三角函数的诱导公式
三角函数的诱导公式
万能公式 ⒌万能公式 2tan(α/2)
sinα=—————— 1+tan^2(α/2) 1-tan^2(α/2) cosα=—————— 1+tan^2(α/2) 2tan(α/2) tanα=—————— 1-tan^2(α/2) 万能公式推导 附推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*, (因为 cos^2(α)+sin^2(α)=1) 再把*分式上下同除 cos^2(α),可得 sin2α=tan2α/(1+tan^2(α)) 然后用 α/2 代替 α 即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
三角函数的诱导公式
常用的诱导公式有以下几组: 公式一: 设 α 为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设 α 为任意角,π+α 的三角函数值与 α 的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角 α 与 -α 的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到 π-α 与 α 的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到 2π-α 与 α 的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α 与 α 的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα
三角函数的诱导公式
三角函数的诱导公式(六公式)公式一:sin(α+k*2π)=sinα(k为整数)cos(α+k*2π)=cosα(k为整数)tan(α+k*2π)=tanα(k为整数)公式二:sin(π+α) = -sinαcos(π+α) = -cosαtan(π+α)=tanα公式三:sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanα公式四:sin(π-α) = sinαcos(π-α) = -cosαtan(π-α) =-tanα公式五:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotα公式六:sin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotα(以上k∈Z)诱导公式记背诀窍:奇变偶不变,符号看象限。
[2]或者也可以这样记:分变整不变,符号看象限。
三角和公式sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanα·tanγ)(α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ)积化和差的四个公式sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)正弦二倍角公式sin2α = 2cosαsinα 正切二倍角公式tan2α= 2tanα / 1 - tan^2α余弦二倍角公式余弦二倍角公式有三组表示形式,三组形式等价(升幂,降角):1. cos2α = 2cos^2(α)-12. cos2α = 1 − 2sin^2(a)3. cos2α = cos^2(a)− sin^2(a)cos2α = cos^2(α)-sin^2(α)= 2cos^2(α)-1 = 1 -2sin^2(α)还可以变形为(降幂,升角)sin^2α = (1 -cos2α) /2,cos^2α =(1 + cos2α)/2sin2α = sin^2(α + π/4) -cos^2(α + π/4) = 2sin^2(a + π/4) -1 = 1 -2cos^2(α + π/4);cos2α = 2sin(α + π/4)cos(α + π/4)正切二倍角公式tan2α = 2tanα/[1 - (tanα)^2]tan(1/2*α)=(sin α)/(1 + cos α) = (1 - cos α)/sin αtan(2a) = tan(a + a) = (tan(a) + tan(a))/(1 -tan(a)*tan(a) )= 2tanα/[1 -tan^2(a)]。
三角函数的诱导公式【六公式】
)/ )
九倍角
sin9A=(sinA*(-3+4*sinA^2 )* ( 64*sinA^6-96*sinA^4+36*sinA^2-3 ))
cos9A=(cosA*(-3+4*cosA^2 )* ( 64*cosA^6-96*cosA^4+36*cosA^2-3 ))
tan9A=tanA* ( 9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8 ) / (1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8 )
例. c^3=c*c^2=c* (1-s^2 ), c^5=c*(c^2 ) ^2=c* ( 1-s^2 ) ^2 )
特殊公式
(sina+sin θ) * ( sina- sin θ) =sin (a+θ) *sin ( a- θ)
证明:(sina+sin θ) *( sina- sin θ) =2 sin[ (θ +a)/2] cos[(a - θ)/2] *2 cos[ (θ +a)/2] sin[(a- θ) /2]
tan (α +β+γ) =(tan α+tan β+tan γ - tan α· tan β· tan γ) / (1- tan α· tan β - tan β· tan γ - tan α· tan γ)
(α +β+γ≠π /2+2k π,α、β、γ≠π /2+2k π)
积化和差的四个公式
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
三角函数诱导公式总结
三角函数诱导公式总结三角函数诱导公式是指通过利用基本三角函数之间的关系推导出其他的三角函数的等式或公式。
它们是解决三角函数相关问题的重要工具之一,广泛应用于高等数学、物理、工程等领域。
常用的三角函数包括正弦函数(sin),余弦函数(cos),正切函数(tan),割函数(sec),余割函数(csc),以及反三角函数如反正弦函数(arcsin),反余弦函数(arccos),反正切函数(arctan)等。
这些函数之间存在一些特殊的关系,可以通过诱导公式进行推导。
以下是常见的三角函数诱导公式总结:1.正弦函数和余弦函数的关系:sin^2(x) + cos^2(x) = 12.正切函数和余切函数的关系:tan(x) = sin(x) / cos(x)cot(x) = cos(x) / sin(x)3.割函数和余割函数的关系:sec(x) = 1 / cos(x)csc(x) = 1 / sin(x)4.正弦函数和余切函数的关系:sin(x) = 1 / csc(x)csc(x) = 1 / sin(x)5.余弦函数和正切函数的关系:cos(x) = 1 / sec(x)sec(x) = 1 / cos(x)6.正切函数的平方和1的关系:tan^2(x) + 1 = sec^2(x)7.正弦函数和余弦函数的差分式:sin(x + y) = sin(x)cos(y) + cos(x)sin(y)cos(x + y) = cos(x)cos(y) - sin(x)sin(y)8.正弦函数和余弦函数的积分式:sin(x - y) = sin(x)cos(y) - cos(x)sin(y)cos(x - y) = cos(x)cos(y) + sin(x)sin(y)9.正弦函数、余弦函数和正切函数的积分式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = (2tan(x))/(1 - tan^2(x))10.正切函数和余切函数的积分式:tan(x + y) = (tan(x) + tan(y))/(1 - tan(x)tan(y))cot(x + y) = (cot(x)cot(y) - 1)/(cot(x) + cot(y))这些三角函数诱导公式是学习三角函数的基础,掌握它们可以帮助我们更方便地求解各种与三角函数有关的问题。
三角函数的诱导公式知识点
三角函数的诱导公式知识点三角函数的诱导公式是数学中关于三角函数之间的一组等式,通过这组等式可以在不依赖计算器或表格的情况下直接计算出一些角度的三角函数值,从而简化计算。
诱导公式的基本思想是通过将一个角度的三角函数转化为另一个角度的三角函数来求解。
一、正弦和余弦的诱导公式:根据正弦函数和余弦函数的定义,对于任意角度θ,有:sin θ = y/rcos θ = x/r其中,x,y,r代表直角三角形中的边长。
利用勾股定理可以得到x²+y²=r²。
现在考虑角度θ+90°,即sin(θ+90°)和cos(θ+90°)的值。
根据正弦函数和余弦函数的定义,有:sin(θ+90°) = y’/rcos(θ+90°) = x’/r其中,x’,y’,r由右边角相等可知。
然后考虑直角三角形中的边长关系:y’=xx’=-y(由右边角相等,即90°+(-θ))代入sin(θ+90°)和cos(θ+90°),得到:sin(θ+90°) = x/r,即sin(θ+90°) = cosθcos(θ+90°) = -y/r,即cos(θ+90°) = -si nθ得到正弦的诱导公式:sin(θ+90°) = cosθ;得到余弦的诱导公式:cos(θ+90°) = -sinθ。
利用这两个诱导公式,我们可以在计算中互相转化正弦和余弦的值。
二、正切和余切的诱导公式:正切和余切的定义是:tan θ = sin θ / cos θcot θ = cos θ / sin θ。
根据正弦和余弦的诱导公式,我们可以得到:sin(θ+90°) = cosθcos(θ+90°) = -sinθ。
将这两个式子带入正切和余切的定义,有:tan(θ+90°) = sin(θ+90°) / cos(θ+90°) = cosθ / (-sinθ) = -cotθcot(θ+90°) = cos(θ+90°) / sin(θ+90°) = (-sinθ) /cosθ = -tanθ。
三角函数诱导公式一览表
三角函数诱导公式一览表以下是三角函数诱导公式一览表,其中包括了七个公式,每个公式都有一些关于三角函数的值的关系。
公式一:对于任意角α,终边相同的角的同一三角函数的值相等,即sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα,cot(2kπ+α)=cotα。
公式二:对于任意角α,π+α的三角函数值与α的三角函数值之间的关系为sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα。
公式三:对于任意角α,α与-α的三角函数值之间的关系为sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα。
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系,即sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα。
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系,即sin(2π-α)=-sinα,cos(2π-α)=cosα,tan(2π-α)=-tanα,cot(2π-α)=-cotα。
公式六:对于任意角α,π/2±α与α的三角函数值之间的关系为sin(π/2+α)=cosα,cos(π/2+α)=-sinα,___(π/2+α)=-cotα,cot(π/2+α)=-tanα,sin(π/2-α)=cosα,cos(π/2-α)=sinα,___(π/2-α)=cotα,cot(π/2-α)=tanα。
公式七:对于任意角α,3π/2±α与α的三角函数值之间的关系为sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα,sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,tan(3π/2-α)=cotα,cot(3π/2-α)=tanα。
三角函数的诱导公式解析与应用
三角函数的诱导公式解析与应用三角函数是数学中常见且重要的函数之一,在解决几何问题以及物理、工程等实际应用中扮演着重要的角色。
在三角函数的学习过程中,诱导公式是我们必须要掌握和应用的一部分内容。
本文将对三角函数的诱导公式进行解析,并探讨其在数学和实际应用中的具体应用。
一、三角函数的诱导公式解析1. 正弦函数的诱导公式正弦函数是三角函数中最为常见的函数之一,其诱导公式为:sin(x ± π) = sin(x)cos(π) ± cos(x)sin(π)根据诱导公式,我们可以得出几个重要的结论:- sin(x + π) = -sin(x)- sin(x - π) = -sin(x)- sin(x + 2π) = sin(x)- sin(x - 2π) = sin(x)这些结论表明,通过加减π或2π,正弦函数的值可以保持不变或者取负值。
2. 余弦函数的诱导公式余弦函数是三角函数中与正弦函数密切相关的函数,其诱导公式为:cos(x ± π) = cos(x)cos(π) ∓ sin(x)sin(π)同样地,根据诱导公式,我们可以得出以下结论:- cos(x + π) = -cos(x)- cos(x - π) = -cos(x)- cos(x + 2π) = cos(x)- cos(x - 2π) = cos(x)3. 正切函数的诱导公式正切函数是三角函数中较为特殊的函数,其诱导公式为:tan(x ± π) = (tan(x) ± tan(π)) / (1 ∓ tan(x)tan(π))其中,tan(π) = 0,因此可以得到以下结论:- tan(x + π) = tan(x)- tan(x - π) = tan(x)- tan(x + 2π) = tan(x)- tan(x - 2π) = tan(x)二、三角函数的诱导公式应用1. 几何问题中的应用三角函数的诱导公式在解决几何问题中有着广泛的应用。
三角函数的诱导公式
三角函数的诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
诱导公式
诱导公式是指三角函数中将角度比较大的三角函数利用角的周期性,转换为角度比较小的三角函数的公式。
诱导公式有六组共54个。
公式一:设为任意角,终边相同的角的同一三角函数的值相等
sin(2k+)=sin(kZ)
cos(2k+)=cos(kZ)
tan(2k+)=tan(kZ)
cot(2k+)=cot(kZ)
公式二:设为任意角,+的三角函数值与的三角函数值之间的关系
sin(+)=-sin
cos(+)=-cos
tan(+)=tan
cot(+)=cot
公式三:任意角与-的三角函数值之间的关系
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四:利用公式二和公式三可以得到-与的三角函数值之间的关系
sin(-)=sin
cos(-)=-cos
tan(-)=-tan
cot(-)=-cot
公式五:利用公式一和公式三可以得到2-与的三角函数值之间的关系sin(2-)=-sin
cos(2-)=cos
tan(2-)=-tan
cot(2-)=-cot
公式六:/2与的三角函数值之间的关系
sin(/2+)=cos
sin(/2-)=cos
cos(/2+)=-sin
cos(/2-)=sin
tan(/2+)=-cot
tan(/2-)=cot
cot(/2+)=-tan
cot(/2-)=tan。
12个诱导公式
12个诱导公式
诱导公式是三角函数中一个重要的部分,用于将任意角的三角函数转化为已知的锐角三角函数。
以下是12个常用的诱导公式:
1. 公式一:sin(π + α) = -sinα
2. 公式二:cos(π + α) = -cosα
3. 公式三:tan(π + α) = tanα
4. 公式四:sin(π/2 + α) = cosα
5. 公式五:cos(π/2 + α) = -sinα
6. 公式六:tan(π/2 + α) = -cotα
7. 公式七:sin(π - α) = sinα
8. 公式八:cos(π - α) = -cosα
9. 公式九:tan(π - α) = -tanα
10. 公式十:sin(3π/2 - α) = -cosα
11. 公式十一:cos(3π/2 - α) = sinα
12. 公式十二:tan(3π/2 - α) = -cotα
这些公式可以通过三角函数的周期性和对称性进行推导,是解决三角函数问题的重要工具。
在解题时,可以根据需要选择合适的诱导公式进行转化。
例如,可以将角度转换为锐角,或将正弦、余弦、正切函数进行互化。
除了这12个诱导公式外,还有一些其他常用的三角函数公式,如两角和与差公式、倍角公式等。
这些公式可以进一步扩展和深化三角函数的知识体系,为解决复杂的三角函数问题提供更多工具。
三角函数的诱导公式
三角函数的诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
三角函数诱导公式大全
三角函數誘導公式大全三角函数诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
高中三角函数公式及诱导公式大全
高中三角函数公式及诱导公式大全以下是高中三角函数公式及诱导公式的大全:1.三角函数的基本关系:•正弦函数(sin):sinθ = 对边/斜边•余弦函数(cos):cosθ = 邻边/斜边•正切函数(tan):tanθ = 对边/邻边2.三角函数的诱导公式:•正弦函数的诱导公式:sin(-θ) = -sinθ•余弦函数的诱导公式:cos(-θ) = cosθ•正切函数的诱导公式:tan(-θ) = -tanθ•正弦函数的互余公式:sin(π/2 - θ) = cosθ•余弦函数的互余公式:cos(π/2 - θ) = sinθ•正切函数的互余公式:tan(π/2 - θ) = 1/tanθ3.三角函数的和差公式:•正弦函数的和差公式:sin(θ ± φ) = sinθcosφ ± cosθsinφ•余弦函数的和差公式:cos(θ ± φ) = cosθcosφ ∓ sinθsinφ•正切函数的和差公式:tan(θ ± φ) = (tanθ ± tanφ) / (1 ∓tanθtanφ)4.三角函数的倍角公式:•正弦函数的倍角公式:sin2θ = 2sinθcosθ•余弦函数的倍角公式:cos2θ = cos^2θ - sin^2θ•正切函数的倍角公式:tan2θ = (2tanθ) / (1 - tan^2θ)5.三角函数的半角公式:•正弦函数的半角公式:sin(θ/2) = ±√[(1 - cosθ) / 2]•余弦函数的半角公式:cos(θ/2) = ±√[(1 + cosθ) / 2]•正切函数的半角公式:tan(θ/2) = ±√[(1 - cosθ) / (1 + cosθ)]6.三角函数的和的积公式:•正弦函数的和的积公式:sinθ + sinφ = 2sin((θ + φ)/2)cos((θ - φ)/2)•余弦函数的和的积公式:cosθ + cosφ = 2cos((θ + φ)/2)cos((θ - φ)/2)•正弦函数的差的积公式:sinθ - sinφ = 2cos((θ + φ)/2)sin((θ - φ)/2)•余弦函数的差的积公式:cosθ - cosφ = -2sin((θ + φ)/2)sin((θ - φ)/2)这些公式是三角函数中常见的重要公式,掌握它们能够帮助解决各种三角函数相关的数学问题,并在数学推导和计算中提供便利。
三角函数的八个诱导公式
三角函数的八个诱导公式
三角函数公式是数学中最基础的知识之一,但这些公式能够模拟出实际应用中所发生的事情,非常有用。
在数学中,一般情况下,三角函数会有八个诱导公式,这些公式作为三角函数的基础,它们在进行推导和解决实际问题时非常有用。
首先,最基本的公式之一就是sinx+cosx=1。
这个公式可以多次使用,当我们遇到需要解决sinx+cosx方程,我们可以立即得到解。
第二个公式是sinx-cosx=0,它显示了正弦和余弦之间的关系,正弦减去余弦的值是0。
第三个公式就是sinx cosx=1/2,此公式表明正弦和余弦乘积相等于1/2。
第四个诱导公式是sinx cotx=1。
它表示正弦和余切之积等于1。
第五个公式是cotxsinx+cotxcosx=1。
这个公式表明余切和正弦,余弦之和等于1。
第六个公式是sinx cscx=1。
该公式表明正弦和余割之积为1。
最后,还有两个公式,可以用来解决角的问题,即
sinx/cosx+cosx/sinx=2和sinx/cscx=1。
总体而言,上面提到的八个三角函数诱导公式是数学中基础计算的重要元素,它们不仅可以帮助我们快速解决实际问题,还可以用来推导其他更复杂的公式。
同时,此外的诱导公式也可以用来提供进一步的精度和稳定性来解决更复杂的方程。
三角函数的诱导公式与和差公式
三角函数的诱导公式与和差公式三角函数是数学中重要的概念之一,它们在几何、物理和工程学等多个领域中都有广泛的应用。
在学习三角函数的过程中,诱导公式和和差公式是必不可少的重要工具。
本文将对三角函数的诱导公式和和差公式进行详细的介绍和说明。
一、三角函数的诱导公式诱导公式是指通过已知的三角函数值,推导出其他三角函数的值的公式。
常见的三角函数诱导公式包括:1. 正弦函数的诱导公式:cos(π/2 - θ) = sinθ这个公式可以通过从一个直角三角形的角度角度角度视角的观点来证明。
假设有一个直角三角形,其中一条直角边的长度为1,另外一条直角边的长度为sinθ,则斜边的长度为cos(π/2 - θ)。
因此,cos(π/2 - θ) = sinθ。
2. 余弦函数的诱导公式:sin(π/2 - θ) = cosθ这个公式的证明可以类似地通过直角三角形的角度视角得到。
如果假设一条直角边的长度为1,斜边的长度为cosθ,则另外一条直角边的长度为sin(π/2 - θ)。
因此,sin(π/2 - θ) = cosθ。
3. 正切函数的诱导公式:tan(π/4 - θ) = (1 - tanθ) / (1 + tanθ)该公式的证明可以通过两个正弦函数诱导公式的结合来得到。
首先,用正弦函数的诱导公式将分母的正切函数替换为两个正弦函数的比值,然后再利用和差公式进行简化。
二、三角函数的和差公式和差公式是指将两个三角函数之和或之差转化为其他三角函数的公式。
常见的三角函数和差公式包括:1. 正弦函数的和差公式:sin(A ± B) = sinAcosB ± cosAsinB这个公式可以通过利用两个角度之和的正弦函数的展开式得到。
根据三角函数展开式和加法公式,将两个角度的正弦函数展开并进行合并,即可得到正弦函数的和差公式。
2. 余弦函数的和差公式:cos(A ± B) = cosAcosB ∓ sinAsinB这个公式的证明可以通过利用两个角度之和的余弦函数的展开式得到,方法与正弦函数的和差公式类似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的 诱导公式
主讲:XXX
1
课程重难点
—————
1 三角函数在各象限的符号
理解“横竖斜”记忆法
2 8套诱导公式的记忆
理解“奇变偶不变,符号看象限”
3 特殊三角函数值
对于30° ,45° ,60° ,90°的认识
4 求任意角的三角函数
任意角→(0°,360°)→锐角
5 化简求值技巧
化简一些复杂的式子
1
2
2
2
3
2
1
0
2
2
2
3
1
3
3
不存在
9
求任意角的三 角函数
04
10
04 求任意角的三角函数
【例1】利用公式求下列三角函数值:
(1)cos(2040) (2)sin 11
3
(3)sin
16
3
(4)cos225
解:(1) cos(2040) cos(2040 6 360) cos120
6
02 诱导公式
公式五 至 公式八 正弦变余弦,余弦变正弦. 符号看象限.
7
复习回顾 03
记忆0°、 30° ,45° ,60° ,90°的 正弦值,余弦值,正切值
8
03 特殊三角函数值
角度 0° 弧度α 0 sinα 0 cosα 1 tanα 0
30° 45° 60° 90°
6
4
3
2
1
2
3
cos(180 60) cos60
1 2
公式三
负角
正角
公式一
公式二 至 公式四
(0°,360°)
锐角
12
化简求值问题 05
13
04 化简求值
【例2】化简
cos(180 ) sin( 360) sin( 180) cos(180 )
解:原式
cos sin
sin( 180 360) cos(180 360)
2
复习回顾
三角函数在各象限的符号
01
3
01 三角函数在各象限的符号
横竖斜记忆法
① 不管是正弦、余弦、 正切,在第一象限的 符号都是正的; ② 正弦在第一、二象 限为正(横);
余弦在第一、四象 限为正(竖);
正切在第一、三象 限为正(斜).
4
诱导公式 02
共8套
5
02 诱导公式
公式一 终边相同的角的同一三角函数的值相等.( 任意角→(0°,360°) ) 公式二 至 公式四 第二、三、四象限的角.( (0°,360°)→锐角 )
答案:(1) 1 2
(2)
23(c3o)1s(12380( 4)60)22 cos60
2
任意角
公式一
公式二 至 公式四
(0°,360°)
锐角
11
04 求任意角的三角函数
【例1】利用公式求下列三角函数值:
(1)cos(2040) (2)sin 11
3
(3)sin
16
3
(4)cos225
解:(1) cos(2040) cos2040 cos(2040 5 360) cos240
cos sin
sin(180 ) cos(180 )
cos sin sin ( cos)
1
14
再见!
制作人:XXX
重点:会用“诱导公式”求解任意角的三角函数值, 以及化简一些式子;
难点:弧度制的三角函数值求法。
15