专题20 解决直线与圆问题-2021年高考数学二轮复习核心考点微专题(苏教版)(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.直线l :y =kx +1与圆x 2+y 2-2ax +a 2-2a -4=0恒有交点,则实数a 的取值范围是________. 【答案】-1≤a ≤3
【解析】圆方程为(x -a )2+y 2=2a +4,则a >-2,又直线l 过定点(0,1),故只需点(0,1)在圆内或圆上,即-1≤a ≤3,综上,实数a 的取值范围是-1≤a ≤3.
2.若圆x 2+y 2=r 2(r >0)上有且只有两个点到直线x -y -2=0的距离为1,则实数r 的取值范围是________. 【答案】2-1<r <2+1.
3.若对圆M :(x -1)2+(y -1)2=1上任意一点P (x ,y ),|3x -4y +a |+|3x -4y -9|的取值与x ,y 无关,则实数a 的取值范围是________. 【答案】a ≥6.
【解析】设直线l 1:3x -4y +a =0,直线l 2:3x -4y -9=0,则|3x -4y +a |+|3x -4y -9|=5(dP -l 1+dP -l 2),因为|3x -4y +a |+|3x -4y -9|的取值与x 无关,所以,圆M 恰完全在直线l 1和直线l 2所夹带状区域内,所以,直线l 1:3x -4y +a =0在圆M 的上方,dM -l 1=|-1+a |5=a -15
≥1,所以,a ≥6.
4.已知圆O :x 2+y 2=r 2(r >0)及圆上的点A (0,-r ),过点A 的直线l 交圆于另一点B ,交x 轴于点C ,若OC =BC ,则直线l 的斜率为________.
【解析】设直线l 的斜率为k ,则直线l :y =kx -r ,与
x 2+y 2=r 2联立解得
B (2kr k 2+1,(k 2-1)r k 2+1
),而C (r
k ,0),
由OC =BC 得(r k )2=(2kr k 2+1-r k )2+[(k 2-1)r k 2+1
]2
即k =±3.学&科网
【考向分析】
直线与圆的位置关系是高考常考的知识内容.对它们的研究,既可以从几何的角度来探索它们的位置关系,又可以从方程角度来解决一些度量问题(如类似阿氏圆一类问题),体现用代数方法研究几何问题的思想.对这类问题的考查,一般会涉及弦长、距离的计算、圆的切线及与点(直线、圆)的位置关系判定问题等,解答此类问题,注重“圆的特征直角三角形”是关键.
(一)直线与圆基本问题盘点 例1. 直线tx +y +3=0与圆x 2+y 2=4相交于
A 、
B 两点,若|OA →+OB →|>|AB →
|,则实数t 的范围________.
【答案】-
142<t <-52或52<t <142
.
变式1若直线l 1:y =x +a 和直线l 2:y =x +b 将圆(x -1)2+(y -2)2=8分成长度相等的四段弧,则a 2+b 2=________. 【答案】18
【解析】由题意得直线l 1:y =x +a 和直线l 2:y =x +b 截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为
2
2r =2,即|1-2+a |2=|1-2+b |2
=2,所以a 2+b 2=(22+1)2+(-22+1)2=18. 变式2 在平面直角坐标系xOy 中,已知圆C :x 2+(y -1)2=4.若等边△P AB 的一边AB 为圆C 一条弦,则PC 的最大值为________. 【答案】4
【解析】由△P AB 为等腰三角形,故PC 与AB 垂直,设PC 与AB 交于点H ,记AH =BH =x ,PH =y ,PC =t ,则CH =3x ,
满足⎩⎨⎧
x 2+y 2=4(x ,y >0)
t =3x +y
求PC 的最小值.
记直线l :y =-3x +t ,利用线性规划作图,可知当直线l 与圆弧x 2+y 2=4(x ,y >0)相切时,则t 取最大值,求得t max =4,即PC 的最大值为4.
(二)圆与圆的位置关系应用
例2. 设集合A ={(x ,y )|m
2≤(x -2)2+y 2≤m 2,x ,y ∈R },B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,
则实数m 的取值范围是________. 【答案】1
2
≤m ≤2+ 2.
变式1 在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________. 【答案】-13<c <13.
【解析】圆半径为2,圆心(0,0)到直线12x -5y +c =0的距离小于1,即|c |
13
<1,解得:-13<c <13.
变式2 已知圆C :(x -2)2+y 2=1,点P 在直线l :x +y +1=0上,若过点P 存在直线m 与圆C 交于A 、B 两点,且点A 为PB 的中点,则点P 横坐标x 0的取值范围是________. 【答案】-1≤x 0≤2.
【解析】数形结合法:设P (x 0,1-y 0),由题意可得|CP |≤3,即(x 0-2)2+(-1-x 0)2≤3,解之得-1≤x 0≤2. (三)阿波罗尼斯圆问题梳理
例3. 已知圆M :(x -1)2+(y -1)2=4,直线l :x +y -6=0,A 为直线l 上一点.若圆M 上存在两点B ,C ,使得∠BAC =60°,则点A 横坐标的取值范围________. 【答案】[1,5].
【解析】可判断出直线l 与圆M 相离,故点A 在圆外,由于圆M 上存在两点B ,C ,使得∠BAC =60°,则设直线AE ,AF 为过点 A 作圆M 的两条切线,切点分别为E ,F ,则∠EAF ≥∠MAN =60°,故∠MAC ≥30°且r =2,则CA ≤4,设A (a,6-a ),所以(a -1)2+(5-a )2≤4,解得a ∈[1,5].学科*网
变式1 满足条件AB =2,AC =2BC 的△ABC 的面积的最大值是________. 【答案】2 2.
变式2 已知点A (-2,0),B (4,0),圆C :(x +4)2+(y +b )2=16,点P 是圆C 上任意一点,若P A
PB
为定值,则b =________. 【答案】0
【解析】设P (x ,y ),P A
PB
=k ,则
(x +2)2+y 2
(x -4)2+y
2=k ,整理得(1-k 2)x 2+(1-k 2)y 2+(4+8k 2)x +4-16k 2=0,又P 是圆C 上的任意一点,故k ≠1,圆C 的一般方程为x 2+y 2+8x +2by +b 2=0,因此
2b =0,故4+8k 2
1-k 2
=8,
4-16k 21-k 2
=b 2
,解得b =0.
1.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________. 【答案】[-1,1].
【解析】如图,过点M 作⊙O 的切线,切点为N ,连结ON .M 点的纵坐标为1,MN 与⊙O 相切于点N ,设∠OMN =θ,则θ≥45°,即sin θ≥
22,即ON OM ≥2
2
.而ON =1,所以OM ≤ 2.因为M 为(x 0,1),所以x 20+1≤2,解得-1≤x 0≤1,所以x 0的取值范围为[-1,1].
2.已知圆C :(x -a )2+(y -a )2=a 2和直线l :3x +4y +3=0,若圆C 上有且仅有两个点到l 的距离等于1,则a 的取值范围________. 【答案】⎝⎛⎭⎫16,1∪⎝
⎛⎭⎫-4,2
3.
【解析】到直线l :3x +4y +3=0的点组成的轨迹为直线l 1:3x +4y -2=0或直线l 2:3x +4y +8=0,又圆C 圆心在直线y =x 上,且与两轴相切,由于圆C 上有且仅有两个点到l 的距离等于1,则直线l 1或l 2与圆C 相交,于是当a >0时,r =a ,则圆C 与l 1:3x +4y -2=0相交,则d =|7a -2|5<a ,得a ∈(1
6,1),当a <0时,
r =-a ,则圆C 与l 1:3x +4y +8=0相交,则d =|7a +8|5
<a ,则a ∈⎝⎛⎭⎫-4,23,综上a 的取值范围是⎝⎛⎭⎫1
6,1∪⎝
⎛⎭⎫-4,23.学科#网
3.△ABC 中,BC =22,AB →·AC →=1,则△ABC 面积的最大值为________.
4.在平面直角坐标系xOy 中,已知点A ,B 分别为x 轴,y 轴上一点,且AB =2,若点P (2,5),则|AP →+BP →+OP →
|的取值范围是________. 【答案】[7,11].
【解析】++=3-(+),由于⊥,且AB =2,设+=,则点M 的轨迹为以O 为圆心半径r =2的圆,记3==(6,35),于是|++|=|-|=MQ ,即圆上一点M 到定点Q (6,35)的距离,其取值范围是[OQ -r ,OQ +r ],即[7,11].
1.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 【答案】255
5
.
【解析】圆心为(2,-1),半径r =2.
圆心到直线的距离d =|2+2×(-1)-3|1+4
=35
5,所以弦长为2r 2-d 2=2
22-(355)2=255
5
.
2.若直线3x +4y -m =0与圆x 2+y 2+2x -4y +4=0始终有公共点,则实数m 的取值范围是________. 【答案】0≤m ≤10.
【解析】因为(x +1)2+(y -2)2=1,所以由题意得:|-3+4×2-m |
5≤1,化简得|m -5|≤5即0≤m ≤10.
3.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________. 【答案】(x -1)2+y 2=2.
【解析】由直线mx -y -2m -1=0得m (x -2)-(y +1)=0,故直线过点(2,-1).当切线与过(1,0),(2,-1)两点的直线垂直时,圆的半径最大,此时有r =1+1=2,故所求圆的标准方程为(x -1)2+y 2=2. 4.在平面直角坐标系xOy 中,A (2,0),O 是坐标原点,若在直线x +y +m =0上总存在点P ,使得P A =3PO ,则实数m 的取值范围是________. 【答案】1-6≤m ≤1+ 6.
5. 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;
(2)若OM →·ON →=12,其中O 为坐标原点,求MN 的长. 【答案】(1)(4-73,4+73
)(2)2
【解析】(1)由题设,可知直线l 的方程为y =kx +1.因为l 与C 交于两点,所以|2k -3+1|1+k 2<1.解得
4-7
3<k <4+73.所以k 的取值范围为(4-73,4+7
3).
(2)设M (x 1,y 1),N (x 2,y 2).
将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0.所以x 1+x 2=4(1+k )1+k 2,x 1x 2=
71+k 2
. ·=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )
1+k 2+8=12,解得k =1,所以l 的方程是y =x +1.故圆心C
在l 上,所以MN 的长为2.
6. 在平面直角坐标系xOy 中,若直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=16相交于A ,B 两点,且△ABC 为直角三角形,则实数a 的值是________. 【答案】a =-1
【解析】圆心C (1,a ),半径r =4,因为△ABC 为直角三角形,所以圆心C 到直线AB 的距离d =2 2.
7. 在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围. 【答案】⎣
⎡⎦⎤0,125.
8. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 【答案】0≤k ≤4
3
.
【解析】将圆C 的方程整理为标准方程得:(x -4)2+y 2=1,所以圆心(4,0),半径r =1,因为直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需圆C ′(x -4)2+y 2=4与y =kx -2有公共点,即
|4k -2|
k 2+1
≤2,解得:0≤k ≤4
3.
9. 已知直线kx -y +1=0与圆
C :x 2+y 2=4
相交于A ,B 两点,若点M 在圆C 上,且有OM →=OA →+OB →
(O
为坐标原点),则实数k =________. 【答案】0
【解析】设AB 的中点为D ,有=+=2,因为||=2||=2,所以||=1,故|0-0+1|
k 2+1=1解得k =0. 学#科网
10. 在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,O 1:(x -4)2+y 2=4,动点P 在直线x +3y -b =0上,过P 分别作圆O ,O 1的切线,切点分别为A ,B ,若满足PB =2P A 的点P 有且只有两个,则实数b 的
取值范围是________. 【答案】-20
3<b <4.
11. 已知A (0,1),B (1,0),C (t,0),点D 是直线AC 上的动点,若AD ≤2BD 恒成立,则最小正整数t 的值为________. 【答案】4
【解析】由A (0,1),C (t,0),得l :y =-1
t
x +1,D ⎝⎛⎭⎫x ,-1t x +1.又AD ≤2BD ,故x 2
+x 2
t 2≤2
(x -1)2+⎝⎛⎭
⎫1-x t 2
,化简得⎝⎛⎭⎫3+3t 2x 2-⎝⎛⎭⎫8+8t x +8≥0对任意x 恒成立,则⎝⎛⎭⎫8+8t 2
-4×8×⎝⎛⎭⎫3+3t 2≤0,化简得t 2-4t +1≥0,解得t ≥2+3或0<t ≤2-3,因此最小正整数t 的值为4.
12.在等腰三角形ABC 中,AB =AC ,D 在线段AC 上,AD =kAC (k 为常数,且0<k <1),BD =l 为定长,则△ABC 的面积最大值为________.
【解析】如图,以B 为原点,BD 为x 轴建立直角坐标系xBy . 设A (x ,y ),y >0.
因AD =kAC =kAB ,故AD 2=k 2AB 2, 于是(x -l )2+y 2=k 2(x 2+y 2).
所以,y 2=
-(1-k 2)x 2+2lx -l 2
1-k 2
=
-(1-k 2)(x -
l 1-k 2)2+k 2l 2
1-k 21-k 2≤k 2l 2
(1-k 2)2
,
于是,y max =kl 1-k 2,(S △ABD )max =kl 22(1-k 2),所以,(S △ABC )max =1k (S △ABD )max =l 2
2(1-k 2)
.。