专题05 手拉手模型构造全等三角形(学生版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题05 手拉手模型构造全等三角形
【专题说明】
两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型。

【知识总结】
【基本模型】
一、等边三角形手拉手-出全等
图1 图2
图3 图4
二、等腰直角三角形手拉手-出全等
两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有
①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;
图1
图2
图3
图4
1、如图,点C在线段AB上,△DAC和△DBE都是等边三角形,求证:△DAB≌△DCE;DA∥EC.
2、已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连结AE,BD交于点O,AE与DC交于点0,AE与DC交于点M,BD与AC交于点N.
3、已知,在△ABC中,AB=AC,点P平面内一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,
⑴若点P在△ABC内部,求证BQ=CP;
⑵若点P在△ABC外部,以上结论还成立吗?
4、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=√2,AG=1,则EB=________________.
5、已知正方形ABCD和正方形AEFG有一个公共点,点G、E分别在线段AD、AB上,若将正方形AEFG 绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长度始终相等?并说明理由。

6、已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠BDC=45°;④BE2=2(AD2+AB2)其中结论正确的个数是_______
【基础训练】
1、已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD为边作等边三角形ADE,连接CE.
如图1,当点D在边BC上时,求证:△ABD≌△ACE;直接判断结论BC=DC+CE是否成立(不需要证明);如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC、DC、CE之间存在的数量关系,并写出证明过程.
2、如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点.
若DE=13,BD=12,求线段AB的长.
3、如图,点A、B、C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM.
下面结论:△ABE≌△DBC;∠DMA=60°;△BPQ为等边三角形;MB平分∠AMC.其中正确的有____________
4、如图1,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.
求证:BE=AD;用含α的式子表示∠AMB的度数;当α=90°时,取AD、BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.
【巩固提升】
1、已知△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,AB=2BD,连接CE.
(1)如图1,若点D在AB边上,点F是CE的中点,连接BF.当AC=4时,求BF的长;
(2)如图2,将图1中的△BDE绕点B按顺时针方向旋转,使点D在△ABC的内部,连接AD,取AD 的中点M,连接EM并延长至点N,使MN=EM,连接CN.求证:CN⊥CE.
2、如图,△ABC中AB=AC=5,tan∠ACB=,点D为边BC上的一动点(不与点B、C重合),将线段
AD绕点A顺时针旋转得AE,使∠DAE=∠BAC,DE与AB交于点F,连接BE.
(1)求BC的长;
(2)求证∠ABE=∠ABC;
(3)当FB=FE时,求CD的长.
3、如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°
至CE,连接AE.
(1)求证:△BCD≌△ACE;
(2)如图2,连接ED,若CD=2,AE=1,求AB的长;
(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.
4、如图,△ABC和△EDC都是等腰直角三角形,C为它们的公共直角顶点,连接AD、BE,点F为线段
AD的中点,连接CF.
(1)如图1,当D点在BC上时,试判断线段BE、CF的关系,并证明你的结论;
(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变时,请探究BE、CF的关系并直接写出结论.
5、如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时
针旋转a角(0°<a<180°),得到△AB′C′(如图2),连接DB',EC'.
(1)探究DB'与EC'的数量关系,并结合图2给予证明;
(2)填空:①当旋转角α的度数为时,则DB'∥AE;
②在旋转过程中,当点B',D,E在一条直线上,且AD=时,此时EC′的长为.
6、如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相
交于N点.把∠MCN绕着点C旋转.
(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;
(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是(直接写出结论,不必证明)。

相关文档
最新文档