基于8051的直流电动机PWM调速系统的设计
基于51系列单片机的直流电机PWM调速系统设计
基于51系列单片机的直流电机PWM调速系统设计
随着社会的发展,直流电机作为机械设备中重要的驱动件,已经被越来越多的应用起来,而PWM(脉冲宽度调制)技术是控制直流电机转速的有效方法。
本文介绍了一种基于
51系列单片机的直流电机PWM调速系统设计,该调速系统可以实现对直流电机的转速调节。
首先,本文详细描述了该调速系统的硬件结构,包括51系列单片机控制器,PWM模块,旋转编码器,按键,LED指示灯,直流电机等构成组件。
其中,51系列单片机控制器负责
信号的采集和处理,PWM模块负责调节直流电机的转速,旋转编码器负责实时测量直流电
机的转速,按键和LED指示灯则用于进行键盘操作和系统状态指示。
接着,本文提出了该系统的主要程序流程设计。
首先,通过旋转编码器获取当前直流
电机的转速,并经过51系列单片机的实时校准,作为调节直流电机的转速的PWM信号的
参考值。
然后,通过按键输入参考值,调节PWM模块的输出比例,从而调节直流电机的转速。
最后,将调节结果通过LED指示灯反馈出来,用于系统状态的指示。
整个调速系统的设计都在51系列单片机上完成,功能完善。
基于单片机的直流电机调速系统的课程设计
一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。
二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。
但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。
由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。
磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。
电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。
传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。
随着电力电子的发展,出现了许多新的电枢电压控制法。
如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。
调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。
脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。
如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。
平均转速Vd与占空比的函数曲线近似为直线。
基于C51单片机的直流电机PWM调速控制(包含原理图及C源代码)
基于C51单片机的直流电机PWM调速控制--SQ这是最近一阶段自己学习所获,现分享与大家。
这里采用A T89C52单片机做主控制芯片,实现两路直流电机的PWM调速控制,另外还可以实现转向、显示运行时间、显示档位等注:考虑小直流电机自身因素,调速范围仅设有四级电路原理图:C语言程序源代码:/******************** 硬件资源分配*********************/数码管:显示电机状态(启停、正反、速度)、运行时间、是否转弯按键:K4 启动/暂停K3 正反转/转弯允许K2 加速/左转/运行时间清零K1 减速/右转/停止定时器:T0 数码管动态显示,输出PWMT1 运行时间记录********************************************************//*******主程序文件PWM.c******/#include <reg52.h>#include "Afx.h"#include "Config.c"#define CIRCLE 5 //脉冲周期//按键定义uchar key,key_tmp=0, _key_tmp=0;//显示定义uchar LedState=0xF0; //LED显示标志,0xF0不显示,Ox00显示uchar code LED_code_d[4]={0xe0,0xd0,0xb0,0x70}; //分别选通1、2、3、4位uchar dispbuf[4]={0,0,0,0}; //待显示数组uchar dispbitcnt=0; //选通、显示的位uchar mstcnt=0;uchar Centi_s=0,Sec=0,Min=0; //分、秒、1%秒//程序运行状态标志bit MotState=0; //电机启停标志bit DirState=0; //方向标志0前,1后uchar State1=-1;uchar State2=-1;uchar State3=0;uchar State4=-1;uchar LSpeed=0;uchar RSpeed=0;//其他uint RunTime=0;uint RTime_cnt=0;uint LWidth;uint RWidth; //脉宽uint Widcnt=1;uint Dispcnt;//函数声明void key_scan(void);void DisBuf(void);void K4(void);void K3(void);void K2(void);void K1(void);void disp( uchar H, uchar n );void main(void){P1|=0xF0;EA=1;ET0=1;ET1=1;TMOD=0x11;TH0=0xFC;TL0=0x66; //T0,1ms定时初值TH1=0xDB;TL1=0xFF; //T1,10ms定时初值TR0=1;Widcnt=1;while(1){key_scan();switch(key){case 0x80: K1(); break;case 0x40: K2(); break;case 0x20: K3(); break;case 0x10: K4(); break;default:break;}key=0;DisBuf();LWidth=LSpeed;RWidth=RSpeed;}}//按键扫描**模拟触发器防抖void key_scan(void){key_tmp=(~P3)&0xf0;if(key_tmp&&!_key_tmp) //有键按下{key=(~P3)&0xf0;}_key_tmp=key_tmp ;}//按键功能处理/逻辑控制void K4(void){if(State4==-1){State4=1;TR1=1;dispbuf[3]=1;LedState=0x00; //打开LEDMotState=1; //打开电机LSpeed=1;RSpeed=1; //初速设为1}else if(State4==1){State4=0;TR1=0;MotState=0; //关闭电机}else if(State4==0){MotState=1;if(State3==0){State4=1;TR1=1;}else if(State3==1){LSpeed=2;RSpeed=2;}}}void K3(void){if(State4==1)DirState=!DirState;if(State4==0){if(State3==0){State3=1; //可以转向标志1可以,0不可以TR1=1;dispbuf[3]=9;MotState=1;LSpeed=2;RSpeed=2;}else if(State3==1){State3=0;TR1=0;dispbuf[3]=0;MotState=0;}}}void K2(void){if(State4==1&&LSpeed<4&&RSpeed<4){LSpeed++;RSpeed++;}else if(State4==0){if(State3==0){//State4=-1;//LedState=0xF0;MotState=0;Sec=0;Min=0;}else if(State3==1&&LSpeed<4&&RSpeed<4){//TurnState=0;LSpeed=2;RSpeed++;}}}void K1(void){if(State4==1&&LSpeed>1&&RSpeed>1){LSpeed--;RSpeed--;}else if(State4==0){if(State3==0){State4=-1;LedState=0xF0;MotState=0;}else if(State3==1&&LSpeed<4&&RSpeed<4){//TurnState=1;LSpeed++;RSpeed=2;}}}//显示预处理void DisBuf(void){if(RTime_cnt==100){Sec++;RTime_cnt=0;}if(Sec==60){Min++;Sec=0;}if(State4==1){dispbuf[0]=Sec%10;dispbuf[1]=Sec/10;dispbuf[2]=Min;if(!DirState) //正转dispbuf[3]=LSpeed;if(DirState) //反转dispbuf[3]=LSpeed+4;}if(State4==0){if(State3==0){dispbuf[0]=Sec%10;dispbuf[1]=Sec/10;dispbuf[2]=Min;dispbuf[3]=0;}if(State3==1){dispbuf[0]=RSpeed;dispbuf[1]=LSpeed;dispbuf[2]=Min;dispbuf[3]=9;}}}//LED驱动void disp( uchar H, uchar n ){P1=n;P1|=LedState ;P1|=LED_code_d[H];}//T0中断**显示/方波输出void Time_0() interrupt 1{TH0=0xFC;TL0=0x66;Widcnt++;Dispcnt++;//电机驱动/方波输出if(Widcnt>CIRCLE){Widcnt=1;}if(Widcnt<=LWidth)LMot_P=!DirState&&MotState;elseLMot_P=DirState&&MotState;LMot_M=DirState&&MotState;if(Widcnt<=RWidth)RMot_P=!DirState&&MotState;elseRMot_P=DirState&&MotState;RMot_M=DirState&&MotState;//显示if(Dispcnt==5){disp(dispbitcnt,dispbuf[dispbitcnt]);dispbitcnt++;if(dispbitcnt==4){dispbitcnt=0;}Dispcnt=0;}}//T1中断**运行时间void Time_1() interrupt 3{TH1=0xDB;TL1=0xFF;RTime_cnt++;}/******配置文件Afx.h******/#ifndef _AFX_#define _AFX_typedef unsigned char uchar;typedef unsigned int uint;typedef unsigned long ulong;#endif/******IO配置文件Config.c******/#ifndef _Config_#define _Config_#include "Afx.h"#include <reg52.h>//显示定义sbit led=P3^2;//电机引脚定义sbit LMot_P=P2^2; sbit LMot_M=P2^3; sbit RMot_P=P2^0; sbit RMot_M=P2^1;#endif。
基于51单片机的直流电机PWM调速系统
DOI:10.16660/ki.1674-098X.2018.13.108基于51单片机的直流电机PWM调速系统吴一平(浙江农林大学工程学院 浙江杭州 311300)摘 要:本文介绍了以单片机STC89C51和L298控制的直流电机PWM (脉宽调制)调速系统,主要介绍了用单片机软件实现PWM调整电机转速的基本原理及选择。
硬件电路实现了对电机的正转、反转、快速停止、加速,停止的控制。
软件电路给出了主程序、子程序流程图以及Proteus的仿真结果。
关键词:单片机STC89C51 脉宽调制 直流电机中图分类号:TN710 文献标识码:A 文章编号:1674-098X(2018)05(a)-0108-02直流电动机是将直流电能转换为机械能的电动机,相比其他类型电动机具有更好的调速性能,因此,直流电动机在工农业中被广泛应用。
本文对基于单片机STC89C51的直流电机PWM调速系统进行介绍,以期实现直流电机最优化方案。
1 直流电机PWM调速选择及原理直流电动机的调速方法有改变改变磁通量、改变电枢回路串联电阻以及改变电枢电压三种。
在电枢回路串联电阻,调速范围不大并且铜耗大,不经济。
弱磁调速中当磁通量Φ在低速时受磁极饱和限制,在高速时受换向器结构强度和换向火花的限制,而且由于励磁圈电感较大,动态响应较差,因此采用改变电枢电压的调速方法。
PWM(Pulse Width Modulation),全称为脉冲宽度调制,可以改变电枢电压值。
PWM的优点是精度高,易于控制,运行稳定。
PWM调速方法有三种,分别为定频调宽法、调宽调频法和定频调宽法。
前两种方法在调速时会改变控制脉冲的频率,而控制脉冲的频率与系统固有频率接近时会引起震荡,因此本文选用定频调宽法。
调速原理计算如下:占空比,D=t1t1+t2=t1T式中,T为电压变化周期;t1为一个周期内高电平持续时间;t2为一个周期内低电平持续时间;电机电压平均值U=DU0,式中,U0为总电压。
基于51单片机的PWM直流电机调速
基于51单片机的PWM直流电机调速在现代社会,PWM直流电机已经成为各类机械设备不可或缺的动力源。
为了更好地控制电机的转速和输出功率,我们需要进行PWM调速操作。
本文将简要介绍如何基于51单片机实现PWM直流电机的调速。
一、PWM调速原理PWM调速是一种通过改变电机供电电压的占空比来调整电机转速和功率的方法。
当一个周期内高电平所占的时间比较短时,电机得到的平均电流和平均转矩也相应减小,电机的速度和功率也随之降低。
反之,当高电平所占的时间比较长时,电机得到的平均电流和平均转矩也相应增大,电机的速度和功率也随之提高。
因此,通过改变PWM信号的高电平占空比,可以实现直流电机的调速、调功等功能,极大地提高了电机的效率和可控性。
二、硬件电路搭建根据上述PWM调速原理,我们需要搭建一个控制板,将51单片机的PWM输出与直流电机相连。
具体电路如下:1、选择合适的电源供电,一般为12V/24V直流电源。
2、使用L298N模块作为直流电机驱动模块,将模块的电源接到电源供电上,将模块的IN1和IN2引脚分别接到51单片机的P1^0和P1^1引脚上,将直流电机的正负极分别接到模块的OUT1和OUT2引脚上。
3、将51单片机的P1^2引脚连接到一个脉冲宽度计波形滤波器(LCF)的输入端,并将输出端接到L298N模块的ENA引脚上。
4、调整脉冲宽度计波形滤波器的参数,以达到合理的PWM输出波形。
5、建立一个按键,将按键的一端接到51单片机的P3^2引脚上,将另一端接到单片机的地端。
6、根据需要进行其他接线。
三、软件程序设计根据上述硬件电路,我们需要进行相应的软件程序设计,以实现基于51单片机的PWM 直流电机调速。
以下是程序设计的主要步骤:1、在程序中定义需要使用的IO口。
2、调用定时器初始化程序,设置定时器的时钟频率、计数器值和工作方式等参数。
3、编写一个PWM输出函数,实现对PWM信号的输出。
4、编写一个ADC采样函数,读取ADC转换器的值,并根据采样值输出一定的PWM信号。
基于51单片机的PWM直流电机调速系统设计PPT课件
ADC0808
调速端
2021
10
总体设计
❖ 电路仿真图如下:
2021
11
系统仿真
由图可以看出滑动变阻器的值为66%即6600欧,占空比为63.6%,此时电 动机的转速为243r/min,电压值为2.92V。
2021
12
系统仿真
❖ 当滑动变阻器的值为80%即8000欧,占空比为81.8%,此时电动机的转 速为304r/min,电压值为3.65V。
5
直流电机的介绍
❖ 直流电机总体结构可以 分成两大部分:静止部 分(称为定子)和旋转 部分(称为转子)。定 子和转子之间存在间隙 (称为空气隙)。定子 由定子铁心、励磁绕组、 机壳、端盖和电刷装置 等组成。
2021
6
51单片机及PWM的简介
❖ 一个完整的计算机包括运算器、控制器、数 据(程序)存储器和输入/输出接口四大部分。 在一个晶体芯片上集成了计算机的四大基本 单位使之变成为一个完整的计算机,称之为 单片机。
2021
7
单片机的主要特性
❖ AT89C51单片机有128*8位内部RAM、32可 编程I/O线、两个16位定时器/计数器、5个中 断源、可编程串行通道、低功耗的闲置和掉 电模式、片内振荡器和时钟电路
2021
8
51单片机及PWM的简介
❖ PWM的基本原理
❖ PWM(脉冲宽度调制)是通过控制固定电压的直流电源开 关频率,改变负载两端的电压,从而达到控制要求的一种电 压调整方法。PWM可以应用在许多方面,比如:电机调速、 温度控制、压力控制等等。
❖ 在PWM驱动控制的调整系统中,按一个固定的频率来接通 和断开电源,并且根据需要改变一个周期内“接通”和“断 开”时间的长短。通过改变直流电机电枢上电压的“占空比”
基于单片机实现直流电机PWM调速系统毕业设计
1.7 A/D 转换 …………………………………………………………………18
1.7.1芯片ADC0809介绍………………………………………………………18
1.7.2 ADC0809 的引脚及其功能 ……………………………………………18
Key words:PWM signal,tachogenerator,PI calculation
1. 系统硬件电路的设计………………………………………………………1
1.1 系统总体设计框图及单片机系统的设计…………………………………1
1.1.1系统总体设计框图 ……………………………………………………1
致谢……………………………………………………………………………31
参考文献
1. 系统硬件电路的设计
1.1系统总体设计框图及单片机系统的设计
1.2.2 PWM信号发生电路设计…………………………………………………8
1.2.3 PWM发生电路主要芯片的工作原理……………………………………10
1.3 功率放大驱动电路设计……………………………………………………12
1.3.1芯片IR2110性能及特点………………………………………………12
1.3.2芯片IR2110引脚图及功能……………………………………………12
基于单片机实现直流电机PWM调速系统毕业设计
摘 要
本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。文章中采用了专门的芯片组成了PWM信号的发生系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。此外,本文中还采用了芯片IR2110作为直流电机正转调速功率放大电路的驱动模块,并且把它与延时电路相结合完成了在主电路中对直流电机的控制。另外,本系统中使用了测速发电机对直流电机的转速进行测量,经过滤波电路后,将测量值送到A/D转换器,并且最终作为反馈值输入到单片机进行PI运算,从而实现了对直流电机速度的控制。在软件方面,文章中详细介绍了PI运算程序,初始化程序等的编写思路和具体的程序实现。
基于51系列单片机的直流电机PWM调速
南昌工程学院本科综合课程设计第一章直流电动机调速概述 (1)1.1直流电机调速原理 (1)1.2直流调速系统实现方式 (2)1.389C51单片机 (3)89C51单片机接口如图1-3所示: (3)第二章硬件电路设计 (4)2.1PWM波形的程序实现 (4)2.2直流电动机驱动 (4)2.3续流电路设计 (5)第三章软件设计 (6)3.1主程序设计 (6)3.2数码显数设计 (7)3.3功能程序设计 (7)3.4仿真图 (11)3.5仿真结果分析 (12)心得体会 (13)参考文献 (14)第一章直流电动机调速概述1.1直流电机调速原理直流电动机根据励磁方式不同,直流电动机分为自励和他励两种类型。
不同励磁方式的直流电动机机械特性曲线有所不同。
但是对于直流电动机的转速有以下公式:n=U/C cφ-TR内/C r C cφ其中:U—电压;R内—励磁绕组本身的电阻;φ—每极磁通(Wb);Cc—电势常数;Cr—转矩常量。
由上式可知,直流电机的速度控制既可采用电枢控制法,也可采用磁场控制法。
磁场控制法控制磁通,其控制功率虽然较小,但低速时受到磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差。
所以在工业生产过程中常用的方法是电枢控制法。
第一章直流电动机调速概述图1-1 直流电机的工作原理图电枢控制是在励磁电压不变的情况下,把控制电压信号加到电机的电枢上,以控制电机的转速。
在工业生产中广泛使用其中脉宽调制(PWM)应用更为广泛。
脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上电压的“占空比”来改变平均电压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。
图1-2电枢电压占空比和平均电压的关系图,占空比为D=1t/T,则电根据上图,如果电机始终接通电源时,电机转速最大为vmaxV=V*D,可见只要改变占空比D,就可以得机的平均速度为:D max到不同的电机速度,从而达到调速的目的。
基于C8051F040的直流电机调速系统设计
基于C8051F040的直流电机调速系统设计[摘要]:由于直流电动机具有良好的调速性能,因而在精度要求较高的速度控制系统中得到了广泛的应用。
传统的模拟控制直流电动机调速系统存在着调节时间长、误差大、可靠性低、数据显示与记录不便等缺点,难以满足实际应用中提出的控制要求。
pwm技术是利用电力电子器件,通过调节电枢电压来控制调节直流电动机的转速。
该技术是利用单片机来实现直流电机的数字化控制,同时具有精度高、响应快、结构简单、系统输出电压和电流稳定以及能耗低等优点。
在机械生产日渐机器化的时代,机器人的研制开发中有个很重要的部分,就是机器人能根据现场环境调节行进速度、行进方向,并按指令有由行机构做出提升、抓取、夹持、收集、分检等动作。
这些动作的执行都离不开直流电动机。
直流电机调速系统主要由c8051f040 处理器和电机驱动芯片l298n 构成,主功能是控制电机的转速和换向,执行机构的动作也是由直流电机调速系统来完成。
直流电机以其良好的线性特性、优异的控制性能等特点成为大多数运动控制和闭环位置伺服控制系统的最佳选择。
[关键词]:c8051f040 l298n 直流电机调速中图分类号:tm33 文献标识码:tm 文章编号:1009-914x(2012)26- 0357 -01一、直流电动机的调速原理:二、直流电动机的调速方法(二)、改变电枢电压调速连续改变电枢供电电压,可以使直流电动机在很宽的范围内实现无级调速。
如前所述,改变电枢供电电压的方法有两种,一种是采用发电机.电动机组供电的调速系统;另一种是采用晶闸管变流器供电的调速系统。
(三)、采用大功率半导体器件的直流电动机脉宽调速方法pwm 是通过控制固定电压的直流电源开关频率,从而改变负载两端的电压,进而达到控制要求的一种电压调整方法。
pwm 可以应用在许多方面,如电机调速、温度控制、压力控制等。
在pwm 驱动控制的调整系统中,按一个固定的频率来接通和断开电源,并根据需要改变一个周期内“接通”和“断开”时间的长短。
基于单片机的直流电机PWM调速控制系统的设计(DOC)
第一章:前言1.1前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。
采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。
而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。
并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。
随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。
1.2本设计任务:任务: 单片机为控制核心的直流电机PWM调速控制系统设计的主要内容以及技术参数:功能主要包括:1)直流电机的正转;2)直流电机的反转;3)直流电机的加速;4)直流电机的减速;5)直流电机的转速在数码管上显示;6)直流电机的启动;7)直流电机的停止;第二章:总体设计方案总体设计方案的硬件部分详细框图如图一所示。
键盘向单片机输入相应控制指令,由单片机通过P1.0与P1.1其中一口输出与转速相应的PWM脉冲,另一口输出低电平,经过信号放大、光耦传递,驱动H型桥式电动机控制电路,实现电动机转向与转速的控制。
基于单片机的PWM直流电机调速系统设计
基于单片机的PWM直流电机调速系统设计摘要:本文设计了一种基于单片机的PWM调速系统来控制直流电机的转速。
通过使用单片机的IO口产生PWM信号,可以精确地控制电机的转速。
通过对脉宽信号的调节,可以改变电机的转速。
实验结果表明,该系统可以实现精确的电机调速控制,具有较高的可靠性和稳定性。
关键词:单片机,PWM调速,直流电机,转速控制1.引言直流电机广泛应用于家电、机械设备等领域,其转速控制对于实际应用非常重要。
传统的直流电机调速方法主要通过电压调节或者极数切换来实现,但是这种方法调节范围有限。
随着单片机技术的发展,基于单片机的PWM调速系统成为一种较为先进和可靠的调速方法。
2.系统设计2.1硬件设计本系统使用STC12C5A60S2单片机作为控制核心。
单片机的IO口通过驱动电路连接到直流电机,驱动电路包括功率二极管和功率晶体管,用于放大和控制输出电流。
另外,系统还包括电流检测模块和电源模块。
电流检测模块用于实时监测直流电机的工作电流,电源模块提供系统所需的电源电压。
2.2软件设计单片机采用C语言编程,使用定时器中断来产生PWM信号。
首先,根据所需的转速范围确定PWM的占空比范围。
然后,根据转速需求,计算出相应的占空比,并将其输出到IO口。
通过不断改变占空比,可以改变电机的转速。
另外,系统还设置了保护功能,当电机超过设定的电流范围时,系统会自动停止电机运行,以防止电机损坏。
3.实验结果通过实验测试,验证了本系统的可行性和有效性。
当输入设定的转速值后,电机可以精确地调整到相应的转速,并保持稳定。
同时,当电机运行时,系统能够准确地监测电机的工作电流,当电机超过设定范围时,可以及时地停止电机运行。
实验结果表明,基于单片机的PWM调速系统具有较高的可靠性和稳定性。
4.结论本文设计了一种基于单片机的PWM调速系统来控制直流电机的转速。
通过使用单片机的IO口产生PWM信号,可以精确地控制电机的转速。
系统具有较高的可靠性和稳定性,并能够保护电机免受损坏。
详解用单片机构建直流电机PWM调速系统
课程设计设计题目:基于51单片机的直流电机PWM调速控制系统仿真设计院系:电子信息与电气工程学院专业:电气工程及其自动化年级:姓名:指导教师:上海交通大学年月日题目基于51单片机的直流电机PWM调速控制系统设计一、设计的目的1.将理论知识运用于实践当中,掌握模拟电路设计的基本方法、基本步骤以及基本要求。
在实践中了解电子器件的功能与作用。
2.学会信号发生器的设计方法,完成要求的性能和指标。
3.锻炼、提高在电子设计中发现问题、分析问题、解决问题的能力。
二、设计的内容及要求三、指导教师评语四、成绩指导教师(签章)年月日1 引言早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,如存在温漂、零漂电压,构成系统的器件较多,使得模拟直流传动系统的控制精度及可靠性较低。
随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。
由于微处理器以数字信号工作,控制手段灵活方便,抗干扰能力强。
所以,全数字直流调速控制精度、可靠性和稳定性比模拟直流调速系统大大提高。
所以,直流传动控制采用微处理器实现全数字化,使直流调速系统进入一个崭新的阶段。
微处理器诞生于上个世纪七十年代,随着集成电路大规模及超大规模集成电路制造工艺的迅速发展,微处理器的性价比越来越高。
此外,由于电力电子技术的发展,制作工艺的提升,使得大功率电子器件的性能迅速提高。
为微处理器普遍用于控制电机提供了可能,利用微处理器控制电机完成各种新颖的、高性能的控制策略,使电机的各种潜在能力得到充分的发挥,使电机的性能更符合工业生产使用要求,还促进了电机生产商研发出各种如步进电机、无刷直流电机、开关磁阻电动机等便于控制且实用的新型电机,使电机的发展出现了新的变化。
对于简单的微处理器控制电机,只需利用用微处理器控制继电器、电子开关元器件,使电路开通或关断就可实现对电机的控制。
现在带微处理器的可编程控制器,已经在各种的机床设备和各种的生产流水线中普遍得到应用,通过对可编程控制器进行编程就可以实现对电机的规律化控制。
基于51单片机的PWM直流电机调速报告
课程名称:微机原理课程设计题目:基于51单片机的PWM直流电机调速直流电机脉冲宽度调制(Pulse Width Modulation-简称PWM)调速产生于20世纪70 年代中期,最早用于自动跟踪天文望远镜、自动记录仪表等的驱动,后来由于晶体管器件水平的提高及电路技术的发展, PWM 技术得到了高速发展,各式各样的脉宽调速控制器,脉宽调速模块也应运而生,许多单片机也都有了PWM输出功能。
而51单片机却没有PWM 输出功能,采用定时器配合软件的方法可以实现51单片机PWM的输出功能。
本设计就是由单片机STC89C52RC芯片,直流电机(搭建H桥电路驱动)和四位一体LED数码管为核心,辅以必要的电路,构成了一个基于51单片机PWM可调速的直流电机。
该可调直流电机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
该可调直流电机布置合理,全部器件分布在7*9cm洞洞板上,看起来小巧精简。
采用的是单片机内部定时器产生方波并且两个P口交换输出,可以方便灵活地调速度和方向。
该可调直流电机从0到最大速度1200转每分钟一共设置了60个档次的转速,采用红光四位数码管,可以直观地显示出来(显示的是每分钟的转速)。
有红光和绿光的两个二极管作为转速指示灯。
四个控制按键就可以控制电机的转速,方向与暂停。
每按一个键,该可调电机就会实现相对应的功能,操作非常简单。
关键词:直流电机,51单片机,C语言,数码管一、设计任务与要求 (4)1.1 设计任务 (4)1.2 设计要求 (4)二、方案总体设计 (5)2.1 方案一 (5)2.2 方案二 (5)2.3 系统采用方案 (5)三、硬件设计 (7)3.1 单片机最小系统 (7)3.2 数码管显示模块 (7)3.3 系统电源 (8)3.4驱动电路 (8)3.5 整体电路 (9)四、软件设计 (10)4.1 keil软件介绍 (10)4.2 系统程序流程 (10)五、仿真与实现 (13)5.1 proteus软件介绍 (13)5.2 仿真过程 (13)5.3 实物制作与调试 (15)5.4 使用说明 (17)六、总结 (18)6.1 设计总结 (18)6.2 经验总结 (18)七、参考文献 (21)一、设计任务与要求1.1 设计任务1).对更多小器件的了解2).巩固51单片机和C语言的知识,熟悉单片机和C语言的实际操作运用3).掌握仿真软件的运用和原理图的绘制4).加深焊接的技巧,提高焊接的能力5).熟悉调试方法和技巧,提高解决实际问题的能力6).熟悉设计报告的编写过程1.2 设计要求1).四个按键分别实现改变转向,加速,减速与暂停的功能2).H桥电路驱动直流电机3).一个红光和一个绿光二级管指示电机转向4).四位数码管显示转速二、方案总体设计设计一个基于51单片机的可调直流电机。
基于51单片机的直流电机PWM调速系统
2 软件 设计
2 . 1 主 程 序 部 分
本 序 的 功 能 是 通 过 埘 测 量 的 转 速 ,并 用 1 , 2 9 3 D 器 件 求控 制 电机 的转速 ,与电机 转动 的方 向。 然后 用 4
电压 。用 软件 模 拟 P 州 可 以何 延时 和 定时 两 种方 法 , 延 时 方法 ^用大 量 的 C P U , 所 以这 里采 月 j 定 时方 法 。 个 典型 的 直流 电机 控 制 电路 ,电路得 名 于 “ I 1 桥 驱 动 电路 ” 。4个 j极 管 组 成 I { 的 4条 垂 直 J 腿 ,而 电机 就 是 H中 的横 杠 。H桥 式 电机 驱动 电路 包括 4个 三极 管 和 一个 电机 ,要使 电机 运 转 ,必须 导 通对 角 线 卜的 …对 三 极 管 。根据 不 同 j极 管 对的 导通 情 , 电流 可 能 会从 左 至 右或 从 右至 左 流过 电机 ,从而 控 制 电机 的转 向 。本 系统 直接 用 L 2 9 3 D芯 片来 实现 。
一
位 数码 管显 乐 出来 当前 的转速 与转 动方 向 。 2 . 2 数 码 管 显 示 设 计
数 码 管 要 显 示 当 前各 种 状 态 , 前转 速 当 前转 动 方 向 。当 电机转 速 发生 改变 的时 候 ,数码 管 显示 内容
示 前转速 。 程序 设 计注 意 事项 : 1 ) 消 除 各个 数 码 管 之 间 的显 示 阴影 部 分 ; 2 ) 由
』 硬件 没 有锁 存器 ,需要 延 长数码 管 的点亮 时 间 , 从 而
使 数 码 管 显示 的更 加 清 晰 ;3 )合 理 运用 程 序 空 间 ,避 免 数 码 管显 示 清 晰 ;4 )动 态 扫 描可 以实 现 各 个数 码
基于单片机的PWM直流电机调速系统设计论文附电路图、程序清单
第1章引言1.1 概况现代工业的电力拖动一般都要求局部或全部的自动化,因此必然要与各种控制元件组成的自动控制系统联系起来,而电力拖动则可视为自动化电力拖动系统的简称。
在这一系统中可对生产机械进行自动控制。
随着近代电力电子技术和计算机技术的发展以及现代控制理论的应用,自动化电力拖动正朝着计算机控制的生产过程自动化的方向迈进。
以达到高速、优质、高效率地生产。
在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成部分。
另外,低成本自动化技术与设备的开发,越来越引起国内外的注意。
特别对于小型企业,应用适用技术的设备,不仅有益于获得经济效益,而且能提高生产率、可靠性与柔性,还有易于应用的优点。
自动化的电力拖动系统更是低成本自动化系统的重要组成部分。
在如今的现实生活中,自动化控制系统已在各行各业得到广泛的应用和发展,其中自动调速系统的应用则起着尤为重要的作用。
虽然直流电机不如交流电机那样结构简单、价格便宜、制造方便、容易维护,但是它具有良好的起、制动性能,宜于在广泛的范围内平滑调速,所以直流调速系统至今仍是自动调速系统中的主要形式。
现在电动机的控制从简单走向复杂,并逐渐成熟成为主流。
其应用领域极为广泛,例如:军事和宇航方面的雷达天线、火炮瞄准、惯性导航等的控制;工业方面的数控机床、工业机器人、印刷机械等设备的控制;计算机外围设备和办公设备中的打印机、传真机、复印机、扫描仪等的控制;音像设备和家用电器中的录音机、数码相机、洗衣机、空调等的控制。
随着电力电子技术的发展,开关速度更快、控制更容易的全控型功率器件MOSFET 和IGBT成为主流,脉宽调制技术表现出较大的优越性:主电路线路简单,需要用的功率元件少;开关频率高,电流容易连续,谐波少,电机损耗和发热都较小;低速性能好,稳速精度高,因而调速范围宽;系统快速响应性能好,动态抗扰能力强;主电路元件工作在开关状态,导通损耗小,装置效率较高;近年来,微型计算机技术发展速度飞快,以计算机为主导的信息技术作为一崭新的生产力,正向社会的各个领域渗透,直流调速系统向数字化方向发展成为趋势。
基于51单片机的PWM直流电机调速系统
基于51单片机的PWM直流电机调速系统一、本文概述随着现代工业技术的飞速发展,直流电机调速系统在众多领域如工业自动化、智能家居、航空航天等得到了广泛应用。
在众多调速方案中,基于脉冲宽度调制(PWM)的调速方式以其高效、稳定、易于实现等优点脱颖而出。
本文旨在探讨基于51单片机的PWM直流电机调速系统的设计与实现,以期为相关领域的技术人员提供一种可靠且实用的电机调速方案。
本文将简要介绍PWM调速的基本原理及其在直流电机控制中的应用。
随后,将详细介绍基于51单片机的PWM直流电机调速系统的硬件设计,包括电机选型、驱动电路设计、单片机选型及外围电路设计等。
在软件设计部分,本文将阐述PWM信号的生成方法、电机转速的检测与控制算法的实现。
还将对系统的性能进行测试与分析,以验证其调速效果及稳定性。
本文将总结基于51单片机的PWM直流电机调速系统的优点与不足,并提出改进建议。
希望通过本文的阐述,能为相关领域的研究与应用提供有益参考。
二、51单片机基础知识51单片机,也被称为8051微控制器,是Intel公司在1980年代初推出的一种8位CISC(复杂指令集计算机)单片机。
尽管Intel公司已经停止生产这种芯片,但由于其架构的通用性和广泛的应用,许多其他公司如Atmel、STC等仍然在生产与8051兼容的单片机。
51单片机的核心部分包括一个8位的CPU,以及4KB的ROM、低128B 的RAM和高位的SFR(特殊功能寄存器)等。
它还包括两个16位的定时/计数器,四个8位的I/O端口,一个全双工的串行通信口,以及一个中断系统。
这些功能使得51单片机在多种嵌入式系统中得到了广泛的应用。
在PWM(脉冲宽度调制)直流电机调速系统中,51单片机的主要作用是生成PWM信号以控制电机的速度。
这通常是通过定时/计数器来实现的。
定时/计数器可以设置一定的时间间隔,然后在这个时间间隔内,CPU可以控制I/O端口产生高电平或低电平,从而形成PWM信号。
基于单片机的直流电机调速系统的设计
本科生毕业设计说明书论文题目:基于单片机的直流电机调速系统的设计摘要本文主要介绍了基于单片机的直流调速系统,确定了直流电机速度控制系统的基本设计方案。
本设计以8051单片机为核心,以小型直流电机为对象,以4 4矩阵键盘作为输入,LED显示输出,从而实现了直流电机的启停、速度和方向的控制。
本设计分析了对直流电机进行速度测量的原理,采用了PWM技术对电机进行控制,通过对占空比的计算达到精确调速的目的。
实时测量电机的实际转速,并在LED 数码管上显示出来,并对电机进行PID转速调节,使其转速趋近于设定值。
该系统解决了以往复杂的模拟电路设计问题,增强了对直流电机速度的可控性,提高了调速系统的精度。
关键词单片机;直流电机;PWM;PID算法AbstractThis paper introduces the DC motor speed control system based on 8051 single chip computer, and determines the basis scheme of this system. The system takes 8051 single chip computer as a core device,DC motor as a plant,4*4 keyboard matrix as an input device, LED as an output device ,then this system can achieve the operation of the start-stop, speed and direction.This design analyzes to carry on the principle of the speed measures to the DC motor, uses the PWM technology to control the motor, and through the computation of dutyfactor to achieve the precise velocity modulation to get the goal. Measured the motor's actual rotational speed by the real-time, showed it on the LED nixie tube and carried on the PID rotational speed adjustment to the motor, caused its rotational speed approach to the setting value. This system has solved formerly the complex analogous circuit design problem, strengthened to the DC motor speed controllability, and increased the velocity modulation system's precision.Key WordsSingle ship computer; Dc motor; PWM; PID algorithm目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 课题研究背景 (1)1.2 课题研究方法 (2)第二章8051单片机简介 (3)2.1 单片机概述 (3)2.2 8051单片机引脚图及引脚功能 (4)2.3 8051单片机的特点及基本组成 (5)2.4 8051单片机中央处理器模块及内部结构 (7)2.5 8051单片机的片外总线结构及并行I/O口 (10)第三章系统硬件电路设计 (13)3.1 总体方案设计 (13)3.2 直流电机的工作原理和调速方法 (14)3.3 转换电路 (16)3.4 转速测量电路 (18)3.5 数码管显示电路 (19)第四章PWM信号发生电路设计 (20)4.1脉宽调制(PWM)的基本原理 (20)4.2PWM波形发生电路 (22)4.3 PWM脉冲波的产生 (23)4.4 干扰问题的处理 (23)第五章系统软件设计 (25)5.1 主程序设计 (25)5.2 PID算法 (26)5.3 源程序 (27)结论 (36)参考文献 (37)致谢 (38)第一章绪论1.1 课题研究背景在电气时代的今天,电动机在工农业生产与人们日常生活中都起着十分重要的作用。
单片机的直流电机调速系统
基于8051单片机直流电机调速系统2.1总体硬件电路设计 2.1.1系统总体设计框图本系统采用89C51控制输出数据,由PWM&号发生电路产生PW 信号,送到 直流电机,直流电机通过测速电路,滤波电路,和A/D 转换电路交数据重新送回 单片机,进行PI 运算,从而实现对电机速度和转向的控制,达到直流电机调速 的目的。
A/D滤波4测速 q --------转换■电路■发电机■图2-1系统总体设计图2.1.2 8051单片机简介1. 8051单片机的基本组成8051单片机由CPU 和8个部件组成,它们都通过片内单一总线连接,其基 本结构依然是通用CPU 加上外围芯片的结构模式,但在功能单元的控制上采用了 特殊功能寄存器的集中控制方法。
其基本组成如下图所示:PWM 信号的产生和放大主控芯片图2-2 8051基本结构图2. CPU及部分部件的作用功能介绍如下中央处理器CPU它是单片机的核心,完成运算和控制功能。
内部数据存储器:8051芯片中共有256个RAM单元,能作为存储器使用的只是前128个单元,其地址为00H—7FH通常说的内部数据存储器就是指这前128个单元,简称内部RAM内部程序存储器:8051芯片内部共有4K个单元,用于存储程序、原始数据或表格,简称内部ROM定时器:8051片内有2个16位的定时器,用来实现定时或者计数功能,并且以其定时或计数结果对计算机进行控制。
中断控制系统:该芯片共有5个中断源,即外部中断2个,定时/计数中断2个和串行中断1个。
3. 8051单片机引脚图Pl.7RST/VPBP1.0 Pl 1 805140 YCC F0.0 Pl.2 Pl.3 Pl 4 Fl.5 35 P0 1 PO.Z f0.3Pl.6 —34F0.5ESD/F3. 0 — TXD/P3, 1 — INT0/F3 2 — IHT1/F3 3 — T0/F3. 4 — Tl/P3,5 —WP3.6 — 矽F3” 了 XTAL2 — 1CTWJ —— VSS —10 11 12 13 14 151617 1615 2031 30 2928 27 26 25 24 23 22 31 一 EA/VTF ■— ALE/PM^—PSEN ——FZ 7 —F2.G ——PZ 5 —F2. 4 —?2.3 —P2.2 ——F2. 1 —F2 0图2-3 8051单片机引脚图2.1.3 单片机系统中所用其他芯片选型1.地址锁存器地址锁存器可以选择多种,有地址锁存功能的器件有74LS373 8282、74LS273等,8282是地址锁存器,功能和74LS373类似,但本系统选用74LS373 作为地址锁存器,考虑到其使用的广泛性以及具有良好的性价比,成为目前在单片机系统中应该较广泛的地址锁存器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 前言在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用无论是在工农业生产、交通运输、国防、航空航天、医疗卫生、商务与办公设备,还是在日常生活中的家用电器,都大量地使用着各种各样的电动机。
据资料统计,现有90%以上的动力源来自与电动机,我国生产的电能大约有60%以上用于电动机。
电动机与人们的生活息息相关,密不可分。
我们都知道,动力和运动是可以相互转换的,从这个意义上讲,电动机也最常用的运动源。
对运动控制的最有效的方式是对运动源的控制,因此,常常通过对电动机的控制来实现运动的控制。
实际上国外已将电动机的控制改为运动控制。
电动机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术、微机应用技术的最新发展成就。
正是这些技术的进步,使电动机控制技术在近二十多年内发生了翻天覆地的变化。
随着计算机进入控制领域以及高开关频率、全控型电力半导体器件的发展,脉宽调制(PWM)的直流调速系统在调速控制中得到越来越普遍的使用。
PWM(脉冲宽度调制)功率放大器具有功耗低,效率高,体积小,价格低,工作可靠等优点,并且大大降低了电路的复杂度,提高了系统的可靠性。
因此,直流电动机采用PWM调速已经得到了广泛的应用,在传统的调速系统中一般采用硬件作为脉冲发生器的方式,应用的元件较多,同样会增加电路的复杂程度。
为此,本文介绍一种靠软件发出脉冲信号来实现直流电动机调速控制的方法,本系统具有功率器件体积小,功率大,损耗低,控制灵活简单,效率高的特点。
1 概述直流电动机是最早出现的电动机,也是最早能实现调速的电动机。
长期以来,直流电动机一直占据着调速的统治地位。
由于它具有良好的调速特性,简单的控制性能,较高的效率,优异的动态特性;尽管近年来不断受到其它电动机(如交流变频电动机、步进电机等)的挑战,但到目前为止,它仍然是大多数调速控制电动机的最优先选择。
近年来,直流电动机的结构和控制方式都发生了很大变化。
随着计算机进入控制领域,以及新型的电力电子功率元器件的不断出现,使采用全控型的开关功率元件进行脉宽调制(pulsewidth modulation,简称PWM)控制方式已成为绝对主流。
这种控制方式很容易在单片机控制中实现,从而为直流电动机控制数字化提供了契机。
本设计介绍了利用单片机和脉宽调制控制技术对直流电动机进行调速控制的方式和实现的方法。
1.1直流电动机控制研究现状19世纪70年代前后相继诞生了直流电动机和交流电动机,从此人类社会进入了以电动机为动力设备的时代。
以电动机作为动力机械,为人类社会的发展和进步、工业生产的现代化起到了巨大的推动作用.在用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、国防、科技及社会生活等各个方面。
电动机负荷约占总发电量的70%,成为用电量最多的电气设备。
电动机在工农业生产、人们日常生活中起着十分重要的作用。
对电动机的控制可分为简单控制和复杂控制两种。
简单控制对电动机进行启动、制动、正反转控制和顺序控制。
这类控制可通过继电器、可编程控制器和开关元件来实现。
复杂控制是对电动机的转速、转角、转矩、电压、电流等物理量进行控制,而且有时往往需要非常精确的控制。
以前对电动机的简单控制应用较多,但是,随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机的复杂控制变成主流,其应用领域极其广泛。
电动机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术、微机应用技术的最新发展成就。
正是这些技术的进步,使电动机控制技术在近二十多年内发生了翻天覆地的变化。
其中电动机控制部分已由模拟控制让位给以单片机为主的微处理器控制,形成数字与模拟的混合控制系统和纯数字控制系统的应用,并向全数字控制系统的方向快速发展。
电动机驱动部分所用的功率器件经历了几次更新换代,目前开关速度更快,控制更容易的全控型功率器件MOSFE和TIGBT成为主流。
功率器件控制条件的变化和微电子技术的应用也使新型的电动机控制方法能够得以实现。
脉宽调制控制方法(PWM和SPWM),变频技术在直流调速和交流调速中获得了广泛的应用。
永磁材料技术的突破与微电子技术的结合又产生了一批新型的电动机,如永磁直流电动机、交流伺服电动机,开关磁阻电动机、超声波电动机、专为变频调速设计的交流电动机等。
直流电动机是人类最早发明和应用的一种电机。
与交流电机相比,直流电动机因结构复杂、维护困难、价格较贵等去诶按制约了它的发展,应用不如交流电机广泛。
但由于直流电动机具有优良的起动、调速和制动性能,因此在工业领域中仍再有一席之地。
1.2直流电动机的单片机控制计算机一方面向着高速、智能化超级巨型机方向发展,另一方面向微型机方面发展。
单片微型计算机(简称单片机)异军突起,发展迅速,目前已成功地运用在智能仪表、几点设备、过程控制、数据处理、自动检测和家用电器等各个方面。
依靠一定的硬件基础,针对特定的控制目的,实现一个高可靠性、高可行性、高效率的计算机应用控制系统,是现代工业和社会发展的迫切需要。
单片机体积小,成本低,可以方便地组成各种智能化的控制设备和仪器;另外其功耗低,速度快,效率高,可以完成各种控制任务;尤其是单片机的抗干扰能力强,性能可靠,可以使用在各种恶劣的工作环境中,有着其他机种不可比拟的优点。
单片机产品在生活的各个领域都得到了广泛的应用。
单片机是微型计算机家族中的一个重要分支,发展迅速,应用广泛,在工业控制、智能化仪器仪表系统等领域中日益显示着强大的生命力。
采用HMOS工艺制造的MCS-51单片机有40个引脚,双列直插式封装,起逻辑符号及引脚排列如图(1-1)所示。
由于制造工艺的限制,许多引脚都有第二功能。
MCS-51单片机的40个引脚按功能不同可分为4个部分:(1)主电源引脚Vcc、Vss(2)外接晶体引脚1XTALXTAL、2(3)控制信号引脚(4)I/O端口引脚单片机的特点:(1) 集成度高、体积小、重量轻 (2) 抗扰能力强、可靠性高 (3) 运行速度快、控制能力强 (4) 使用方便、易于产品化 (5) 开发使用方便由于单片机构成的控制系统硬件结构简单、开发周期短、控制功能强、可靠性高,因此,在达到同样功能的条件下,用单片机开发的控制系统比用其他微型计算机开发的控制系统价格便宜。
高性能、低价格是单片机的一个显著特点。
图1-1 MCS-51引脚图 Fig. 1-1 MCS-51 pin diagram1.3 PWM 控制技术PWM 控制技术是在电力电子领域有着广泛的应用,并对电力电子技术产生了十分深远影响的一项技术。
PWM控制技术在晶闸管时代就已经产生,但是为了使晶闸P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7P3.0P3.1P3.2P3.3P3.4P3.5P3.6P3.7XTAL2XTAL1Vss管通断要付出很大的代价,因而难以等到广泛应用。
以IGBT、电力MOSFET等为带便的全空性器件的不断完善给PWM控制结束提供了强大的物质基础,推动了这项技术的迅猛发展,使它运用到交-直、直-直、交-交、直-交所有四大类变流电路中。
PWM控制就是对脉冲的宽度进行调制的技术。
PWM控制技术在逆变电路中的应用最为深刻。
正是由于PWM控制技术在逆变电路中的广泛而成功的应用,才奠定了PWM 控制技术在电力电子技术中的突出地位。
现在大量应用的逆变电路中,绝大部分都是PWM逆变电路。
可以说PWM控制技术正是有赖于在逆变电路中的应用,才发展得比较成熟,才确定了它重要地位。
近年来,PWM技术在整流电路中也开始应用,并显示了突出的优越性。
2 直流电动机调速系统在电气时代的今天,电动机在工农业生产、人们日常生活中起着十分重要的作用。
直流电机是最常见的一种电机,在各领域中得到广泛应用。
研究直流电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。
2.1 直流电动机的工作原理根据电磁学基本知识可知,载流导体在磁场中要受到电磁力的作用。
如果导体在磁场中的长度l,其中流过的电流为i,导体所在处的磁通密度为B,那末导体受到的电磁力的值为式(2-1)F (2-1)B l i如图2-1中N、S极下各根导体所受电磁力的方向,如图中箭头所示。
电磁力对转轴形成顺时针方向的转矩,驱动转子而使其旋转。
由于每个磁极下元件中电流方向不变,故此转矩方向恒定,称为直流电动机的电磁转矩。
如果直流电动机轴上带有负载,它便输出机械能,可见直流电动机是一种将电能够转化成机械能的电气装置。
直流电动机是可逆的,他根据不同的外界条件而处于不同的运行状态。
当外力作用使其旋转,驶入机械能时,电机处于发电机状态,输出电能;当在电刷两端施加电压输入电能时,电机处于电动机状态,带动负载旋转输出机械能。
F图2-1 直流电动机工作原理图Fig. 2-1 DC motor operating principle2.2 转速、电流双闭环直流调速系统转速、电流双闭环控制直流调速胸膛那个是性能很好、应用最广的直流调速系统。
为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。
二者之间实行串级联接,如图2-2所示。
把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就是形成了转速、电流双闭环调速系统。
+-图2-2 转速、电流双闭环直流调速系统 Fig. 2-2 Speed and current double closed loop DC system为了获得良好的静、动态性能,转速和电流两个调节器一般都采用PI 调节器,这样构成的双闭环直流调速系统的电流原理图如图2-3所示。
图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压Uc 为正电压的情况标出的,并考虑到运算放大器的倒相作用。
图中还表示了两个调节器的输出都是带限幅作用的,转速调节器ASR 的输出限幅电压Uim 决定了电流给定电压的最大值,电流调节器ACR 的输出限幅电压Ucm 限制了电力电子变换器的最大输出电压Udm 。
图2-3 双闭环直流调速系统电路原理图Fig. 2-3 Double Loop DC Speed Control System circuit diagram2.2.1 转速调节器的作用(1)转速调节器是调速系统的主导调节器,它使转速n很快地跟随给定电压U变化,稳态时可减少转速误差,如果采用PI调节器,则可实现无静差。
n(2)对负载变化起抗扰作用。
(3)起输出限幅决定电动机允许的最大电流。
2.2.2 电流调节器的作用(1)作为内环的调节器,在转速外环的调节过程中,它的作用是使电流紧紧跟变化。