三角形的证明测试题(新北师大版)
2022春八年级数学下册第1章三角形的证明达标检测新版北师大版(含答案)
八年级数学下册新版北师大版:第一章达标检测卷一、选择题(每题3分,共30分)1.若等腰三角形的顶角为40°,则它的底角度数为( )A.40° B.50° C.60° D.70°2.以下列各组数为边长能组成直角三角形的是( )A.4,5,6 B.2,3,4 C.11,12,13 D.8,15,173.下列命题的逆命题是真命题的是( )A.若a>0,b>0,则a+b>0 B.直角都相等C.两直线平行,同位角相等 D.若a=b,则|a|=|b|4.如图,∠C=∠D=90°,添加一个条件,可使用“H L”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是( )A.AC=AD B.AC=BC C.∠ABC=∠ABD D.∠BAC=∠BAD5.如图,在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB,垂足为D,则BD AD的值为( )A.12B.25C.13D.146.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE.若AC=5,BC=3,则BD的长为( )A.2.5 B.1.5 C.2 D.17.有A,B,C三个社区(不在同一直线上),现准备修建一座公园,使该公园到三个社区的距离相等,那么公园应建在下列哪个位置上?( )A.△ABC三条角平分线的交点处 B.△ABC三条中线的交点处C.△ABC三条高的交点处 D.△ABC三边垂直平分线的交点处8.如图,在△ABC中,AB=AC,∠A=120°,BC=6 cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为 ( )A.4 cm B.3 cm C.2 cm D.1 cm9.如图,AB⊥BC,DC⊥BC,E是BC上一点,∠BAE=∠DEC=60°,AB=3,CE=4,则AD 等于( )A.10 B.12 C.24 D.4810.如图,在△ABC中,BC的垂直平分线与△ABC的外角∠CAM的平分线相交于点D,DE⊥AC于点E,DF⊥AM于点F,则下列结论:①△CDE≌△BDF;②CA-AB=2AE;③∠BDC+∠FAE=180°;④∠DAF+∠CBD=90°.其中正确的是( )A.①②③ B.①②④ C.②③④ D.①③④二、填空题(每题3分,共24分)11.用反证法证明一个三角形中不能有两个角是直角,第一步是假设这个三角形中____________________.“两直线平行,内错角相等”的逆命题是______________________.12. 如图,在△ABC中,AB=AC=BC=4,AD平分∠BAC,点E是AC的中点,则DE的长为________.13.如图,AB=AC,AD=AE,AF⊥BC于F,则图中全等的直角三角形有________对.14.如图,在△ABC中,高AD,CE相交于点H,且CH=AB,则∠ACB=________.15.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,CD=3,AB=10,则△ABD的面积为________.16.如图,在等边三角形ABC中,AD是BC边上的高,且AD=4,E是AB边的中点,点P在AD上运动,则PB+PE的最小值是________.17. 如图,在等腰三角形ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,点C沿EF折叠后与点O重合,则∠OEC=________.18. 如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=1,则△A6B6A7的边长为________.三、解答题(23题10分,24,25题每题12分,其余每题8分,共66分)19.如图,在△ABC中,已知AB=5,AC=9,BC=7.(1)尺规作图:作AC的垂直平分线DE,与AC交于点D,与BC交于点E,连接AE;(2)求△ABE的周长.20.如图,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.21.如图,在长方形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.22.已知:如图,锐角三角形ABC的两条高BD,CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.23.如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为点E,F.(1)求证:△BED≌△CFD;(2)若∠A=60°,BE=1,求△ABC的周长.24.如图,点P是等边三角形ABC内一点,AD⊥BC于点D,PE⊥AB于点E,PF⊥AC于点F,PG⊥BC于点G.求证:AD=PE+PF+PG.25.如图,在平面直角坐标系中,已知点A(0,2),△AOB为等边三角形,P是x轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形APQ.(1)求点B的坐标.(2)在点P运动过程中,∠ABQ的大小是否发生改变?若不改变,求出其大小;若改变,请说明理由.(3)连接OQ,当OQ∥AB时,求点P的坐标.答案一、1.D 2.D3.C 点拨:A 项的逆命题:若a +b >0,则a >0,b >0,是假命题;B 项的逆命题:相等的角是直角,是假命题;C 项的逆命题:同位角相等,两直线平行,是真命题;D 项的逆命题:若|a |=|b |,则a =b ,是假命题.故选C. 4.A 5.C 6.D 7.D 8.C 9.A10.A 点拨:由题意得BD =CD ,DE =DF ,∠DFB =∠DEC =90°,∴Rt △CDE ≌Rt △BDF ,∴①正确;易知AE =AF ,BF =CE ,∴CA -AB =AE +CE -(BF -AF )=AE +AF =2AE ,∴②正确;∵∠BDC =180°-∠DBC -∠DCB ,∠FAE =∠ABC +∠ACB ,∠FBD =∠ECD ,∴∠BDC +∠FAE =180°-∠DBC -∠DCB +(∠FBD +∠DBC )+(∠DCB -∠ECD )=180°,∴③正确;由已知条件无法得到∠DAF +∠CBD =90°,∴④错误.故正确的结论有①②③,故选A.二、11.有两个角是直角;内错角相等,两直线平行 12.2 13.214.45° 点拨:如图,∵CE ⊥AB 于点E ,AD ⊥BC 于点D ,∴∠AEC =90°,∠5=∠6=90°.∴∠1+∠2=90°,∠3+∠4=90°.∵∠2=∠3,∴∠1=∠4. 在△ABD 和△CHD 中,⎩⎪⎨⎪⎧∠5=∠6,∠1=∠4,AB =CH ,∴△ABD ≌△CHD (AAS).∴AD =CD .∴△ADC 为等腰直角三角形.∴∠ACB =45°.(第14题)15.1516.4 点拨:如图,连接EC,交AD于点P,连接BP,此时PB+PE的值最小,且PB+PE =EC.因为点E是AB的中点,所以CE是等边三角形ABC的高,所以CE=AD=4,即PB +PE的最小值为4.(第16题)17.100°18.32 点拨:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠A1B1A2=∠B1A1A2=∠A1A2B1=60°.∴∠OA1B1=120°.∵∠MON=30°,∴∠OB1A1=180°-120°-30°=30°.∴OA1=A1B1=A2B1=1.又∵∠A1B1A2=60°,∴∠A2B1B2=180°-60°-30°=90°.∵△A2B2A3是等边三角形,∴∠B2A2A3=60°.∴∠B1A2B2=60°.∴∠B1B2A2=90°-∠B1A2B2=30°.∴A2B2=2B1A2=2.同理得出B3A3=2B2A3,∴A3B3=4B1A2=4.以此类推,A6B6=32B1A2=32.三、19.解:(1)作图如图所示.(第19题)(2)∵DE垂直平分AC,∴AE=EC,∴AB+BE+AE=AB+BE+EC=AB+BC. ∵AB=5,BC=7,∴AB+BE+AE=5+7=12,即△ABE的周长为12.20.解:∵AB=AC,AE平分∠BAC,∴AE⊥BC(等腰三角形三线合一).∵∠ADC=125°,∴∠CDE=55°.∴∠DCE=90°-∠CDE=35°.又∵CD平分∠ACB,∴∠ACB=2∠DCE=70°.又∵AB=AC,∴∠B=∠ACB=70°.∴∠BAC=180°-(∠B+∠ACB)=40°. 21.证明:∵四边形ABCD是长方形,∴∠B=∠C=90°.∵EF⊥DF,∴∠EFD=90°.∴∠EFB+∠CFD=90°.∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD.在△BEF和△CFD中,⎩⎪⎨⎪⎧∠BEF =∠CFD ,BE =CF ,∠B =∠C ,∴△BEF ≌△CFD (ASA ). ∴BF =CD .22.(1)证明:∵OB =OC , ∴∠OBC =∠OCB .∵锐角三角形ABC 的两条高BD ,CE 相交于点O , ∴∠BEC =∠BDC =90°.∴∠BCE +∠ABC =∠DBC +∠ACB =90°, ∴∠ABC =∠ACB , ∴AB =AC ,∴△ABC 是等腰三角形.(2)解:点O 在∠BAC 的平分线上. 理由:在△EOB 和△DOC 中,OB =OC ,∠BEO =∠CDO ,∠EOB =∠DOC , ∴△EOB ≌△DOC , ∴OE =OD .又∵∠AEO =∠ADO =90°, ∴OE ⊥AE ,OD ⊥AD .∴点O 在∠BAC 的平分线上.23.(1)证明:∵AB =AC ,∴∠B =∠C . ∵DE ⊥AB ,DF ⊥AC , ∴∠DEB =∠DFC =90°. ∵D 是BC 边的中点, ∴BD =CD .在△BED 与△CFD 中, ∵∠DEB =∠DFC , ∠B =∠C ,BD =CD ,∴△BED ≌△CFD (AAS ). (2)解:∵AB =AC ,∠A =60°, ∴△ABC 是等边三角形. ∴AB =BC =CA ,∠B =60°. 又∵DE ⊥AB , ∴∠EDB =30°.∴在Rt △BED 中,BD =2BE =2. ∴BC =2BD =4.∴△ABC 的周长为AB +BC +AC =3BC =12. 24.证明:连接PA ,PB ,PC ,如图.(第24题)∵AD ⊥BC 于点D ,PE ⊥AB 于点E ,PF ⊥AC 于点F ,PG ⊥BC 于点G ,∴S △ABC =12×BC ×AD ,S △PAB =12×AB ×PE ,S △PAC =12×AC ×PF ,S △PBC =12×BC ×PG .∵S △ABC =S △PAB +S △PAC +S △PBC ,∴12×BC ×AD =12(AB ×PE +AC ×PF +BC ×PG ). ∵△ABC 是等边三角形, ∴AB =BC =AC ,∴BC ×AD =BC ×(PE +PF +PG ), ∴AD =PE +PF +PG .25.解:(1)如图①,过点B 作BC ⊥x 轴于点C . ∵△AOB 为等边三角形,且OA =2, ∴∠AOB =60°,BO =OA =2. ∴∠BOC =30°. 又∵∠OCB =90°,∴BC =12OB =1,∴OC = 3.∴点B 的坐标为(3,1).(第25题)(2)∠ABQ 的大小始终不变.∵△APQ ,△AOB 均为等边三角形,∴AP =AQ ,AO =AB ,∠PAQ =∠OAB =60°.∴∠PAO =∠QAB .在△APO 与△AQB 中,⎩⎪⎨⎪⎧AP =AQ ,∠PAO =∠QAB ,AO =AB ,∴△APO ≌△AQB (SAS ).∴∠ABQ =∠AOP =90°.(3)如图②,当OQ ∥AB 时点P 在x 轴的负半轴上,点Q 在点B 的下方,∵AB ∥OQ ,∴∠BQO =180°-∠ABQ =90°,∠BOQ =∠ABO =60°.∴∠OBQ =30°.又OB =OA =2,∴OQ =12OB =1,∴BQ = 3.由(2)可知,△APO ≌△AQB , ∴OP =BQ = 3.∴此时点P 的坐标为(-3,0).。
北师大版八下数学《三角形的证明》单元测试1(含答案)
第一章三角形的证明单元测试一、填空题1.一个等腰三角形有一角是70°,则其余两角分别为_________.2.一个等腰三角形的两边长为5和8,则此三角形的周长为_________.3.如图1,△ABC中,∠C=90°,AM平分∠CAB,CM=20 cm,则点M到AB 的距离是_________.图1 图24.如图2,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=_________,AE∶EC=_________.5.如图3,△ABC中,DE垂直平分BC,垂足为E,交AB于D,若AB=10 cm,AC=6 cm,则△ACD的周长为_________.图3 图46.如图4,∠C=90°,∠ABC=75°,∠CDB=30°,若BC=3 cm,则AD=___ cm.7.如图5,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,∠ADE=_________.图5图68.等腰直角三角形一条边长是1 cm ,那么它斜边上的高是_________ cm. 9.如图6,在∠AOB 的两边OA 、OB 上分别取OQ =OP ,OT =OS ,PT 和QS 相交于点C ,则图中共有_________对全等三角形.10.等腰三角形两腰上的高相等,这个命题的逆命题是________________,这个逆命题是_________命题.11.三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是_________三角形.二、选择题12.等边三角形的高为23,则它的边长为( ) A.4B.3C.2D.513.等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 nB.90-2nC.2n D.90°-n °14.下列由线段a 、b 、c 组成的三角形,不是直角三角形的是( ) A.a =3,b =4,c =5 B.a =1,b =34,c =35 C.a =9,b =12,c =15D.a =3,b =2,c =515.直角三角形的三边长为连续自然数,则它的面积为( ) A.6B.7.5C.10D.1216.△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最小边BC =4 cm ,最长边AB 的长是( )A.5 cmB.6 cmC.5 cmD.8 cm17.如图7,△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,则∠A 的度数为( )图7A.55°B.45°C.36°D.30°18.等腰△ABC 中,AC =2BC ,周长为60,则BC 的长为( ) A.15B.12C.15或12D.以上都不正确19.直角三角形两直角边分别是5 cm 、12 cm ,其斜边上的高是( ) A.13 cmB.1330cmC.1360cmD.9 cm20.直角三角形中,以直角边为边长的两个正方形的面积分别为30和20,则以斜边为边长的正方形的面积为( )A.25B.50C.100D.6021.等腰三角形的底边为a ,顶角是底角的4倍,则腰上的高是( ) A.23a B.33 a C.63a D.21a 22.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形一定是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形23.等腰三角形ABC 中,∠A =120°,BC 中点为D ,过D 作DE ⊥AB 于E ,AE =4cm,则AD等于()A.8 cmB.7 cmC.6 cmD.4 cm24.下列说法中,正确的是()A.两边及一对角对应相等的两个三角形全等B.有一边对应相等的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边及其中一边上的高对应相等的两个三角形全等25.如图8,AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8,BE=3,那么AC长为()图8A.8B.5C.3D.3426.将两个全等的有一个角为30°的直角三角形拼成下图9,其中两条长直角边在同一直线上,则图中等腰三角形的个数是()图9A.4B.3C.2D.127.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等*28.已知一个直角三角形的周长是4+26,斜边上中线长为2,则这个三角形的面积为( )A.5B.2C.45D.1三、解答题29.已知:如图10,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.图1030.已知:如图11,在Rt △ABC 中,∠C =90°,∠BAD =21∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =21DB .图1131.已知三角形的三边分别是n 2+n ,n +21和n 2+n +21(n >0),求证:这个三角形是直角三角形.32.如图12,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BA C.图1233.如图13,以等腰直角三角形ABC的斜边AB与边面内作等边△ABD,连结DC,以DC当边作等边△DCE,B、E在C、D的同侧,若AB=2,求BE的长.图13*34.①在△ABC中,AB=AC,AB的垂直平分线交AC于N,交BC的延长线于M,∠A=30°,求∠NMB的大小.②如果将①中的∠A的度数改为70°,其余条件不变,再求∠NMB的大小.③你感到存在什么样的规律性?试证明.(请同学们自己画图)④将①中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改?参考答案一、1.55°,55°或70°,40° 2.18或21 3.20 cm 4.251∶3 5.16 cm 6.6 7.75° 8.22或219.4 10.如果一个三角形两边上的高相等,那么这个三角形是等腰三角形 真 11.等腰二、12.A 13.C 14.D 15.A 16.D 17.B 18.B 19.C 20.B 21.D 22.D 23.A 24.C 25.D 26.B 27.D 28.B三、29.略 30.略 31.略 32.略 33.134.①15° ②35° ③AB 的垂直平分线与底边BC 所夹的锐角等于∠A 的一半 ④不需要修改。
北师大版八年级数学下册第一章三角形的证明单元测试题(答案及解析)
北师大版八年级下册第一章三角形的证明测试题一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°2.一个等腰三角形的两边长分别为3,6,则它的周长为()A.9 B.12 C.15 D.12或153.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.37.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm²,则S阴影等于()A.2cm²B.1cm²C.cm²D.cm²二.填空题(共5小题)11.等边三角形是一个轴对称图形,它有______条对称轴.12.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为______.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为______.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为______.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?北师大版八年级下册第一章三角形的证明测试题参考答案与试题解析一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选B.2.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.3.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【解答】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.7.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°【解答】解:∵∠1=∠3,∠B=∠C,∠1+∠B+∠3=180°,∴2∠1+∠C=180°,∴2∠1+∠1﹣∠2=180°,∴3∠1﹣∠2=180°.故选B.8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠A=40°,∴∠ACB+∠ABC=180°﹣40°=140°,又∵∠ABC=∠ACB,∠1=∠2,∴∠PBA=∠PCB,∴∠1+∠ABP=∠PCB+∠2=140°×=70°,∴∠BPC=180°﹣70°=110°.故选A.9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°.故选:C.10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2 B.1cm2 C.cm2 D.cm2【解答】解:根据三角形的面积公式,知:等底等高的两个三角形的面积相等.即有:S阴影=S△BCE=S△ABC=1cm2.故选:B.二.填空题(共10小题)11.等边三角形是一个轴对称图形,它有 3 条对称轴【解答】解:等边三角形是轴对称图像,它有三个顶点,所以对应3条对称轴故答案为:312.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为16或8.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【解答】解:在△ABC中,AB=AC,①当∠A=70°时,则∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣55°=35°;②当∠C=70°时,∵BD⊥AC,∴∠DBC=90°﹣70°=20°;故答案为:35°或20°.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为32a .【解答】解:∵△A1B1A2是等边三角形∴∠B1A1A2=60°,A1B1=B1A2=A1A2∵∠MON=30°∴∠OB1A1=30°(三角形的一个外角等于和它不相邻的两个外角和∠OB1A1=∠B1A1A2-∠MON)∴OA1=A1B1(等边对等角)∴OA1=A1A2=a同理,根据∠MON=∠OB2A2,可得:A2A3=A2B2=OA1+A1A2=2A1A2=2a同理,可推出:A3A4=2A2A3=4a同理,可推出:A4A5=2A3A4=8a同理,可推出:A5A6=2A4A5=16a同理,可推出:A6A7=2A5A6=32a 即题目所求另外我们不难发现,第n个(△A1B1A2为第一个)等边三角形的边长为AnAn+1=(2^n-1)a 注:2的n-1次方倍的a三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.另外一种证法:证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°在Rt△ABD和Rt△BAC中∴Rt△ABD≌Rt△BAC(HL)∴AD=BC,在△AOD和△BOC中,∴△AOD≌△BOC(AAS),∴OA=OB,即△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【解答】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.【解答】解:(1)∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,∴△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HF),∴∠B=∠C,∴△ABC为等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?【解答】解:(1)当点D在BC的中点时,DE=DF,理由如下:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(3)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.。
北师大版八年级数学下册 第1章 三角形的证明 单元测试卷(含答案)
北师大版八年级数学下册第1章三角形的证明单元测试卷(时间:120分钟满分:150分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.如图,若∠B=30°,∠C=90°,AC=20,则AB=( )A.25B.30C.20 3D.402.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是( )A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是( )A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是( )A.2,3,4B.1,2, 3C.4,5,6D.2,2,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是( )A.HLB.ASAC.AASD.SAS6.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠CAD的度数为( )A.35°B.45°C.55°D.60°7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.30°B.45°C.60°D.75°8.如图,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β,若α=10°,则β的度数是( )A.40°B.50°C.60°D.不能确定9.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为( )A.1.5B.3C.6D.910.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个直角三角形中( )A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是( )A.1B.2C.3D.413.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E.如果∠BAC=60°,∠ACE=24°,那么∠BCE 的大小是( )A.24°B.30°C.32°D.36°14.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE∶S△BDE =( )A.2∶5B.14∶25C.16∶25D.4∶2115.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是( )A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共5个小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是.17.如图,某失联客机从A地起飞,飞行1 000 km到达B地,再折返飞行1 000 km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为km.18.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.19.如图,已知△ABC的周长是22,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,△ABC的面积是.20.如图,在等腰△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,点C沿EF 折叠后与点O重合,则∠OEC的度数是.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)一个机器零件的形状如图所示,在Rt△ABC中,∠BAC=30°,BC=2.5 cm,BD=13 cm,AD=12 cm,求△ABD的面积.22.(本题8分)在加快城镇建设中,有两条公路OA和OB交会于O点,在∠AOB的内部有蔬菜基地C和D,现要修建一个蔬菜转运站P,使转运站P到两条公路OA,OB的距离相等,且到两个蔬菜基地C,D的距离也相等,用尺规作出蔬菜转运站P的位置.(要求:不写作法,保留作图痕迹.)23.(本题10分)如图,点P为△ABC的BC边上一点,且PC=2PB,∠ABC=45°,∠APC=60°,CD⊥AP,连接BD,求∠ABD的度数.24.(本题12分)如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为C,交OB于点D,CE∥OA交OB于点E.(1)判断△CED的形状,并说明理由;(2)若OC=3,求CD的长.25.(本题12分)如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于点P,PD⊥AB于D,PE⊥AC于E.(1)求证:BD=CE;(2)若AB=6 cm,AC=10 cm,求AD的长.26.(本题14分)如图,在△ABC中,MP,NO分别垂直平分AB,AC.(1)若BC=10 cm,试求出△PAO的周长;(2)若AB=AC,∠BAC=110°,试求∠PAO的度数;(3)在(2)中,若无AB=AC的条件,你能求出∠PAO的度数吗?若能,请求出来;若不能,请说明理由.27.(本题16分)如图,△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达点B时,M,N同时停止运动.(1)点M,N运动几秒后,M,N两点重合?(2)点M,N运动几秒后,可得到等边三角形△AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.参考答案一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.如图,若∠B=30°,∠C=90°,AC=20,则AB=(D)A.25B.30C.20 3D.402.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是(A)A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是(C)A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是(B)A.2,3,4B.1,2, 3C.4,5,6D.2,2,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是(A)A.HLB.ASAC.AASD.SAS6.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠CAD的度数为(A)A.35°B.45°C.55°D.60°7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为(C)A.30°B.45°C.60°D.75°8.如图,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β,若α=10°,则β的度数是(B)A.40°B.50°C.60°D.不能确定9.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为(C)A.1.5B.3C.6D.910.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个直角三角形中(D)A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是(B)A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是(A)A.1B.2C.3D.413.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E.如果∠BAC=60°,∠ACE=24°,那么∠BCE 的大小是(C)A.24°B.30°C.32°D.36°14.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE∶S△BDE =(B)A.2∶5B.14∶25C.16∶25D.4∶2115.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是(D)A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共5个小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是68__°.17.如图,某失联客机从A地起飞,飞行1 000 km到达B地,再折返飞行1 000 km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为1__000km.18.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M19.如图,已知△ABC 的周长是22,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =3,△ABC 的面积是33.20.如图,在等腰△ABC 中,AB =AC ,∠BAC =54°,∠BAC 的平分线与AB 的垂直平分线交于点O ,点C 沿EF 折叠后与点O 重合,则∠OEC 的度数是108__°.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)一个机器零件的形状如图所示,在Rt △ABC 中,∠BAC =30°,BC =2.5 cm ,BD =13 cm ,AD =12 cm ,求△ABD 的面积.解:∵Rt △ABC 中,∠BAC =30°,BC =2.5 cm , ∴AB =2BC =5 cm.∵52+122=132,即AB 2+AD 2=BD 2, ∴△ABD 是直角三角形.∴S △ABD =12AB·AD =12×5×12=30(cm 2).22.(本题8分)在加快城镇建设中,有两条公路OA 和OB 交会于O 点,在图中∠AOB 的内部有蔬菜基地C 和D ,现要修建一个蔬菜转运站P ,使转运站P 到两条公路OA ,OB 的距离相等,且到两个蔬菜基地C ,D 的距离也相等,用尺规作出蔬菜转运站P 的位置.(要求:不写作法,保留作图痕迹.)解:如图所示.23.(本题10分)如图,点P 为△ABC 的BC 边上一点,且PC =2PB ,∠ABC =45°,∠APC =60°,CD ⊥AP ,连接BD ,求∠ABD 的度数.解:∵∠APC =60 °,CD ⊥AP , ∴∠PCD =90 °-∠APC =90 °-60 °=30 °. ∴PC =2PD.∵PC =2PB ,∴PB =PD. ∴∠PBD =∠PDB.又∵∠APC =∠PBD +∠PDB ,∴∠PBD =12∠APC =12×60 °=30 °.∵∠ABC =45 °,∴∠ABD =∠ABC -∠PBD =45 °-30 °=15 °.24.(本题12分)如图,∠AOB =60°,OC 平分∠AOB ,C 为角平分线上一点,过点C 作CD ⊥OC ,垂足为C ,交OB 于点D ,CE ∥OA 交OB 于点E.(1)判断△CED 的形状,并说明理由; (2)若OC =3,求CD 的长.解:(1)△CED 是等边三角形.理由如下: ∵OC 平分∠AOB ,∠AOB =60 °,∴∠AOC =∠COE =30 °. ∵CE ∥OA ,∴∠AOC =∠COE =∠OCE =30 °,∠CED =60 °. ∵CD ⊥OC ,∴∠OCD =90 °. ∴∠EDC =60 °.∴△CED 是等边三角形.(2)∵△CED 是等边三角形,∴CD =CE =ED. 又∵∠COE =∠OCE ,∴OE =EC. ∴CD =ED =OE.设CD =x ,则OD =2x.在Rt △OCD 中,根据勾股定理得:x 2+9=4x 2,解得x = 3. 则CD = 3.25.(本题12分)如图,△ABC 的外角∠DAC 的平分线交BC 边的垂直平分线于点P ,PD ⊥AB 于D ,PE ⊥AC 于E. (1)求证:BD =CE ;(2)若AB =6 cm ,AC =10 cm ,求AD 的长.解:(1)证明:连接BP ,CP.∵点P 在BC 的垂直平分线上,∴BP =CP. ∵AP 是∠DAC 的平分线,∴DP =EP ,在Rt △BDP 和Rt △CEP 中,⎩⎪⎨⎪⎧BP =CP ,DP =EP ,∴Rt △BDP ≌Rt △CEP (HL ),∴BD =CE.(2)在Rt △ADP 和Rt △AEP 中,⎩⎪⎨⎪⎧AP =AP ,DP =EP ,∴Rt △ADP ≌Rt △AEP (HL ),∴AD =AE.∵AB =6 cm ,AC =10 cm ,∴6+AD =10-AE , 即6+AD =10-AD.解得AD =2 cm.26.(本题14分)如图,在△ABC 中,MP ,NO 分别垂直平分AB ,AC.(1)若BC =10 cm ,试求出△PAO 的周长; (2)若AB =AC ,∠BAC =110°,试求∠PAO 的度数;(3)在(2)中,若无AB =AC 的条件,你能求出∠PAO 的度数吗?若能,请求出来;若不能,请说明理由.解:(1)∵MP ,NO 分别垂直平分AB ,AC , ∴AP =BP ,AO =CO.∴△PAO 的周长为AP +PO +AO =BO +PO +OC =BC. ∵BC =10 cm ,∴△PAO 的周长为10 cm.(2)∵AB =AC ,∠BAC =110 °,∴∠B =∠C =12×(180 °-110 °)=35 °.由(1)知AP =BP ,AO =CO. ∴∠BAP =∠B =35 °,∠CAO =∠C =35 °. ∴∠PAO =∠BAC -∠BAP -∠CAO =110 °-35 °-35 °=40 °. (3)能.理由如下: ∵∠BAC =110 °,∴∠B +∠C =180 °-110 °=70 °.由(1)知AP =BP ,AO =CO.∴∠BAP =∠B ,∠CAO =∠C.∴∠PAO =∠BAC -∠BAP -∠CAO =∠BAC -(∠B +∠C )=110 °-70 °=40 °.27.(本题16分)如图,△ABC 中,AB =BC =AC =12 cm ,现有两点M ,N 分别从点A ,B 同时出发,沿三角形的边运动,已知点M 的速度为1 cm /s ,点N 的速度为2 cm /s .当点N 第一次到达点B 时,M ,N 同时停止运动.(1)点M ,N 运动几秒后,M ,N 两点重合?(2)点M ,N 运动几秒后,可得到等边三角形△AMN?(3)当点M ,N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形AMN ?如存在,请求出此时M ,N 运动的时间.解:(1)设点M ,N 运动x 秒后,M ,N 两点重合,x ×1+12=2x ,解得x =12.(2)设点M ,N 运动t 秒后,可得到等边三角形△AMN ,如图1,AM =t ×1=t ,AN =AB -BN =12-2t.∵三角形△AMN 是等边三角形,∴t =12-2t ,解得t =4.∴点M ,N 运动4秒后,可得到等边三角形△AMN.(3)当点M ,N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形.由(1)知,12秒时M ,N 两点重合,恰好在C 处.如图2,假设△AMN 是以MN 为底边的等腰三角形,∴AN =AM.∴∠AMN =∠ANM.∴∠AMC =∠ANB.∵AB =BC =AC ,∴△ACB 是等边三角形.∴∠C =∠B.在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,∠AMC =∠ANB ,AC =AB , ∴△ACM ≌△ABN (AAS ).∴CM =BN.设当点M ,N 在BC 边上运动时,M ,N 运动的时间y 秒时,△AMN 是等腰三角形.∴CM =y -12,NB =36-2y ,由CM =NB ,得y -12=36-2y ,解得y =16.故假设成立.∴当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16秒.。
最新北师大版七年级下册三角形全等(AAS或ASA)的证明试题以及答案 (共50道)
最新七年级下册三角形全等的证明试题两角一边的证明题如下图模型。
1、如图,AB∥CD,且AB=CD,证明O是AD、BC的公共中点。
2、如图,CA⊥OM,CB⊥ON,OC平分∠MON,证明(1)OA=OB(2)连接AB,证明AB⊥OC。
3、如图,∠B=∠C,AD=AE,证明BD=CE。
4、如图,AC平分∠BAD,AB⊥BC,AD⊥DC,证明CA平分∠BCD。
5、如图,AB∥DE,BF=CE,∠A=∠D,试着说明AC和DF的关系。
6、如图,AB=CD,∠A=∠D,证明∠1=∠2.7、如图,∠A=∠D,∠BCE=∠ACD,CB=CE,证明AB=ED。
8、如图,DE⊥AB,DF⊥AC,D是BC的中点,∠BDF=∠CDE,证明AB=AC。
9、如图,∠1=∠2,AB=AE,∠B=∠E,证明∠D=∠C。
10、如图,AB⊥BC,DC⊥BC,BE=CF,∠BED=∠ACF,证明AF⊥DE。
11、如图,CE、BD分别是三角形的两条高线,且AB=AC,证明∠CBD=∠BCE。
12、如图,BE=CF,∠A=∠D,AB∥DE,说明AC和DF的关系。
13、如图,∠C=∠D,∠ABD=∠BAC,证明DE=CE。
14、如图,AB∥CF,AD=CF,证明E是AC的中点。
15、如图,AF=CE,AD∥BC,DF∥BE,说明AB和CD关系。
16、如图,BE⊥CE,AD⊥CE,AC⊥BC,且AC=BC,说明线段BE、AD、DE之间的关系。
17、如图,∠A+∠C=180°,BD平分∠ABC,证明AD=CD。
18、如图,∠1=∠2,∠E=∠D,AE=AD,证明EC=BD。
19、如图,AD=BC,∠A=∠C,说明A、C的连线和B、D的连线的关系。
20、如图,∠1=∠2,∠D=∠E,AB=AC,证明BD=CE。
21、如图,BD平分∠ABC,∠A=∠C,证明A、C的连线和BD垂直。
22、如图,△ABD是以AB为斜边的等腰直角三角形,∠C与∠AEB互补,说明BE和AC的关系。
北师大版八年级下册数学第一章三角形的证明单元测试题(含详细解析)
北师大版八年级下册数学第一章三角形的证明单元测试题一.选择题(共12小题)1.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.52.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.363.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或104.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.25.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为()A.18cm B.22cm C.24cm D.26cm6.如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8.如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°9.若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°10.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.811.如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.12.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°二.填空题(共6小题)13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_________.14.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=_________.16.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= _________.17.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是_________.18.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB= _________度.三.解答题(共12小题)19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.20.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.21.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.22.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.24.如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.25.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.26.已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.27.如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.28.如图,Rt△ABC中,∠C=90°,AC=6,∠A=30°,BD平分∠ABC交AC于点D,求点D到斜边AB的距离.29.如图,在△ABC中,∠CAB=90°,AB=3,AC=4,AD是∠CAB的平分线,AD交BC于D,求BD的长.30.如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.参考答案与试题解析一.选择题(共12小题)1.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.2.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36考点:线段垂直平分线的性质.分析:根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.解答:解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.3.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.4.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.专题:几何图形问题.分析:连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为()A.18cm B.22cm C.24cm D.26cm考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选B.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△ABD的周长=AB+BC是解题的关键.6.如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm考点:线段垂直平分线的性质;勾股定理.专题:探究型.分析:连接AD,先由三角形内角和定理求出∠BAC的度数,再由线段垂直平分线的性质可得出∠DAB的度数,根据线段垂直平分线的性质可求出AD的长及∠DAC的度数,最后由直角三角形的性质即可求出AC的长.解答:解:连接AD,∵DE是线段AB的垂直平分线,BD=15,∠B=15°,∴AD=BD=10,∴∠DAB=∠B=15°,∴∠ADC=∠B+∠DAB=15°+15°=30°,∵∠C=90°,∴AC=AD=5cm.故选C.点评:本题考查的是直角三角形的性质及线段垂直平分线的性质,熟知线段垂直平分的性质是解答此题的关键.7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.解答:解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.点评:此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.8.如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°考点:线段垂直平分线的性质.专题:计算题.分析:设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.解答:解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°﹣∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.点评:此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.9.若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°考点:等腰三角形的性质.分析:分88°内角是顶角和底角两种情况讨论求解.解答:解:88°是顶角时,等腰三角形的顶角为88°,88°是底角时,顶角为180°﹣2×88°=4°,综上所述,它的顶角是88°或4°.故选C.点评:本题考查了等腰三角形的两底角相等的性质,难点在于要分情况讨论.10.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.11.如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.考点:角平分线的性质;含30度角的直角三角形;勾股定理.分析:根据直角三角形两锐角互余求出∠ABC=60°,再根据角平分线的定义求出∠ABD=∠DBC=30°,从而得到∠DBC=∠ACB,然后利用等角对等边的性质求出BD的长度,再根据直角三角形30°角所对的直角边等于斜边的一半求出AD,过点D作DE⊥BC于点E,然后根据角平分线上的点到角的两边的距离相等解答即可.解答:解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2.故选B.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,以及等角对等边的性质,小综合题,但难度不大,熟记各性质是解题的关键.12.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.二.填空题(共6小题)13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.考点:角平分线的性质.专题:几何图形问题.分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.解答:解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.点评:此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.14.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是2.考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= 4:5:6.考点:角平分线的性质.专题:压轴题.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.17.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是15°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE垂直平分AC,∠A=50°,根据线段垂直平分线的性质,易求得∠ACD的度数,又由AB=AC,可求得∠ACB的度数,继而可求得∠DCB的度数.解答:解:∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,∵AB=AC,∠A=50°,∴∠ACB=∠B==65°,∴∠DCB=∠ACB﹣∠ACD=15°.故答案为:15°.点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用.18.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB= 72度.考点:线段垂直平分线的性质;菱形的性质.专题:计算题.分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.解答:解:先连接AP,由四边形ABCD是菱形,∠ADC=72°,可得∠BAD=180°﹣72°=108°,根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,∴∠PAB=∠DAB﹣∠DAP=108°﹣36°=72度.在△BAP中,∠APB=180°﹣∠BAP﹣∠ABP=180°﹣72°﹣36°=72度.由菱形对角线的对称性可得∠CPB=∠APB=72度.点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.三.解答题(共12小题)19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.考点:线段垂直平分线的性质.分析:先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.解答:解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.20.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.考点:等腰三角形的性质.专题:证明题.分析:根据三线合一定理证明CF平分∠ACB,然后根据CF平分∠ACB,根据邻补角的定义即可证得.解答:证明:∵CD=CA,E是AD的中点,∴∠ACE=∠DCE.∵CF平分∠ACB,∴∠ACF=∠BCF.∵∠ACE+∠DCE+∠ACF+∠BCF=180°,∴∠ACE+∠ACF=90°.即∠ECF=90°.∴CE⊥CF.点评:本题考查了等腰三角形的性质,顶角的平分线、底边上的中线和高线、三线合一.21.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.考点:含30度角的直角三角形;相似三角形的判定与性质.专题:计算题.分析:延长DA,CB,交于点E,可得出三角形ABE与三角形CDE相似,由相似得比例,设AB=x,利用30角所对的直角边等于斜边的一半得到AE=2x,利用勾股定理表示出BE,由BC+BE表示出CE,在直角三角形DCE中,利用30度角所对的直角边等于斜边的一半得到2DC=CE,即可求出AB的长.解答:解:延长DA,CB,交于点E,∵∠E=∠E,∠ANE=∠D=90°,∴△ABE∽△CDE,∴=,在Rt△ABE中,∠E=30°,设AB=x,则有AE=2x,根据勾股定理得:BE==x,∴CE=BC+BE=4+x,在Rt△DCE中,∠E=30°,∴CD=CE,即(4+x)=3,解得:x=,则AB=.点评:此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.23.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.考点:直角三角形斜边上的中线.专题:证明题.分析:由于AB是Rt△ABC和Rt△ABD的公共斜边,因此可以AB为媒介,再根据斜边上的中线等于斜边的一半来证CE=ED.解答:证明:在Rt△ABC中,∵E为斜边AB的中点,∴CE=AB.在Rt△ABD中,∵E为斜边AB的中点,∴DE=AB.∴CE=DE.点评:本题考查的是直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半.24.如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.考点:等腰三角形的性质;三角形中位线定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)在等腰△ACD中,CF是顶角∠ACD的平分线,根据等腰三角形三线合一的性质知F是底边AD的中点,由此可证得EF是△ABD的中位线,即可得到EF∥BC的结论;(2)易证得△AEF∽△ABD,根据两个相似三角形的面积比(即相似比的平方),可求出△ABD的面积,而四边形BDFE的面积为△ABD和△AEF的面积差,由此得解.解答:(1)证明:∵在△ACD中,DC=AC,CF平分∠ACD;∴AF=FD,即F是AD的中点;又∵E是AB的中点,∴EF是△ABD的中位线;∴EF∥BC;(2)解:由(1)易证得:△AEF∽△ABD;∴S△AEF:S△ABD=(AE:AB)2=1:4,∴S△ABD=4S△AEF=6,∴S△AEF=1.5.∴S四边形BDFE=S△ABD﹣S△AEF=6﹣1.5=4.5.点评:此题主要考查的是等腰三角形的性质、三角形中位线定理及相似三角形的判定和性质.25.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.考点:直角三角形全等的判定;全等三角形的性质.专题:证明题.分析:此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.解答:证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.点评:本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.26.已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.考点:等腰三角形的性质;全等三角形的判定与性质.专题:计算题;证明题.分析:根据已知利用SAS判定△ABE≌△CBF,由全等三角形的对应边相等就可得到AE=CF;根据已知利用角之间的关系可求得∠EFC的度数.解答:(1)证明:在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS).∴AE=CF.(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,∴∠CAB=∠ACB=(180°﹣90°)=45°,∠EAB=45°﹣30°=15°.∵△ABE≌△CBF,∴∠EAB=∠FCB=15°.∵BE=BF,∠EBF=90°,∴∠BFE=∠FEB=45°.∴∠EFC=180°﹣90°﹣15°﹣45°=30°.点评:此题主要考查了全等三角形的判定方法及等腰三角形的性质等知识点的掌握情况;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.考点:角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:几何综合题;压轴题.分析:(1)根据AD是∠EAF的平分线,那么DE=DF,如果证得EA=FA,那么我们就能得出AD是EF的垂直平分线,那么就证得EF⊥AD了.因此证明EA=FA是问题的关键,那么就要先证得三角形AED和AFD全等.这两个三角形中已知的条件有∠EAD=∠FAD,一条公共边,一组直角,因此两三角形全等,那么就可以得出EA=AF了.(2)要求AD的长,在直角三角形AED中,有了DE的值,如果知道了∠ADE或∠EAD的度数,那么就能求出AD了.如果DE∥AC,那么∠EAC=90°,∠EAD=45°,那么在直角三角形AED中就能求出AD的长了.解答:(1)证明:∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)解:∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=.点评:本题考查了全等三角形的判定,角平分线的性质,线段垂直平分线的性质等知识点.本题中利用全等三角形得出线段相等是解题的关键.。
新北师大版八年级下册第一章 三角形的证明练习题
新北师大版八年级下册第一章三角形的证明练习题一、选择题1.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等2. 如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将△ABC绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD,AC于点F,G.则旋转后的图中,全等三角形共有()A.2对B.3对C.4对D.5对3.如图,把一张矩形纸片ABCD沿对角线BD折叠,BC交AD于O.给出下列结论:①BC平分∠ABD;②△ABO≌△CDO;③∠AOC=120°;④△BOD是等腰三角形.其中正确的结论有()A.①③B.②④C.①②D.③④4.下列命题中真命题是()A.如果两个直角三角形的两条边相等,那么这两个直角三角形全等B.如果两个直角三角形的一条边和一个锐角对应相等,那么这两个直角三角形全等C.如果两个直角三角形的两个角对应相等,那么这两个直角三角形全等D.如果两个直角三角形的一条直角边和斜边对应相等,那么这两个直角三角形全等5.利用基本尺规作图,下列条件中,不能作出唯一直角三角形的是()A.已知斜边和一锐角B.已知一直角边和一锐角C.已知斜边和一直角边D.已知两个锐角6.如果两个直角三角形的两条直角边对应相等,那么这两个直角三角形全等,依据为()A.AAS B.SAS C.HL D.SSS7.下列命题中,假命题是()A.等腰三角形的角平分线、中线和高共有7条或3条B.有一个外角等于120°的等腰三角形是等边三角形C.两条边分别相等的两个直角三角形全等D.三角形两个内角的平分线的交点到三边的距离相等8.如(1)图,由已知AB⊥BD,ED⊥BD,AB=CD,BC=DE可证得AC⊥CE,若将CD沿CB方向平移到图(2)(3)(4)(5)的情形,其余条件不变,则这四种情况下,结论AC1⊥C2E仍然成立的有()A.1个B.2个C.3个D.4个9.如图,AD=BC,∠C=∠D=90°,下列结论中不成立的是()A.∠DAE=∠CBE B.CE=DE C.△DAE与△CBE不一定全等D.∠1=∠210.下列语句中,不正确的是()A.两条直角边相等的两个直角三角形全等B.两边及第三边上的高对应相等的两个三角形全等C.两边及其中一边上的高对应相等的两个三角形全等D.两个锐角对应相等的两个直角三角形全等二、填空题11.如图,在正方形ABCD 中,点E 是AD 的中点,点F 是BA 延长线上一点,AF=21AB ,△ABE 可以通过绕点A 逆时针方向旋转到△ADF 的位置,则旋转的最小角度为 度.12如图,在梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB=2cm ,CD=4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD=90°,则圆心O 到弦AD 的距离是 cm .13.如图,在四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为9,则BE=14.如图,BE ,CD 是△ABC 的高,且BD=EC ,判定△BCD ≌△CBE 的依据是15.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD 与CE 交于点F ,请你添加一个适当的条件:(答案不唯一),使△ADB ≌△CEB .16.如图,△ABC 中,AD ⊥BC 于D ,要使△ABD ≌△ACD ,若根据“HL”判定,还需要加条件 ,若加条件∠B=∠C ,则可用 判定17.如图,在Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B ,C 作过点A 的直线的垂线BD ,CE ,若BD=4cm ,CE=3cm ,则DE= cm .18.如图,直线L 1、L 2、L 3分别过正方形ABCD 的三个顶点A 、D 、C ,且相互平行,若L 1、L 2的距离为2,L 2、L 3的距离为4,则正方形的边长为19.如图,已知四边形ABCD 中,CB=CD ,∠ABC=∠ADC=90°,那么Rt △ABC ≌Rt △ADC ,根据是 .20.判别两个直角三角形全等的方法有 种.。
北师大版数学八年级下册 第一章三角形的证明 综合测试卷(含答案)
第一章三角形的证明综合测试卷一、选择题。
01如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35º,则∠C的度数为 ( )A.35º B.45º C.55º D.60º02若等腰三角形的周长为10 cm,其中一边长为2 cm,则该等腰三角形的底边长为( )A.2 cm B.4 cm C.6 cm D.8 cm03如图,在△ABC中,∠ACB=90º,BE平分∠ABC,ED⊥AB于D.如果∠A=30º,AE=6 cm,那么CE等于 ( )A .3 cmB .2 cm C.3 cm D.4 cm04如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC 的长为半径作弧,两弧相交于M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50º,则∠ACB的度数为 ( )A.90º B.95º C 100º D.105º05如图,AD是△ABC中∠BAC的平分线,DE⊥AB,垂足为点E,DE=4,AC=6,则△ACD 的面积为 ( )A.8 B 10 C.12 D.2406如图,∠A=50º,P是等腰△ABC内一点,且∠PBC=∠PCA,则∠BPC为 ( )A.100º B.140º C.130º D.115º07如图,在Rt△ABC中,∠ACB=60º,DE是斜边AC的垂直平分线,分别交AB,AC 于D,E两点,若BD=2,则AC的长是 ( )A.4 B.43 C.8 D.8308 将一个有45º角的直角三角尺的直角顶点C放在一张宽为3 cm的纸带边沿上,另一个顶点A在纸带的另一边沿上,测得三角尺的一边AC与纸带的一边所在的直线成30º角,如图,则三角尺的最长边的长为 ( )A.6 cm B.2 cm C.2 cm D.209如图,∠ACB=90º,AC=BC,AE⊥CE,垂足为点E,BD⊥CE,交CE的延长线于点D,AE=5 cm,BD=2 cm,则DE的长是( )A.8 cm B.5 cm C.3 cm D.2 cm10如图,AD⊥BC于D,且DB=DC,有下列结论:①△ABD≌△ACD;②∠B=∠C;③AD 是∠BAC的平分线;④△ABC为等边三角形.其中正确的有 ( )A.1个 B.2个 C.3个 D.4个11如图,∠A=15º,AB=BC=CD=DE=EF,则∠DEF等于( )A.90º B.75º C.70º D.60º12如图,在△ABC中,BC=10,DH,EF分别为AB、AC的垂直平分线,则△ADE的周长是 ( )A.6 B.8 C.10 D.12二、填空题。
新北师大版八下第一章三角形的证明同步测试题
新北师大版八下第一章三角形的证明同步测试题一、单选题1、如图所示,已知AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为()A.50°B.60°C.65°D.70°2、如图,OD⊥AB于D,OP⊥AC于P,且OD=OP,则△AOD与△AOP全等的理由是()A. SSS B. ASA C. SSA D. HL3、在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.点D在∠BAC的平分线上 C.△BDF≌△CDE D.点D是BE的中点4、下列各语句中,不是真命题的是( ) A.直角都相等 B.等角的补角相等 C.点P在角的平分线上 D.对顶角相等5.如图,把一张矩形纸片ABCD沿对角线BD折叠,BC交AD于O.给出下列结论:①BC平分∠ABD;②△ABO≌△CDO;③∠AOC=120°;④△BOD是等腰三角形.其中正确的结论有()A.①③ B.②④ C.①② D.③④6、等腰三角形中有一个角是40°,则另外两个角的度数是()A.70°,70°B.40°,100°C.70°,40°D.70°,70°或40°,100°7、下列说法中,错误的是()A.三角形任意两个角的平分线的交点在三角形的内部B.任意两个角的平分线的交点到三角形三个顶点的距离相等 C.三角形两个角的平分线的交点到三边的距离相等 D.三角形两个角的平分线的交点在第三个角的平分线上8、如图,OP平分∠AOB,PA⊥OA,PB��OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP9、如图,锐角三角形ABC中,BC>AB>AC,小靖依下列方法作图:(1)作∠A的角平分线交BC于D点.(2)作AD的中垂线交AC于E点.(3)连接DE.根据他画的图形,判断下列关系何者正确?()A.DE⊥AC B.DE∥AB C.CD=DE D.CD=BD10、等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm .则腰长为()A.2cm B.8cm C.2cm或8cm D.以上答案都不对11、等腰三角形的一个外角为140°,那么底角等于()A.40° B.100° C.70° D.40°或70°12、下列命题中真命题是()A.如果两个直角三角形的两条边相等,那么这两个直角三角形全等 B.如果两个直角三角形的一条边和一个锐角对应相等,那么这两个直角三角形全等 C.如果两个直角三角形的两个角对应相等,那么这两个直角三角形全等D.如果两个直角三角形的一条直角边和斜边对应相等,那么这两个直角三角形全等二、填空题(注释)13、如图,△ABC中,AB=AC,∠A=45°,AC的垂直平分线分别交AB,AC于D,E两点,连接CD.如果AD=1,那么tan∠BCD= .14、在△ABC中,∠ACB=90°,∠B=30°,AC=4,则AB=________.15、如图,△ABC中,AB=AC,D为BC的中点,则△ABD≌△ACD的依据是________,AD与BC的位置关系是________.16、由同一张底片冲洗出来的两张五寸照片的图案________全等图形,而由同一张底片冲洗出来的五寸照片和七寸照片________全等图形(填“是”或“不是”).17、如下图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=______.18、如图,△ABC中,∠C=90°,AD是∠CAB的角平分线,DE⊥AB于点E,且BC=8cm,BD=5cm,则DE= ______cm.19、等腰三角形的两边长分别为3厘米和6厘米,这个三角形的周长为_________.20、已知Rt△ABC是轴对称图形,且∠C=90°,那么∠B=_____度,∠A=______度;点A的对应点是______,点C的对应点是_______.三、解答题21、如图,△ABC中,点D、E、F分别在BC、AB、AC上,BD=CF,BE=CD,AB=AC,DG⊥EF于点G.求证:EG=FG.22、已知:如下图,AB=AC,BD⊥AC,请探索∠DBC与∠A的关系并说明理由.23、如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.24、如图,已知△ABC中,D在BC上,AB=AD=DC,∠C=20°,求∠BAD。
北师大版八年级数学下《第一章三角形的证明》单元测试题(有答案)
北师大版八年级数学下册第一章三角形的证明单元测试题一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配.A.①B.②C.③D.①和②2.下列说法中,正确的是().A.两腰对应相等的两个等腰三角形全等B.两角及其夹边对应相等的两个三角形全等C.两锐角对应相等的两个直角三角形全等D.面积相等的两个三角形全等3.如图2,AB⊥C D,△AB D、△B CE都是等腰三角形,如果C D=8cm,BE=3c m,那么A C长为().A.4c m B.5c m C.8c m D.34c m4.如图3,在等边ABC 的度数是().,中,D E分别是B C A C上的点,且,B D CE,A D与BE相交于点P,则12450B.55C.60D.75A.0005.如图4,在ABC中,A B=A C,A 36ABC ACB,B D和CE分别是和的平分线,且相交于点P.在图4中,等腰三角形(不再添加线段和字母)的个数为().A.9个B.8个C.7个D.6个,l,l6.如图5,l表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可123供选择的地址有().A.1处B.2处C.3处D.4处7.如图 6,A 、C 、E 三点在同一条直线上,△D A C 和△EB C 都是等边三角形,AE 、B D 分别与 C D 、CE 交于点 M 、N ,有如下结论:①△AC E ≌△D C B ;② C M =C N ;③ A C =D N. 其中,正确结论的个数是().A .3 个B .2 个C . 1 个D .0 个8.要测量河两岸相对的两点 A 、B 的距离,先在 AB 的垂线 BF 上取两点 C ,D ,使 C D=B C ,再作出 BFABC ED C ≌ ,得 ED =A B. 因此,的垂线 DE ,使 A ,C ,E 在同一条直线上(如图 7),可以证明 ABC ED C ≌测得 DE 的长就是 A B 的长,在这里判定 的条件是( ). A .AS AB .S ASC .SSSD .H L9.如图 8,将长方形 A B C D 沿对角线 B D 翻折,点 C 落在点 E 的位置,BE 交 A D 于点 F. BDF 求证:重叠部分(即 )是等腰三角形. 证明:∵四边形 A B C D 是长方形,∴A D ∥B CBDE 又∵ 与 BD C 关于 B D 对称, 2 3. ∴ B D F 是等腰三角形.∴ 请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().1 2 ;②1 3;③3 4;④BDC BDE ① A .①③B .②③C .②①D .③④10.如图9,已知线段a,h作等腰△AB C,使AB=A C,且BC=a,B C边上的高A D=h.张红的作法是:(1)作线段BC=a;(2)作线段BC的垂直平分线M N,M N与BC相交于点D;(3)在直线M N上截取线段h;(4)连结AB,AC,则△AB C为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A.(1)B.(2)C.(3)D.(4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△A B C和△D C B中,A C=D B,若不增加任何字母与辅助线,要使△A B C≌△D C B,则还需增加一个条件是____________.2.如图11,在Rt AB C中,BA C90,,AB A C,分别过点B C作经过点A的直线的垂线段B D,C E,若B D=3厘米,CE=4厘米,则DE的长为_______.3.如图12,P,Q是△A B C的边B C上的两点,且BP=P Q=Q C=A P=A Q,则∠A B C等于_________度.4.如图13,在等腰ABC中,A B=27,A B的垂直平分线交A B于点D,交AC于点E ,若BCE的周长为50,则底边BC的长为_________.ABC中,A B=A C,A B的垂直平分线与A C所在的直线相交所得的锐角为50,则0 5.在底角B的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边A C=5c m,B C=10c m,将△A B C 折叠,点B 与点A 重合,折痕为DE,则C D 的长为________.8.如图15,在ABC中,A B=A C ,A 120 ,D 是BC 上任意一点,分别做D E⊥A B 于E,DF⊥A C于F,如果BC=20cm,那么DE+D F= _______cm.9.如图16,在Rt△ABC中,∠C=90°,∠B=15°,D E是AB的中垂线,垂足为D,交BCE于点,若BE 4,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)ABC 中,ACB 90,C D 是A B 边上的高,A 301.(7 分)如图18,在.求证:A B= 4BD.0 02.(7分)如图19,在ABC900中,C ,A C=B C,A D平分CAB交B C于点D,DE⊥A B于点E,若A B=6c m.你能否求出BDE的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D、E分别为△AB C的边AB、AC上的点,BE与C D相交于O点.现有四个条件:①AB=AC;②OB=O C;③∠ABE=∠ACD;④BE=C D.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:..命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC中,A 900,AB=A C,AB C的平分线B D交A C于D,CE⊥B D的延1BD2长线于点E.求证:CE.ABC中,C 900.5.(8分)如图22,在(1)用圆规和直尺在A C上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P到A B、B C的距离相等时,求∠A的度数.6.(8分)如图23,AOB90,O M平分A O B,将直角三角板的顶点P在射线O M上移动,两直角边分别与O A、O B相交于点C、D,问PC与P D相等吗?试说明理由.四、拓广探索(本大题12分)ABC如图24,在中,A B=A C,A B的垂直平分线交A B于点N,交B C的延长线于点M,若A400.(1)求N M B 的度数;(2)如果将(1)中A的度数改为70,其余条件不变,再求N M B的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A改为钝角,你对这个规律性的认识是否需要加以修改?答案:一、精心选一选,慧眼识金1.C;2.B;3.D.点拨:B C=BE=3c m,A B=B D=5c m;ABD≌BCE;4.C.点拨:利用5.B;6.D.点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B.点拨:①②正确;8.A;9.C;10.C.点拨:在直线M N上截取线段h,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACB DBC;ABD≌CAE;2.7厘米.点拨:利用3.30;BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.EBF F 90,ACF F 900 ,∴ EBFACF .∵ 0 在 RtABD Rt ACF 中,∵DBA ACF和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.。
2022-2023学年北师大版八年级数学下册第一章三角形的证明测试卷含答案
北师大版八年级数学下册第一章《三角形的证明》测试卷(含答案)一、选择题(共10小题,3*10=30)1.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角 B .至少有两个内角是直角 C .至多有一个内角是直角 D .至多有两个内角是直角2.如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC =90°,AB =AC ,若∠1=20°,则∠2的度数为( )A .25°B .65°C .70°D .75°3.在△ABC 中,已知∠A =∠B =45°,BC =2,则AB 的长为( ) A .1 B. 2 C .2 D .44.在等腰△ABC 中,AB =AC ,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或105.如图,四边形ABCD 中,∠A =∠C =90°,∠B =60°,AD =1,BC =2,则四边形ABCD 的面积是( )A.332B .3C .2 3D .46. 如图,D 为△ABC 内一点,CD 平分∠ACB ,BE ⊥CD ,垂足为D ,交AC 于点E ,∠A =∠ABE.若AC =5,BC =3,则BD 的长为( )A .2.5B .1.5C .2D .17. 如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB ,且AD 交BC 于点D ,DE ⊥AB 于点E ,则下列说法错误的是( )A.∠CAD=30° B.AD=BDC.BE=2CD D.CD=ED8.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个9.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4 B.3 C.2 D.110.如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.32 B.25 3 C.33 D.34二.填空题(共8小题,3*8=24)11.命题“两条直线相交只有一个交点”的逆命题是____________________________________,它是________________命题.12. 如图,将长为8 cm的橡皮筋放置在直线l上,固定两端A和B,然后把中点C向上拉升3 cm到D点,则橡皮筋被拉长了________.13. 如图,AB ∥CD ,O 为∠BAC ,∠ACD 的平分线的交点,OE ⊥AC 于点E ,且OE =1,则AB 与CD 之间的距离等于_______.14.如图,△ABC 的周长为32,且AB =AC ,AD ⊥BC 于点D ,△ACD 的周长为24,那么AD 的长为________.15. 如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是__________.16.如图,在等边三角形ABC 中,AD 是BC 边上的高,且AD =4,E 是AB 边的中点,点P 在AD 上运动,则PB +PE 的最小值是________.17.等腰三角形ABC 中,BD ⊥AC ,垂足为点D ,且BD =12AC ,则等腰三角形ABC 底角的度数为________.18. AB 与CD 相交于点O ,AB =CD ,∠AOC =60°,∠ACD +∠ABD =210°,则线段AB ,AC ,BD 之间的等量关系式为_________________.三.解答题(7小题,共66分)19.(8分) 如图,点D ,E 在△ABC 的BC 边上,AB =AC ,AD =AE.求证:BD =CE.20.(8分) 如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.21.(8分) 如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线;(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.22.(10分) 用一条长为18 cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,求三角形各边的长.(2)能围成有一边的长是4 cm的等腰三角形吗?若能,求出其他两边的长;若不能,请说明理由.23.(10分) 如图,在等边△ABC中,AO是∠BAC的平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;(2)延长BE至点Q,P为BQ上一点,连接CP,CQ,使CP=CQ=5,若BC=8,求PQ的长.24.(10分) 在△ABC中,∠B=22.5°,边AB的垂直平分线DP交AB于点P,交BC于点D,且AE ⊥BC于点E,DF⊥AC于点F,DF与AE交于点G,求证:EG=EC.25.(12分) 在△ABC中,AB=AC,∠BAC=90°.点D是CA延长线上一点,连接BD,点E是BD 上一点,连接CE交AB于点F,BD=CF.(1)如图①,当点E是BD的中点时,若BC=4,求AF的长;(2)在(1)的条件下,如图②,连接AE,求证:DE+EF=2AE.图①图②参考答案1-5BBCCA 6-10DCDBC11. 只有一个交点的两条直线一定相交;真 12. 2cm 13. 2 14. 8 15. 5 16.417.45°或15°或75° 18. AB 2=AC 2+BD 219. 证明:过点A 作AP ⊥BC 于P.∵AB =AC ,∴BP =PC ,∴AD =AE ,∴DP =PE ,∴BP -DP =PC -PE ,∴BD =CE20. 证明:∵∠BAE =∠DAC ,∴∠BAE +∠CAE =∠DAC +∠CAE ,即∠CAB =∠EAD. 又∵AB =AD ,AC =AE , ∴△ABC ≌△ADE(SAS). ∴∠C =∠E.21. 解:(1)证明:∵∠A =∠ABE ,∴EA =EB.∵AD =DB ,∴DF 是线段AB 的垂直平分线. (2)∵∠A =46°,∴∠ABE =∠A =46°.∵AB =AC ,∴∠ABC =∠ACB =67°,∴∠EBC =∠ABC -∠ABE =21°,∠F =90°-∠ABC =23°.22. 解:(1)设底边长为x cm ,则腰长为2x cm.依题意,得2x +2x +x =18,解得x =185,∴2x =365.∴三角形三边的长为185 cm ,365 cm ,365cm(2)若腰长为4 cm ,则底边长为18-4-4=10 cm.而4+4<10,所以不能围成腰长为4 cm 的等腰三角形.若底边长为4 cm ,则腰长为12(18-4)=7 cm.此时能围成等腰三角形,三边长分别为4 cm ,7 cm ,7 cm23. 解:(1)证明:∵△ABC 和△CDE 均为等边三角形,∴AC =BC ,CD =CE ,且∠ACB =∠DCE =60°,即∠ACD +∠DCB =∠DCB +∠BCE =60°,∴∠ACD =∠BCE ,∴△ACD ≌△BCE(SAS).(2)作CH ⊥BQ 于点H ,图略.则PQ =2HQ.在Rt △BHC 中,由(1)得∠CBH =∠CAO =30°,∴CH =12BC=4,在Rt △CHQ 中,HQ =CQ 2-CH 2=52-42=3,∴PQ =2HQ =6. 24. 解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE ,∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC 中,⎩⎪⎨⎪⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC(AAS),∴EG =EC25. 解:(1)∵AB =AC ,∠BAC =90°,BC =4,∴AB =AC =2 2. ∵BD =CF ,AB =AC ,∴Rt △BAD ≌Rt △CAF(HL),∴∠DBA =∠ACF. ∵∠EFB =∠AFC ,∴∠BEF =∠FAC =90°,∴CE ⊥BD.∵BE =DE ,∴CB =CD =4, ∴AF =AD =CD -AC =4-2 2.(2)作AM ⊥BD 于点M ,AN ⊥EC 于点N.∵△BAD ≌△CAF ,∴AM =AN ,∴∠AEM =∠AEN =45°,∴AM =EM =EN =AN.∵AD =AF ,AM =AN ,∴Rt △AMD ≌Rt △ANF(HL),∴DM =FN ,∴DE +EF =EM +DM +EN -FN =2EM ,∵AE =2EM.∴DE +EF =2AE.。
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷(含答案)
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷一.选择题(共8小题,满分24分)1.如图,△ABC是等边三角形,DE∥BC,若AB=10,BD=6,则△ADE的周长为()A.4B.30C.18D.122.已知实数a,b满足|a﹣2|+(b﹣4)2=0,则以a,b的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对3.如图,在△ABC中,∠ACB=90°,∠A=30°,CE=2,边AB的垂直平分线交AB于点D,交AC于点E,那么AE的为()A.6B.4C.3D.24.如图,OP平分∠MON,P A⊥ON,PB⊥OM,垂足分别为A、B,若P A=3,则PB=()A.2B.3C.1.5D.2.55.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=()A.58°B.32°C.36°D.34°6.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形7.如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()A.AB≠AC B.PB=PC C.∠APB=∠APC D.∠B≠∠C8.如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根B.8根C.9根D.10根二.填空题(共8小题,满分24分)9.在Rt△ABC中,∠B=90°,∠A=30°,AB=3,则AC=.10.如图,已知△ABC中,BC=4,AB的垂直平分线交AC于点D,若AC=6,则△BCD 的周长=.11.如图,小艾同学坐在秋千上,秋千旋转了80°,小艾同学的位置也从A点运动到了A'点,则∠OAA'的度数为.12.如图,Rt△ABC中,∠C=90°,AB=10,AD平分∠BAC,交BC于点D,CD=4,则S△ABD=.13.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的平分线,过点O作EF∥BC,分别与边AB、AC相交于点E、F,AB=8,AC=7,那么△AEF的周长等于.14.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.15.如图,△ABC是等边三角形,过它的三个顶点分别作对边的平行线,则图中共有个等边三角形.16.如图,△ABC是边长为8的等边三角形,D为AC的中点,延长BC到E,使CE=CD,DF⊥BC于点F,求线段BF的长,BF=.三.解答题(共7小题,满分52分)17.用反证法证明等腰三角形的底角必为锐角.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.19.如图:△ABC中,∠ACB=90°,点D在AB上,CE是斜边AB上的高,且AC=AD.(1)若∠DCE=15°,求∠B的度数;(2)若∠B﹣∠A=20°,求∠DCB的度数.20.如图,在△ABC中,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于点E.(1)若∠ABE=50°,求∠EBC的度数;(2)若△ABC的周长为43cm,BC的长为11cm,求△BCE的周长21.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.22.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.参考答案一.选择题(共8小题)1.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=10,BD=6,∴AD=AB﹣BD=10﹣6=4,∴△ADE的周长为12.故选:D.2.【解答】解:根据题意得a﹣2=0,b﹣4=0,解得a=2,b=4,①a=2是底长时,三角形的三边分别为4、4、2,∵4、4、2能组成三角形,∴三角形的周长为10,②a=2是腰边时,三角形的三边分别为4、2、2,2+2=4,不能组成三角形.综上所述,三角形的周长是10.故选:A.3.【解答】解:连接BE,∵DE是边AB的垂直平分线,∴BE=AE,∴∠EBA=∠A=30°,∴∠CBE=180°﹣90°﹣30°﹣30°=30°,∴BE=2CE=4,∴AE=BE=4,故选:B.4.【解答】解:∵OP平分∠MON,P A⊥ON,PB⊥OM,∴PB=P A=3,故选:B.5.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.故选:B.6.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:,,则△ABC是直角三角形,正确;故选:D.7.【解答】解:假设结论PB≠PC不成立,即:PB=PC成立.故选:B.8.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠EDF=∠EFD=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.二.填空题(共8小题)9.【解答】解:如图,∵∠B=90°,∠A=30°,∴设BC=x,则AC=2BC=2x,∵AB=3,∴x2+32=(2x)2解得:x=或﹣(舍去),∴AC=2x=2,故答案为:2.10.【解答】解:∵DE是线段AB的垂直平分线,∴DA=DB,∴△BCD的周长=BC+CD+DB=BC+CD+DA=BC+AC=10,故答案为:10.11.【解答】解:∵秋千旋转了80°,小林的位置也从A点运动到了A'点,∴AOA′=80°,OA=OA′,∴∠OAA'=(180°﹣80°)=50°.故答案为50°.12.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB•DE=×10×4=20,故答案为20.13.【解答】解:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵AB=8cm,AC=7cm,∴△AEF的周长为:AE+EF+AF=AE+EO+FO+AF=AE+EB+FC+AF=AB+AC=8+7=15(cm).故△AEF的周长为15,故答案为:15.14.【解答】解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.15.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BCA=∠CAB=60°,∵DF∥BC,∴∠F AC=∠ACB=60°,∠DAB=∠ABC=60°,同理:∠ACF=∠BAC=60°在△AFC中,∠F AC=∠ACF=60°∴△AFC是等边三角形,同理可证:△ABD△BCE都是等边三角形,因此∠E=∠F=∠D=60°,△DEF是等边三角形,故有5个等边三角形,故答案为:5.16.【解答】解:连接BD,∵△ABC是边长为8的等边三角形,D为AC的中点,∴AC=BC=8,AD=DC=4,∠DBF=ABC==30°,由勾股定理得:BD==4,∵DF⊥BC,∴∠DFB=90°,∴DF=BD==2,在Rt△DFB中,由勾股定理得:BF===6,故答案为:6.三.解答题(共7小题)17.【解答】证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角18.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.19.【解答】解:(1)∵CE⊥AB,∴∠CED=90°,∵∠ECD=15°,∴∠ADC=75°,∵AC=AD,∴∠ACD=∠ADC=75°,∵∠ACD=90°,∴∠DCB=15°,∵∠ADC=∠B+∠DCB,∴∠B=75°﹣15°=60°.(2)设∠DCB=x,则∠ADC=∠ACD=∠B+x=90°﹣x,∴2x=90°﹣∠B,∵∠A+∠B=90°,∠B﹣∠A=20°,∴∠B=55°,∴2x=35°,∴x=17.5°,∴∠DCB=17.5°20.【解答】解:(1)∵DE垂直平分AB∴∠A=∠ABE=50°,又∵AB=AC,∴∠ABC=∠ACB,而∠A+∠ABC+∠ACB=180°,∴∠ABC=×(180°﹣50°)=65°,∴∠EBC=∠ABC﹣∠ABE=65°﹣50°=15°;(2)∵△ABC的周长为43cm,BC=11cm∴AB=AC=16cm,又∵DE垂直平分AB∴EA=EB,∴△BCE的周长为:BC+BE+CE=BC+AE+CE=BC+AC=16+11=27cm.21.【解答】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,∠EDB=∠ACD,∴∠E=∠DCE,∴△DEC是等腰三角形;(2)解:设∠EDB=α,则∠BDC=5α,∴∠E=∠DCE=60°﹣α,∴6α+60°﹣α+60°﹣α=180°,∴α=15°,∴∠E=∠DCE=45°,∴∠EDC=90°,过D作DH⊥CE于H,∵BD=2,∠DBH=60°,∴BH=BD=1,DH==,DH=EH=,∴BE=EH﹣BH=﹣1.22.【解答】解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x∴∠DAE=∠BAC.23.【解答】解:(1)设点M、N运动x秒时,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒时,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒时,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。
2022年最新北师大版八年级数学下册第一章三角形的证明专题测试练习题(含详解)
北师大版八年级数学下册第一章三角形的证明专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题是真命题的是()A.等腰三角形的角平分线、中线、高线互相重合B.一个三角形被截成两个三角形,每个三角形的内角和是90度C.有两个角是60°的三角形是等边三角形D.在△ABC中,2∠=∠=∠,则ABC为直角三角形A B C2、下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.所有的直角三角形都是全等三角形D.所有的等边三角形都是全等三角形3、下列命题成立的有()个.①等腰三角形两腰上的中线相等;②有两边及其中一边上的高线分别相等的两个三角形全等;③三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形使点C落在AB边上的点E 处,折痕为BD.则△AED的周长为7cm;④AD是△ABC的角平分线,则S△ABD:S△ACD=AB:AC.A .1B .2C .3D .44、如图,在△AAA 中,AD 是角平分线,且AD AC =,若60BAC ∠=︒,则B 的度数是( )A .45°B .50°C .52°D .58°5、如图,Rt△ABC 中,∠C =90°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE =BD ;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若CG =1,P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .12C .1D .26、如图,在△ABC 中,AB =AC =6cm ,AD ,CE 是△ABC 的两条中线,CE =4cm ,P 是AD 上的一个动点,则BP +EP 的最小值是( )A .3cmB .4cmC .6cmD .10cm7、下列各组数据中,能构成直角三角形的三边的长的一组是( )A .1,2,3B .4,5,6C .5,12,13D .13,14,158、下列以a ,b ,c 为边的三角形不是直角三角形的是( )A .a =1,b =1,c =√2B .a =2,b =3,c =√13C .a =3,b =5,c =7D .a =6,b =8,c =109、如图,在Rt △ABC 中,∠C =90°,AC =12,AB =13,AB 边的垂直平分线分别交AB 、AC 于N 、M 两点,则△BCM 的周长为( )A .18B .16C .17D .无法确定10、如图,等腰△AAA 中,AB AC =,120BAC ∠=︒,AD DC ⊥于D ,点O 是线段AD 上一点,点P 是BA 延长线上一点,若OP OC =,则下列结论:①30APO DCO ∠+∠=︒;②APO DCO ∠=∠;③POC △是等边三角形;④AB OA AP =+.其中正确的是( )A .①③④B .①②③C .②③④D .①②③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,上午9时,一艘船从小岛A 处出发,以12海里/时的速度向正北方向航行,10时40分到达小岛B 处,若从灯塔C 处分别测得小岛A 、B 在南偏东34°、68°方向,则小岛B 处到灯塔C 的距离是______海里.2、如图,已知△ABC 是等边三角形,边长为3,G 是三角形的重心,那么GA =______.3、等腰△AAA 的顶角为30°,腰长为8,则△AAA 的面积为______.4、如图,△AAA 是等腰直角三角形,AB 是斜边,以BC 为一边在右侧作等边三角形BCD ,连接AD 与BC 交于点E ,则BED ∠的度数为______度.5、如图,在△AAA 中,AB AC =,70BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线交于点O ,将∠的度数为________.∠沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则OECC三、解答题(5小题,每小题10分,共计50分)1、如图所示,校园里有两条路AA,AA,在交叉口附近有两块宣传牌A,A,学校准备在这里(∠AAA内部)安装一盏路灯,要求灯柱A离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置A.(不写过程,保留作图痕迹)2、如图,△ABC是等腰直角三角形,∠BAC=90°,△ACD是等边三角形,E为△ABC内一点,AC=CE,∠BAE=15°,AD与CE相交于点F.(1)求∠DFE的度数;(2)求证:AE=BE.3、如图,在△ABC中, AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.4、在平面直角坐标系xOy中,点A在y轴上,点B在x轴上.(1)在线段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;(2)若A的坐标(0,6),点B的坐标(3,0),求点P的坐标.5、数学课上,王老师布置如下任务:如图,已知∠MAN<45°,点B是射线AM上的一个定点,在射线AN上求作点C,使∠ACB=2∠A.下面是小路设计的尺规作图过程.作法:①作线段AB的垂直平分线l,直线l交射线AN于点D;②以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求.根据小路设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:连接BD,BC,∵直线l为线段AB的垂直平分线,∴DA=,( )(填推理的依据)∴∠A=∠ABD,∴∠BDC=∠A+∠ABD=2∠A.∵BC=BD,∴∠ACB=∠,( )(填推理的依据)∴∠ACB=2∠A.-参考答案-一、单选题1、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断.【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180°,故此选项错误;C.有两个角是60°,则第三个角为180606060︒-︒-︒=︒,所以三角形是等边三角形,故此选项正确;D.设C x ∠=,则2A B x ∠=∠=,故22180x x x ++=︒,解得36x =︒,所以72A B ∠=∠=︒,36C ∠=︒,此三角形不是直角三角形,故此选项错误.故选:C .【点睛】本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键.2、B【分析】根据全等三角形的性质,等边三角形的性质判断即可.【详解】解:A 、全等三角形是指形状和大小相同的两个三角形,该选项错误;B 、全等三角形的周长和面积分别相等,该选项正确;C 、所有的直角三角形不一定都是全等三角形,该选项错误;D 、所有的等边三角形不一定都是全等三角形,该选项错误;故选:B .【点睛】本题考查的是全等三角形的性质,掌握全等形的概念,全等三角形的性质是解题的关键.3、C【分析】利用等腰三角形的性质、全等三角形的判定、折叠的性质及角平分线的性质分别判断后即可确定正确的选项.【详解】解:①等腰三角形两腰上的中线相等,故原命题正确;②有两边及其中一边上的高线分别相等的两个三角形不一定全等,故原命题错误;③三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形使点C落在AB边上的点E处,折痕为BD.如图:由折叠知:BC=BE=6,CD=DE,则△AED的周长为AD+DE+AE=AD+CD+AB-BE= AC+AB-BC=7cm,故原命题正确;④AD是△ABC的角平分线,则S△ABD:S△ACD=AB:AC,故原命题正确,成立的有3个,故选:C.【点睛】要题考查了命题与定理的知识,解题的关键是了解等腰三角形的性质、全等三角形的判定、折叠的性质及角平分线的性质,难度不大.4、A【分析】根据角平分线性质求出∠DCA,再根据等腰三角形的性质和三角形的内角和定理求解∠C和∠B即可.【详解】解:∵AD是角平分线,60∠=︒,BAC∴∠DCA=12BAC=30°,∵AD=AC,∴∠C=(180°-∠DCA)÷2=75°,∴∠B=180°-∠BAC-∠C=180°-60°-75°=45°,故选:A.【点睛】本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键.5、C【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【详解】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点睛】本题考查了垂线段最短,角平分线的性质定理,尺规作图作角平分线,掌握角平分线的性质是解题的关键.6、B【分析】连接CE交AD于点P,则BP+EP的最小值为CE的长.【详解】如图,连接CE交AD于点P,∵AB=AC,AD是BC的中线,∴AD⊥BC,∴BP=CP,∴BP+EP=CP+EP≥CE,∴BP+EP的最小值为CE的长,∵CE=4cm,∴BP+EP的最小值为4cm,故选:B.【点睛】本题是典型的将军饮马问题,考查了等腰三角形三线合一的性质和两点间线段最短知识,关键是把BP+EP的最小值转化为CP+EP的最小值,从而根据两点间线段最短解决最小值的问题.7、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题.【详解】解:A.2221+23≠,不是直角三角形,故A 不符合题意;B. 2224+56≠,不是直角三角形,故B 不符合题意;C. 2225+12=13,是直角三角形,故C 不符合题意;D. 22213+1415≠,不是直角三角形,故D 不符合题意,故选:C .【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键.8、C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】解:A 、22211+=,该三角形是直角三角形,故此选项不符合题意;B 、22223+=,该三角形是直角三角形,故此选项不符合题意;C 、222357+≠,该三角形不是直角三角形,故此选项符合题意;D 、2226810+=,该三角形是直角三角形,故此选项不符合题意;故选:C .【点睛】本题考查了勾股定理的逆定理,解题的关键是在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9、C【分析】根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可.【详解】解:在Rt△ABC中,∠C=90°,AC=12,AB=13,∴由勾股定理得,5BC=,∵MN是AB的垂直平分线,∴MB=MA,∴△BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选C.【点睛】本题主要考查了线段垂直平分线的性质,勾股定理,熟知线段垂直平分线的性质是解题的关键.10、A【分析】①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.【详解】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=12∠BAC=12×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC 是等边三角形,故③正确;④如图2,在AC 上截取AE =PA ,∵∠PAE =180°﹣∠BAC =60°,∴△APE 是等边三角形,∴∠PEA =∠APE =60°,PE =PA ,∴∠APO +∠OPE =60°,∵∠OPE +∠CPE =∠CPO =60°,∴∠APO =∠CPE ,∵OP =CP ,在△OPA 和△CPE 中,PA PE APO CPE OP CP =⎧⎪∠=∠⎨⎪=⎩, ∴△OPA ≌△CPE (SAS ),∴AO =CE ,∴AC =AE +CE =AO +AP ,∴AB =AO +AP ,故④正确;正确的结论有:①③④,故选:A.【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.二、填空题1、20【分析】根据所给的角的度数,容易证得BCA∆是等腰三角形,而AB的长易求,所以根据等腰三角形的性质,BC的值也可以求出.【详解】解:据题意得,34∠=︒,DBC∠=︒,68A∠=∠+∠,DBC A C∴∠=∠=︒,34A C∴=,AB BC51220AB=⨯=,3∴=(海里).BC20故答案是:20.【点睛】本题考查了等腰三角形的性质及方向角的问题,解题的关键是由已知得到三角形是等腰三角形,要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.2【分析】延长AG 交BC 于D ,根据重心的概念得到AD ⊥BC ,BD =DC =12BC =32,根据勾股定理求出AD ,根据重心的概念计算即可.【详解】解:延长AG 交BC 于D ,∵G 是三角形的重心,∴AD ⊥BC ,BD =DC =12BC =32,由勾股定理得,AD =,∴GA =23AD 故答案为:3.【点睛】本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.3、16【分析】过点B 作BD ⊥AC ,利用30°所对的直角边是斜边的一半,可求出BD ,然后求面积即可.【详解】解:如图所示,过点B 作BD ⊥AC ,∵∠A =30°,AB =AC =8,∴BD =12AB =4,∴S △ABC =12BD ·AC =16故答案为:16.【点睛】此题考查的是直角三角形的性质:30°所对的直角边是斜边的一半和面积的求法,掌握构造辅助线的方法是解决此题的关键.4、75【分析】由题意,ACD △是等腰三角形,然后求出CAE ∠的度数,再根据三角形的外角性质,即可求出BED ∠的度数.【详解】解:∵ABC 是等腰直角三角形,∴AC =BC ,∠ABC =∠BAC =45°,∠ACB =90°,∵△BCD 是等边三角形,∴BC =CD ,∠BCD =60°,∴AC =CD ,∠ACD =90°+60°=150°,∴ACD △是等腰三角形, ∴1(180150)152CAE CDE ∠=∠=⨯︒-︒=︒,∴451530BAE ∠=︒-︒=︒,∴304575BED BAE ABE ∠=∠+∠=︒+︒=︒;故答案为:75.【点睛】本题考查了等边三角形的性质,等腰直角三角形的性质,三角形的外角性质,三角形的内角和定理,解题的关键是掌握所学的知识,正确的求出15CAE CDE ∠=∠=︒.5、140°【分析】连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA =OB ,根据等边对等角可得∠ABO =∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB =OC ,再根据等边对等角求出∠OCB =∠OBC ,根据翻折的性质可得OE =CE ,然后根据等边对等角求出∠COE ,再利用三角形的内角和定理列式计算即可.【详解】解:如图:连接OB 、OC ,∵∠BAC =70°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×70°=35°,又∵AB =AC ,∴∠ABC =12(180°−∠BAC )=12(180°−70°)=55°,∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =35°,∴∠OBC =∠ABC −∠ABO =55°−35°=20°,∵AO 为∠BAC 的平分线,AB =AC ,∴OB =OC ,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=20°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=20°,在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−20°−20°=140°,故答案为:140°.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,作辅助线,构造出等腰三角形是解题的关键.三、解答题1、见详解【分析】分别作线段CD的垂直平分线和∠AOB的角平分线,它们的交点即为点P.【详解】解:连结CD,作CD的垂直平分线,和∠AOB的平分线,两线交于P,如图,点P为所作.【点睛】本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.2、(1)∠DFE=90°;(2)见解析【分析】(1)先求得∠BAD=30°,∠BAE=∠EAD=15°,即可求得∠EAC=75°,由AC=CE,可求得∠EAC=∠AEC=75°,即可求得∠DFE=90°;(2)在Rt△AFC中,求得∠FCA=30°,AC=2AF=AB,过点E作EG⊥AB于点G,求得AG=AF,得到BG=AG,即可得到△ABF为等腰三角形,即可证明AE=BE.【详解】解:(1)∵△ACD是等边三角形,∴∠CAD=60°,∵∠BAC=90°,∴∠BAD=90°-60°=30°,∵∠BAE=15°,∴∠BAE=∠EAD=15°,∴∠EAC=90°-15°=75°,∵AC=CE,∴∠EAC=∠AEC=75°,∴∠DFE=∠EAD+∠AEC=15°+75°=90°;(2)由(1)得∠DFE=90°,即∠AFC=∠AFE=90°,∵△ABC是等腰直角三角形,∠BAC=90°,△ACD是等边三角形,∴∠CAD=60°,AB=AC,∴∠FCA=30°,∴AC =2AF ,即AB =2AF ,过点E 作EG ⊥AB 于点G ,∵∠BAE =∠EAD =15°,且∠EFA =90°,EG ⊥AB ,∴EG =EF ,又AE = AE ,∴Rt △EAG ≌Rt △EAF (HL ),∴AG =AF ,∴AB =2AG ,∴BG =AG ,又EG ⊥AB ,∴△ABF 为等腰三角形,∴AE =BE .【点睛】本题考查了等边三角形的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.3、见解析【分析】根据等腰三角形的性质,可得∠ADB =∠ADC =90°,∠ABC =∠ACB ,BD =CD ,从而得到△BDE ≌△CDE ,进而得到∠DCE =∠DBE ,再由BE 平分∠ABC ,可得12DBE ABC ∠=∠ ,进而得到12DCE ACB ∠=∠,即可求证.【详解】解:∵AB=AC,AD是△ABC的中线,∴∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,∵DE=DE,∴△BDE≌△CDE,∴∠DCE=∠DBE,∵BE平分∠ABC,∴12DBE ABC∠=∠,∴12DCE ABC ∠=∠,∴12DCE ACB ∠=∠,∴CE平分∠ACB.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.4、(1)见解析;(2)(0,94)【分析】(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-OP2=OB2,进而可得OP的长,得点P的坐标.【详解】解:(1)如图,点P即为所求;(2)∵A的坐标(0,6),点B的坐标(3,0),∴OA=6,OB=3,∴PA=PB=OA-OP=6-OP,∵PB2-OP2=OB2,∴(6-OP)2-OP2=32,解得OP=94,∴点P的坐标为(0,94).【点睛】本题考查了作图-复杂作图,坐标与图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质.5、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC;等边对等角.【分析】(1)根据题目中的小路的尺规作图过程,直接作图即可.(2)根据垂直平分线的性质以及等边对等角进行解答即可.【详解】解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示;(2)解:证明:连接BD,BC,∵直线l为线段AB的垂直平分线,∴DA=DB,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)∴∠A=∠ABD,∴∠BDC=∠A+∠ABD=2∠A.∵BC=BD,∴∠ACB=∠BDC ,(等边对等角)(填推理的依据)∴∠ACB=2∠A.【点睛】本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键.。
北师大版八年级下学期数学第一章三角形的证明同步练习题
新北师大版八年级下学期《第一章三角形的证明》同步测试题一、选择题1、用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设【】A、a不垂直于cB、a,b都不垂直于cC、a⊥bD、a与b相交2、有下列四个命题:①等腰三角形两腰上的中线相等,②等腰三角形两腰上的高相等,③等腰三角形两底角的平分线相等,④等腰三角形底边上的中点到两腰的距离相等. 正确的命题的个数有【】 A、1个B、2个C、3个D、4个3、如图,△A BC中,∠B=∠BAD,∠ADC=∠C,BD=5,DC=m,则AC是【】A、4B、m-5C、5D、m+54、下列图形中,两个三角形一定全等的是【】A、含80°角的两个锐角三角形 B、边长为20cm的两个等边三角形 C、腰长对应相等的两个等腰三角形 D、有一个钝角对应相等的两个等腰三角形5、在证明“在△ABC中至多有一个直角或钝角”时,第一步应假设【】A、三角形中至少有一个直角或钝角B、三角形中至少有两个直角或钝角C、三角形中没有直角或钝角D、三角形中三个角都是直角或钝角6、下列命题中正确的个数是【】①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高重合;④只有两条边相等的等腰三角形是轴对称图形,对称轴有1条.A、1个B、2个 C、3个 D、4个7、等腰三角形的一个外角是120°,一边长为acm,那么它的周长是【】A、3acmB、2acmC、acmD、无法确定8、如图,在∠AOB的两边上截取AO=BO,CO=DO,连接AD,BC交于点P,则下列结论正确的是:(1)△AOD≌△BOC;(2)△APC≌△BPD;(3)点P在∠AOB的平分线上【】A、只有(1) B、只有(2)C、只有(1)(2)D、(1)(2)(3)9、如图,∠AOB和一条定长线段a,在∠AOB内找一点P,使P到OA,OB的距离都等于a,作法如下:(1)作OB的垂线NH,使NH=a,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.其中(3)的依据是【】A、平行线之间的距离处处相等 B、到角的两边距离相等的点在角的平分线上 C、角的平分线上的点到角的两边的距离相等 D、到线段的两个端点距离相等的点在线段的垂直平分线上10、△ABC中,若,则此三角形为【】三角形. A、等腰B、直角C、等腰直角 D、等边11、如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为【】 A、B、1 C、2 D、不确定12、已知等边三角形的面积是,则它的高是【】A、cmB、cmC、cmD、cm13、Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①BE+CF=BC;②;③=AD·EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是【】A、1个B、2个C、3个D、4个14、如图所示,AD平分∠BAC,AD=BD,AC=AB,则【】A、AC⊥CDB、AC=2CDC、AC=BDD、BD=2CD15、如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,,则y关于x的函数图象大致为【】A、B、C、D、二、填空题16、等边三角形的每个内角都等于______________________.17、如图,已知∠A=∠D=90°,若要依据“HL”证明△ABC≌△DCB,应添加条件_________ ___________ _____;若要依据“AAS”证明△ABC≌△DCB,应添加的条件是_________________________________.18、等腰三角形是轴对称图形,它的对称轴是__________________.19、如图,在△ABC中,AB=AC,∠B=40°,则∠A=____________.20、如图,在△ABC中,AB=AC,D、E、F分别为边BC、AB、AC上的点,且BE=CD,CF=BD.若∠A=40°,则∠EDF=______°.21、在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B 等于_______________度.22、△ABC中,AB=AC,若BC=CD=DE=EF=FA,则∠A=______°.23、如图,AC平分∠BAD,CE⊥AB,且2AE=AB+AD,∠ADC=146°,则∠BCE=___________°.三、解答题24、(1)小丽同学说“每一个定理不一定都有逆定理,因为逆命题不一定正确.”你认为她的说法正确吗?如果不正确,应如何改正?25、写出命题“平行于同一条直线的两条直线互相平行”的逆命题,并判定这对互逆命题的真假.26、如下图所示,在△ABC中,∠ACB=120°,CD平分∠ACB,AE∥DC,交BC的延长线于点E,试说明△ACE是等边三角形.27、如图,△ABC中,∠A=60°,高BD、CE交于M,MD=5,ME=7. 求BD、CE的长.28、如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC交AC于D.求证:AD+BD=BC.四、证明题29、求证:在一个三角形中,如果两个角不等,那么它们所对的边也不等.30、如图所示,AB=AC,DB=DC,AD的延长线交BC于点E.求证:BE=EC.31、写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,____________________________________.求证:______________________________________________________.证明:32、如图所示,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB于E,DF⊥AC于F.求证:∠B=∠C.33、如图,△ABC中,从点C向∠BAC的平分线引垂线,垂足为点E,设AE交BC于点D,且AB=AD.求证:.五、应用题34、如图是某市部分街道示意图,AB=BC=AC,CD=CE=DE,A、B、C、D、E、F、G、H为“公共汽车”停靠点,“公共汽车甲”从A站出发,按照A、H、G、D、E、C、F的顺序到达F站,“公共汽车乙”从B站出发,沿F、H、E、D、C、G的顺序到达G站.如果甲、乙分别从A、B 站同时出发,在各站耽误的时间忽略不计,两车的速度一样,试问哪一辆汽车先到达指定站?为什么?35、有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 D D C B B D A D B C B C C A B题号16 17 18 19 20 21 22 23答案60AB=DC或AC=DB;∠ABC=∠DCB或∠ACB=∠DBC顶角平分线所在直线100°7070或2020 5624)、解:她的说法正确,理由如下:命题有真假命题之分,而定理是经过证明后得出的正确的命题,命题正确时逆命题不一定正确,即定理的逆命题不一定是真命题,所以虽然每个命题都有逆命题,但每个定理不一定存在逆定理,只有当原定理的逆命题是真命题时,原定理的逆命题才能称为逆定理.25)、【解答】1、逆命题:“如果两条直线互相平行,那么这两条直线都与第三条直线平行”,该命题是假命题;而原命题是真命题.26)、【解答】1、因为CD平分∠ACB,∠ACB=120°,所以∠ACE=180°-∠ACB=60°,且.因为AE∥DC,所以∠ACD=∠CAE,∠BCD=∠E.所以∠CAE=∠E=∠ACE=60°.所以△ACE是等边三角形.27)、【解答】解:∵BD⊥AC,∴∠ADB=90°.又∵∠A=60°,∴∠ABD=90°-60°=30°,同理可得∠ACE=30°,在Rt△BEM中,∠EBM=30°,∠BEM=90°,∴BM=2ME.∵ME=7,∴BM=14.同理由MD=5,得CM=2MD=10,∴BD=BM+MD=19,CE=CM+EM=10+7=17. CE取点F,使DE=DF.∵AB=AC,∠A=100°,∴∠ABC=∠C==40°.∵BD平分∠ABC,∴∠ABD=∠DBE=20°.∵在△ABD和△EBD中,AB=EB,∠ABD=∠DBE,BD=BD,∴△ABD≌△EBD,∴∠BED=∠A=100°,∴∠DEF=180°-100°=80°.∵DE=DF,∴∠DFE=∠DEF=80°,∴∠BDF=180°-80°-20°=80°,∴BD=BF,∠DFC=180°-80°=100°,∴∠FDC=180°-100°-40°=40°,∴DF=FC,∴DF=FC=DE=AD,∴BC=BF+FC=BD+AD.29)、【解答】1、证明:假设在一个三角形中,这两个不等的角所对的边相等,根据等边对等角,它们所对的两个角也相等,这与已知条件相矛盾,说明假设不成立,所以在一个三角形中,如果两个角不等,那么它们所对的边也不等.30)、【解答】1、证明:因为AB=AC,BD=DC,AD=AD,所以∠BAE=∠CAE.又因为AB=AC,所以BE=EC.31)、【解答】解:在△ABC中,∠B=∠C,求证:AB=AC.证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴AB=AC.32)、【解答】1、∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF.又∵BD=CD,∠DEB=∠DFC=90°,∴(Rt)△DEB≌(Rt)△DFC(HL).∴∠B=∠C.33)、【解答】1、分别延长AB,CE交于点F.∵AE平分∠FAC,∴∠FAE=∠CAE.∵∠FAE=∠CAE,∠AEF=∠AEC=90°,AE=AE,∴△AEF≌△AEC(AS A),∴AF=AC,EF=EC.又过点E作EG∥AF,交BC于点G,∴,∠ABD=∠DGE.∵AB=AD,∠ABD=∠ADB=∠GDE=∠DGE,∴DE=EG,∴AE=AD+DE=AB+EG====. 所以△ABC与△ECD均为等边三角形,且∠ACE=60°.在△ACD和△BCE中,AC=BC,∠ACD=∠BCE=120°,CD=CE,所以△ACD≌△BCE(SAS).所以AD=BE,∠1=∠2.在△BCF和△ACG中,∠1=∠2,BC=AC,∠BCF=∠ACG=60°,所以△BCF≌△ACG(ASA).所以CF=CG.又因为DE+EC=ED+CD,所以AD+DE+EC+CF=BE+ED+CD+CG.即甲、乙两车同时到达指定站.35)、【解答】1、解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6,由勾股定理有AB=10.扩充部分为Rt△ACD,扩充成等腰△ABD,应分以下三种情况:①如图1,当AB=AD=10时,可求CD=CB =6.得△ABD的周长为32m.②如图2,当AB=BD=10时,可求CD=4.由勾股定理,得.得△ABD的周长为m.如图③,当AB为底时,设AD=BD=x,则CD=x-6,由勾股定理,得.得△ABD 的周长为m.====Word行业资料分享--可编辑版本--双击可删====。
《第1章三角形的证明》单元测试题-北师大版八年级数学下册(含答案) (4)
第1章三角形的证明单元测试考试范围:第1章三角形的证明;考试时间:90分钟;总分:120分一、选择题(每小题3分,共36分)1.(2022·天津市第七中学八年级期末)等腰三角形的顶角是50︒,则这个三角形的一个底角的大小是()A.65︒B.40︒C.50︒D.80︒2.(2021·黑龙江五常·八年级期末)已知一个等腰三角形的两边长分别是4,5,则它的周长是()A.13B.14C.13或14D.9或12=,3.(2021·辽宁铁岭·八年级期末)如图,E是等边ABC∆中AC边上的点,12∠=∠,BE CD ∆是()则ADEA.等腰三角形B.等边三角形C.不等边三角形D.无法确定4.(2021·浙江省衢州市衢江区实验中学八年级阶段练习)满足下列条件的△ABC,不是直角三角形的是()A.△A:△B:△C=5:12:13B.a:b:c=3:4:5C.△C=△A﹣△B D.b2=a2﹣c25.(2021·浙江瑞安·八年级期中)如图,在3×3的方格纸中,已知点A,B在方格顶点上(也称格点),若点C也是格点,且使得△ABC为直角三角形,则满足条件的C点有()A.1个B.2个C.3个D.4个6.(2021·湖南·永州市剑桥学校八年级期中)已知△A,△B为直角△ABC两锐角,△B=54°,则△A=()A.60°B.36°C.56°D.46°7.(2021·黑龙江平房·八年级期末)到三角形三个顶点距离相等的点是此三角形()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边中垂线的交点8.(2021·广西三江·八年级期中)如图,AB垂直平分CD,若AC=2cm,BC=3cm,则四边形ACBD的周长是()A.5 cm B.8 cm C.9 cm D.10 cm9.(2021·湖南·株洲市天元区雷打石学校八年级期末)如图,在△ABC中,AB=AC,△A=36°,AC的垂直平分线交AB于E,点D为垂足,连接EC.如果BC=6,△BCE的周长是17,那么AB的长为()A .12B .11C .10D .510.(贵州省黔东南苗族侗族自治州2020-2021学年八年级上学期期末数学试题)如图,在ABC 中,90C ∠=︒,DE 是AB 的垂直平分线,AD 恰好平分BAC ∠.若3DE =,则BC 的长是( )A .9B .6C .7D .511.(2021·四川南充·八年级期末)如图,在Rt △ABC 中,△ACB =90°,BD 平分△ABC 交AC 于点D ,过点D 作DE △BC 交AB 于点E ,△ABC =30°,DC =2.动点P 从点B 出发,沿着B →C →A 运动,当S △PBE =4时,则△PEB 度数是( )A .105°B .75°或105°C .150°D .75°或150° 12.(2022·全国·八年级)如图所示,,AB CD O ∥为BAC ∠与ACD ∠平分线的交点,OE AC ⊥于,E 若2OE =,则AB 与CD 之间的距离是( )A .2B .4C .8D .无法确定二、填空题(每小题4分,共24分)13.(2022·广东东莞·八年级期末)若一条长为24cm 的细线能围成一边长等于9cm 的等腰三角形,则该等腰三角形的腰长为_____cm .14.(2021·广东南沙·八年级期末)如图,△ABC 中,AB =AC =DC ,D 在BC 上,且AD =DB ,则△BAC =_____.15.(2021·江苏赣榆·八年级期末)如图,点P 是等边△ABC 内的一点,PA =6,PB =8,PC =10,若点P ′是△ABC 外的一点,且△P ′AB △△PAC ,则△APB 的度数为___.16.(2021·辽宁铁岭·八年级期末)如图,△80A ︒=,O 是AB ,AC 垂直平分线的交点,则BOC ∠的度数是________︒.17.(辽宁省抚顺市2021-2022学年八年级上学期期末数学试题)如图,ABC 中,90C ∠=︒,AC BC =,AD 是CAB ∠的平分线,DE AB ⊥于点E ,已知8cm AC ,则BD DE +=______cm .18.(2021·广西隆安·八年级期中)如图,已知ABC 的周长是23,,OB OC 分别平分ABC ∠和,ACB OD BC ∠⊥于D ,且4,OD ABC =的面积是_______.三、解答题一(每小题8分,共16分)19.(2021·广东南沙·八年级期末)如图,在△ABC 中,AD △BC ,垂足为D .(1)尺规作图:作线段AC 的垂直平分线EF ,分别交BC 、AC 于点E 、F .(保留作图痕迹,不写作法)(2)若AB =EC ,AC =6,CD =5,求△ABC 的周长.20.(2021·陕西临渭·八年级期中)如图,在△ABC中,AB=7cm,AC=25cm,BC=24cm,动点P从点A出发沿AB方向以1cm/s的速度运动至点B,动点Q从点B出发沿BC方向以6cm/s 的速度运动至点C,P、Q两点同时出发.(1)求△B的度数;(2)连接PQ,若运动2s时,求P、Q两点之间的距离.21.(2021·湖北·监利市朱河镇初级中学.八年级期中)已知:如图,在△ABC中,△ABC和△ACB 的角平分线相交于点P,且PE△AB,PF△AC,垂足分别为E、F.(1)求证:PE=PF;(2)连接AP,若△ACB=80°,求△APB的度数.BC,22.(2022·辽宁大石桥·八年级期末)如图,△ABC是等边三角形,延长BC到点E,使CE=12若D是AC的中点,连接ED并延长交AB于点F.(1)若AF=3,求AD的长;(2)求证:DE=2DF.23.(2021·湖北·监利市朱河镇初级中学.八年级期中)如图,△ABC中,AB=AC,BF△AE于E 交AF于点F,连结CF.△BAC;(1)如图1所示,当EF=BE+CF,求证△EAF=12△BAC,求证:CF=BF+2BE.(2)如图2所示,△EAF=1224.(2022·四川仁寿·八年级期末)如图,已知△ABC中,△C=90°,AC=5cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求运动时间为几秒时,△PQC是等腰三角形?(3)P、Q在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.答案及解析一、选择题(每小题3分,共36分)1.(2022·天津市第七中学八年级期末)等腰三角形的顶角是50︒,则这个三角形的一个底角的大小是( )A .65︒B .40︒C .50︒D .80︒ 【答案】A【分析】根据等腰三角形的两底角相等,即可求解.【详解】解:△等腰三角形的顶角是50︒,△这个三角形的一个底角的大小是()118050652︒-︒=︒ . 故选:A【点睛】本题主要考查了等腰三角形的性质,熟练掌握等腰三角形的两底角相等是解题的关键. 2.(2021·黑龙江五常·八年级期末)已知一个等腰三角形的两边长分别是4,5,则它的周长是( )A .13B .14C .13或14D .9或12【答案】C【分析】等腰三角形的性质是两腰长相等,需进行分类讨论:当腰长为5,底边长为4时;当腰长为4,底边长为5时,分别计算三角形周长即可.【详解】解:等腰三角形的性质是两腰长相等,需进行分类讨论:当腰长为5,底边长为4时,周长为:25414⨯+=;⨯+=;当腰长为4,底边长为5时,周长为:24513故选:C.【点睛】题目主要考查等腰三角形的性质,对等腰三角形进行分类讨论是解题关键.=,3.(2021·辽宁铁岭·八年级期末)如图,E是等边ABC∆中AC边上的点,12∠=∠,BE CD ∆是()则ADEA.等腰三角形B.等边三角形C.不等边三角形D.无法确定【答案】B【分析】先证得△ABE△△ACD,可得AE=AD,△BAE=△CAD=60°,即可证明△ADE是等边三角形.【详解】解:△△ABC为等边三角形△AB=AC,△BAE=60°,△△1=△2,BE=CD,△△ABE△△ACD(SAS),△AE=AD,△BAE=△CAD=60°,△△ADE是等边三角形.故选B.【点睛】此题考查等边三角形的性质与判定,全等三角形的判定与性质,解题关键在于掌握等边三角形的判定定理.4.(2021·浙江省衢州市衢江区实验中学八年级阶段练习)满足下列条件的△ABC,不是直角三角形的是()A.△A:△B:△C=5:12:13B.a:b:c=3:4:5C.△C=△A﹣△B D.b2=a2﹣c2【答案】A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【详解】解:A、△△A:△B:△C=5:12:13,△△C=180°×1325=93.6°,不是直角三角形,故此选项正确;B、△32+42=52,△是直角三角形,故此选项不合题意;C、△△A﹣△B=△C,△△A=△B+△C,△△A+△B+△C=180°,△△A=90°,△是直角三角形,故此选项不合题意;D、△b2=a2﹣c2,△a2=b2+c2,是直角三角形,故此选项不合题意;故选:A.【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.5.(2021·浙江瑞安·八年级期中)如图,在3×3的方格纸中,已知点A,B在方格顶点上(也称格点),若点C也是格点,且使得△ABC为直角三角形,则满足条件的C点有()A.1个B.2个C.3个D.4个【答案】C【分析】根据题意,结合图形,分两种情况讨论:①AB为直角△ABC斜边;②AB为等腰直角△ABC 其中的一条直角边.【详解】解:如图,分情况讨论:①AB为直角△ABC斜边时,符合条件的格点C点有2个;②AB为直角△ABC其中的一条直角边时,符合条件的格点C点有1个.故共有3个点,故选:C.【点睛】本题考查了直角三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.6.(2021·湖南·永州市剑桥学校八年级期中)已知△A,△B为直角△ABC两锐角,△B=54°,则△A=()A.60°B.36°C.56°D.46°【答案】B【分析】根据直角三角形中,两锐角互余计算即可.【详解】解:△△A,△B为直角△ABC两锐角,△9036∠=︒-∠=︒,A B故选:B.【点睛】本题考查的是直角三角形的性质,掌握直角三角形中,两个锐角互余是解题的关键.7.(2021·黑龙江平房·八年级期末)到三角形三个顶点距离相等的点是此三角形()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边中垂线的交点【答案】D【分析】由题意根据线段的垂直平分线上的性质,则有三角形三边中垂线的交点到三角形的三个顶点距离相等.【详解】解:△垂直平分线上任意一点,到线段两端点的距离相等,△到三角形三个顶点的距离相等的点是三角形三边中垂线的交点.故选:D.【点睛】本题考查了线段的垂直平分线的性质,解题的关键是注意掌握线段的垂直平分线上的点到线段的两个端点的距离相等.8.(2021·广西三江·八年级期中)如图,AB垂直平分CD,若AC=2cm,BC=3cm,则四边形ACBD的周长是()A.5 cm B.8 cm C.9 cm D.10 cm【答案】D【分析】由AB垂直平分CD,根据线段垂直平分线的性质,可得AD=AC=2cm,BD=BC=3cm,继而求得答案.【详解】解:△AB垂直平分CD,△AD=AC=2cm,BD=BC=3cm,△四边形ABCD的周长是:AC+BC+BD+AD=10(cm).故选:D.【点睛】本题考查了线段垂直平分线的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.9.(2021·湖南·株洲市天元区雷打石学校八年级期末)如图,在△ABC中,AB=AC,△A=36°,AC的垂直平分线交AB于E,点D为垂足,连接EC.如果BC=6,△BCE的周长是17,那么AB的长为()A.12B.11C.10D.5【答案】B【分析】根据线段垂直平分线的性质得CE=AE,从而得出答案.【详解】解:△AC的垂直平分线交AB于E,点D为垂足,△CE=AE,△BE+AE=BE+CE=AB,△△BCE的周长是17,△BC+CE+BE=17,△BC=6,△BE+CE=17﹣6=11,△AB=11,故选B.【点睛】本题主要考查了线段垂直平分线的性质,熟知性质是解题的关键:线段垂直平分线上的点到线段两端的距离相等.10.(贵州省黔东南苗族侗族自治州2020-2021学年八年级上学期期末数学试题)如图,在ABC 中,90C ∠=︒,DE 是AB 的垂直平分线,AD 恰好平分BAC ∠.若3DE =,则BC 的长是( )A .9B .6C .7D .5【答案】A【分析】 根据角平分线上点到角两边的距离相等可得AD BD =,再根据等边对等角的性质求出DAB B ∠=∠,然后根据角平分线的定义与直角三角形两锐角互余,求出30B ∠=︒,再根据直角三角形30角所对的直角边等于斜边的一半求出BD ,然后求解即可.【详解】解:AD 平分BAC ∠,且DE AB ⊥,90C ∠=︒,3CD DE ∴==,DE 是AB 的垂直平分线,AD BD ∴=,B DAB ∴∠=∠,DAB CAD ∠=∠,CAD DAB B ∴∠=∠=∠,90C ∠=︒,90CAD DAB B ∴∠+∠+∠=︒,30B ∴∠=︒,26BD DE ∴==,639BC BD CD ∴=+=+=,故选:A【点睛】本题主要考查了角平分线的性质定理,直角三角形的性质,等腰三角形的性质等知识,熟练掌握角平分线上点到角两边的距离相等;等边对等角;直角三角形30角所对的直角边等于斜边的一半是解题的关键.11.(2021·四川南充·八年级期末)如图,在Rt △ABC 中,△ACB =90°,BD 平分△ABC 交AC 于点D ,过点D 作DE △BC 交AB 于点E ,△ABC =30°,DC =2.动点P 从点B 出发,沿着B →C →A 运动,当S △PBE =4时,则△PEB 度数是( )A .105°B .75°或105°C .150°D .75°或150°【答案】D【分析】 分两种情况:当点P 在BC 边上时,连接EP ,过点E 作EF BC ⊥于F ,根据平行线之间距离相等可得:2EF CD ==,由含30°角的直角三角形性质可得:24BE EF ==,再结合三角形面积即可得出BP BE =,最后运用三角形内角和定理及等腰三角形性质即可;当点P 在AC 边上时,过点P 作PG AB ⊥于点G ,利用角平分线判定定理可得出:BP 平分ABC ∠,即点P 与点D 重合,再利用平行线性质即可.【详解】解:当点P 在BC 边上时,如图1,连接EP ,过点E 作EF BC ⊥于F ,△∥DE BC ,EF BC ⊥,DC BC ⊥,△2EF CD ==,在Rt BEF 中,90BFE ∠=︒,30ABC ∠=︒,△24BE EF ==,△4PBE S =,△1242BP ⨯⨯=,△4BP =, △BP BE =,△()()11180180307522PEB ABC ∠=⨯︒-∠=⨯︒-︒=︒;当点P 在AC 边上时,如图2,过点P 作PG △AB 于点G ,△4PBE S =,△142BE PG ⨯⨯=,即1442PG ⨯⨯=, △2PG =,△PC BC ⊥,PG AB ⊥,2PG PC ==,△BP 平分△ABC ,即点P 与点D 重合,△∥DE BC ,△180********DEB ABC ∠=︒-∠=︒-︒=︒,即150PEB ∠=︒,综上所述,75PEB ∠=︒或150︒,故选:D .【点评】本题考查了直角三角形性质,角平分线性质和判定定理,平行线性质,等腰三角形性质等,添加辅助线构造直角三角形是解题关键.12.(2022·全国·八年级)如图所示,,AB CD O ∥为BAC ∠与ACD ∠平分线的交点,OE AC ⊥于,E 若2OE =,则AB 与CD 之间的距离是( )A .2B .4C .8D .无法确定【答案】B【分析】 过点O 作MN AB ⊥于M ,交CD 于N ,利用角平分线的性质求出OM 、ON ,最后即可求出AB 与CD 之间的距离.【详解】如图,过点O 作MN AB ⊥于M ,交CD 于N ,//AB CD ,MN CD ∴⊥,AO BAC ∠是的平分线,,,2OM AB OE AC OE ⊥⊥=,2∴==OM OE ,CO 是ACD ∠的平分线,OE AC ⊥,ON CD ⊥,2∴==ON OE ,4∴=+=MN OM ON ,即AB CD 与之间的距离是4.故选:B .【点睛】本题主要是考查了角平分线的性质,熟练地应用角平分线的性质:角平分线上的点到角的两边相等,求出对应相等的边,是解决本题的关键.二、填空题(每小题4分,共24分)13.(2022·广东东莞·八年级期末)若一条长为24cm 的细线能围成一边长等于9cm 的等腰三角形,则该等腰三角形的腰长为_____cm .【答案】9或7.5或9【分析】分9是底边和腰长两种情况,分别列出方程,求解即可得到结果.【详解】解:若9cm为底时,腰长应该是12(24-9)=7.5cm,故三角形的三边分别为7.5cm、7.5cm、9cm,△7.5+7.5=15>9,故能围成等腰三角形;若9cm为腰时,底边长应该是24-9×2=6,故三角形的三边为9cm、9cm、6cm,△6+9=15>9,△以9cm、9cm、6cm为三边能围成三角形,综上所述,腰长是9cm或7.5cm,故答案为:9或7.5.【点睛】本题考查了等腰三角形的性质,三角形的周长,掌握等腰三角形的两腰相等是解题的关键.14.(2021·广东南沙·八年级期末)如图,△ABC中,AB=AC=DC,D在BC上,且AD=DB,则△BAC=_____.【答案】108°108度【分析】先设△B=x,由AB=AC可知,△C=x,由AD=DB可知△B=△DAB=x,由三角形外角的性质可知△ADC=△B+△DAB=2x,根据DC=CA可知△ADC=△CAD=2x,再在△ABC中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值,从而求解.【详解】设△B=x,△△C=△B=x,△AD=DB,△△B=△DAB=x,△△ADC=△B+△DAB=2x,△DC=CA,△△ADC=△CAD=2x,在△ABC中,x+x+2x+x=180°,解得:x=36°.△△BAC=108°.故答案为:108°.【点睛】此题主要考查等腰三角形的判定和性质、三角形的内角和定理,解题的关键是熟练进行逻辑推理15.(2021·江苏赣榆·八年级期末)如图,点P是等边△ABC内的一点,PA=6,PB=8,PC =10,若点P′是△ABC外的一点,且△P′AB△△PAC,则△APB的度数为___.【答案】150°【分析】如图:连接PP′,由△PAC△△P′AB可得PA=P′A、△P′AB=△PAC,进而可得△APP′为等边三角形易得PP′=AP=AP′=6;然后再利用勾股定理逆定理可得△BPP′为直角三角形,且△BPP′=90°,最后根据角的和差即可解答.解:连接PP′,△△PAC△△P′AB,△PA=P′A,△P′AB=△PAC,△△P′AP=△BAC=60°,△△APP′为等边三角形,△PP′=AP=AP′=6;△PP′2+BP2=BP′2,△△BPP′为直角三角形,且△BPP′=90°,△△APB=90°+60°=150°.故答案为:150°.【点睛】本题主要考查了全等三角形的性质、等边三角形的判定与性质、勾股定理逆定理的应用等知识点,灵活应用相关知识点成为解答本题的关键.∠16.(2021·辽宁铁岭·八年级期末)如图,△80=,O是AB,AC垂直平分线的交点,则BOCA︒的度数是________︒.【答案】160【分析】首先需要根据条件作出辅助线OA,根据垂直平分线得性质:线段垂直平分线上任意一点到∠和该线段两端点的距离相等,可以构造等腰三角形,即可进行角度转换求解,解得BCO∠的度数为10︒,最终根据三角形的内角和求得BOC∠的度数为160︒.CBO【详解】解:如图所示:连接OA,△△A=80°,△△ABC+△ACB=180°-△A =100°,△O是AB,AC垂直平分线的交点,△OA=OB,OA=OC,△△OAB =△OBA ,△OCA =△OAC ,OB =OC ,△△OBA +△OCA =△OAB +△OAC =△A =80°,△△OBC +△OCB =100°﹣80°=20°,△OB =OC ,△△BCO =△CBO =10°,△△BOC=180°-△BCO -△CBO =180°-10° - 10°=160°故答案为:160°.【点睛】本题重点考查的是线段垂直平分线的性质的运用,利用性质进行构造等腰三角形,并进行求解是解本题的关键. 17.(辽宁省抚顺市2021-2022学年八年级上学期期末数学试题)如图,ABC 中,90C ∠=︒,AC BC =,AD 是CAB ∠的平分线,DE AB ⊥于点E ,已知8cm AC ,则BD DE +=______cm .【答案】8【分析】由角平分线的性质可得CD =DE ,则BD +DE =BD +CD =BC ,由此进行求解即可.【详解】解:△DE △AB ,△C =90°,AD 是△BAC 的角平分线,△CD =DE ,△BD +DE =BD +CD =BC ,又△AC =BC =8cm ,△BD +DE =8cm ,故答案为:8.【点睛】本题主要考查了角平分线的性质,解题的关键在于能够熟记角平分线上的点到角两边的距离相等.18.(2021·广西隆安·八年级期中)如图,已知ABC 的周长是23,,OB OC 分别平分ABC ∠和,ACB OD BC ∠⊥于D ,且4,OD ABC =的面积是_______.【答案】46【分析】连接AO ,过点O 作OE △AB 于点E ,OF △AC 于点F ,根据角平分线的性质定理,可得OD =OE ,OD =OF =4,再由ABC AOB BOC AOC S S S S =++△△△△,即可求解.【详解】解:如图,连接AO ,过点O 作OE △AB 于点E ,OF △AC 于点F ,△,OB OC 分别平分ABC ∠和,ACB OD BC ∠⊥,4OD =,△OD =OE ,OD =OF =4,△111222ABC AOB BOC AOC S S S S AB OE CB OD AC OF =++=⋅+⋅+⋅ ()114234622OD AB BC AC =⨯⨯++=⨯⨯= . 故答案为:46【点睛】本题主要考查了角平分线的性质定理,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.三、解答题一(每小题8分,共16分)19.(2021·广东南沙·八年级期末)如图,在△ABC 中,AD △BC ,垂足为D .(1)尺规作图:作线段AC 的垂直平分线EF ,分别交BC 、AC 于点E 、F .(保留作图痕迹,不写作法)(2)若AB =EC ,AC =6,CD =5,求△ABC 的周长.【答案】(1)见解析;(2)16;【分析】(1)利用基本作图,作AC的垂直平分线即可;(2)根据线段垂直平分线的性质得到EA=EC,则AB=AE,根据等腰三角形的性质得到BD =ED,然后利用等线段代换得到△ABC的周长=2CD+AC.【详解】解:(1)如图,EF为所作;(2)连接AE,如图,△EF垂直平分AC,△EA=EC,△AB=CE,△AB=AE,△AD△BC,△BD=ED,△△ABC的周长=AB+BD+CD+AC=CE+DE+CD+AC=2CD+AC=2×5+6=16.【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图是解决此类问题的关键.也考查了线段垂直平分线的性质.20.(2021·陕西临渭·八年级期中)如图,在△ABC中,AB=7cm,AC=25cm,BC=24cm,动点P从点A出发沿AB方向以1cm/s的速度运动至点B,动点Q从点B出发沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发.(1)求△B的度数;(2)连接PQ,若运动2s时,求P、Q两点之间的距离.【答案】(1)△B=90°;(2)P、Q两点之间的距离为13cm【分析】(1)如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.依据勾股定理的逆定理进行判断即可;(2)依据运动时间和运动速度,即可得到BP和BQ的长,再根据勾股定理进行计算,即可得到PQ的长.【详解】解:(1)△AB=7cm,AC=25cm,BC=24cm,△AB2+BC2=625=AC2,△△ABC是直角三角形且△B=90°;(2)运动2s时,AP=1×2=2(cm),BQ=2×6=12(cm),△BP=AB﹣AP=7﹣2=5(cm),Rt△BPQ中,2222+=+=,PQ BP BQ51213cm△P、Q两点之间的距离为13cm.【点睛】本题主要考查了勾股定理的逆定理和勾股定理,解题的关键在于能够根据题意求出△B=90°.四、解答题二(每小题10分,共20分)21.(2021·湖北·监利市朱河镇初级中学.八年级期中)已知:如图,在△ABC中,△ABC和△ACB 的角平分线相交于点P,且PE△AB,PF△AC,垂足分别为E、F.(1)求证:PE=PF;(2)连接AP,若△ACB=80°,求△APB的度数.【答案】(1)见解析;(2)130°【分析】(1)过点P作PD△BC于D,可得PD=PE=PF;(2)根据三角形内角和求出△BAC+△ABC=100°,再根据角平分线的定义得到AP平分△BAC,从而得出△PAB+△PBA,再次根据三角形内角和求出△APB.【详解】解:(1)过点P作PD△BC于D,△△ABC和△ACB的角平分线相交于点P,且PE△AB,PF△AC,△PD=PE,PD=PF,△PE=PF;(2)△△ACB=80°,△△BAC+△ABC=180°-80°=100°,△△ABC和△ACB的角平分线相交于点P,△AP平分△BAC,△△PAB+△PBA=1(△BAC+△ABC)=50°,2△△APB=180°-50°=130°.【点睛】本题考查了角平分线的定义和性质,三角形内角和,熟记定理是解题的关键.22.(2022·辽宁大石桥·八年级期末)如图,△ABC是等边三角形,延长BC到点E,使CE=12 BC,若D是AC的中点,连接ED并延长交AB于点F.(1)若AF=3,求AD的长;(2)求证:DE=2DF.【答案】(1)6;(2)见解析【分析】(1)根据等边三角形的性质得出AC=BC,△A=△ACB=60°,求出△E=△CDE,根据三角形外角性质和等腰三角形的性质求出BD=DE,求出AD的长即可;(2)连接BD,求出BD=DE,根据含30°角的直角三角形的性质得出BD=2DF,即可得出答案.【详解】解:(1)△△ABC为等边三角形,△AC=BC,△A=△ACB=60°,△D为AC中点,△CD=AD=12 AC,△CE=12 BC,△CD=CE,△△E=△CDE,△△ACB=△E+△CDE,△△E=△CDE=30°,△△ADF=△CDE=30°,△△A=60°,△△AFD=180°-△A-△ADF=90°,△AF=3,△AD=2AF=6,(2)连接BD,△△ABC为等边三角形,D为AC中点,△BD平分△ABC,△ABC=60°,△△DBC=△ABD=12△ABC=30°,△△BFD=90°,△BD=2DF,△△DBC=△E=30°,△BD=DE,△DE=2DF,【点睛】本题考查了等边三角形的性质,含30°角的直角三角形的性质,等腰三角形的判定,三角形的外角性质,三角形的内角和定理等知识点,能综合运用定理进行推理是解此题的关键.五、解答题三(每小题12分,共24分)23.(2021·湖北·监利市朱河镇初级中学.八年级期中)如图,△ABC中,AB=AC,BF△AE于E 交AF于点F,连结CF.△BAC;(1)如图1所示,当EF=BE+CF,求证△EAF=12△BAC,求证:CF=BF+2BE.(2)如图2所示,△EAF=12【答案】(1)见解析;(2)见解析【分析】(1)在EF上截取EH=BE,由“SSS”可证△ACF△△AHF,可得△CAF=△HAF,可得结论;(2)在BE的延长线上截取EN=BE,连接AN,由“SAS”可证△ACF△△ANF,可得CF=NF,可得结论.【详解】解:(1)如图,在EF上截取EH=BE,连接AH,△EB=EH,AE△BF,△AB=AH,△AB=AH,AE△BH,△△BAE=△EAH,△AB=AC,△AC=AH,△EF =EH +HF =BE +CF ,△CF =HF ,在△ACF 和△AHF 中,AC AHAF AF CF HF=⎧⎪=⎨⎪=⎩,△△ACF △△AHF (SSS ),△△CAF =△HAF ,△△BAE +△CAF =△EAH +△FAH =△EAF ,即△EAF =12△BAC ;(2)如图,在BE 的延长线上截取EN =BE ,连接AN ,△AE △BF ,BE =EN ,AB =AC ,△AN =AB =AC ,△AN =AB ,AE △BN ,△△BAE =△NAE ,△△EAF =12△BAC ,△△EAF +△NAE =12(△BAC +2△NAE )△△FAN =12△CAN ,△△FAN =△CAF ,在△ACF 和△ANF 中,AC AN CAF NAF AF AF =⎧⎪∠=∠⎨⎪=⎩,△△ACF △△ANF (SAS ),△CF =NF ,△CF =BF +2BE .【点睛】本题考查了全等三角形的判定和性质,垂直平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.24.(2022·四川仁寿·八年级期末)如图,已知△ABC 中,△C =90°,AC =5cm ,BC =12cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿AC 运动,且速度为每秒1cm ,点Q 从点C 开始沿CB 运动,且速度为每秒2cm ,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t 秒.(1)当t =2秒时,求PQ 的长;(2)求运动时间为几秒时,△PQC 是等腰三角形?(3)P 、Q 在运动的过程中,用含t(0<t <5)的代数式表示四边形APQB 的面积.【答案】(1)PQ =5cm ;(2)t =53;(3)S 四边形APQB =30﹣5t +t 2.【分析】(1)先分别求出CQ 和CP 的长,再根据勾股定理解得即可;(2)由△C =90°可知,当△PCQ 是等腰三角形时,CP =CQ ,由此求解即可;(3)由S 四边形APQB =S △ACB ﹣S △PCQ 进行求解即可.【详解】解:(1)由题意得,AP =t ,PC =5﹣t ,CQ =2t ,△△C =90°,△PQ 2222(5)(2)PC CQ t t +-+,△t =2,△PQ 22345cm +,(2)△△C =90°,△当CP =CQ 时,△PCQ 是等腰三角形,△5﹣t =2t ,解得:t =53,△t =53秒时,△PCQ 是等腰三角形;(3)由题意得:S 四边形APQB =S △ACB ﹣S △PCQ=1122AC CB PC CQ ⋅-⋅=11512(5)222t t ⨯⨯-⨯-⨯=30﹣5t +t 2.【点睛】本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 三角形的证明 检测题A 数学八年级下册(北师大最新版本)
第Ⅰ卷(选择题,共36分)
一、选择题(每小题4分,共36分)
1、等腰三角形的两边长分别为4厘米和9厘米,则这个三角形的周长为( ) A 、22厘米 B 、17厘米 C 、13厘米 D 、17厘米或22厘米
2、下列关于等腰三角形的性质叙述错误的是( ) A 、等腰三角形的两底角相等 B 、等腰三角形是轴对称图形
C 、 等腰三角形是轴对称图形
D 、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合 3、如图1-Z-1所示,在△ABC 中,AC=DC=DB ,∠ACD=100°则∠B 等于( ) A 、50° B 、40° C 、 25° D 、 20
°
4、如图1-Z-2所示,在△ABC 与△DEF 中,已有条件AB=DE ,还需要添加两个条件才能使△ABC ≌△DEF , 不能添加的条件是(
)
A 、∠B=∠E ,BC=EF
B 、BC=EF ,AC=DF
C 、∠A=∠
D ,∠B=
∠E , D 、 ∠A=∠D ,BC=EF 5、已知:如图1-Z-3所示,m
∥n ,等边三角形ABC 的顶点B 在直线m 上,边BC 与直线m 所夹的锐角为
20°则∠a 的度数是( )
A 、60°
B 、30°
C 、40
° D 、45°
6、如图1-Z-4所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( ) A 、6 B 、7 C 、8 D 、9
7、如图1-Z-5所示,在△ABC 中,CD 平分∠ABC ,∠A=80°,∠ACB=60°,那么∠BDC =( ) A 、80° B 、90° C 、100° D 、110°
8、如图1-Z-6所示,在Rt △ABC 中,∠C=90°,∠CAB=60°,AD 平分∠CAB ,点D 到AB 的距离 DE=3.8cm ,则线段BC 的长为( )
A 、3.8cm
B 、7.6cm
C 、11.4cm
D 、11.2cm
9、如图1-Z-7所示,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P 、O 、A 为顶点的三角形是等腰三角形,则满足条件的点P 共有( ) A 、2个 B 、3个 C 、4个 D 、5个
二、填空题(每小题4分,共20分)
10、 如图1-Z-8所示,已知△ABC 是等边三角形,
AD ∥BC ,CD ⊥AD ,垂足为D ,E 为AC 的中点,则∠ACD= °, AC= cm , ∠DAC= °,△ADE 是 三角形
D
E
B
A
图1-Z-2
C
C
B A
图1-Z-4
B
图1-Z-5
A
图1-Z-6
x
图1-Z-8
11、“两直线平行,内错角相等”的逆命题是。
12、如图1-Z-9,若△OAD≌△OBC,且∠O=65°,∠C=20
则∠
13、如图1-Z-10是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方
形A、B、C、D的边长分别是3、5、2、3,则最大的正方形E的面积是.
14、等腰三角形的一个角是80°,则它的顶角是.
三、解答题(共44分)
17、(8分)已知:如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若
∠1=60°,AE=1.
(1) 求∠2、∠3的度数;
(2) 求长方形纸片ABCD的面积S.
18、(6分)已知:如图10,AB=AC,DE∥AC,求证:△DBE是等腰三角形
图10
19、(6分)已知:如图11,在Rt△ABC中,∠C=90°,∠BAD=
2
1
∠BAC,过点D作DE⊥AB,DE恰好
是∠ADB的平分线,求证:CD=
2
1
DB
图11
20、(8分)已知三角形的三边分别是n2+n,n+
2
1
和n2+n+
2
1
(n>0),求证:这个三角形是直角三角形
21、(8分)如图12,△ABC中,AB=AC,∠1=∠2,求证:AD平分∠BA C
图12
22、(8分)如图13,以等腰直角三角形ABC的斜边AB与边面内作等边△ABD,连结DC,以DC当边作
等边△DCE,B、E在C、D的同侧,若AB=2,求BE的长
图13
C
D
图1-Z-10
参考答案
第Ⅰ卷(选择题,共36分)
一、选择题(每小题4分,共36分)
第Ⅱ卷(非选择题,共64分)
二、填空(第小题4分,共24分)
10、30,12,60,等边;11、内错角相等,两直线平行;12、95°;13、47;
14、20°或80°;
15、
垂直平分
解析:∵
是△的角平分线,于点于点,∴
.
在Rt △和Rt △中,
∴△≌△(HL),∴
.
又是△的角平分线,∴
垂直平分.
三、解答题(共40分)
16、解析:如图,延长交于点,
由是角平分线,于点,可以得出△≌
△,∴
2,.
在△中,∵
∴
是△的中位线,
∴
()==×
3
1.5
17、(1)∠2=∠3=60°(2)S=3
3
18、(1) 在△ACD和△CBF中,AC=CB,∠ACD=∠CBF(已知△ABC等边三角形),CD=BF(已知),
所以△ACD≌△CBF(SAS)
(2) D在BC的中点处时,符合条件。
理由如下:
由(1)知:△ACD≌△CBF ∴AD=CF,∠CAD=∠BCF
又∵D是BC的中点,△ABC是等边三角形∴∠ACD=30°∠BCF=30°
又∵△ADE是等边三角形∴∠ADE=60°AD=DE ∴∠BDE=30°
∴DE∥CF 又DE=AD=CF ∴四边形CDEF是平行四边形
∴EF∥BC ∴∠DEF=∠BDE=30°。