=5cm . ∴. 又∵, ∴.5.由三角形内角和定理,得32周长20,164<<<<BC cm 37︒65︒25︒100GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,︒65︒120︒180126<<x BAC ∠︒=︒-︒=∠+∠37143180CBD CDB ()︒=︒+︒-︒=∠+∠40203090CBD CDB BD CD =ADC ∆ABD ∆cm AB AC 5=-cm AB AC 11=+cm AC 8=. ∴. 又∵ AE 平分∠BAC . ∴. ∴. 又∵,∴.6.(1)∵在△ABC 中,,,,(2)∵ CD 是AB 边上的高, ∴. 即. ∴. 7.如图,延长BP 交AC 于D , ∵, ∴. 8.∵, ∴, ∴. 又∵,∴. ∴,∵, ∴.︒=∠+∠+∠180BAC ACB B ︒=︒-︒-︒=∠4210434180BAC ︒=︒⨯=∠=∠21422121BAC BAE ︒=︒+︒=∠+∠=∠552134BAE B AED ︒=∠+∠90DAE AED ︒=︒-︒=∠-︒=∠35559090AED DAE ︒=∠90ACB cm AC 5=cm BC 12=().3012521212cm BC AC S ABC =⨯⨯=⋅=∴∆CD AB S ABC ⋅=∆21CD ⨯⨯=132130()cm CD 1360=A PDC PDC BPC ∠>∠∠>∠,A BPC ∠>∠A C ∠=∠74C A ∠=∠74C B C ∠<∠<∠74︒=∠+∠+∠180C B A ︒=∠+∠+∠18074C B C C B ∠-︒=∠711180C C C ∠<∠-︒<∠71118074︒<∠<︒8470C又∵为整数, ∴∠C 的度数为7的倍数. ∴,∴. 9.如图,延长BP 交AC 于点D .在△BAD 中,, 即:. 在△PDC 中,. ①+②得, 即.C A ∠=∠74︒=∠77C ︒=∠=∠4474C A BD AD AB >+PD BP AD AB +>+PC DC PD >+PC PD BP DC PD AD AB ++>+++PC BP AC AB +>+。
北师大版初中数学七年级下册第四单元《三角形》单元测试卷(标准困难)(含答案解析)
北师大版初中数学七年级下册第四单元《三角形》单元测试卷(标准困难)(含答案解析)考试范围:第四单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为( )A. 15B. 16C. 18D. 192. 题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=√2,则正确的是( )A. 只有甲答的对B. 甲、丙答案合在一起才完整C. 甲、乙答案合在一起才完整D. 三人答案合在一起才完整3. 在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为( )A. 12B. 13C. 14D. 164. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为( )A. 30°B. 25°C. 35°D. 65°5. 如图,在长方形ABCD中AB=DC=4,AD=BC=5.延长BC到E,使CE=2,连接DE.动点P从点B出发,以每秒2个单位的速度沿BC−CD−DA向终点A运动,设点P运动的时间为t秒,存在这样的t,使△DCP和△DCE全等,则t的值为( )A. t=12B. t=32C. t=32或t=112D. t=12或t=326. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°7. 如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,如果BC=27,BD:CD=2:1,则DE的长是( )A. 2B. 9C. 18D. 278. 用直尺和圆规作一个角等于已知角,如图,能得出∠O=∠O′的依据是( )A. SASB. ASAC. SSSD. AAS9. 如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连接AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是( )A. ①②③④B. ①④③②C. ①④②③D. ②①④③10. 尺规作图“作一个角等于已知角“的依据是( )A. ASAB. SASC. SSSD. AAS11. 为了测量池塘两侧A,B两点间的距离,在地面上找一点C,连接AC,BC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,得到△ABC≌△ADC,通过测量AD的长,得AB的长.那么△ABC≌△ADC 的理由是( )A. SASB. AASC. ASAD. SSS12. 如图,要测量河两岸相对的A、B两点的距离,可以在与AB垂直的河岸BF上取C、D两点,且使BC=CD,从点D出发沿与河岸BF的垂直方向移动到点E,使点E与A,C在一条直线上,可得△ABC≌△EDC,这时测得DE的长就是AB的长.判定△ABC≌△EDC最直接的依据是( )A. ASAB. HLC. SASD. SSS第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70∘,∠ABC=48∘,那么∠3=.14. D,E分别是△ABC的边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为______.15. 如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.16. 如图,已知△ABC(AC>AB),DE=BC,以D,E为顶点作三角形,使所作的三角形△ABC 全等,这样的三角形最多可以作出______个.三、解答题(本大题共9小题,共72.0分。
北师大版七年级下册数学第四章 三角形含答案(综合题)
北师大版七年级下册数学第四章三角形含答案一、单选题(共15题,共计45分)1、如图,一定全等的两个三角形是()A.①与②B.①与③C.②与③D.以上答案都不对2、如图所示,一扇窗户打开后,用窗钩AB即可固定,这里所用的几何原理是()A.两点之间线段最短B.垂线段最短.C.两定确定一条直线D.三角形具有稳定性3、如图,△ABC≌△AED,点 E 在线段 BC 上,∠1=48º,则∠AED 的度数是()A.66°B.65°C.62°D.60°4、下列命题中,真命题是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等5、如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②四边形CGMH是矩形;③△EGM≌△MHA;④S△ABC +S△CDE≥S△ACE;⑤图中的相似三角形有10对.正确结论是()A.①②③④B.①②③⑤C.①③④D.①③⑤6、下列条件中,不能判定△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A ∠B= ∠CC.∠B=50°,∠C=40°D.a=5,b=12,c=137、以下列各组线段长为边,能组成三角形的是( )A.1cm,2cm,3cmB.2cm,3cm,8cmC.5cm,12cm,6cm D.4cm,6cm,9cm8、如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段.要使点恰好落在上,则的长是()A. B. C. D.9、若△ABC∽△A'B'C',∠A=30°,∠C=110°,则∠B'的度数为()A.30°B.50°C.40°D.70°10、如图,中,于D,下列条件中:① ;②;③ ;④ ;⑤,⑥ ,一定能确定为直角三角形的条件的个数是()A.1B.2C.3D.411、如图,,,,,则A.27°B.54°C.30°D.55°12、如图,在△ABC中,∠C=40 ° ,按图中虚线将∠C剪去后,∠1+∠2等于().A.140°B.210°C.220°D.320°13、已知m是整数,以4m+5、2m-1、20-m这三个数作为同一个三角形三边的长,则满足条件的三角形个数有()A.0个B.1个C.2个D.无数个14、如图,矩形ABCD中,AB=3,AD=9,点E在边AD上,AE=1,过E、D两点的圆的圆心O在边AD的上方,直线BO交AD于点F,作DG⊥BO,垂足为G.当△ABF与△DFG全等时,⊙O的半径为()A. B. C. D.15、如图所示,在中,,于,,则线段的长是()A.3B.4C.8D.1二、填空题(共10题,共计30分)16、下列关于两个三角形全等的说法:①面积相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等;⑤腰相等的两个等腰三角形一定全等.其中说法正确的是________.(填写序号)17、如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠ADE=________°.18、如图,AB=AC,AD=AE,∠BAC=∠DAE,点D在线段BE上.若,∠2=30°,∠3=55°则∠1=________.19、已知等腰三角形的周长为20,腰长为x,则x的取值范围是________ .20、如图,中有6个条形方格图,图上由实线围成的图形是全等形的有哪几对________21、如图,△ABD与△AEC都是等边三角形,AB≠AC.下列结论中,正确的是________.①BE=CD;②∠BOD=60º;③△BOD∽△COE.22、已知,如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为________.23、若等腰三角形的两边长为3cm和7cm,则该等腰三角形的周长为________ cm.24、如图,在△ABC中,已知D,E,F分别为边BC,AD,CE的中点,且,则阴影部分的面积为________ cm2.25、三角形的一边是5,另一边是1,第三边如果是整数,则第三边是________.三、解答题(共5题,共计25分)26、如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.27、如图,△ABC中,∠ACB=90°,AC=6,BC=8。
(常考题)北师大版初中数学七年级数学下册第四单元《三角形》检测(含答案解析)
一、选择题1.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .12.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 3.如图,ABD △与AEC 都是等边三角形,AB AC ≠.下列结论中,①BE CD =;②60BOD ∠=︒;③BDO CEO ∠=∠.其中正确的有( ).A .0个B .1个C .2个D .3个4.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 5.有下列长度的三条线段,能组成三角形的是( )A .2cm ,3cm ,4cmB .1cm ,4cm ,2cmC .1cm ,2cm ,3cmD .6cm ,2cm ,3cm 6.如图,在△ABC 中,已知点D ,E ,F 分别为边AC ,BD ,CE 的中点,且阴影部分图形面积等于4平方厘米,则△ABC 的面积为( )平方厘米A .8B .12C .16D .187.如图,点C ,D 分别在线段OA ,OB 上,AD 与BC 相交于点E ,若OC OD =,A B ∠=∠,则图中全等三角形的对数为( )A .5对B .4对C .3对D .2对8.如图,两座建筑物AB ,CD 相距160km ,小月从点B 沿BC 走向点C ,行走ts 后她到达点E ,此时她仰望两座建筑物的顶点A 和D ,两条视线的夹角正好为90︒,且EA ED =.已知建筑物AB 的高为60m ,小月行走的速度为1/m s ,则小月行走的时间t 的值为( )A .100B .80C .60D .509.如图,四边形ABCD 是长方形,点F 是DA 长线上一点,G 是CF 上一点,并且ACG AGC ∠=∠,GAF F ∠=∠.若15ECB ∠=︒,则ACF ∠的度数是( )A .15︒B .20︒C .30D .45︒10.如图,已知AOB ∠,观察图中尺规作图的痕迹,可以判定111COD C O D ≌,其判定的依据是( )A .SSSB .SASC .ASAD .AAS 11.下列四个图形中,有两个全等的图形,它们是( )A .①和②B .①和③C .②和④D .③和④ 12.如图,已知ABC ADE △≌△,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .80︒B .70︒C .40︒D .30二、填空题13.如图,在△ABC 中E 是BC 上的一点,BC =3BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF ﹣S △BEF =____.14.如图,AC=BC ,请你添加一个条件,使AE=BD .你添加的条件是:________.15.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.16.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)17.如图,已知△ABC 的面积为18,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△BPC 的面积是_____.18.如图,已知四边形ABCD 中,10AB =厘米,8BC =厘米,12CD =厘米,B C ∠=∠,点E 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.当点Q 的运动速度为______厘米/秒时,能够使BEP △与CPQ 全等.19.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.添加的条件是:____.(写出一个即可)20.如图,点E ,F 在线段AD 上,且AE DF =,//AB DC ,AB DC =,连接BE ,BF ,CE ,CF ,则图中共有_____对全等三角形.三、解答题21.作图题(1)如图,已知线段m ,n .求作△ABC ,请在右面的空白处作△ABC ,作∠ACB =90°,AC =m ,AB =n (尺规作图,不写作法,保留作图痕迹).(2)婷婷将(1)中自己画的△ABC 剪下来,放在同桌悦悦所画的△ABC 上,发现两三角形完全重合,这一过程验证了三角形全等的哪一种判定定理: (直接写出答案,不写过程).22.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.(1)过点A 画线段BC 的垂线,垂足为E ;(2)过点A 画线段AB 的垂线,交线段CB 的延长线于点F ;(3)线段BE 的长度是点 到直线 的距离;(4)线段AE 、BF 、AF 的大小关系是 .(用“<”连接)23.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.24.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.25.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.26.已知22a m n =+,2b m =,c mn =,且m >n >0.(1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 2.D解析:D【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A 、添加BD =CE ,可以利用“边角边”证明△ABD 和△ACE 全等,再根据全等三角形对应角相等得到∠DAB =∠EAC ,故本选项不符合题意;B 、添加AD =AE ,根据等边对等角可得∠ADE =∠AED ,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB =∠EAC ,故本选项不符合题意;C 、添加BE =CD 可以利用“边角边”证明△ABE 和△ACD 全等,再根据全等三角形对应角相等得到∠BAE=∠CAD ,可得∠DAB =∠EAC ,故本选项不符合题意;D 、添加DA =DE 无法求出∠DAB =∠EAC ,故本选项符合题意.故选:D .【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.3.C解析:C【分析】利用SAS 证明△DAC ≌△BAE ,利用三角形内角和定理计算∠BOD 的大小即可.【详解】△与AEC都是等边三角形,∵ABD∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠CAB =∠EAC+∠CAB,∴∠DAC =∠BAE,∴△DAC≌△BAE,∴BE=CD,∴结论①正确;∵△DAC≌△BAE,∴∠ADC =∠ABE,∴∠BOD=180°-(∠BDO+∠DBO),∵∠BDO+∠DBO=60°-∠ADC +60°+∠ABE=120°,∴∠BOD=180°-120°=60°,∴结论②正确;∠=∠,无法证明BDO CEO∴结论③错误;故选C.【点睛】本题考查了等边三角形的性质,全等三角形的证明和性质,三角形内角和定理,熟练运用等边三角形的性质证明三角形的全等是解题的关键.4.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】+=,不满足三边关系,不能画出三角形,故选项错误;解:A,AB BC CAB,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D,可以利用直角三角形全等判定定理HL证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.5.A解析:A【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.【详解】A 、2+3>4,能围成三角形;B 、1+2<4,所以不能围成三角形;C 、1+2=3,不能围成三角形;D 、2+3<6,所以不能围成三角形;故选:A .【点睛】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.6.C解析:C【分析】根据三角形的中线将三角形分成面积相等的两个三角形进行解答即可.【详解】解:∵F 是EC 的中点, ∴142AEF AFC AEC S S S ∆∆∆===, ∴8AEC S ∆=,∵ E 是BD 的中点 ,∴ABE AED S S ∆∆=,BEC ECD S S ∆∆=,∵8AED ECD AEC S S S ∆∆∆+==,∴8ABE BEC AEC S S S ∆∆∆+==,∴228=16ABC ABE BEC AEC AEC S S S S S ∆∆∆∆∆=++==⨯,故选:C .【点睛】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键. 7.B解析:B【分析】由条件可证△AOD ≌△BOC ,可得OA=OB ,则可证明△ACE ≌△BDE ,可得AE=BE ,则可证明△AOE ≌△BOE ,可得∠COE=∠DOE ,可证△COE ≌△DOE ,可求得答案.【详解】解:在△AOD和△BOC中OC=OD∠AOD=∠BOC∠=∠A B∴△AOD≌△BOC(SAS)∴OA=OB∵OC=OD,OA=OB,∴AC=BD,在△ACE和△BDE中∠A=∠B∠AEC=∠BEDAC=BD∴△ACE≌△BDE(AAS),∴AE=BE∴AE=BE,在△AOE和△BOE中OA=OB∠A=∠BAE=BE∴△AOE≌△BOE(SAS),∴∠COE=∠DOE,在△COE和△DOE中OC=OD∠COE=∠DOEOE=OE∴△COE≌△DOE(SAS),故全等的三角形有4对.故选:B.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AA和HL.8.A解析:A【分析】首先证明∠A=∠DEC,然后可利用AAS判定△ABE≌△ECD,进而可得EC=AB=60m,再求出BE的长,然后利用路程除以速度可得时间.【详解】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵∠ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC ,在△ABE 和△DCE 中B C A DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ECD (AAS ),∴EC=AB=60m ,∵BC=160m ,∴BE=100m ,∴小华走的时间是100÷1=100(s ),故选:A .【点睛】本题主要考查了全等三角形的应用,关键是正确判定△ABE ≌△ECD .9.C解析:C【分析】根据矩形的性质得到AD ∥BC ,∠DCB =90°,根据平行线的性质得到∠F =∠ECB =15°,根据三角形的外角的性质得到∠ACF =∠AGC =∠GAF +∠F =2∠F ,于是得到结论.【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∠DCB =90°,∴∠F =∠ECB =15°,∴∠GAF =∠F =15°,∴∠ACF =∠AGC =∠GAF +∠F =2∠F =30°,故选C .【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.10.A解析:A【分析】由作法易得OD =O 1D 1,OC =O 1C 1,CD =C 1D 1,根据SSS 得到三角形全等.【详解】解:在△COD 和△C 1O 1D 1中,111111CO C O DO D O CD C D =⎧⎪=⎨⎪=⎩,∴111COD C O D ≌(SSS ).故选:A .【点睛】本题考查了全等三角形的判定方法SSS 的运用,熟练掌握三角形全等的判定是正确解答本题的关键.11.B解析:B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B .【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.12.A解析:A【分析】由全等三角形的性质可得到∠BAC=∠EAD ,在△ADE 中可求得∠EAD ,则可求得∠BAC .【详解】解:∵∠E=70°,∠D=30°,∴∠EAD=180°-∠E-∠D=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠BAC=∠EAD=80°,故选:A .【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.二、填空题13.2【分析】S △ADF-S △BEF=S △ABD-S △ABE 所以求出三角形ABD 的面积和三角形ABE 的面积即可因为BC=3BE 点D 是AC 的中点且S △ABC=12就可以求出三角形ABD 的面积和三角形ABE解析:2【分析】S △ADF -S △BEF =S △ABD -S △ABE ,所以求出三角形ABD 的面积和三角形ABE 的面积即可,因为BC=3BE ,点D 是AC 的中点,且S △ABC =12,就可以求出三角形ABD 的面积和三角形ABE 的面积.【详解】解:∵点D是AC的中点,∴AD=12AC,∵S△ABC=12,∴S△ABD=12S△ABC=12×12=6.∵BC=3BE,∴S△ABE=13S△ABC=13×12=4,∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2,故答案为:2.【点睛】本题考查三角形的面积,解题的关键是要能根据已知条件求出三角形的面积并对要求的两个三角形的面积之差进行变化.14.∠A=∠B或CD=CEAD=BE∠AEC=∠BDC等【分析】根据全等三角形的判定解答即可【详解】解:因为AC=BC∠C=∠C所以添加∠A=∠B或CD=CEAD=BE∠AEC=∠BDC可得△ADC与△解析:∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC等【分析】根据全等三角形的判定解答即可.【详解】解:因为AC=BC,∠C=∠C,所以添加∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC,可得△ADC与△BEC全等,利用全等三角形的性质得出AD=BE,故答案为:∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边解析:3<a<13【分析】根据三角形的三边关系解答.【详解】由题意得:8-5<a<8+5,∴3<a<13,故答案为:3<a<13.【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.16.OA=OB (答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS 只要添加一个符合的条件即可【详解】解:OA=OB 理由是:在△AOC 和△BOD 中∴△AOC ≌△BOD (SAS )故答案为:O解析:OA=OB .(答案不唯一)【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,只要添加一个符合的条件即可.【详解】解:OA=OB ,理由是:在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ).故答案为:OA=OB .(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.17.9【分析】根据已知条件证得△ABP ≌△DBP 根据全等三角形的性质得到AP =PD 得出S △ABP =S △DBPS △ACP =S △DCP 推出S △PBC =S △ABC 代入求出即可【详解】解:如图延长AP 交BC 于点解析:9【分析】根据已知条件证得△ABP ≌△DBP ,根据全等三角形的性质得到AP =PD ,得出S △ABP =S △DBP ,S △ACP =S △DCP ,推出S △PBC=12S △ABC ,代入求出即可. 【详解】解:如图,延长AP 交BC 于点D ,∵BP 平分∠ABC∴∠ABP =∠DBP ,且BP =BP ,∠APB =∠DPB∴△ABP ≌△DBP (ASA )∴AP=PD,∴S△ABP=S△BPD,S△APC=S△CDP,∴S△PBC=12S△ABC=9,故答案为:9.【点睛】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.18.3或【分析】分两种情况讨论依据全等三角形的对应边相等即可得到点Q 的运动速度【详解】解:设点P运动的时间为t秒则BP=3tCP=8-3t∵点为的中点厘米∴AE=BE=5厘米∵∠B=∠C∴①当BE=CP解析:3或15 4【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度.【详解】解:设点P运动的时间为t秒,则BP=3t,CP=8-3t,∵点E为AB的中点,10AB 厘米,∴AE=BE=5厘米,∵∠B=∠C,∴①当BE=CP=5,BP=CQ时,△BPE与△CQP全等,此时,5=8-3t,解得t=1,∴BP=CQ=3,此时,点Q的运动速度为3÷1=3厘米/秒;②当BE=CQ=5,BP=CP时,△BPE与△CQP全等,此时,3t=8-3t,解得t=43,∴点Q的运动速度为5÷43=154厘米/秒;故答案为:3厘米/秒或154厘米/秒.【点睛】本题考查了全等三角形的性质和判定的应用,解决问题的关键是掌握全等三角形的对应边相等.19.AF=CB或EF=EB或AE=CE【分析】根据垂直关系可以判断△AEF与△CEB有两对对应角相等就只需要找它们的一对对应边相等就可以了【详解】∵AD⊥BCCE⊥AB垂足分别为DE∴∠BEC=∠AEC解析:AF=CB或EF=EB或AE=CE【分析】根据垂直关系,可以判断△AEF与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=∠ADB=∠ADC=90°,∵∠B+∠BAD=90°,∠B+∠BCE =90°,∴∠BAD=∠BCE,所以根据AAS添加AF=CB或EF=EB;根据ASA添加AE=CE.可证△AEF≌△CEB.故答案为:AF=CB或EF=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.20.3【分析】易证△ABE≌△DCF从而可得出△ABF≌△DCE进而可得出△BEF≌△CFE【详解】∵AB∥DC∴∠A=∠D∵AB=CDAE=DF∴△ABE≌△DCF(SAS)∴AE=DFBE=CF∴A解析:3【分析】易证△ABE≌△DCF,从而可得出△ABF≌△DCE,进而可得出△BEF≌△CFE.【详解】∵AB∥DC∴∠A=∠D∵AB=CD,AE=DF∴△ABE≌△DCF(SAS)∴AE=DF,BE=CF∴AF=ED∴△ABF≌△DCE(SAS)∴BF=EC∵EF=EF∴△BEF≌△CFE(SSS)故答案为:3.【点睛】本题考查三角形全等的证明,需要注意SSA是不能证明全等的.三、解答题21.(1)见解析;(2)HL【分析】(1)①用直尺任意画一条线,用圆规的两脚量取等于m 长度的线段,交直线与A 、C 两点;②以C 为圆心,任意长半径作圆;③分别以圆与直线的交点为圆心,画两个等圆,连接两个等圆的交点,可作出直线的垂线;④以A 为圆心,线段n 长为半径作圆,交垂线于点B ;⑤连接AB 即可(2)根据两个直角三角形对应的斜边和一条直角边相等即可得到结论【详解】(1)如图,步骤①用直尺任意画一条线,用圆规的两脚量取等于m 长度的线段,交直线与A 、C 两点;②以C 为圆心,任意长半径作圆;③分别以圆与直线的交点为圆心,画两个等圆,连接两个等圆的交点,可作出直线的垂线;④以A 为圆心,线段n 长为半径作圆,交垂线于点B ;⑤连接AB 即可(2)90ACB ∠=︒,在Rt ACB 中,直角边AC m =,斜边AB n =∴在两个直角三角形中,斜边和一条直角边对应相等∴可用HL 证明两个三角形全等【点睛】本题考查了复杂作图,以及全等三角形的判定,解题关键是掌握垂线的画法,以及全等三角形的判定定理.22.(1)见解析;(2)见解析;(3)B ,AE ;(4)AE <AF <BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE ⊥,∴线段BE 的长度是点B 到直线AE 的距离,故答案是:B ,AE ;(4)∵AE 是直角三角形AEF 的直角边,AF 是直角三角形AEF 的斜边,∴AE AF <,∵BF 是直角三角形ABF 的斜边,AF 是直角三角形ABF 的直角边,∴AF BF <,∴AE AF BF <<,故答案是:AE AF BF <<.【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.23.见解析【分析】证明△BEA ≌△AFC ,得到AE=CF ,BE=AF ,即可得到结论.【详解】证明:BE EA ⊥,CF AF ⊥,90BAC BEA AFC ∴∠=∠=∠=︒,90EAB CAF ∴∠+∠=︒,90EBA EAB ∠+∠=︒,CAF EBA ∴∠=∠,在ABE △和AFC △中,BEA AFC EBA CAF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BEA AFC ∴△≌△.AE CF ∴=,BE AF =.EF AF AE BE CF ∴=+=+..【点睛】此题考查全等三角形的判定及性质,熟记三角形的判定定理是解题的关键.24.(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.25.见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE ∥BF .【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS 证明三角形全等,是解题的关键.26.(1)a >b >c ;(2)见解析【分析】(1)a 、b 、c 两两作差可得出a 、b 、c 之间的大小关系;(2)对于任意一个三角形的三边a ,b ,c ,满足任意两边之和大于第三边,任意两边之差小于第三边.【详解】(1)∵a -b =m 2+n 2-m 2=n 2>0;a -c =m 2+n 2-mn =(m -n )2+mn >0;b -c = m 2-mn =m (m -n )>0∴a >b >c ;(2)由(1)a >b >c 可得,a +b >c∵a -b = m 2+n 2-m 2=n 2<mn∴a -b <c∴以a 、b 、c 为边长的三角形一定存在.【点睛】本题主要考查了利用差比法比较代数式的大小和用三角形三边关系证明三角形的存在.。
北师大版七年级数学下册 第四章 三角形 单元测试训练卷(word版 含解析)
北师大版七年级数学下册第四章 三角形单元测试训练卷一、单选题(共10小题,每小题4分,共40分)1.下列各组数为边,能构成三角形的是( )A .1,2,3B .2,3,4C .4,4,8D .3,5,9 2.如图,65A ∠=︒,45B ∠=︒,则ACD ∠=( )A .65°B .60°C .45°D .110° 3.如图,12,AC AD ∠=∠=,要使ABC AED ≌△△,还需添加一个条件,那么在以下条件中不能选择的是( )A .AB AE = B .BC ED = C .C D ∠=∠ D .BE ∠=∠ 4.若△ABC 的一个外角等于其中一个内角,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90° 5.如果一个三角形的两边长分别为3和7,则第三边长可能是( ). A .3 B .4 C .7 D .10 6.如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带( )去最省事.A.△B.△C.△D.△△7.已知:如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,点P 以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒()秒时.△ABP和△DCE全等.A.1B.1或3C.1或7D.3或78.如图,△CAB=△DBA,再添加一个条件,不一定能判定△ABC△△BAD的是()A.AC=BD B.△1=△2C.△C=△D D.AD=BC 9.如图,在△ABC中,△BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD△AD于D,CE△AD于E,交AB于点F,CE=10,BD=4,则DE的长为()A.6B.5C.4D.810.如图,在ABC中,△ACB=45°,AD△BC,BE△AC,AD与BE相交下点F,连接并延长CF交AB于点G,△AEB的平分线交CG的延长线于点H,连接AH.则下列结论:△△EBD=45°;△AH=HF;△ABD△CFD;△CH=AB+AH;△BD=CD﹣AF.其中正确的有()个.A .5B .4C .3D .2二、填空题(共6小题,每小题4分,共24分)11.用木棒钉成一个三角架,两根小棒长分别是7cm 和10cm,第三根小棒长为x cm,则x 的取值范围是___.12.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带________去玻璃店.13.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,添加一个条件能判断△ABE △△ACD 的是____.14.如图,A E ∠=∠,AC BE ⊥,AB EF =,25BE =,8=CF ,则AC =_______.15.在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,则S △ABE =_____.16.如图,ABC 和ADE 均为等边三角形,D ,E 分别在边AB ,AC 上,连接BE ,CD ,若15ACD =︒∠,则CBE =∠__________.三、解答题(共6小题, 56分)17.如图,在ABC ∆中,AD BC ⊥,垂足为D ,BE AC ⊥,垂足为E ,AE BE =,AD 与BE 相交于点F .(1)请说明AEF BEC ∆∆≌的理由.(2)如果2AF BD =,试说明AD 平分BAC ∠的理由.18.如图,△ABC中,D为BC上一点,△C=△BAD,△ABC的角平分线BE交AD于点F.(1)求证:△AEF=△AFE;(2)G为BC上一点且FE平分△AFG.求证:AB=GB19.如图,已知AE△AB,AF△AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC△BF.20.探索归纳:(1)如图1,已知ABC 为直角三角形,90A ∠=︒,若沿图中虚线剪去A ∠,则12∠+∠=________︒.(2)如图2,已知ABC 中,40A ∠=︒,剪去A ∠后成四边形,则12∠+∠=__________︒.(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想12∠+∠与A ∠的关系是___________.(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究12∠+∠与A ∠的关系并说明理由.21.在△BAC中,△BAC=90°,AB=AC,AE是过A的一条直线,BD△AE于点D,CE△AE于E.(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE 的关系如何?请予以证明;(3)若直线AE绕点A旋转,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.22.如图,AB=12cm,AC△AB,BD△AB,AC=BD=9cm,点P在线段AB上以3cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动;设点P的运动时间为t秒.(1) PB=________ cm.(用含t的代数式表示)(2)如图1,若点Q的运动速度与点P的运动速度相等,当运动时间t=1秒时,△ACP与△BPQ是否全等?并说明理由.(3)如图2,将“AC△AB,BD△AB”改为“△CAB=△DBA”,其余条件不变;设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.参考答案:1.B【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:A. 1+2=3 ,不能构成三角形,故该选项不符合题意;B. 2+3>4,能构成三角形,故该选项符合题意;C. 4+4=8,不能构成三角形,故该选项不符合题意;D. 3+5<9,不能构成三角形,故该选项不符合题意;故选B【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.2.D【解析】【分析】根据三角形外角的性质求解即可.【详解】解:△65A ∠=︒,45B ∠=︒,△110ACD A B ∠=∠+∠=︒,故选:D .【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.3.B【解析】【分析】由△1=△2,可得∠BAC=∠EAD ,又AC=AD ,可知在△ABC 和△AED 中,已知一角及其临边对应相等,要证两三角形全等,任意再找一对角对应相等,或者找已知角的另一边对应相等,由此可得答案.解:△△1=△2,△∠BAC=∠EAD ,当AB=AE 时,根据SAS 可得ABC AED ≌△△;当C D ∠=∠时,根据ASA 可得ABC AED ≌△△;当B E ∠=∠时,根据AAS 可得ABC AED ≌△△;当BC=ED 时,SSA 不能判定两个三角形全等,故答案为:B【点睛】本题考查三角形全等的判定,角的和差是常考的判定已知角相等的方法,熟知三角形全等的判定定理是解题的关键.4.D【解析】【分析】根据三角形的外角性质、邻补角的概念计算即可.【详解】解:△三角形的一个外角大于和它不相邻的任何一个内角,△△ABC 的一个外角等于其中一个内角时,这个外角等于它的邻补角,△这个三角形必有一个内角等于90°,故选:D .【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.5.C【解析】【分析】根据三角形三边之间的关系即可判定.【详解】解:设第三边长为x ,则4<x <10,所以选项中符合条件的整数只有7.故选:C .本题考查了三角形三边关系,三角形中,任意两边之差小于第三边,任意两边之和大于第三边.6.C【解析】【分析】根据全等三角形的判定方法“角边角”可以判定应当带△去.【详解】解:由图形可知,△有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形, 所以,最省事的做法是带△去.故选:C.【点睛】本题考查了全等三角形的判定方法,正确理解“角边角”的内容是解题的关键.7.C【解析】【分析】分P点在线段BC上和P点在线段AD上两种情况讨论,当P点在线段BC上时得到△ABP=△DCE=90°,BP=CE=2进而求解;当P点在线段AD上时得到△BAP=△DCE=90°,AP=CE=2进而求解.【详解】解:由题意可知:AB=CD,当P点在线段BC上时:△ABP=△DCE=90°,BP=CE=2,此时△ABP△△DCE(SAS),由题意得:BP=2t=2,△t=1;当P点在线段AD上时:△BAP=△DCE=90°,AP=CE=2,此时△BAP△△DCE(SAS),由题意得:AP=16-2t=2,△t=7.△当t的值为1或7秒时.△ABP和△DCE全等.故答案为:C.【点睛】本题考查了三角形全等的判定方法,注意要分类讨论,熟练掌握三角形全等判定方法是解题的关键.8.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.△AC=BD,△CAB=△DBA,AB=AB,△根据SAS能推出△ABC△△BAD,故本选项错误;B.△△CAB=△DBA,AB=AB,△1=△2,△根据ASA能推出△ABC△△BAD,故本选项错误;C.△△C=△D,△CAB=△DBA,AB=AB,△根据AAS能推出△ABC△△BAD,故本选项错误;D.根据AD=BC和已知不能推出△ABC△△BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.A【解析】【分析】根据△BAC=90°得到△BAD+△CAD=90°,由于CE△AD于E,于是得到△ACE+△CAE=90°,根据余角的性质得到△BAD=△ACE,推出△ABD△△CAE,根据全等三角形的性质即可得到结论.【详解】解:△△BAC=90°,△△BAD+△CAD=90°,△CE△AD于E,△△ACE+△CAE=90°,△△BAD=△ACE,在△ABD 与△CAE 中,90D AEC BAD ACE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△AE =BD =4,AD =CE =10,△DE =AD ﹣AE =6.故选:A .【点睛】本题考查全等三角形的判定与性质,解题的关键是利用余角的性质得到△BAD =△ACE . 10.A【解析】【分析】△利用三角形内角和定理即可说明其正确;△利用垂直平分线的性质即可说明其正确;△利用SAS 判定全等即可;△利用△中的结论结合等量代换和等式的性质即可得出结论;△利用△中的结论结合等量代换和等式的性质即可得出结论.【详解】如图所示,设EH 与AD 交于点M ,△△ACB =45°,BE △AC ,△△EBD =90°﹣△ACD =45°,故△正确;△AD △BC ,△EBD =45°,△△BFD =45°,△△AFE =△BFD =45°,△BE △AC ,△△F AE =△AFE =45°,△△AEF 为等腰直角三角形,△EM 是△AEF 的平分线,△EM △AF ,AM =MF ,即EH 为AF 的垂直平分线,△AH =HF ,△△正确;△AD △BC ,△ACD =45°,△△ADC 是等腰直角三角形,△AD =CD ,同理,BD =DF ,在△ABD 和△CFD 中,90AD CD ADB CDF BD FD =⎧⎪∠=∠=︒⎨⎪=⎩, △△ABD △△CFD (SAS ),△△正确;△△ABD △△CFD ,△CF =AB ,△CH =CF +HF ,由△知:HF =AH ,△CH =AB +AH ,△△正确;△BD =DF ,CD =AD ,又△DF =AD ﹣AF ,△BD =CD ﹣AF ,△△正确,综上,正确结论的个数为5个.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,垂直平分线的判定与性质等相关知识,综合性较强,难度较大,做题时要分清角的关系与边的关系.11.3<x<17【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,确定出第三边的取值范围即可得出答案.【详解】解:设第三根小棒的长为x cm,根据三角形的三边关系可得:10-7<x<10+7,即3<x<17,故答案为3<x<17.【点睛】本题考查了三角形的三边关系.三角形的三边关系:第三边大于两边之差而小于两边之和.12.△【解析】【分析】观察每块玻璃形状特征,利用ASA判定三角形全等可得出答案.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带△去.故答案为:△.【点睛】本题属于利用ASA判定三角形全等的实际应用,难度不大,但形式较颖,要善于将所学知识与实际问题相结合.13.AD=AE(答案不唯一)【解析】【分析】根据全等三角形的判定定理添加条件可以,添加AD =AE ,根据SAS 证明△ABE △△ACD 即可.【详解】解:添加的条件是AD =AE ,理由是:在△ABE 和△ACD 中,AE AD A A AB AC =⎧⎪∠=∠⎨⎪=⎩,△△ABE △△ACD (SAS ),故答案为:AD =AE (答案不唯一).【点睛】本题考查了全等三角形的判定定理,熟练掌握全等三角形的判定定理是解题的关键. 14.17【解析】【分析】由“AAS ”可证ABC EFC ∆≅∆,可得AC CE =,9BC CF ==,即可求解.【详解】解:AC BE ⊥,90ACB ECF ∴∠=∠=︒,在ABC ∆和EFC ∆中,A E ACB ECF AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EFC AAS ∴∆≅∆,AC CE ∴=,8BC CF ==,25817AC CE BE BC ∴==-=-=,故答案为:17.【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.15.1cm 2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D 是BC 的中点,S △ABC =4cm 2∴S △ABD =12S △ABC =12×4=2cm 2∵E 是AD 的中点,∴S △ABE =12S △ABD =12×2=1cm 2故答案为:1cm 2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解. 16.45︒##45度【解析】【分析】根据题意利用全等三角形的判定与性质得出()BD C S ED E SA ≅和15EBD ACD ︒∠=∠=,进而依据CBE =∠ABC EBD ∠-∠进行计算即可.【详解】解:△ABC 和ADE 均为等边三角形,△,,AB AC AE AD EC DB ===,△60,120,AED ADE ABC DEC EDB ︒︒∠=∠=∠=∠=∠=在CED 和BDE 中, EC DB DEC EDB ED ED =⎧⎪∠=∠⎨⎪=⎩, △()BD C S ED E SA ≅,△15EBD ACD ︒∠=∠=,△CBE =∠601545ABC EBD ︒︒︒∠-∠=-=.故答案为:45︒.【点睛】本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.17.(1)见解析(2)见解析【解析】【分析】(1)由余角的性质可证DAC EBC ∠=∠,根据“ASA”可证结论成立;(2)由AEF BEC ∆∆≌可得AF BC =,结合2AF BD =可知BD CD =,然后根据“SAS”证明△ABD △△ACD 可证结论成立.(1)证明:AD BC ⊥,BE AC ⊥,90ADC ∴∠=,△AEB =△CEB =90°,90DAC C +∠=∴∠,△EBC +△C =90°,DAC EBC =∠∴∠,在AEF ∆与BEC ∆中,EAF EBC AEF BEC AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ΔΔASA AEF BEC ∴≌.(2)解:由(1)知,AF BC =,2AF BD =,2BC BD ∴=,D ∴是BC 的中点,BD CD ∴=,在△ABD 和△ACD 中AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩, △△ABD △△ACD ,△BAD CAD ∠=∠,AD ∴平分BAC ∠.【点睛】本题考查了全等三角形的判定和性质,余角的性质,角平分线的定义,熟练掌握全等三角形的判定和性质是解题的关键.18.(1)证明见解析(2)证明见解析【解析】【分析】(1)先根据角平分线的定义得到△1=△2,再由三角形外角的性质得到△AEF=△2+△C,△AFE=△1+△BAD,由△C=△BAD,即可推出△AEF=△AFE;(2)根据角平分线的定义得到△AFE=△GFE,再由△AFB+△AFE=180°,△BFG+△GFE=180°,得到△AFB=△BFG,然后证明△ABF△△GBF即可得到AB=GB.(1)解:△BE是△ABC的角平分线,△△1=△2,△△AEF、△AFE分别是△BCE、△ABF的外角,△△AEF=△2+△C,△AFE=△1+△BAD,又△△C=△BAD,△△AEF=△AFE;(2)解:△FE平分△AFG,△△AFE=△GFE,△△AFB+△AFE=180°,△BFG+△GFE=180°,△△AFB=△BFG,在△ABF和△GBF中12AFB BFG BF BF∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABF △△GBF (ASA )△AB =GB .【点睛】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形外角的性质,熟知相关知识是解题的关键.19.(1)见解析(2)见解析【解析】【分析】(1)先求出△EAC =△BAF ,然后利用“边角边”证明△ABF 和△AEC 全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得△AEC =△ABF ,设AB 、CE 相交于点D ,根据△AEC +△ADE =90°可得△ABF +△ADM =90°,再根据三角形内角和定理推出△BMD =90°,从而得证.(1)△AE △AB ,AF △AC ,△△BAE =△CAF =90°,△△BAE +△BAC =△CAF +△BAC ,即△EAC =△BAF ,在△ABF 和△AEC 中,AE AB EAC BAF AF AC =⎧⎪∠=∠⎨⎪=⎩, △△ABF △△AEC (SAS ),△EC =BF ;(2)如图,设AB 交CE 于D根据(1),△ABF△△AEC,△△AEC=△ABF,△AE△AB,△△BAE=90°,△△AEC+△ADE=90°,△△ADE=△BDM(对顶角相等),△△ABF+△BDM=90°,在△BDM中,△BMD=180°-△ABF-△BDM=180°-90°=90°,所以EC△BF.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用“8字型”证明角相等.20.(1)270(2)220∠+∠=︒+∠(3)12180A(4)122A∠+∠=∠,理由见解析【解析】【分析】(1)利用三角形的外角定理及直角三角形的性质求解;(2)利用三角形的外角等于与它不相邻的两个内角和求解;(3)根据(1)、(2)中思路即可求解;∠=︒-∠, (4)根据折叠对应角相等,得到AFE PFE∠=∠,AEF PEF∠=∠,进而求出11802AFE∠+∠=︒-∠即可求解.AFE AEF A∠=︒-∠,最后利用18021802AEF(1)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A=90°+△EF A,△2=△A+△AEF=90°+△AEF,△△1+△2=(90°+△EF A)+( 90°+△AEF)=180°+△EF A+△AEF,△△ABC为直角三角形,△△A=90°,△EF A+△AEF=180°-△A=90°,△△1+△2=180°+90°=270°.(2)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A,△2=△A+△AEF,△△1+△2=(△A+△EF A)+( △A+△AEF)=(△A +△EF A+△AEF)+∠A=180°+40°=220°.(3)解:由(1)、(2)中思路,由三角形外角性质可知:△1=△A +△EF A ,△2=△A +△AEF ,△△1+△2=(△A +△EF A )+( △A +△AEF )=(△A +△EF A +△AEF)+∠A =180°+∠A ,△12∠+∠与A ∠的关系是:△1+△2=180°+∠A .(4)解:12∠+∠与A ∠的关系为:122A ∠+∠=∠,理由如下:如图,△EFP △是由EFA △折叠得到的,△AFE PFE ∠=∠,AEF PEF ∠=∠,△11802AFE ∠=︒-∠,21802AEF ∠=︒-∠,△()12(1802)(1802)3602AFE AEF AFE AEF ∠+∠=︒-∠+︒-∠=︒-∠+∠,又△180AFE AEF A ∠+∠=︒-∠,△()1236021802A A ∠+∠=︒-︒-∠=∠,△12∠+∠与A ∠的关系122A ∠+∠=∠.【点睛】主要考查了折叠的性质及三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和、三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.21.(1)BD ﹣EC(2)BD =DE ﹣CE .见解析(3)当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【解析】【分析】(1)通过互余关系可得△ABD =△CAE ,进而证明△ABD △△ACE (AAS ),即可求得BD =AE ,AD =EC ,进而即可求得关系式;(2)方法同(1)证明△ABD △△CAE (AAS ),进而得出结论;(3)综合(1)(2)结论,分当B ,C 在AE 的同侧或异侧时,写出结论即可.(1)结论:DE =BD ﹣EC .理由:如图1中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△ACE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△BAD △△ACE (AAS ),△BD =AE ,AD =EC ,△BD =DE +CE ,即DE =BD ﹣EC .故答案为:BD ﹣EC ;(2)结论:BD =DE ﹣CE .理由:如图2中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△CAE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△BD =AE ,AD =EC ,△BD =DE ﹣CE ;(3)归纳:由(1)(2)可知:当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键. 22.(1)(12-3t )(2)△CAP △△PBQ ,理由见解析(3)满足条件的点Q 的速度为3或92cm /s . 【解析】【分析】(1)求出AP ,再根据题意写出PB 的值即可;(2)求出AP ,PB ,BQ 的值,根据SAS 证明△CAP △△PBQ (SAS )即可;(3)分两种情形分别求解:△由(1)可知,Q 的速度为3cm /s 时,△ACP △△BPQ ,这种情形符合题意.△当P A =PB ,AC =BQ 时,△APC △△BPQ (SAS ),首先确定运动时间,再求出点Q 的运动速度即可.(1)解:由题意:P A =3t (cm ),△AB =12cm ,△PB =AB -AP =12-3t (cm ),故答案为:(12-3t );(2)解:△CAP△△PBQ,理由如下:由题意:t=1(s)时,P A=BQ=3(cm),△AB=12cm,△PB=AB-AP=12-3=9(cm),△AC=9cm,△AC=BP,△△CAP=△PBQ=90°,P A=BQ,△△CAP△△PBQ(SAS);(3)解:△由(2)可知,Q的速度为3cm/s时,△ACP△△BPQ,这种情形符合题意.△当P A=PB,AC=BQ时,△APC△△BPQ(SAS),△t=63=2(s),△点Q的运动速度为92cm/s.△满足条件的点Q的速度为3或92cm/s.【点睛】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分类讨论思想的灵活运用是解题的关键.。
北师大版七年级下册数学第四章三角形 测试题及答案
北师大版七年级下册数学第四章三角形测试卷一、单选题1.图中三角形的个数是( )A.8 B.9 C.10 D.112.下面四个图形中,线段BE是⊿ABC的高的图是()A.B.C.D.3.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,6cm4.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.钝角三角形C.锐角三角形D.不确定5.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是( )A.3个B.4个C.5个D.6个6.下面说法正确的个数有()①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=12∠C,那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.A.3个B.4个C.5个D.6个7.在△ABC中,∠B、∠C的平分线相交于点P,设∠A=x°,用x的代数式表示∠BPC的度数,正确的是()A.90+12x B.90+12x C.90+2x D.90+x8.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.180°C.160°D.120°9.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个B.2个C.3个D.4个10.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有( )A.1个B.2个C.3个D.4个二、填空题11.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD=_________.12.如图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是__.13.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是_________度.14.如图,∠1=_____.15.若三角形三个内角度数的比为2:3:4,则相应的外角比是_____________.16.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度.17.如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a 的取值范围是________________18.如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是_____________.19.如图,ABC 中,100A ∠=,BI 、CI 分别平分ABC ∠,ACB ∠,则BIC ∠=________,若BM 、CM 分别平分ABC ∠,ACB ∠的外角平分线,则M ∠=________.20.如图△ABC 中,AD 是BC 上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是________.三、解答题21.小华从点A 出发向前走10m ,向右转36°然后继续向前走10m ,再向右转36°,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回到点A 时共走多少米?若不能,写出理由.22.一个零件的形状如图,按规定∠A=90º ,∠ C=25º,∠B=25º,检验已量得∠BDC=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.23.如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,(1)若∠ABC=30°,∠ACB=50°,求∠DAE的度数(2)写出∠DAE与∠C-∠B的数量关系,并证明你的结论24.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E, ∠A=35°, ∠D=50°,求∠ACD的度数.参考答案1.B【解析】试题解析:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.故选B.2.A【解析】分析:根据三角形的高的定义,过顶点向对边作垂线,顶点与垂足之间的线段为三角形的高,观察各选项直接选择答案即可.解答:解:根据三角形高线的定义,只有A选项符合.故选A.3.B【解析】【分析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】解:A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<11,不能够组成三角形;D、2+3<5,不能组成三角形.故选:B.【点睛】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.4.B【解析】【分析】此题依据三角形的外角性质,即三角形的外角与它相邻的内角互为邻补角,可判断出此三角形有一内角为钝角,从而得出这个三角形是钝角三角形的结论.【详解】因为三角形的一个外角与它相邻的内角和为180°,而题中说这个外角小于它相邻的内角,所以可知与它相邻的这个内角是一个大于90°的角即钝角,则这个三角形就是一个钝角三角形.故选:B.【点睛】本题主要考查三角形的外角性质,解题的关键是熟练掌握三角形的外角与它相邻的内角互为邻补角.5.A【解析】【分析】由“直角三角形的两锐角互余”,结合题目条件,得∠C=∠BDF=∠BAD=∠ADE.【详解】解:∵AD是斜边BC上的高,DE⊥AC,DF⊥AB,∴∠C+∠B=90°,∠BDF+∠B=90°,∠BAD+∠B=90°,∴∠C=∠BDF=∠BAD,∵∠DAC+∠C=90°,∠DAC+∠ADE=90°,∴∠C=∠ADE,∴图中与∠C(除之C外)相等的角的个数是3,故选A.【点睛】本题的关键是利用已知条件得出等角的余角相等,利用平行线的性质得出角相等.6.C【解析】试题分析:①∵三角形三个内角的比是1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小题正确;②∵三角形的一个外角与它相邻的一个内角的和是180°,∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;③∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;④∵∠A=∠B=1∠C,2∴设∠A=∠B=x,则∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小题正确;⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,∴三角形一个内角也等于另外两个内角的和,∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.故选D.考点:1.三角形内角和定理;2.三角形的外角性质.7.A【解析】分析:根据三角形内角和定理可求得∠ABC+∠ACB的度数,再根据角平分线的定义可求得∠PBC+∠PCB的度数,最后根据三角形内角和定理即可求解.详解:如图:∵∠A=x°,∴∠ABC+∠ACB=180°−x°,∵∠B,∠C的平分线相交于点P,∴∠PBC+∠PCB=12(180°−x°),∴∠BPC=180°−12(180°−x°)=90°+12x°,故选A.点睛:本题考查了三角形内角和定理.8.B【解析】【分析】本题考查了角度的计算问题,因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【详解】解:设∠AOD=x,∠AOC=90︒+x,∠BOD=90︒-x,所以∠AOC+∠BOD=90︒+x+90︒-x=180︒.故选B.【点睛】在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.9.C【解析】解:能够构成三角形三边的组合有13cm、10cm、5cm和13cm、10cm、7cm和10cm、5cm、7cm共3种,故选C.10.C【解析】【分析】分析所给的命题是否正确,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】∵三条线段组成的封闭图形叫三角形,∴①不正确;∵三角形相邻两边组成的角叫三角形的内角,∴②正确;∵三角形的角平分线是线段,∴③不正确;∵三角形的高所在的直线交于一点,这一点可以是三角形的直角顶点,∴④不正确.∵任何一个三角形都有三条高、三条中线、三条角平分线,∴⑤正确;∵三角形的三条角平分线交于一点,这个点叫三角形的内心,∴⑥正确;综上,可得正确的命题有3个:②、⑤,⑥.故选C.【点睛】主要主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.90.【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和即可求解.【详解】∠BCD是三角形ABC的外角,所以603090.BCD A B ∠=∠+∠=+=故答案为90.【点睛】考查三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.12.三角形具有稳定性【解析】【分析】用木条固定矩形门框,即是分割为两个三角形,故可用三角形的稳定性解释.【详解】解:加上木条后矩形门框分割为两个三角形,而三角形具有稳定性.故答案为三角形具有稳定性.【点睛】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.13.135°【解析】【分析】看图得△DEB 为等腰直角三角形的三角板,得∠EDB 的度数,由∠ADB 为平角,进而求出∠ADE 的度数.【详解】∵∠EDB=45°,∠ADB=180°,∴∠ADE=135°.【点睛】本题考察三角板的类型判断和角度计算,解题的关键为正确判断三角板的类型和知道三角板各个角的度数.14.120°【解析】∵∠2=180°-140°=40°,∴∠1=80°+40°=80°+∠2=120°.15.7:6:5【解析】【分析】三角形三个内角度数的比为2:3:4,三个角的和是180度,因而设一个角是2x度,则另外两角分别是3x度,4x度,就可以列出方程,求出三个角的度数.根据外角与相邻的内角互补,求出三个外角的度数,从而求出相应的外角比.【详解】解:设一个角是2x度,则另外两角分别是3x度,4x度,根据题意,得:2x+3x+4x=180,解得x=20,因而三个角分别是:40度,60度,80度.则相应的外角的度数是:140度,120度,100度,则相应的外角比是7:6:5.故答案为7:6:5【点睛】已知几个数据的和与比值,求这几个数,可以设参数方程求解,这类题目的解法是需要熟记的内容.16.74°【解析】【详解】试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∴∠ACE=12∠ACB=35°. ∵CD ⊥AB 于D , ∴∠CDA=90°, ∠ACD=180°﹣∠A ﹣∠CDA=50°.∴∠ECD=∠ACD ﹣∠ACE=15°. ∵DF ⊥CE , ∴∠CFD=90°, ∴∠CDF=180°﹣∠CFD ﹣∠DCF=75°.考点:三角形内角和定理.17.a>5【解析】因为−2<2<5,所以a−2< a+2< a+5,所以由三角形三边关系可得a−2+a+2>a+5,解得a>5.18.72°、72°、36°【解析】【分析】此题先根据已知三角形的一个外角等于与它相邻的内角的4倍,互为邻补角的两个角和为180°,从而求出这个外角与它相邻的内角的度数为144°、36°.又知这个外角还等于与它不相邻的一个内角的2倍,所以可以得到这两个与它不相邻的内角分别为:72°、72°,则这个三角形各角的度数分别是36°,72°,72°.【详解】∵三角形的一个外角等于与它相邻的内角的4倍,∴可设这一内角为x ,则它的外角为4x ,∴有4180x x +=,则36,4144.x x ==又∵这个外角还等于与它不相邻的一个内角的2倍,∴这两个与它不相邻的内角分别为:72°、72°. ∴这个三角形各角的度数分别是72°、72°、36°. 故答案为72°、72°、36°. 【点睛】考查三角形的外角性质以及三角形内角和定理,比较基础,难度不大.19.140 40【分析】首先根据三角形内角和求出∠ABC+∠ACB的度数,再根据角平分线的性质得到∠IBC=1 2∠ABC,∠ICB=12∠ACB,求出∠IBC+∠ICB的度数,再次根据三角形内角和求出∠I的度数即可;根据∠ABC+∠ACB的度数,算出∠DBC+∠ECB的度数,然后再利用角平分线的性质得到∠1=12∠DBC,∠2=12ECB,可得到∠1+∠2的度数,最后再利用三角形内角和定理计算出∠M的度数.【详解】∵∠A=100°.∵∠ABC+∠ACB=180°﹣100°=80°.∵BI、CI分别平分∠ABC,∠ACB,∴∠IBC=12∠ABC,∠ICB=12∠ACB,∴∠IBC+∠ICB=1 2∠ABC+12∠ACB=12(∠ABC+∠ACB)=12×80°=40°,∴∠I=180°﹣(∠IBC+∠ICB)=180°﹣40°=140°;∵∠ABC+∠ACB=80°,∴∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB)=360°﹣80°=280°.∵BM、CM分别平分∠ABC,∠ACB的外角平分线,∴∠1=12∠DBC,∠2=12ECB,∴∠1+∠2=12×280°=140°,∴∠M=180°﹣∠1﹣∠2=40°.故答案为:140°;40°.【点睛】本题主要考查了三角形内角和定理,以及角平分线的性质,关键是根据三角形内角和定理计算出∠ABC+∠ACB的度数.20.6【详解】三角形的中线将三角形分成面积相等的两部分,则△ABD 的面积=12△ABC 的面积=12,△ABE 的面积=12△ABD 的面积=6.考点:中线的性质21.可以走回到A 点,共走100米【解析】试题分析:他要想回到原点需要走成正多边形,根据多边形的外角和定理求出多边形的边数,从而求出路程.试题解析:解:根据题意可知,360°÷36°=10,所以他需要转10次才会回到起点,它需要经过10×10=100m 才能回到原地. 所以小华能回到点A .当他走回到点A 时,共走100m .22.零件不合格.理由见解析.【解析】【分析】根据三角形外角的性质求出∠BDC 的度数,与测量所得的度数对比即可得出结论.【详解】如图,∠CDE 是△ADC 的外角,∠BDE 是△ABD 的外角,∵∠CDE =∠C +∠CAD ,∠BDE =∠B +∠DAB ,∴∠BDC =∠CDE +∠BDE =∠C +∠CAD +∠B +∠DAB ,即252590140,BDC B C A ∠=∠+∠+∠=++=检验已量得150BDC ∠=,就判断这个零件不合格.【点睛】考查三角形外角的性质,作出辅助线,求出∠BDC 的度数是解题的关键.23.(1)10°;(2)∠DAE=12(∠C-∠B),证明见解析.【解析】【分析】(1)利用三角形内角和定理求得∠BAC=100°,根据角平分线定义可知∠EAC=12∠BAC,再利用三角形内角和先求出∠DAC,再求得∠DAE;(2)按照(1)中思路,进行推导即可解决问题. 【详解】(1)解:∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AE平分∠BAC,∴∠EAC=12∠BAC=50°∵AD是高,∴∠ADC=90°,∴∠DAC=180°-∠ADC-∠C=180°-90°-50°=40°∴∠DAE=∠EAC-∠DAC=50°-40°=10°(2)解:∠BAC=180°-∠B-∠C,∵AE平分∠BAC,∴∠EAC=12∠BAC=12(180°-∠B-∠C)∵AD是高,∴∠ADC=90°,∴∠DAC=180°-∠ADC-∠C=180°-90°-∠C=90°-∠C,∴∠DAE=∠EAC-∠DAC=12(180°-∠B-∠C)-(90°-∠C)=12(∠C-∠B)【点睛】本题主要考查三角形内角和定理的运用,还涉及了角平分线定义,熟练掌握以上知识点是解题关键.24.83°.【解析】试题分析:由DF⊥AB,在Rt△BDF中可求得∠B;再由∠ACD=∠A+∠B可求得.试题解析:∵DF⊥AB,∴∠B+∠D=90°,∴∠B=90°-∠D=90°-42°=48°,∴∠ACD=∠A+∠B=35°+48°=83°.。
新北师大版数学七下 第四章 三角形单元测试
第四章三角形一、选择题(每小题3分,共30分)1.下面是2014年仁川亚运会的会徽和吉祥物,其中是全等图形的一组是()答案 B 选项A和D中的两个图形的形状相同,大小不同,选项C中的两个图形的形状、大小都不相同,只有选项B中的两个图形的形状、大小都相同,故选B.2.如果一个三角形的两边长分别是2和4,则第三边的长可能是()A.2B.4C.6D.8答案 B 设第三边的长为x,则4-2<x<2+4,即2<x<6,故选B.3.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形答案 D ∵∠A=20°,∠B=60°,∴∠C=180°-∠A-∠B=180°-20°-60°=100°,∴△ABC是钝角三角形.故选D.4.如图4-6-1,D,E分别为△ABC的边AC,BC的中点,则下列说法不正确的是()图4-6-1A.DE是△BDC的中线B.BD是△ABC的中线C.AD=DC,BE=ECD.∠C的对边是DE答案 D 在△DEC中,∠C的对边是DE.5.如图4-6-2,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()图4-6-2A.30°B.35°C.40°D.45°答案 C ∵AB∥CD,∴∠FEB=∠C=70°,又∵∠AEF+∠BEF=180°,∴∠AEF=180°-70°=110°,在△AEF 中,∠A+∠F+∠AEF=180°,∴∠A=180°-∠AEF-∠F=40°.6.如图4-6-3,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()图4-6-3A.∠A=∠CB.∠D=∠BC.AD∥BCD.DF∥BE答案 B 当∠D=∠B时,在△ADF和△CBE中,∵{AD =BC,∠D =∠B,DF =BE, ∴△ADF ≌△CBE(SAS), 故选B.7.已知三角形的三边长分别为4,x,7,且x 为奇数,则满足条件的三角形的个数为( ) A.3 B.4 C.5 D.6答案 A 由已知得3<x<11,又∵x 为奇数,则x 可取5、7、9.故满足条件的三角形有3个.8.如图4-6-4,在△ABC 中,∠ABC 、∠ACB 的平分线BE 、CD 相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )图4-6-4A.118°B.119°C.120°D.121°答案 C 在△ABC 中,∠ACB=180°-∠A-∠ABC=180°-60°-42°=78°.∵BE 、CD 分别平分∠ABC 、∠ACB,∴∠FBC=12∠ABC=21°,∠FCB=12∠ACB=39°,∴∠BFC=180°-∠FBC-∠FCB=180°-21°-39°=120°.故选C. 9.图4-6-5如图4-6-5,已知AB=AC,AE=AF,BE 与CF 交于点D,则以下结论:①△ABE ≌△ACF;②△BDF ≌△CDE;③D 在∠BAC 的平分线上,其中正确的是( )A.①B.②C.①②D.①②③ 答案 D ∵AB=AC,∠A=∠A,AE=AF, ∴△ABE ≌△ACF(SAS).∴∠AEB=∠AFC,∠B=∠C,∴∠CED=∠BFD, ∵AB=AC,AF=AE,∴BF=CE. ∴△BDF ≌△CDE.∴CD=BD. 连接AD,∵AB=AC,BD=CD,AD=AD, ∴△ABD ≌△ACD(SSS),∴∠CAD=∠BAD,∴D 在∠BAC 的平分线上,故①②③都正确.图4-6-610.如图4-6-6,△ABC 的底边边长BC=a,当顶点A 沿BC 边上的高AD 由A 向D 移动到达E 点时,若DE=12AE,则△ABC 的面积将变为原来的( )A.12 B.13 C.14 D.19答案 B ∵DE=12AE=13AD, ∴S △BCE =12BC ·DE=12BC ·13AD=13S △ABC . 故选B.二、填空题(每小题4分,共24分)11.如图4-6-7,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是利用了.图4-6-7答案三角形的稳定性12.在△ABC中,BC=10,AB=6,那么AC的取值范围是.答案4<AC<16解析由三角形三边关系得10-6<AC<10+6,即4<AC<16.13.如图4-6-8,已知∠B=78°,∠C=40°,AD平分∠BAC,则∠ADB=.图4-6-8答案71°解析∵∠B=78°,∠C=40°,∴∠BAC=180°-∠B-∠C=62°,∵AD平分∠BAC=31°,∴∠ADB=180°-∠B-∠BAD=71°.∠BAC,∴∠BAD=1214. 如图4-6-9,△ABC中,AD为中线,DE⊥AB于E,DF⊥AC于F,AB=3,AC=4,DF=1.5,则DE=.图4-6-9答案 2解析 ∵AD 是△ABC 的中线,∴S △ABD =S △ACD .又S △ACD =12AC ·DF=12×4×1.5=3,∴S △ABD =12AB ·DE=3,∴DE=2.15.)如图4-6-10,在△ABC 中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= .图4-6-10答案 3解析 ∵∠A=∠A,∠1=∠2,BE=CD,∴△ABE ≌△ACD,∴AD=AE=2,AB=AC=5,∴CE=AC -AE=5-2=3.16.如图4-6-11所示:要说明△ABC ≌△BAD.(1)已知∠1=∠2,若要以SAS 为依据,则可添加的一个条件是 ;(2)已知∠1=∠2,若要以AAS 为依据,则可添加的一个条件是 ;(3)已知∠1=∠2,若要以ASA 为依据,则可添加的一个条件是 .图4-6-11答案 (1)BC=AD (2)∠C=∠D (3)∠BAC=∠ABD三、解答题(共46分)17.(10分)如图4-6-12,点C,E,F,B 在同一直线上,点A,D 在BC 异侧,AB ∥CD,AE=DF,∠A=∠D.求证:AB=CD.图4-6-12证明 ∵AB∥CD,∴∠B=∠C,在△ABE 和△DCF 中,{∠B =∠C,∠A =∠D,AE =DF,∴△ABE ≌△DCF,∴AB=CD.18.(12分)如图4-6-13所示,A,B 两个建筑物分别位于河的两岸,要测得它们之间的距离,可以从B 出发沿河岸画一条射线BF,在BF 上截取BC=CD,过D 作DE ∥AB,使E,C,A 在同一条直线上,则DE 的长就是A,B 之间的距离.请你说明理由.图4-6-13解析 因为AB ∥DE,所以∠ABC=∠EDC, 在△ABC 和△EDC 中,{∠ABC =∠EDC,BC =DC,∠ACB =∠ECD,所以△ABC ≌△EDC,所以AB=DE.即DE 的长就是A,B 之间的距离.19.(10分)图4-6-14如图4-6-14所示,某块三角形模具ABC的阴影部分已经破损.(1)只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的三角形模具ABC的形状和大小完全相同的三角形模具A'B'C'?请简要说明理由;(2)作出三角形模具A'B'C'(要求:尺规作图,保留作图痕迹,不写作法和理由).解析(1)只要度量残留的三角形模具片的∠B,∠C的度数和边BC的长即可.理由如下:两角及其夹边对应相等的两个三角形全等.(2)如图所示.20.(14分)如图4-6-15,△ABC中,D为AB的中点,AD=5厘米,∠B=∠C,BC=8厘米.点Q在线段CA上从点C向终点A运动.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时..①若点Q的速度与点P的速度相等,经过1秒后,请说明△BPD≌△CQP;②若点Q的速度与点P的速度不等,当点Q的速度为多少时,能使△BPD≌△CPQ?(2)若点P 以3厘米/秒的速度从点B 向点C 运动,同时..点Q 以5厘米/秒的速度从点C 向点A 运动,它们都依次沿△ABC 三边运动,则经过多长时间,点Q 第一次在△ABC 的哪条边上追上点P?图4-6-15解析 (1)①证明:∵BP=3×1=3厘米,CQ=3×1=3厘米,∴BP=CQ.∵D 为AB 的中点,∴BD=AD=5厘米.∵CP=BC -BP=8-3=5厘米, ∴BD=CP.又∵∠B=∠C,∴△BPD ≌△CQP(SAS).②设点Q 的运动时间为t 秒,运动速度为v 厘米/秒. ∵△BPD ≌△CPQ,∴BP=CP=4厘米,CQ=BD=5厘米,∴t=BP 3=43秒,∴v=CQ t =543=154 厘米/秒.∴当点Q 的运动速度为154 厘米/秒时,能使△BPD ≌△CPQ. (2)设经过x 秒点Q 第一次追上点P.由题意,得5x-3x=2×10,解得x=10.∴点P运动的路程为3×10=30(厘米),∵30=28+2,∴此时点P在BC边上,∴经过10秒点Q第一次在边BC上追上点P.。
北师大版七年级数学下册第四章《三角形》质量检测试卷(解析版)
第四章《三角形》质量检测卷(解析版)(全卷满分100分限时90分钟)一.选择题:(每小题3分,共36分)1. 满足下列条件的△ABC中,不是直角三角形的是()A. ∠B+∠A=∠CB. ∠A:∠B:∠C=2:3:5C. ∠A=2∠B=3∠CD. 一个外角等于和它相邻的一个内角【答案】B【解析】本题考查了直角三角形的判定根据三角形的内角和是及邻补角是,对各选项进行分析即可。
A、∵∠B+∠A=∠C,∴∠C=90°,∴△ABC是直角三角形;B、∵∠A:∠B:∠C=2:3:5,∴∠C=90°,∴△ABC是直角三角形;C、∵∠A=2∠B=3∠C,∴∠A≠90°,∴△ABC不是直角三角形;D、∵一个外角等于和它相邻的内角,∴每一个角等于90°,∴△ABC是直角三角形;故选C.2..下列说法正确的是()A.三角形的角平分线是射线B.三角形的中线是线段C.三角形的高是直线D.直角三角形仅有一条高线【答案】B【解析】三角形的角平分线,中线,高都是线段,故A,C错误,B正确;任何三角形都有三条高线,故D错误.故选B.3.若一个三角形的两边长分别为3和7,则第三边长可能是( )A. 6B. 3C. 2D. 11 【答案】A【解析】试题解析:设第三条边长为x,根据三角形三边关系得:7-3<x<7+3,即4<x<10.结合各选项数值可知,第三边长可能是6.故选A.4.在下列长度的四根木棒中,能与长为4cm、9cm的两根木棒钉成一个三角形的是( )A. 4cmB. 5cmC. 9cmD. 13cm【解析】试题解析:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9-4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有C选项符合条件.故选C.5.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在( )A. 三角形内部B. 三角形的一边上C. 三角形外部D. 三角形的某个顶点上【答案】A【解析】三角形三条角平分线所在的直线一定交于一点,这一点是三角形的内心即内切圆的圆心,此点在三角形(锐角三角形、直角三角形、钝角三角形)内部.故选:A.6.三角形的一个外角是锐角,则此三角形的形状是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定【答案】B【解析】本题主要考查了三角形的形状根据外角是锐角,可得相邻的内角是钝角,即可判断。
北师大版八年级数学下册《三角形的证明》单元测试1(含答案)
第一章 三角形的证明单元测试一、选择题(每题3分,共30分)1、△ABC 中,AB = AC ,BD 平分∠ABC 交AC 边于点D ,∠BDC = 75°,则∠A 的度数为( )A 35°B 40°C 70°D 110°2、适合条件∠A =∠B =31∠C 的三角形一定是( )A 锐角三角形B 钝角三角形C 直角三角形D 任意三角形3、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,一定可以拼成的图形是( )A ①②④B ②④C ①④D ②③④4、已知△ABC 中,AB =AC ,AB 的垂直平分线交AC 于D ,△ABC 和△DBC 的周长分别是60 cm 和38 cm ,则△ABC 的腰和底边长分别为 ( ) A 24 cm 和12 cm B 16 cm 和22 cm C 20 cm 和16 cm D 22 cm 和16 cm5、如图,△ABC 中,AC =BC ,直线l 经过点C ,则 ( ) A l 垂直AB B l 平分AB C l 垂直平分AB D 不能确定6、三角形中,若一个角等于其他两个角的差,则这个三角形是 ( ) A 钝角三角形 B 直角三角形 C 锐角三角形 D 等腰三角形7、已知等腰三角形的两边长分别为6㎝、3㎝,则该等腰三角形的周长是( ) A 9㎝B 12㎝C 12㎝或者15㎝D 15㎝8、如图,已知在△ABC中,AB=AC,D为BC上一点,BE=CD,CF=BD,那么∠EDF等于( )A 90°-∠A B 90°-21∠A C 45°-21∠A D 180°-∠A9、一个正方形和一个等腰三角形有相等的周长,已知等腰三角形有两边长分别为5.6 cm和13.2 cm,则这个正方形的面积为()A 64 cm2B 48 cm2C 36 cm2D 24 cm210、如图,等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A 45°B 55°C 60°D 75°二、填空题(每小题3分,共30分)1、“直角三角形两条直角边的平方和等于斜边的平”的方逆定理是2、等腰三角形的腰长为2cm,面积等于1cm2,则它的顶角的度数为 .3、如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB相交于D点,则∠BCD的度数是 .4、等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是 .5、正三角形的边长为a,则它的面积为.6、在△ABC中,AB=AC,∠A=58°,AB的垂直平分线交AC于N,则∠NBC = .7、在直角三角形中,如果一个锐角为30°,而斜边与较小直角边的和为12,那么斜边长为.8、已知:如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=.9、在等腰三角形ABC中,AB=AC=5,BC=6,D是BC上一点,作DE⊥AB,DF⊥AC,则DE+DF= .10、如图,一张直角三角形的纸片,象图中那样折叠,使A与B重合,∠B=30°,AC=3,则折痕DE等于.三、解答题(本题共8个小题,共60分)1、(7分)已知:如图,等腰三角形ABC 中,AC =BC ,∠ACB =90°,直线l 经过点C(点A 、B 都在直线l 的同侧),AD ⊥l ,BE ⊥l ,垂足分别为D 、E .求证:△ADC ≌△CEB.2、(7分)用反证法证明一个三角形中不能有两个角是直角.3、(8分)如图,在△ABC 中,AD 是高,CE 是中线,DC=BE ,DG ⊥CE 于G .求证:①G 是CE 的中点. ②∠B=2∠BCE .4、(7分)在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,且AE =21(AB +AD ),求∠ABC +∠ADC 的度数.ABCDEGABCED5、(7分)如图,△ABC 中,E 是BC 边上的中点,DE ⊥BC 于E ,交∠BAC 的平分线AD 于D ,过D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,试证明:BM =CN .6、(7分)已知:如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,点D 是BC 的中点,CE ⊥AD ,垂足为点E ,BF//AC 交CE 的延长线于点F . 求证:AC=2BF .7、(7分)在△ABC 中,AB =AC ,D 是AB 上一点,E 是AC 延长线上一点,且BD =CE . 求证:DM =EM .ABC DMNEBFABCDE8、(10分)已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.参考答案一、选择题1、B2、B3、A4、D5、D6、B7、D8、B9、A 10、C二、填空题1、如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形2、30°或150°3、10°4、32a 5、234a 6、3°7、 6 8、55° 9、24510、1三、解答题(本题共8个小题,共60分) 1、略 2、略3、提示:连结DE ,由直角三角形斜边中线等于斜边的一半易证.4、提示:过C 点作AD 的延长线的垂线,垂足为F .利用角平分线的性质和AE=21(AB+AD )可知BE=DF ,CF=CE ,再由△CDF ≌CBE 即得. 5、提示:连结BD 、CD 利用角平分线和中垂线的性质证△BDM ≌CDN . 6、提示:证△ACD ≌CBF .7、提示:过D 点作AC 的平行线(或者过E 点作AB 的平行线)利用三角形全等可证.8、(1)∠A = 30°;证明略(2)△ABC。
北师大版数学七年级下册 认识三角形同步练习(Word版含答案)
4.1.2 认识三角形 北师大版一、单选题1.下列长度(单位:cm )的三条线段,能组成三角形的是( ) A .2,3,5 B .2,5,8 C .5,5,2 D .5,5,10 2.在△ABC 中,已知AB =3,BC =4,则AC 的长可能是( )A .1B .4C .7D .9 3.若三角形的两边a 、b 的长分别为3和4,则其第三边c 的取值范围是( ) A .3<c <4 B .2≤c ≤6 C .1<c <7 D .1≤c ≤7 4.若三条线段中a =3,b =5,c 为奇数,那么以a 、b 、c 为边组成的三角形共有( )A .1个B .2个C .3个D .4个 5.如图,△1、△2、△3是△ABC 的外角,若△1:△2:△3=4:3:2,则△ABC 的度数为( )A .60°B .80°C .90°D .100°6.如图,为了估计一池塘岸边两点A ,B 之间的距离,小颖同学在池塘一侧选取了一点P ,测得100m,90m PA PB ==,那么点A 与点B 之间的距离不可能是( )A .20mB .120mC .180mD .200m 7.已知三角形三边为a 、b 、c ,其中a 、b 两边满足|a ﹣3|+(b ﹣7)2=0,那么这个三角形的最大边c 的取值范围是( )A .c >7B .7<c <10C .3<c <7D .4<c <108.如图所示,由三角形两边的和大于第三边,可得到的结论是( )A .AB AD BC +>B .PD CD BP +>C .AB AC BC +>D .BP CP AC +>9.已知△ABC 的三条边分别为a ,b ,c ,化简|a +b ﹣c |﹣|b ﹣a ﹣c |+|a ﹣b +c |( ) A .3a ﹣b +c B .a +b ﹣c C .a ﹣b ﹣c D .﹣a +3b ﹣3c二、填空题10.不等边三角形的最长边是9,最短边是4,第三边的边长是奇数,则第三边的长度是___.11.已知a ,b ,c 是△ABC 的三边,化简:|a +b -c |+|b -a -c |=________.12.一个三角形的一个外角是它相邻内角的2倍,是不相邻某个内角的4倍,则这个三角形的各内角度数为________________.13.在ABC 中,AM 是BC 边上的中线,已知AB ﹣AC =5,且AMC 的周长是20,则ABM 的周长是________.14.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是_________.三、解答题15.已知三角形三边长分别为a ,b ,c ,其中a ,b 满足(a ﹣8)2+|b ﹣6|=0,求这个三角形的第三边长c 的取值范围.16.已知a ,b ,c 分别为ABC 的三边,且满足32a b c +=-,26a b c -=-.(1)求c 的取值范围;(2)若ABC 的周长为12,求c 的值.17.如图所示,OE 是△AOB 的平分线,OD 是△BOC 的平分线,△AOB=90º, △EOD=60º,求△BOC 的度数18.如图,已知AB△CD,△DAE=△CAB,△ACB=△EFC,请说明AD△BC.参考答案:1.C【解析】根据三角形的三边关系,A .2+3=5,不能组成三角形,不符合题意;B .2+5=7<8,不能组成三角形,不符合题意;C .5+5=10>2,5-5=0<2,能组成三角形,符合题意;D .5+5=10,不能组成三角形,不符合题意;故选C .2.B【解析】△AB =3,BC =4,△4−3<AC <4+3,即1<AC <7 .观察选项,只有选项B 符合题意.故选:B .3.C【解析】解:△三角形的两边a 、b 的长分别为3和4,△其第三边c 的取值范围是4334c -<<+ ,即17c << .故选:C4.C【解析】解:c 的范围是:5﹣3<c <5+3,即2<c <8.△c 是奇数,△c =3或5或7,有3个值.则对应的三角形有3个.故选:C .5.A【解析】解:设1∠、2∠、3∠的度数分别为4x 、3x 、2x ,则432360x x x ++=︒,解得,40x =︒,23120x ∴∠==︒,18012060∴∠=︒-︒=︒,ABC故选:A.6.D【解析】解:△P A=100m,PB=90m,△根据三角形的三边关系得到:PA PB AB PA PB-<<+,△10m190m<<,AB△点A与点B之间的距离不可能是20m,故选A.7.B【解析】解:根据题意得:a﹣3=0,b﹣7=0,解得a=3,b=7,因为c是最大边,所以7<c<7+3,即7<c<10.故选:B.8.C【解析】解:A、在△ABD中,AB AD BD+>,原结论不正确,故该选项不符合题意;+>,原结论不正确,故该选项不符合题意;B、在△PCD中,PD CD CP+>,正确,故该选项符合题意;C、在△ABC中,AB AC BC+>,原结论不正确,故该选项不符合题意;D、在△PBC中,BP CP BC故选:C.9.B【解析】解:△a、b、c分别为△ABC的三边长,△a+b−c>0,b−a−c<0,a−b+c>0,△|a+b−c|−|b−a−c|+|a−b+c|=a+b−c−(a+c−b)+a−b+c=a+b−c−a−c+b+a−b+c=a+b−c.故选:B.10.7【解析】解:设第三边长是c ,则9﹣4<c <9+4,即5<c <13,又∵第三边的长是奇数,不等边三角形的最长边为9,最短边为4, ∴c =7.故答案为:7.11.2a【解析】解:△,,a b c 是ABC ∆的三条边,△00a b c b a c +->--<,, △||()()a a b c b a c b a c b c =+-+-+--+++-=2a b c b a c a +--++=. 故答案为:2a .12.30°,60°,90°【解析】解:设和它相邻的内角为x °,则x °+2x °=180°,解得x =60°,2x =120°,可求出与它不相邻的某个内角是30°,根据三角形内角和定理可知,另一个角为90°.则这个三角形的各内角度数为30°,60°,90°.故答案为:30°,60°,90°.13.25.【解析】解:△AMC 的周长是20,△AM+MC +AC =20,△AM 是BC 边上的中线,△BM =MC ,又△AB ﹣AC =5,△AB =5+AC , △ABM 的周长=AB +BM +AM =5+AC +MC +AM =5+20=25, 故答案为25.14.15【解析】解:设三角形的第三边为x ,则4<x <10, 又第三边x 为整数,则x 可以取5,6,7,8,9,所以三角形的周长最小值为3+7+5=15. 故答案为:15.15.214c <<【解析】△()2860a b -+-=,△80a -=,60b -=,△8a =,6b =,△a b c a b -<<+,△214c <<.故三角形第三边长c 的取值范围为:214c << 16.(1)2<c <6(2)3.5【解析】(1)△a ,b ,c 分别为△ABC 的三边,a +b =3c -2,a -b =2c -6, △3226c c c c ->⎧⎨-<⎩, 解得:2<c <6.故c 的取值范围为2<c <6;(2)△△ABC 的周长为12,a +b =3c -2, △a +b +c =4c -2=12,解得c =3.5.故c 的值是3.5.17.30°【解析】解:△OE平分△AOB,△AOB=90°,△1452BOE AOB∠=∠=︒,△OD是△BOC的平分线,△△BOC=2△BOD,△△EOD=60°,△15 BOD EOD BOE∠=∠-∠=︒,△△BOC=30°.18.见解析【解析】解:△△BCD=△ACD+△ACB,又△△BCD=△E+△EFC,△△ACD+△ACB=△E+△EFC,△△ACB=△EFC,△△ACD=△E,△AB△CD,△△CAB=△ACD,△△CAB=△DAE,△△E=△DAE,△AD△BC.。
北师大版七年级数学下册 第四章 三角形 达标测试卷(word打印版+详细答案)
北师大版七年级数学下册第四章三角形达标测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于() A.6 B.8 C.10 D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10 B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10 D.∠A=60°,∠B=50°,AB=5 5.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14 B.17 C.22 D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1 B.2 C.3 D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF -S△BEF等于()A.1 B.2 C.3 D.410.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成7个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成()个互不重叠的小三角形.A.2n B.2n+1 C.2n-1 D.2(n+1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是____________.13.如图,E点为△ABC的边AC的中点,CN∥AB,若MB=6 cm,CN=4 cm,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C点拨:因为BF⊥AC于点F,所以△ABC中AC边上的高是线段BF,故选C.3.A点拨:因为△ABC≌△EDF,所以AC=EF.所以AE=CF.因为AF=20,EC=8,所以AE=CF=6.故选A.4.D5.B点拨:由已知条件AB∥ED可得,∠B=∠D,由CD=BF可得,BC=DF,再补充条件AB=ED,可得△ABC≌△EDF,故选B.6.C7.C8.B9.B点拨:易得S△ABE=13×12=4,S△ABD=12×12=6,所以S△ADF-S△BEF=S△ABD-S△ABE=2.10.B点拨:△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0;△ABC的三个顶点和它内部的点P1,P2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n-1)=2n+1.二、11.60°12.ASA点拨:由题意可知,∠ECD=∠ACB,∠EDC=∠ABC=90°,CD=CB,故可用ASA说明两个三角形全等.13.10 cm点拨:由CN∥AB,点E为AC的中点,可得∠EAM=∠ECN,AE =CE.又因为∠AEM=∠CEN,所以△AEM≌△CEN.所以AM=CN=4 cm.所以AB=AM+MB=4+6=10(cm).14.SSS15.1<c<7;3<m<17点拨:由三角形的三边关系得第三边的取值范围为4-3<c<4+3,即1<c<7.同理,得四边形EFMN对角线EM的取值范围为4-3<EM<4+3,即1<EM<7.所以10-7<m<10+7,即3<m<17.16.5点拨:由已知可得,∠ADC=∠BDF=∠BEC=90°,所以∠DAC=∠DBF.又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90° 点拨:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65° 点拨:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在△CAF 和△CAE 中,⎩⎨⎧∠AFC =∠AEC ,∠CAF =∠CAE ,AC =AC ,所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =12(AB +AD ),所以AF =12(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF=BE .在△FDC 和△EBC 中,⎩⎨⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC (SAS).所以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△ACN :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB =∠EAD .所以∠EAM =∠CAN .在△AEM 和△ACN 中,⎩⎨⎧∠E =∠C ,AE =AC ,∠EAM =∠CAN ,所以△AEM ≌△ACN (ASA). 选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD⊥AB,所以∠BCD+∠B=90°.所以∠ECF=∠B.在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.。
(常考题)北师大版初中数学七年级数学下册第四单元《三角形》测试(答案解析)
一、选择题1.如图△ABC ≌△ADE ,若∠B=80°,∠C=30°,∠DAC=25°,则∠EAC 的度数为( )A .45°B .40°C .35°D .25°2.如图,点C ,D 分别在线段OA ,OB 上,AD 与BC 相交于点E ,若OC OD =,A B ∠=∠,则图中全等三角形的对数为( )A .5对B .4对C .3对D .2对3.如图,△ABC 和△AED 共顶点A ,AD =AC ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,甲说:“一定有△ABC ≌△AED .”乙说:“△ABM ≌△AEN .”那么( )A .甲、乙都对B .甲、乙都不对C .甲对、乙不对D .甲不对、乙对 4.已知三角形的一边长为8,则它的另两边长分别可以是( )A .2,9B .17,29C .3,12D .4,4 5.如图,ABC A BC '≌,110A '∠=︒,30ABC ∠=︒,则ACB =∠( )A .40︒B .20︒C .30D .45︒6.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 7.下列各组数中,不可能成为一个三角形三边长的是( ) A .2,3,4 B .5,7,7 C .5,6,12 D .6,8,10 8.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 9.图中的小正方形边长都相等,若MNP MFQ ≌,则点Q 可能是图中的( )A .点DB .点C C .点BD .点A 10.在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( ) A .4cmB .5cmC .9cmD .13cm 11.如图,已知ABC ADE △≌△,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .80︒B .70︒C .40︒D .3012.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个B .2个C .3个D .4个二、填空题13.如图,在△ABC 中,∠BAC =100°,AD ⊥BC 于D 点,AE 平分∠BAC 交BC 于点E .若∠C =26°,则∠DAE 的度数为_____.14.已知12l l //,一个含45︒角的直角三角板按如图所示放置,230∠=︒,则1∠=_____.15.如图,已知ABC FDE △≌△,若105F ∠=︒,45C ∠=︒,则B ∠=________度.16.如图,在ABC 和DEF 中,点B F C E ,,,在同一直线上,,//BF CE AB DE =,请添加一个条件,使ABC DEF ≅,这个添加的条件可以是________.17.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.18.如图,∠ABC =90°,∠CBD =45°,BP 平分∠ABD ,则∠ABP 的度数是_____°.19.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.20.已知:AD 、AE 分别是ABC 的高,中线,6BE =,4CD =,则DE 的长为_________.三、解答题21.如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB // DE ,AB = DE ,∠A = ∠D .(1)求证:ABC DEF ≌;(2)若BF = 11,EC = 5,求BE 的长.22.如图,在△ABC 中,∠ACB =70 °,∠B =65°,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E .(1)求证:AE =CE .(2)求证:△AEF ≌△CEB .23.如图,AD CB =,AB CD =.求证:ABC CDA ∠=∠.24.在正方形网格中,网格线的交点叫做格点,三个顶点均在格点上的三角形叫做格点三角形.(1)在图1中计算格点三角形ABC 的面积是__________;(每个小正方形的边长为1) (2)ABC 是格点三角形.①在图2中画出一个与ABC 全等且有一条公共边BC 的格点三角形;②在图3中画出一个与ABC 全等且有一个公共点A 的格点三角形.25.如图,AD 是ABC 的角平分线,AB AC >,求证:AB AC BD CD ->-.26.沛沛沿一段笔直的人行道行走,边走边欣赏风景,在由C 走到D 的过程中,通过隔离带的空隙P ,刚好浏览完对面人行道宣传墙上的一条标语,具体信息如下:如图,AB//PM //CD ,相邻两平行线间的距离相等AC ,BD 相交于P ,PD CD ⊥垂足为D .已知16CD =米.请根据上述信息求标语AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】∵△ABC≌△ADE,∴∠D=∠B=80°,∠E=∠C=30°,∴∠DAE=180°−∠D−∠E=70°,∴∠EAC=∠EAD−∠DAC=45°,故选A.点睛:本题主要考查全等三角形的性质,掌握全等三角形的对应角相等、对应边相等是解题的关键.2.B解析:B【分析】由条件可证△AOD≌△BOC,可得OA=OB,则可证明△ACE≌△BDE,可得AE=BE,则可证明△AOE≌△BOE,可得∠COE=∠DOE,可证△COE≌△DOE,可求得答案.【详解】解:在△AOD和△BOC中OC=OD∠AOD=∠BOC∠=∠A B∴△AOD≌△BOC(SAS)∴OA=OB∵OC=OD,OA=OB,∴AC=BD,在△ACE和△BDE中∠A=∠B∠AEC=∠BEDAC=BD∴△ACE≌△BDE(AAS),∴AE=BE∴AE=BE,在△AOE和△BOE中OA=OB∠A=∠BAE=BE∴△AOE≌△BOE(SAS),∴∠COE=∠DOE,在△COE和△DOE中OC=OD∠COE=∠DOEOE=OE∴△COE≌△DOE(SAS),故全等的三角形有4对.故选:B.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AA和HL.3.A解析:A【分析】利用AAS判定△ABC≌△AED,则可得到AB=AE,再利用ASA判定△ABM≌△AEN.【详解】∵∠1=∠2,∴∠1+∠MAC=∠2+∠MAC,∴∠BAC=∠EAD,在△BAC和△EAD中,B E BAC EAD AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△EAD ,∴甲说的正确;∵△BAC ≌△EAD (AAS ),∴AB=AE ,在△BAM 和△EAN 中,12B E AB AE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BAM ≌△EAN (ASA ),∴乙说的正确;故选A .【点睛】本题考查了三角形全等的判定方法,根据题目的特点,补充适当条件,活用判定定理是解题的关键.4.A解析:A【分析】根据三角形三边关系判断即可;【详解】9211+=>8,927-=<8,故A 正确;172946+=>8,291712-=>8,故B 错误;12315+=>8,1239-=>8,故C 错误;448+=,故D 错误;故答案选A .【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.5.A解析:A【分析】根据全等三角形对应角相等即可求解;【详解】∵ABC A BC '∆≅∆ ,∴ ∠A=∠A '=110°,∵∠ABC=30°,∴∠ACB=180°-110°-30°=40°,故选:A .【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应角相等是解题的关键; 6.D解析:D【分析】根据全等三角形的判定,利用ASA 、SAS 、AAS 即可得答案.【详解】解:∵∠B=∠DEF ,AB=DE ,∴添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;添加AC DF =,不符合任何一个全等判定定理,不能证明△ABC ≌△DEF ;故选:D .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键.7.C解析:C【分析】判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A .∵2+3>4,∴能组成三角形,故A 错误;B .∵5+7>7,∴不能组成三角形,故B 错误;C .∵5+6<12,∴不能组成三角形,故C 正确;D .∵6+8>10,∴能组成三角形,故D 错误;故选:C .【点睛】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.8.D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA , ∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG =⎧⎨=⎩∴ △BEG ≌△BEF ,∴BG=BF ,在△CEG 和△AFE 中EF EG AE CE=⎧⎨=⎩ ∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;9.A解析:A【分析】根据全等三角形的判定即可解决问题.【详解】解:观察图象可知△MNP≌△MFD.故选:A.【点睛】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.10.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x,则9-4<x<4+9即5<x<13,∴当x=7时,能与4cm、9cm长的两根木棒钉成一个三角形,故选:C.【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.11.A解析:A【分析】由全等三角形的性质可得到∠BAC=∠EAD,在△ADE中可求得∠EAD,则可求得∠BAC.【详解】解:∵∠E=70°,∠D=30°,∴∠EAD=180°-∠E-∠D=180°-70°-30°=80°,∵△ABC≌△ADE,∴∠BAC=∠EAD=80°,故选:A.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.12.C解析:C【分析】∆≅∆,则可对④进行判断;利用全等三角形的性质可对①根据“SAS”可证明CDE BDF进行判断;由于AE与DE不能确定相等,则根据三角形面积公式可对②进行判断;根据∠=∠,则利用平行线的判定方法可对③进行判断.全等三角形的性质得到ECD FBD【详解】∆的中线,解:AD是ABC∴=,CD BD∠=∠,=,CDE BDFDE DF∴∆≅∆,所以④正确;CDE BDF SAS()∴=,所以①正确;CE BF∵与DE不能确定相等,AE∴∆和CDE∆面积不一定相等,所以②错误;ACE∆≅∆,CDE BDF∴∠=∠,ECD FBD//∴,所以③正确;BF CE故选:C.【点睛】本题考查了全等三角形的判定,熟悉全等三角形的5种判定方法是解题的关键.二、填空题13.14°【分析】利用垂直的定义得到∠ADC=90°再根据三角形内角和计算出∠CAD=64°接着利用角平分线的定义得到∠CAE=50°然后计算∠CAD﹣∠CAE 即可【详解】解:∵AD⊥BC∴∠ADC=9解析:14°【分析】利用垂直的定义得到∠ADC=90°,再根据三角形内角和计算出∠CAD=64°,接着利用角平分线的定义得到∠CAE=50°,然后计算∠CAD﹣∠CAE即可.【详解】解:∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°﹣∠C=64°,∵AE平分∠BAC,∴∠CAE=12∠BAC=12×100°=50°,∴∠DAE=∠CAD﹣∠CAE=64°﹣50°=14°.故答案为14°.【点睛】本题考查了三角形内角和定理、角平分线的定义、垂线的定义,解题关键是熟练运用相关性质求角.14.75°【分析】利用外角求∠5再根据平行线的性质求∠1【详解】解:由题意可知∠4=45°∠2=∠3=30°∠5=∠2+∠3=75°∵∴∠1=∠5=75°故答案为:75°【点睛】本题考查了三角形外角的性解析:75°.【分析】利用外角求∠5,再根据平行线的性质求∠1.【详解】解:由题意可知∠4=45°,∠2=∠3=30°,∠5=∠2+∠3=75°,∵12l l//,∴∠1=∠5=75°,故答案为:75°.【点睛】本题考查了三角形外角的性质和平行线的性质,解题关键是熟练运用相关知识进行推理计算.15.30【分析】先根据全等三角形的性质得到∠BAC=∠F=105°然后根据三角形内角和计算∠B的度数【详解】解:∵△ABC≌△FDE∴∠BAC=∠F=105°∵∠BAC+∠B+∠C=180°∴∠B=18解析:30【分析】先根据全等三角形的性质得到∠BAC=∠F=105°,然后根据三角形内角和计算∠B的度数.【详解】解:∵△ABC≌△FDE,∴∠BAC=∠F=105°,∵∠BAC+∠B+∠C=180°,∴∠B=180°-105°-45°=30°.故答案为30.【点睛】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.16.(答案不唯一)【分析】根据等式的性质可得BC=EF根据平行线的性质可得再添加AB=DE可利用SAS判定【详解】添加AB=DE∵BF=CE∴BF+FC=CE+FC即BC=EF∵AB//DE∴∠B=∠E解析:AB DE=(答案不唯一)【分析】根据等式的性质可得BC=EF,根据平行线的性质可得B E∠=∠,再添加AB=DE可利用SAS 判定ABC DEF≅.【详解】添加AB=DE,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB//DE,∴∠B=∠E,在△ABC和△DEF中AB EDB E BC EF=⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF≅ (SAS),故答案为AB DE=(答案不唯一)【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL17.4cm【分析】由DE⊥AB可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm.【分析】由DE⊥AB,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB,然后根据AAS判断△ABC≌△EDB,根据全等三角形的对应边相等即可得到BD=BC,AC=BE,由E是BC的中点,得到BE=12BC=12BD=4.【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.18.5【分析】根据角度的加减及角平分线的定义可以得到解答【详解】解:由题意∠ABD=∠ABC+∠CBD=90°+45°=135°∵BP 平分∠ABD ∴故答案为:675【点睛】本题考查角度的计算正确理解角平解析:5【分析】根据角度的加减及角平分线的定义可以得到解答.【详解】解:由题意,∠ABD=∠ABC+∠CBD=90°+45°=135°,∵BP 平分∠ABD ,∴113567.522ABP ABD ︒∠=∠==︒, 故答案为:67.5.【点睛】本题考查角度的计算,正确理解角平分线的定义并灵活应用是解题关键. 19.180°【详解】解:∵AB ∥CD ∴∠1=∠EFD ∵∠2+∠EFC=∠3∠EFD=180°-∠EFC ∴∠1+∠3—∠2=180°故答案为:180°解析:180°【详解】解:∵AB ∥CD∴∠1=∠EFD∵∠2+∠EFC=∠3∠EFD=180°-∠EFC∴∠1+∠3—∠2=180°故答案为:180°20.2或10【分析】由已知条件可推导出;再假设D 点所在的不同位置分别计算即可得到答案【详解】∵是的中线且∴假设点D 在CB 的延长线上如下图∵是的中线且∴∵∴和图形不符∴该假设不成立;假设点D 在点E 和点B 之 解析:2或10【分析】由已知条件,可推导出6EC BE ==;再假设D 点所在的不同位置,分别计算DE ,即可得到答案.【详解】∵AE 是ABC 的中线,且6BE =∴6EC BE ==假设点D 在CB 的延长线上,如下图∵AE 是ABC 的中线,且6BE =∴212BC BE ==∵4CD =∴CD BC <,和图形不符∴该假设不成立;假设点D 在点E 和点B 之间,如下图∵4CD =,6EC =∴CD EC <,和图形不符∴该假设不成立;假设点D 在点E 和点C 之间,如下图∴642DE EC CD =-=-=;假设点D 在点BC 延长线上,如下图∴6410DE EC CD =+=+=;故答案为:2或10.【点睛】本题考察了三角形中线和三角形高的知识;求解的关键是熟练掌握三角形中线和三角形高的性质,从而完成求解.三、解答题21.(1)见解析;(2)BE =3.【分析】(1)根据平行线的性质由AB ∥DE 得到∠ABC =∠DEF ,然后根据“ASA”可判断△ABC ≌△DEF ;(2)根据三角形全等的性质可得BC =EF ,由此可求出BE =CF ,则利用线段的和差关系求出BE .【详解】(1)证明:∵AB ∥DE ,∴∠ABC =∠DEF ,在△ABC 和△DEF 中A D AB DEABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA );(2)解:∵△ABC ≌△DEF ,∴BC =EF ,∴BC -EC =EF -EC ,即BE =CF ,∵BF =11,EC =5,∴BF -EC =6.∴BE +CF =6.∴BE =3.【点睛】本题考查了全等三角形的判定与性质,掌握全等三角形的判定与性质是解答此题的关键. 22.(1)见解析;(2)见解析【分析】(1)根据已知条件得到∠EAC =45 °,再根据等腰三角形的性质和垂直即可得解; (2)由于AD ⊥BC ,CE ⊥AB ,所以∠BAD =∠ECB =90°- ∠B ,根据已知条件证明即可;【详解】(1)∠ACB =70 °,∠B =65°,得∠EAC =45 °,又CE ⊥AB ,得∠ECA =45 °,所以AE =CE ;(2)由于AD ⊥BC ,CE ⊥AB ,所以∠BAD =∠ECB =90°- ∠B ,在△AEF 和△CEB 中,AEC BEC AE ECBAD ECB ∠=∠⎧⎪=⎨⎪∠=∠⎩, 所以△AEF ≌△CEB .【点睛】本题主要考查了全等三角形的判定与性质,结合等腰三角形的性质分析证明是解题的关键.23.见解析【分析】根据SSS 可证明△ABD ≌△CDB ,即可得∠ABD =∠CDB ,∠ADB =∠CBD ,进而可证明结论.【详解】在ABD ∆和CDB ∆中AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩()ABD CDB SSS ∴∆≅∆ABD CDB ∴∠=∠ADB CBD ∠=∠ABC ABD CBD ∠=∠-∠CDA CDB ADB ∠=∠-∠ABC CDA ∴∠=∠【点睛】本题主要考查全等三角形的性质与判定,利用SSS 证明△ABD ≌△CDB 是解题的关键. 24.(1)6;(2)①见解析;②见解析【分析】(1)用割补法求解即可;(2)根据“SSS”画图即可;(3)根据“SSS”画图即可;【详解】解:(1)5×3-12×3×3-12×2×2-12×5×1=6, 故答案为:6;(2)①如图,'A BC 即为所求,②如图,''AB C 即为所求,【点睛】本题考查了“格点三角形的定义”以及全等三角形的判定方法,熟练掌握“SSS”是解答本题的关键.25.见解析【分析】在 AB 上取 AE = AC ,然后证明ADC ≌()SAS ADE △,根据全等三角形对应边相等得到DC DE =,再根据三角形的任意两边之差小于第三边证明即可.【详解】证明:如解图,在AB 上截取AE AC =,连接DE ,∵ AD 是ABC 的角平分线,∴ CAD EAD ∠=∠.在ADC 和ADE 中,,,,AC AE CAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴ ADC ≌()SAS ADE △.∴ DC DE =.∵在BDE 中,BE BD ED >-,∵ AB AE BE -=,∴ AB AC BD CD ->-.【点睛】本题主要考查全等三角形的判定和全等三角形对应边相等的性质以及三角形的三边关系,作辅助线构造全等三角形是解题的关键.26.16米【分析】已知AB ∥CD ,根据平行线的性质可得∠ABP=∠CDP ,再由垂直的定义可得∠CDO=90︒,可得PB ⊥AB ,根据相邻两平行线间的距离相等可得PD=PB ,即可根据ASA 定理判定△ABP ≌△CDP ,由全等三角形的性质即可得CD=AB=16米.【详解】∵AB ∥CD ,∴∠ABP=∠CDP ,∵PD ⊥CD ,∴∠CDP=90︒,∴∠ABP=90︒,即PB ⊥AB ,∵相邻两平行线间的距离相等,∴PD=PB ,在△ABP 与△CDP 中,ABP CDP PD PBAPB CDP ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABP ≌△CDP (ASA ),∴CD=AB=16米.【点睛】本题考察平行线的性质和全等三角形的判定和性质,综合运用各定理是解题的关键.。
北师大版数学八年级下册 第一章 三角形的证明 达标测试卷(含答案)
第一章三角形的证明达标测试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列长度的三条线段能组成直角三角形的是()A.2,3,4 B.3,4,5C.4,6,7 D.5,11,122.在△ABC中,AB=AC,∠A=50°,则∠B的度数是()A.50°B.65°C.80°D.130°3.对于命题“若x2>y2,则x>y”,能说明它是假命题的反例是() A.x=-2,y=-1 B.x=-1,y=-2C.x=2,y=1 D.x=1,y=24.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10(第4题)(第5题)5.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加的一个条件是()A.AE=DF B.∠A=∠DC.∠B=∠C D.AB=DC6.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,且AD交BC于点D,DE⊥AB于点E,则下列说法错误的是()A.∠CAD=30°B.AD=BDC.BE=2CD D.CD=ED7.如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,CE平分∠BCA交AB于点E,AD、CE相交于点F,则∠CF A的度数是()A.100°B.105°C.110°D.120°(第7题)(第8题)(第10题)8.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是() A.30°B.35°C.40°D.45°9.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()10.如图,在△ABC中,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F为垂足,连接EF,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③DA平分∠EDF;④AD垂直平分EF.其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题(本题共6小题,每小题3分,共18分)11.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD=________.12.命题“等边三角形是等腰三角形”的逆命题是________________________,该逆命题是______命题(填“真”或“假”).13.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C 向上拉升3 cm到D,则橡皮筋被拉长了________cm.(第13题)(第14题)14.如图,正方形的网格中,网格线的交点称为格点,已知点A,B是两个格点,若C点也是格点,且使△ABC是等腰三角形,则满足条件的点C的个数为________个.15.如图,△ABC中,AB+AC=6,BC的垂直平分线DE交AB于点D,交BC 于点E,连接CD,则△ACD的周长为________.(第15题)(第16题)16.如图,等边三角形ABC的边长为12,AD是BC边上的中线,M是AD上的动点,E是AC边上的一点.若AE=4,则EM+CM的最小值为________.三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)已知:∠ABC,射线BC上一点D(如图所示).求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC 的内部,且点P到∠ABC两边的距离相等.(要求:请用直尺、圆规作图,不写作法,但要保留作图痕迹)318.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C 作CF∥AB,CF交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.19.(8分)如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.20.(8分)如图,AB⊥CD于B,CF交AB于E,CE=AD,BE=BD.(1)求证:△ABD≌△CBE;(2)求证:CF⊥AD;(3)当∠C=30°,CE=8时,直接写出线段AE、CF的长度.21.(10分)如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 cm/s,点Q运动的速度是2 cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t s,解答下列问题:5(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由;(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t;若不能,请说明理由.22.(10分)已知,在△ABC中,∠A=90°,AB=AC=4,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,试探究BE和AF之间的数量关系,并说明四边形AEDF的面积是否为定值,若是,请求出;若不是,请说明理由;(2)如果点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.答案一、1.B 2.B 3.A 4.C 5.D 6.C7.C 8.C点拨:∵AB=AC,∠A=30°,∴∠ACB =12×(180°-30°)=75°.∵∠1=∠A+∠AED=145°,∴∠AED=145°-30°=115°.∵a∥b,∴∠AED=∠2+∠ACB.∴∠2=115°-75°=40°.9.D10.D二、11.110°12.等腰三角形是等边三角形;假13.214.815.616.4 7点拨:如图,在AB上截取AE′=AE=4,连接CE′,CE′与AD交于点M,连接ME,易知此时EM+CM的值最小,即为线段CE′的长度.过点C 作CF⊥AB,垂足为F.∵△ABC是等边三角形,∴AF=12AB=6,∴CF=AC2-AF2=6 3,E′F=AF-AE′=2,∴CE′=CF2+E′F2=4 7.三、17.解:如图,△PBD为所求作的三角形.18.(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD.∴△BDE≌△CDF(AAS).7(2)解:∵△BDE ≌△CDF ,∴BE =CF =2.∴AB =AE +BE =1+2=3.∵AD ⊥BC ,BD =CD ,∴AC =AB =3.19.(1)证明:∵OB =OC ,∴∠OBC =∠OCB .∵BE ,CD 是两条高,∴∠BDC =∠CEB =90°.又∵BC =CB ,∴△BDC ≌△CEB (AAS).∴∠DBC =∠ECB .∴AB =AC ,即△ABC 是等腰三角形.(2)解:点O 在∠BAC 的平分线上.理由:∵△BDC ≌△CEB ,∴DC =EB .∵OB =OC ,∴OD =OE .又∵∠BDC =∠CEB =90°,∴点O 在∠BAC 的平分线上.20.(1)证明:∵AB ⊥CD ,∴∠CBE =∠ABD =90°.在Rt △CBE 和Rt △ABD 中,⎩⎨⎧CE =AD ,BE =BD ,∴Rt △CBE ≌Rt △ABD (HL),(2)证明:∵Rt △CBE ≌Rt △ABD ,∴∠C =∠A .∵∠AEF =∠CEB ,∴∠AFE =∠CBE =90°,∴CF ⊥AD .(3)解:AE =4 3-4,CF =6+2 3.21.解:(1)当点Q 到达点C 时,PQ 与AB 垂直.理由如下:∵点Q 到达点C 时,BQ =BC =6 cm ,∴t =62=3.∴AP =3 cm.∴BP =AB -AP =3 cm =AP .∴点P 为AB 的中点.∴PQ ⊥AB .(2)能.∵∠B =60°,∴当BP =BQ 时,△BPQ 为等边三角形.9 ∴6-t =2t ,解得t =2.∴当t =2时,△BPQ 是等边三角形.22.解:(1)BE =AF ,四边形AEDF 的面积为定值.理由:如图①所示,连接AD .∵∠BAC =90°,AB =AC ,∴△ABC 为等腰直角三角形,∠EBD =45°.∵点D 为BC 的中点,∴AD =12BC =BD ,∠F AD =45°.∵∠BDE +∠EDA =90°,∠EDA +∠ADF =90°,∴∠BDE =∠ADF .在△BDE 和△ADF 中,⎩⎨⎧∠EBD =∠F AD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴BE =AF ,S △ADF =S △BDE ,∴S 四边形AEDF =S △ADE +S △ADF =S △ADE +S △BDE =S △ABD =12×12×4×4=4, ∴四边形AEDF 的面积是定值,定值为4.(2)BE =AF ,理由如下:连接AD ,如图②所示.∵∠ABD =∠BAD =45°,∴∠EBD =∠F AD =135°.∵∠EDB +∠BDF =90°,∠BDF +∠FDA =90°,∴∠EDB =∠FDA .在△EDB 和△FDA 中,⎩⎨⎧∠EBD =∠F AD ,BD =AD ,∠EDB =∠FDA ,∴△EDB≌△FDA(ASA),∴BE=AF.。
【精选】北师大版七年级下册数学第三章《三角形》综合测试卷(含答案)
【精选】北师大版七年级下册数学第三章《三角形》综合测试卷(含答案)一、选择题(每题3分,共30分)1.下列用木棒拼成的图形,符合三角形的概念的是( )2.如图,若△ABC≌△ADE,则下列结论中一定成立的是( ) A.AC=DE B.∠BAD=∠CAEC.AB=AE D.∠ABC=∠AED(第2题) (第4题) (第5题)3.【教材P87习题T3变式】【2022·南通】用一根小木棒与两根长分别为3 cm,6 cm的小木棒组成三角形,则这根小木棒的长度可以为( )A.1 cm B.2 cm C.3 cm D.4 cm4.【2021·毕节】将一副三角尺按如图所示的位置摆放在直尺上,则∠1的度数为( )A.70° B.75° C.80° D.85°5.【2022·吉林第二实验中学模拟】如图,AD是△ABC的角平分线,过点D向AB,AC两边作垂线,垂足分别为E,F,那么下列结论中不一定...正确的是( ) A.BD=CD B.DE=DFC.AE=AF D.∠ADE=∠ADF6.如图,AC与BD相交于点O,OA=OB,OC=OD,AD=BC,则图中全等三角形有( )A.1对B.2对C.3对D.4对(第6题) (第7题) (第8题)7.【2021·陕西】如图,点D,E分别在线段BC,AC上,连接AD,BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为( )A.60° B.70° C.75° D.85°8.【教材P111复习题T6改编】如图,这是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24 cm,CF=3 cm,则制成整个金属框架所需这种材料的总长度为( )A.45 cm B.48 cm C.51 cm D.54 cm9.根据下列已知条件,能画出唯一..一个△ABC的是( )A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6 10.如图,在△ABC中,AC⊥CB,CD平分∠ACB,点E在AC上,且CE=CB,则下列结论:①DC平分∠BDE;②BD=DE;③∠B=∠CED;④∠A+∠CED=90°.其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是___________________________________________.(第11题) (第12题) (第14题) (第15题)12.【开放题】【2022·宁夏】如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是____________(只写一个).13.【教材P86随堂练习T2变式】已知三角形的两边长分别为2 和7,第三边长为偶数,则三角形的周长为____________.14.如图,在△ABC中,BC=8 cm,AB>BC,BD是AC边上的中线,△ABD与△BDC 的周长的差是2 cm,则AB=__________.15.如图,D,E,F分别为AB,AC,BC上的点,且DE∥BC,△ABC沿DE折叠,使点A落在点F处.若∠B=50°,则∠BDF=________.16.如图,已知边长为1的正方形ABCD中,AC,BD交于点O,过点O任作一条直线分别交AD,BC于点E,F,则阴影部分的面积是________.(第16题) (第17题) (第18题)17.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD=________.18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12 (AB+AD),若∠D=115°,则∠B=________.三、解答题(19~21题每题10分,其余每题12分,共66分) 19.【2022·益阳】如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.试说明:△CED≌△ABC.20.【2022·牡丹江四中模拟】如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC于E,求∠EDC的度数.21.【2021·黄石】如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)试说明:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.22.【教材P110复习题T4改编】如图,在△ABC中,AC=BC,D是边AB上一点,AE⊥CD于点E,BF⊥CD交CD的延长线于点F,若CE=BF,AE=EF+BF.(1)试说明:∠ACE=∠CBF;(2)判断直线AC与BC的位置关系,并说明理由.。
北师大版数学七年级下册第四章 三角形 单元测试题(附答案)
北师大版数学七年级下册第四章三角形单元测试题(含答案)一、选择题(每题3分,共30分)1.下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10C.5,5,11 D.5,6,112.如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°3.如图,已知∠1=∠2,∠B=∠D,△ABC和△EAD全等,则下列表示正确的是()A.△ABC≌△AEDB.△ABC≌△EADC.△ABC≌△DEAD.△ABC≌△ADE4.如图,△AOC≌△BOD,点A和点B、点C和点D是对应顶点,下列结论中错误的是()A.∠A与∠B是对应角B.∠AOC与∠BOD是对应角C.OC与OB是对应边D.OC与OD是对应边5.如图,AD是△ABC的角平分线,过点D向AB,AC两边作垂线,垂足分别为E,F,那么下列结论中不一定...正确的是()A.BD=CD B.DE=DFC.AE=AF D.∠ADE=∠ADF6.如图,AD∥BC,AB∥CD,AC,BD交于O点,过O点的直线EF交AD于E点,交BC于F点,且BF=DE,则图中的全等三角形共有()A.6对B.5对C.3对D.2对7.将一副三角尺按下列方式进行摆放,∠1,∠2不一定...互补的是()8.如图,这是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24 cm,CF=3 cm,则制成整个金属框架所需这种材料的总长度为()A.45 cm B.48 cm C.51 cm D.54 cm9.根据下列已知条件,能画出唯一一个....△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=610.如图,在△ABC中,AC⊥CB,CD平分∠ACB,点E在AC上,且CE=CB,则下列结论:①DC平分∠BDE;②BD=DE;③∠B=∠CED;④∠A+∠CED=90°.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是____________________.12.如图,点B,C,E,F在同一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=________.13.已知三角形的两边长分别为2 和7,第三边长为偶数,则三角形的周长为__________.14.如图,点C,F在线段BE上,BF=EC,∠1=∠2.请你添加一个条件,使△ABC≌△DEF,这个条件可以是____________(不再添加辅助线和字母).15.如图,在△ABC中,BC=8 cm,AB>BC,BD是AC边上的中线,△ABD 与△BDC的周长的差是2 cm,则AB=__________.16.设a,b,c是△ABC的三边长,化简|a+b-c|+|b-c-a|+|c-a-b|=__________.17.如图,D,E,F分别为AB,AC,BC上的点,且DE∥BC,△ABC沿线段DE折叠,使点A落在点F处.若∠B=50°,则∠BDF=________.18.如图,已知边长为1的正方形ABCD,AC,BD交于点O,过点O任作一条直线分别交AD,BC于点E,F,则阴影部分的面积是________.19.如图,AD,AE分别是△ABC的角平分线、高线,且∠B=50°,∠C=70°,则∠EAD=________.20.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB+AD),若∠D=115°,则∠B=________.三、解答题(21~24题每题9分,其余每题12分,共60分)21.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD.试说明:AC=DF.22.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC于E,求∠EDC的度数.23.如图,在正方形ABCD中,点E,F分别在边AB,BC上,AE=BF,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以说明.24.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.试说明:BD=AE.25.如图,小明和小月两家位于A,B两处,要测得两家之间的距离,小明设计方案如下:①从点A出发沿河岸画一条射线AM;②在射线AM上截取AF=FE;③过点E作EC∥AB,使B,F,C在一条直线上;④CE的长就是A,B间的距离.(1)请你说明小明设计的原理.(2)如果不借助测量仪,小明的设计中哪一步难以实现?(3)你能设计出其他的方案吗?26.如图①,在Rt△ABC中,AB=AC,∠BAC=90°,过点A的直线l绕点A 旋转,BD⊥l于D,CE⊥l于E.(1)试说明:DE=BD+CE.(2)当直线l绕点A旋转到如图②所示的位置时,(1)中结论是否成立?若成立,请说明;若不成立,请探究DE,BD,CE又有怎样的数量关系,并写出探究过程.答案一、1.B 2.B 3.D 4.C 5.A 6.A 7.D8.A9.C10.D二、11.三角形具有稳定性12.36°13.15或1714.CA=FD(答案不唯一)15.10 cm16.3a+b-c17.80°18.1 419.10°20.65°三、21.解:因为AB∥ED,AC∥FD,所以∠B=∠E,∠ACB=∠DFE.因为FB=CE,所以BF+FC=CE+FC,即BC=EF.所以△ABC≌△DEF(ASA).所以AC=DF.22.解:(1)因为∠B=54°,∠C=76°,所以∠BAC=180°-54°-76°=50°.因为AD平分∠BAC,所以∠BAD=∠CAD=25°.所以∠ADB=180°-54°-25°=101°,∠ADC=180°-101°=79°.(2)因为DE⊥AC,所以∠DEC=90°.所以∠EDC=180°-90°-76°=14°.23.解:(1)由题可知∠DAG,∠AFB,∠CDE与∠AED相等.(2)(答案不唯一)选择∠DAG=∠AED.说明如下:因为四边形ABCD是正方形,所以∠DAB=∠B=90°,AD=AB.在△DAE 和△ABF 中,⎩⎨⎧AD =BA ,∠DAE =∠B =90°,AE =BF ,所以△DAE ≌△ABF (SAS). 所以∠ADE =∠BAF .因为∠DAG +∠BAF =90°,∠GDA +∠AED =90°, 所以∠DAG =∠AED .24.解:因为△ABC 和△ECD 都是等腰直角三角形,且∠ACB =∠DCE =90°,所以AC =BC ,CD =CE , ∠ACE +∠ACD =∠BCD +∠ACD . 所以∠ACE =∠BCD .在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,所以△ACE ≌△BCD (SAS). 所以BD =AE .25.解:(1)全等三角形的对应边相等. (2)③难以实现.(3)略(答案不唯一,只要设计合理即可). 26.解:(1)因为BD ⊥l ,CE ⊥l ,所以∠ADB =∠AEC =90°.所以∠DBA +∠BAD =90°. 又因为∠BAC =90°,所以∠BAD +∠CAE =90°.所以∠DBA =∠CAE . 因为AB =AC ,∠ADB =∠CEA =90°,所以△ABD ≌△CAE (AAS).所以AD =CE ,BD =AE . 则AD +AE =BD +CE ,即DE =BD +CE . (2)(1)中结论不成立.DE =BD -CE .同(1)说明△ABD ≌△CAE , 所以BD =AE ,AD =CE .又因为AE-AD=DE,所以DE=BD-CE.。
北师大版七年级数学下册第三章《全等三角形》测试卷含答案3套
全等三角形一.填空题(每题3分,共30分)1。
如图,△ABC ≌△DBC,且∠A 和∠D,∠ABC 和∠DBC 是对应角,其对应边:_______、2。
如图,△ABD ≌△ACE ,且∠BAD 和∠CAE ,∠ABD 和∠ACE,∠ADB 和∠AEC 是对应角,则对应边_________.3、 已知:如图,△ABC ≌△FED ,且BC=DE 、则∠A=__________,A D=_______.4、 如图,△ABD ≌△ACE,则AB 的对应边是_________,∠BAD 的对应角是______。
5、 已知:如图,△ABE ≌△ACD ,∠B=∠C,则∠AEB=_______,AE=________。
6.已知:如图 , AC ⊥BC 于 C , DE ⊥AC 于 E , AD ⊥AB 于 A , BC=AE 。
若AB=5 , 则AD=___________.7。
已知:△ABC ≌△A ’B ’C', △A'B ’C ’的周长为12cm ,则△ABC 的周长为、 8.如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB ≌△A EC , 根据是_________再证△BDE ≌△______ , 根据是__________。
4321E D BA9。
如图,∠1=∠2,由AAS 判定△ABD ≌△ACD,则需添加的条件是____________、10。
如图,在平面上将△ABC 绕B 点旋转到△A ’BC ’的位置时,AA ’∥BC ,∠ABC=70°,则∠CBC'为________度、二.选择题(每题3分,共30分)11、下列条件中,不能判定三角形全等的是 ( )A 、三条边对应相等B 、两边和一角对应相等C 、两角的其中一角的对边对应相等D 、两角和它们的夹边对应相等12、 如果两个三角形全等,则不正确的是 ( )A B CD 12AA'BC C'A、它们的最小角相等B、它们的对应外角相等C、它们是直角三角形D、它们的最长边相等13、如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A、AB=ACB、∠BAE=∠CADC、BE=DCD、AD=DE14、图中全等的三角形是( )A、Ⅰ和ⅡB、Ⅱ和ⅣC、Ⅱ和ⅢD、Ⅰ和Ⅲ15、下列说法中不正确的是( )A、全等三角形的对应高相等B、全等三角形的面积相等C、全等三角形的周长相等D、周长相等的两个三角形全等16、 AD=AE , AB=AC , BE、CD交于F ,则图中相等的角共有(除去∠DFE=∠BFC) ( )A、5对B、4对C、3对D、2对CEDBOA17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是( )A、70°B、 85°C、 65°D、以上都不对18、已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF、则不正确的等式是 ( )A、AC=DF B 、AD=BE C、DF=EF D、BC=EF19。
北师大版七年级下册数学第四章三角形 测试题附答案
北师大版七年级数学下册第四章三角形测试题一、单选题1.一个三角形的两边长分别为3 cm和7 cm,则此三角形的第三边的长可能是()A.3 cm B.4 cm C.7 cm D.11 cm2.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )个A.1个B.2个C.3个D.4个3.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为()A.2cm B.3cm C.4cm D.5cm4.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为( ) A.4:3:2 B.3:2:4 C.5:3:1 D.3:1:55.如图所示,在△ABC中,∠B=40°,∠A=50°,将其折叠,使点A落在CB边上A′处,折痕为CD,则∠A′DB的度数为( )A.40°B.30°C.20°D.10°6.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°7.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A.SSS B.SAS C.ASA D.AAS8.如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是:( )A.带①去B.带②去C.带③去D.①②③都带去9.如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时∆''的位置,其中A C'交直线AD于点E,A B''分别交直线AD、AC于针方向旋转到A CB点F、G,则在图(2)中,全等三角形共有()A.5对B.4对C.3对D.2对10.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为().A.126°B.110°C.108°D.90°二、填空题11.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.12.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对13.三角形的三边长分别为5,1+2x,8,则x的取值范围是.14.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.15.在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E,在BC上,BE=BF,连结AE,EF和CF,此时,若∠CAE=30°,那么∠EFC=_______.16.如图,已知AC=DB,要使△ABC≌△DCB,则需要补充的条件为_____.17.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB=________.18.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.三、解答题19.在△ABC中,AB=2BC,AD、CE分别是BC、AB 边上的高,试判断AD和CE的大小关系,并说明理由.20.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.21.已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.22.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.23.(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.24.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.25.如图1,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形,并将添加的全等条件标注在图上.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA的平分线,AD、CE相交于点F,求∠EFA的度数;(2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由;(3)如图3,在△ABC中,如果∠ACB不是直角,而(1 )中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.参考答案1.C【解析】试题解析:设第三边长为xcm,根据三角形的三边关系可得:7-3<x<7+3,解得:4<x<10,故答案为C.考点:三角形三边关系.2.B【解析】【分析】根据三角形中任意两条边之和大于第三边,任意两条边之差小于第三边即可求解.【详解】解:①设三条线段分别为x,3x,4x,则有x+3x=4x,不符合三角形任意两边大于第三边,故不可构成三角形;②设三条线段分别为x,2x,3x,则有x+2x=3x,不符合三角形任意两边大于第三边,故不可构成三角形;③设三条线段分别为x ,4x ,6x ,则有x +4x <6x ,不符合三角形任意两边大于第三边,故不可构成三角形;④设三条线段分别为3x ,3x ,6x ,则有3x +3x =6x ,不符合三角形任意两边大于第三边,故不可构成三角形;能构成三角形的是⑤⑥.故本题答案选B.【点睛】本题利用了三角形三边的关系求解,掌握该知识点是解答本题的关键.3.B【解析】【分析】设大小处于中间的边长是xcm ,则最大的边是(x+1)cm ,最小的边长是(x-1)cm ,根据三角形的周长即可求得x ,进而求解.【详解】设大小处于中间的边长是xcm ,则最大的边是(x +1)cm ,最小的边长是(x −1)cm .则(x +1)+x +(x −1)=12,解得:x =4,则最短的边长是:4−1=3cm .故选B.【点睛】本题考查了三角形的周长,适当的设三边长是关键.4.C【解析】【分析】根据三角形外角和为0360,三角形内角和为0180,即可求解.【详解】解:设三个外角分别为2x ,3x ,4x ,三角形外角和为360°,所以2x +3x +4x =360°,所以x=40°,所以三个外角是80°,120°,160°,所以对应内角比为5:3:1,故选C.【点睛】本题考查了三角形外角和和内角和的相关知识,掌握该知识点是解答本题的关键.5.D【解析】∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°-50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D-∠B=50°-40°=10°.故选D.6.B【解析】【分析】先根据全等三角形的性质得∠ACB=∠A′CB′,两边减去∠A′CB即可得到∠ACA′=∠BCB′=30°.【详解】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB-∠A′CB=∠A′CB′-∠A′CB,即∠ACA′=∠B′CB,又∵∠B′CB=30°∴∠ACA′=30°.故选:B.【点睛】本题主要考查了全等三角形的性质.7.C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8.C【解析】【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.9.B【解析】试题分析:根据旋转的性质和全等三角形的判定,有∆'≌△ACE,A EF∆'≌△FDC,A CA∆''≌△ACD,GB CA CB∆'≌△AGF.共4对.故选B.10.C【解析】【分析】根据题意可设∠1=7x,∠2=2x,∠3=x,即可得到∠1,∠2,∠3,再利用三角形外角的性质得到∠EAC=108°,最后根据三角形的内角和定理计算即可.【详解】∵∠1:∠2:∠3=7:2:1,∴设∠1=7x,∠2=2x,∠3=x,由∠1+∠2+∠3=180°得:7x+2x+x=180°,解得x=18,故∠1=7×18=126°,∠2=2×18=36°,∠3=1×18=18°,∵△ABE和△ADC是△ABC分别是关于AB,AC边所在直线的轴对称图形,∴∠DCA=∠E=∠3=18°,∠2=∠EBA=∠D=36°,∠4=∠EBA+∠E=36°+18°=54°,∠5=∠2+∠3=18°+36°=54°,故∠EAC=∠4+∠5=54°+54°=108°在△EGF与△CAF中,∠E=∠DCA,∠DFE=∠CFA,∴∠α=∠EAC=108°.故选C.【点睛】此题考查轴对称的性质,三角形内角和定理和三角形外角的性质,解题关键在于掌握内角和定理.11.5<c<9 6或8 6【解析】【分析】(1).根据三角形的三边关系即可求出c的取值范围. (2).根据“偶数和偶数之和为偶数,偶数与奇数之和为奇数,奇数和奇数之和为偶数”即可解答. (3).用含有c的式子表示出周长为5的倍数,结合第三边c的取值范围,进而求出c的值.【详解】解:根据三角形的三边关系,可得7-2<c<7+2,即5<c<9,由于2+7=9是奇数,故当c为偶数时周长为奇数,即c的取值为6,8,当周长是5的倍数是,则有2+7+c=5n,且第三边取值范围为5<c<9,故周长的取值范围为14~18,故n=3,解得c=6.【点睛】本题主要考查了三角形的三边关系,偶数和偶数之和为偶数,偶数与奇数之和为奇数,奇数和奇数之和为偶数,掌握这两个知识点是解答本题的关键.12.3【解析】图中以BC为公共边的”共边三角形”有△ABC,△DBC,△EBC,共3对.故选B.13.1<x<6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.考点:三角形三边关系.14.20【解析】试题分析:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20。
北师大新版专题复习《三角形》单元测试题
北师大新版专题复习《三角形》单元测试题一.选择题(共10小题)1.如图,AB与CD相交于点O,且O是AB,CD的中点,则△AOC与△BOD全等的理由是()A.SAS B.ASA C.SSS D.HL2.如图,Rt△ABC中,∠C=90°,用尺规作图法依据图中的作图痕迹作出射线AE,AE 交BC于点D,AC=8,AD=10,P为AB上一动点,则PD的最小值为()A.3B.4C.5D.63.如果一个三角形的两边长分别为5cm、10cm,那么这个三角形的第三边的长可以是()A.3cm B.5cm C.10cm D.16cm4.如图,一副三角板拼成如图所示图形,则∠BAC的度数为()A.75°B.60°C.105°D.120°5.将两把相同的直尺如图放置.若∠1=164°,则∠2的度数等于()A.103°B.104°C.105°D.106°6.观察下列尺规作图的痕迹:其中,能够说明AB>AC的是()A .B .C .D .7.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若∠B =50°,则∠CAD 的度数是( )A .15°B .20°C .25°D .30°8.嘉嘉家和琪琪家到学校的直线距离分别是3km 和1km ,他们两家的直线距离可能是( )A .1kmB .3kmC .5kmD .7km9.已知,如图,AB ∥CD ,将一副三角尺如图摆放,让一个顶点和一条边分别放在AB 和CD 上,则∠AEF =( )A .10°B .12°C .15°D .18°10.如图所示,在Rt △ACB 中,∠ACB =90°,根据尺规作图的痕迹,可以判断以下结论错误的是( )A .ED =CDB .AC =AE C .∠EDB =∠CABD .∠DAC =∠B二.填空题(共6小题)11.如图,P 是∠BAC 内一点,∠ABP =37°,∠ACP =25°,过点P 作直线EF ,交AB ,AC 分别于E ,F .若∠BEP =∠BPC =∠PFC ,则∠BAC = °.12.如图,△ABC 的中线AD 、BE 相交于点F ,FH ⊥BC ,垂足为H .若S △ABC =12,BC =6,则FH 长为 .13.如图,在△ABC 中,按以下步骤作图:①以点A 为圆心,以AB 长为半径作弧,交BC 于点D ;②分别以B ,D 为圆心,以大于12BD 长为半径作弧,两弧交于点P ;③连接AP 交BD 于点E ,若∠B =2∠C ,BC =23,DC =13,则AE = .14.如图,在△ABC 中,D 是AB 的中点,E 是BC 上的一点,且BE =3EC ,CD 与AE 相交于点F ,若△ADF 的面积为6,则△ABC 的面积为 .15.如图,已知AC平分∠BAD.请添加一个条件:,使△ABC≌△ADC.16.将纸片△ABC沿DE折叠使点A落在点A'处,若∠1=80°,∠2=28°,则∠A的度数为.三.解答题(共4小题)17.如图,在△ABC中,BC=9,AC=12,在△ABE中,DE是AB边上的高,DE=8,△ABE的面积为60.(1)AB的长为.(2)求四边形ACBE的面积.18.如图,在△ABC中,AC>AB,射线AD平分∠BAC,交BC于点E,点F在边AB的延长线上,AF=AC,连接EF.(1)求证:△AEC≌△AEF.(2)若∠AEB=50°,求∠BEF的度数.19.如图,已知AD平分∠BAC,AB=AC.求证:BD=DC.20.如图,AE与AD分别是△ABC的角平分线和高.若∠B=70°,∠C=60°,求∠DAE 度数.。
北师大版七年级数学下册第四章 三角形 章节测试(含答案)
第四章 全等三角形章节测试一、细心选一选(每小题3分,共36分)1.下列说法正确的是……………………………………( )A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等 2.下列各组线段能组成三角形的是……………………( )A.3cm ,3cm ,6cmB.7cm ,4cm ,5cmC.3cm ,4cm ,8cmD.4.2cm ,2.8cm ,7cm 3.下列图形中,与已知图形全等的是……………………( )4.如图,已知△ABC ≌△CDE,其中AB =CD ,那么下列结论中, 不正确的是……………………… ( ) A.AC =CEB.∠BAC =∠CDEC.∠ACB =∠ECDD.∠B =∠D5.下列条件中,不能判定三角形全等的是…………………( ) A.三条边对应相等 B.两边和一角对应相等 C.两角和其中一角的对边对应相等 D.两角和它们的夹边对应相等6. 如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形………( ) A.1对 B.2对 C.3对 D.4对7.在△ABC 和△A ′B ′C ′中,已知AB = A ′B ′, ∠B =∠B ′要保证△ABC ≌△A ′B ′C ′, 可补充的条件是……( )A.∠B +∠A =900B.AC = A ′C ′C.BC =B ′C ′D. ∠A +∠A ′=9008.已知在△ABC 和△A ′B ′C ′中,AB = A ′B ′,∠B =∠B ′,补充下面一个条件,不能说明△ABC ≌△A ′B ′C ′的是……………………………………………………………………………………( ) A. BC =B ′C ′ B. AC = A ′C ′ C. ∠C =∠C ′ D. ∠A =∠A ′ 9.如图,已知AE =CF ,BE =DF .要证△ABE ≌△CDF ,还需添加的一个条件是………( )(A ) (B ) (C )(D )第3题图B DE第4题ABDCEA.∠BAC =∠ACDB.∠ABE =∠CDFC.∠DAC =∠BCAD.∠AEB =∠CFD10.如图AD 是△ABC 的角平分线,DE 是△ABD 的高,EF 是△ACD 的高,则…( ) A.∠B =∠C B.∠EDB =∠FDC C.∠ADE =∠ADF D. ∠ADB =∠ADC 11.如图AC 与BD 相交于点O ,已知AB =CD ,AD =BC ,则图中全等三角形有………( ) A.1对 B.2对 C.3对 D.4对 12.如图,D 、E 分别是AB ,AC 上一点,若∠B =∠C ,则在下列条件中,无法判定△ABE ≌△ACD 是………………………………( ) A.AD =AE B.AB =ACC.BE =CDD.∠AEB =∠ADC 二、专心填一填:(每小题3分,共24分)13.如图,△ABC ≌△DEF ,点B 和点E , 点A 和点D 是对应顶点, 则AB = ,CB = , ∠C = ,∠CAB = . 14.若已知两个三角形有两条边对应,则要视这两个三角形全等, 还需增加的条件可以是 或 .15.如图已知AC 与BD 相交于点O ,AO =CO ,BO =DO ,则AB =CD 请说明理由. 解:在△AOB 和△COD 中(BO DO(AO CO ==⎧⎪⎨⎪⎩已知)(对顶角相等已知) ∴△AOB ≌△COD ( )∴AB =DC ( )16.如图,已知AO =OB ,OC =OD ,AD 和BC 相交于点E , 则图中全等三角形有 对.17.在△ABC 和△DEF 中,AB =4, ∠A =350, ∠B =700,DE =4, ∠D = , ∠E 根据 判定△ABC ≌△DEF .ABC D F E 第9题AA AAA 第10题A BCDO第11题ABCE第12题D第13题ABC DEFABD CO第15题OABD第16题CE第18题A D18.如图,在△ABC和△DEF中AB=DC( BC=DA(=⎧⎪⎨⎪⎩已知)已知)()∴△ABC≌△DEF( )19.如图∠B=∠DEF,AB=DE,要证明△ABC≌△DEF,(1)若以“ASA”为依据,需添加的条件是;(2)若以“SAS”为依据,需添加的条件是.20.如图,△ABC中,AB=AC=13cm,AB的垂直平分线交AB于D,交AC于E,若△EBC的周长为21cm,则BC= cm.三、耐心答一答:(本题有6小题,共40分)21.(本题4分)已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC,使∠A=∠α,∠B=∠β,BC=a.22.(本题6分)已知AD平分∠CAB,且DC⊥AC, DB⊥AB,那么AB和AC相等吗?请说明理由.第19题B CAE CDAB CED第20题DCAB23.(本题6分)如图,已知BD =CD ,∠1=∠2. 说出△ABD ≌△ACD 的理由.24.(本题8分)如图,已知AB =DC ,AD =BC ,说出下列判断成立的理由: (1) △ABC ≌△CDA (2) ∠B =∠D25.(本题8分) 如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着须先画出四种不同的分法,把4×4的正方形分割成两个全等图形ABC12DB D图①画法1画法2画法3画法426.(本题8分)如图,△ABC 中,AD 垂直平分BC ,H 是AD 上一点,连接BH ,CH .(1)AD 平分∠BAC 吗?为什么?(2)你能找出几堆相等的角?请把他么写出来(不需写理由)ACBH D参考答案一、细心选一选:(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案D B B C D C C B D C D D二、专心填一填(每小题3分,共24分)13.DE,FE,∠F, ∠FE D. 14.3第三边相等,这两边的夹角相等15. ∠AOB=∠COD,SAS,全等三角形的对应边相等16.4 17.350, AAS18.AC,CA,公共边,SSS19.∠A=∠D20.8三、耐心答一答(本题有六小题,共40分)21.图略22.AB=AC23.略24.略25.画法1 画法2 画法3 画法426.(1)由△ADB≌△ADC(SAS)得∠BAD=∠CAD(4)4对,∠BHD=∠CHD, ∠ABD=∠ACD,∠HBD=∠HCD, ∠BDA=∠CDA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B ′
C ′
D ′
O ′A ′
O D
C B
A
一、填空题:
1.已知直角三角形的一个锐角的度数为50º,则其另一个锐角的补角度数为________度。
2.如图,在建筑工地上,工人师傅砌门时,常用木条 EF 固定长方形门框,使其不变形,这种做法据是 。
3.如图,△ABC 中,∠A =40º,∠B =80º,CD 平分∠ACB ,则∠ACD = º
4.如图,已知AB =AC ,EB =EC ,则图中共有全等三角形 对。
5.如图,已知AD 为△ABC 的中线,请添加一个条件,使得∠1=∠2, 你添加的条件是 .
6.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠A′O′B′=∠AOB ,需要 证明△A′O′B′≌△AOB ,则这两个三角形全等的依据是 (写出全等的简写).
7.把一副三角板按如图所示放置,已知∠A =45º,∠E =30º,则两条斜边相交所成的钝角 ∠AOE 的度数为 度。
8.如图∆ABC 中,AD 是BC 上的中线,BE 是∆ABD 中AD 边上 的中线,若∆ABC 的面积是24,则∆ABE 的面积是________。
9.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I . (1)若∠A =100°,则∠BIC =________; (2)若∠A =n °,则∠BIC =________.
10.已知三角形的两边长分别为3和10,周长恰好是6的倍数, 那么第三边长为________.
D
C
B
A
第(2)题图
D
B
A 21O
E
D
C
A A
B
C
D
E
第(8
)题
A B
C
D
E
第(3)题图
第(4)题图
第(5)题图
第(7)题图
第(9)题图
二、解答、证明题:
1. 如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交 AC 于E,∠A=35°,∠D=42°,求∠ACD 的度数.
2.如图,已知A 、B 、C 、D 在一条直线上,AB =CD , AE ∥DF ,BF ∥EC , 求证:∠E =∠F.
3.如图,已知OA =OC ,OB =OD ,∠1=∠2, 求证:∠B =∠D.
O D C
B
21
F
E
D
C
B
A
F
D
C
B
E A
4、把两个含有45°角的直角三角板如图放置,点D 在AC上,连接AE、BD,试判断AE 与BD的关系,并说明理由。
5.已知:如图,AD=AE,AB=AC,BD、CE相交于O.
求证:OD=OE.
6.如图,△ABC为等边三角形,D为边BA延长线上一点,连结CD,以CD为一边作等边三角形CDE,连接AE,判断AE与BC的位置关系,并说明理由.
7.如图(1)所示,△ABC中,∠BAC=90°AB =AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D, CE⊥AE于E.
(1)你能说明BD=DE+CE吗?
(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明;
(3)若直线AE绕A点旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果,不需证明;
第7题图。