高考数学难点38 分类讨论思想
高考数学难点38 分类讨论思想(含答案解析)
![高考数学难点38 分类讨论思想(含答案解析)](https://img.taocdn.com/s3/m/17ce389f65ce0508763213da.png)
难点38 分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”1.(★★★★★)若函数514121)1(31)(23+-+-=x ax x a x f 在其定义域内有极值点,则a 的取值为 .2.(★★★★★)设函数f (x )=x 2+|x –a |+1,x ∈R .(1)判断函数f (x )的奇偶性;(2)求函数f (x )的最小值.[例1]已知{a n }是首项为2,公比为21的等比数列,S n 为它的前n 项和.(1)用S n 表示S n +1;(2)是否存在自然数c 和k ,使得21>--+c S c S k k 成立. 命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目.知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质.错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-223. 技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k ,c 轮流分类讨论,从而获得答案.解:(1)由S n =4(1–n 21),得 221)211(411+=-=++n n n S S ,(n ∈N *) (2)要使21>--+cS c S k k ,只要0)223(<---k k S c S c 因为4)211(4<-=k k S 所以0212)223(>-=--k k k S S S ,(k ∈N *) 故只要23S k –2<c <S k ,(k ∈N *)因为S k +1>S k ,(k ∈N *) ① 所以23S k –2≥23S 1–2=1.又S k <4,故要使①成立,c 只能取2或3.当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不成立.当k ≥2时,因为c S >=-252232,由S k <S k +1(k ∈N *)得23S k –2<23S k +1–2 故当k ≥2时,23S k –2>c ,从而①不成立. 当c =3时,因为S 1=2,S 2=3,所以当k =1,k =2时,c <Sk因为c S >=-4132233,又23S k –2<23S k +1–2 所以当k ≥3时,23S k –2>c ,从而①成立. 综上所述,不存在自然数c ,k ,使21>--+cS c S k k 成立. [例2]给出定点A (a ,0)(a >0)和直线l :x =–1,B 是直线l 上的动点,∠BOA 的角平分线交AB 于点C .求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.命题意图:本题考查动点的轨迹,直线与圆锥曲线的基本知识,分类讨论的思想方法.综合性较强,解法较多,考查推理能力和综合运用解析几何知识解题的能力.属★★★★★级题目.知识依托:求动点轨迹的基本方法步骤.椭圆、双曲线、抛物线标准方程的基本特点.错解分析:本题易错点为考生不能巧妙借助题意条件,构建动点坐标应满足的关系式和分类讨论轨迹方程表示曲线类型.技巧与方法:精心思考,发散思维、多途径、多角度的由题设条件出发,探寻动点应满足的关系式.巧妙地利用角平分线的性质.解法一:依题意,记B (–1,b ),(b ∈R ),则直线OA 和OB 的方程分别为y =0和y =–bx .设点C (x ,y ),则有0≤x <a ,由OC 平分∠AOB ,知点C 到OA 、OB 距离相等. 根据点到直线的距离公式得|y |=21||b bx y ++ ① 依题设,点C 在直线AB 上,故有)(1a x ab y -+-= 由x –a ≠0,得a x y a b -+-=)1( ② 将②式代入①式,得y 2[(1–a )x 2–2ax +(1+a )y 2]=0若y ≠0,则(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )若y =0则b =0,∠AOB =π,点C 的坐标为(0,0)满足上式.综上,得点C 的轨迹方程为(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )(i)当a =1时,轨迹方程化为y 2=x (0≤x <1) ③此时方程③表示抛物线弧段;(ii)当a ≠1,轨迹方程化为)0(11)1()1(22222a x a a y a a a a x <≤=-+--- ④ 所以当0<a <1时,方程④表示椭圆弧段;当a >1时,方程④表示双曲线一支的弧段.解法二:如图,设D 是l 与x 轴的交点,过点C 作CE ⊥x 轴,E 是垂足.(i )当|BD |≠0时,设点C (x ,y ),则0<x <a ,y ≠0由CE ∥BD ,得)1(||||||||||a xa y EA DA CE BD +-=⋅=. ∵∠COA =∠COB =∠COD –∠BOD =π–∠COA –∠BOD∴2∠COA =π–∠BOD ∴COACOA COA 2tan 1tan 2)2tan(-=∠ BOD BOD tan )tan(-=∠-π ∵x y COA ||tan = )1(||||||tan a xa y OD BD BOD +-== ∴)1(||1||22a x a y x y x y +--=-⋅整理,得 (1–a )x 2–2ax +(1+a )y 2=0(0<x <a )(ii)当|BD |=0时,∠BOA =π,则点C 的坐标为(0,0),满足上式.综合(i)、(ii),得点C 的轨迹方程为(1–a )x 2–2ax +(1+a )y 2=0(0≤x <a )以下同解法一.解法三:设C (x ,y )、B (–1,b ),则BO 的方程为y =–bx ,直线AB 的方程为)(1a x ab y -+-= ∵当b ≠0时,OC 平分∠AOB ,设∠AOC =θ,∴直线OC 的斜率为k =tan θ,OC 的方程为y =kx 于是2212tan 1tan 22tan kk -=-=θθθ 又tan2θ=–b∴–b =212k k - ① ∵C 点在AB 上 ∴)(1a x ab kx -+-= ② 由①、②消去b ,得)(12)1(2a x k k kx a --=+ ③ 又xy k =,代入③,有)(12)1(22a x x y x yx x y a --⋅⋅⋅+ 整理,得(a –1)x 2–(1+a )y 2+2ax =0 ④当b =0时,即B 点在x 轴上时,C (0,0)满足上式:a ≠1时,④式变为11)1()1(22222=-+---a a y a a a a x 当0<a <1时,④表示椭圆弧段;当a >1时,④表示双曲线一支的弧段;当a =1时,④表示抛物线弧段.分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.分类讨论常见的依据是:1.由概念内涵分类.如绝对值、直线的斜率、指数对数函数、直线与平面的夹角等定义包含了分类.。
高考数学专题复习(数形结合、分类讨论思想)
![高考数学专题复习(数形结合、分类讨论思想)](https://img.taocdn.com/s3/m/8f225aa16529647d27285250.png)
专题4 数形结合、分类讨论思想一.知识探究:1.数形结合作为一种重要的数学思想方法历年来一直是高考考察的重点之一。
数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
数形结合的途径:(1)通过坐标系形题数解(2)通过转化构造数题形解 数形结合的原则:(1)等价性原则;(2)双向性原则;(3)简单性原则2.分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。
分类原则:(1)对所讨论的全域分类要“即不重复,也不遗漏”(2)在同一次讨论中只能按所确定的一个标准进行(3)对多级讨论,应逐级进行,不能越级;二.命题趋势分类讨论思想是一种重要的数学思想,它在人的思维发展中有着重要的作用,因此在近几年的高考试题中,他都被列为一种重要的思维方法来考察。
分类讨论是每年高考必考的内容,预测对本专题的考察为:将有一道中档或中档偏上的试题,其求解思路直接依赖于分类讨论,特别关注以下方面:涉及指数、对数底的讨论,含参数的一元二次不等式、等比数列求和,由n S 求n a 等。
纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
三.再现性题组1.集合A ={x||x|≤4,x ∈R},B ={x||x -3|≤a ,x ∈R},若A ⊇B ,那么a 的范围是( )。
A. 0≤a≤1B. a≤1C. a<1D. 0<a<1 对参数a 分a>0、a =0、a<0三种情况讨论,选B ;2. 若θ∈(0, π2),则lim n →∞cos sin cos sin n n n n θθθ+θ-的值为( )。
分类转化 分散难点 各个击破――分类讨论的思想方法(高考数学解题技巧)
![分类转化 分散难点 各个击破――分类讨论的思想方法(高考数学解题技巧)](https://img.taocdn.com/s3/m/1788dd3b4b35eefdc8d33372.png)
分类转化分散难点各个击破――分类讨论的思想方法一、方法整合在解决一些数学问题时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
分类讨论是一种逻辑的方法,也是一种重要的数学思想和解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。
1.需要分类讨论的情形主要有以下几个方面:①问题所涉及到的数学概念是分类进行定义的。
如|a|的定义分a>0、a=0、a<0三种情况。
②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。
如等比数列的前n项和的公式,分q=1和q≠1两种情况。
③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。
如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,分类解决,以保证其完整性,使之具有确定性。
2.分类讨论要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。
其中最重要的一条是“不漏不重”。
3.分类讨论问题的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
二.典例精析例1.设0<x<1,a>0且a≠1,比较|loga (1-x)|与|loga(1+x)|的大小。
(一道经典高考题)思维启动点:此题中含有绝对值,去绝对值可能需要分类处理,对数的底数是字母,比较对数大小,运用对数函数的单调性,而单调性与底数a有关,所以对底数a分两类情况进行讨论,如果既要对绝对值、又要对底数a进行双重分类讨论,势必麻烦,考虑到x的范围已经确定,我们可以在对a的范围进行分类时同时就考虑去绝对值。
高考数学复习 分类讨论思想、转化与化归思想
![高考数学复习 分类讨论思想、转化与化归思想](https://img.taocdn.com/s3/m/43e72fa5d5bbfd0a7956738d.png)
第2讲 分类讨论思想、转化与化归思想数学思想解读1.分类讨论的思想是当问题的对象不能进行统一研究时,就需要对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.2.转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.热点一 分类讨论思想的应用应用1 由概念、法则、公式、性质引起的分类讨论【例1】 (1)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________; (2)在等比数列{a n }中,已知a 3=32,S 3=92,则a 1=________. 解析 (1)若a >1,有a 2=4,a -1=m ,解得a =2,m =12. 此时g (x )=-x 为减函数,不合题意. 若0<a <1,有a -1=4,a 2=m , 故a =14,m =116,检验知符合题意.(2)当q =1时,a 1=a 2=a 3=32,S 3=3a 1=92,显然成立.当q ≠1时,由a 3=32,S 3=92,∴⎩⎪⎨⎪⎧a 1q 2=32, ①a 1(1+q +q 2)=92, ②由①②,得1+q +q 2q 2=3,即2q 2-q -1=0, 所以q =-12或q =1(舍去).当q =-12时,a 1=a 3q 2=6, 综上可知,a 1=32或a 1=6. 答案 (1)14 (2)32或6探究提高 1.指数函数、对数函数的单调性取决于底数a ,因此,当底数a 的大小不确定时,应分0<a <1,a >1两种情况讨论.2.利用等比数列的前n 项和公式时,若公比q 的大小不确定,应分q =1和q ≠1两种情况进行讨论,这是由等比数列的前n 项和公式决定的.【训练1】 (1)(2017·长沙一中质检)已知S n 为数列{a n }的前n 项和且S n =2a n -2,则S 5-S 4的值为( ) A.8 B.10 C.16D.32(2)函数f (x )=⎩⎨⎧sin (πx 2),-1<x <0,e x -1,x ≥0.若f (1)+f (a )=2,则a 的所有可能取值的集合是________.解析 (1)当n =1时,a 1=S 1=2a 1-2,解得a 1=2. 因为S n =2a n -2,当n ≥2时,S n -1=2a n -1-2,两式相减得,a n =2a n -2a n -1,即a n =2a n -1,则数列{a n }为首项为2,公比为2的等比数列, 则S 5-S 4=a 5=25=32. (2)f (1)=e 0=1,即f (1)=1. 由f (1)+f (a )=2,得f (a )=1.当a ≥0时,f (a )=1=e a -1,所以a =1. 当-1<a <0时,f (a )=sin(πa 2)=1, 所以πa 2=2k π+π2(k ∈Z ).所以a 2=2k +12(k ∈Z ),k 只能取0,此时a 2=12, 因为-1<a <0,所以a =-22. 则实数a取值的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-22,1.答案 (1)D(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-22,1 应用2 由图形位置或形状引起的分类讨论【例2】 (1)(2017·昆明一中质检)已知双曲线的离心率为233,则其渐近线方程为________;(2)设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于________. 解析 (1)由于e =c a =233,∴c 2a 2=a 2+b 2a 2=43,则a 2=3b 2, 若双曲线焦点在x 轴上,渐近线方程y =±33x . 若双曲线焦点在y 轴上,渐近线方程y =±3x .(2)不妨设|PF 1|=4t ,|F 1F 2|=3t ,|PF 2|=2t ,其中t ≠0. 若该曲线为椭圆,则有|PF 1|+|PF 2|=6t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 6t =12;若该曲线为双曲线,则有|PF 1|-|PF 2|=2t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 2t =32. 答案 (1)y =±3x ,或y =±33x (2)12或32探究提高 1.圆锥曲线形状不确定时,常按椭圆、双曲线来分类讨论,求圆锥曲线的方程时,常按焦点的位置不同来分类讨论.2.相关计算中,涉及图形问题时,也常按图形的位置不同、大小差异等来分类讨论.【训练2】 设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________.解析 若∠PF 2F 1=90°.则|PF 1|2=|PF 2|2+|F 1F 2|2, 又因为|PF 1|+|PF 2|=6,|F 1F 2|=25, 解得|PF 1|=143,|PF 2|=43,所以|PF 1||PF 2|=72.若∠F 1PF 2=90°,则|F 1F 2|2=|PF 1|2+|PF 2|2, 所以|PF 1|2+(6-|PF 1|)2=20, 所以|PF 1|=4,|PF 2|=2,所以|PF 1||PF 2|=2.综上知,|PF 1||PF 2|=72或2.答案 72或2应用3由变量或参数引起的分类讨论【例3】已知f(x)=x-a e x(a∈R,e为自然对数的底).(1)讨论函数f(x)的单调性;(2)若f(x)≤e2x对x∈R恒成立,求实数a的取值范围.解(1)f′(x)=1-a e x,当a≤0时,f′(x)>0,函数f(x)是(-∞,+∞)上的单调递增函数;当a>0时,由f′(x)=0得x=-ln a,所以函数f(x)在(-∞,-ln a)上的单调递增,在(-ln a,+∞)上的单调递减.(2)f(x)≤e2x⇔a≥xe x-ex,设g(x)=xe x-ex,则g′(x)=1-e2x-xe x.当x<0时,1-e2x>0,g′(x)>0,∴g(x)在(-∞,0)上单调递增.当x>0时,1-e2x<0,g′(x)<0,∴g(x)在(0,+∞)上单调递减.所以g(x)max=g(0)=-1,所以a≥-1.故a的取值范围是[-1,+∞).探究提高 1.(1)参数的变化取值导致不同的结果,需对参数进行讨论,如含参数的方程、不等式、函数等.本题中参数a与自变量x的取值影响导数的符号应进行讨论.(2)解析几何中直线点斜式、斜截式方程要考虑斜率k存在或不存在,涉及直线与圆锥曲线位置关系要进行讨论.2.分类讨论要标准明确、统一,层次分明,分类要做到“不重不漏”.【训练3】(2015·全国Ⅱ卷)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解(1)f(x)的定义域为(0,+∞),f′(x)=1x-a.若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a-1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1). 热点二 转化与化归思想 应用1 特殊与一般的转化【例4】 (1)过抛物线y =ax 2(a >0)的焦点F ,作一直线交抛物线于P ,Q 两点.若线段PF 与FQ 的长度分别为p ,q ,则1p +1q 等于( ) A.2a B.12a C.4aD.4a(2)(2017·浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.解析 (1)抛物线y =ax 2(a >0)的标准方程为x 2=1a y (a >0),焦点F ⎝ ⎛⎭⎪⎫0,14a .过焦点F 作直线垂直于y 轴,则|PF |=|QF |=12a ,∴1p +1q =4a .(2)由题意,不妨设b =(2,0),a =(cos θ,sin θ), 则a +b =(2+cos θ,sin θ),a -b =(cos θ-2,sin θ). 令y =|a +b |+|a -b | =(2+cos θ)2+sin 2θ+(cos θ-2)2+sin 2θ=5+4cos θ+5-4cos θ,令y =5+4cos θ+5-4cos θ,则y 2=10+225-16cos 2θ∈[16,20].由此可得(|a +b |+|a -b |)max =20=25, (|a +b |+|a -b |)min =16=4,即|a +b |+|a -b |的最小值是4,最大值是2 5. 答案 (1)C (2)4 2 5探究提高 1.一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.2.对于某些选择题、填空题,如果结论唯一或题目提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.【训练4】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C1+cos A cos C=________.解析 令a =b =c ,则△ABC 为等边三角形,且cos A =cos C =12,代入所求式子,得cos A +cos C 1+cos A cos C =12+121+12×12=45.答案 45应用2 函数、方程、不等式之间的转化【例5】 已知函数f (x )=3e |x |,若存在实数t ∈[-1,+∞),使得对任意的x ∈[1,m ],m ∈Z 且m >1,都有f (x +t )≤3e x ,试求m 的最大值. 解 ∵当t ∈[-1,+∞)且x ∈[1,m ]时,x +t ≥0, ∴f (x +t )≤3e x ⇔e x +t ≤e x ⇔t ≤1+ln x -x .∴原命题等价转化为:存在实数t ∈[-1,+∞),使得不等式t ≤1+ln x -x 对任意x ∈[1,m ]恒成立.令h (x )=1+ln x -x (1≤x ≤m ). ∵h ′(x )=1x -1≤0,∴函数h (x )在[1,+∞)上为减函数, 又x ∈[1,m ],∴h (x )min =h (m )=1+ln m -m . ∴要使得对任意x ∈[1,m ],t 值恒存在, 只需1+ln m -m ≥-1.∵h (3)=ln 3-2=ln ⎝ ⎛⎭⎪⎫1e ·3e >ln 1e =-1, h (4)=ln 4-3=ln ⎝ ⎛⎭⎪⎫1e ·4e 2<ln 1e =-1,又函数h (x )在[1,+∞)上为减函数, ∴满足条件的最大整数m 的值为3.探究提高 1.函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助.2.解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.【训练5】 (2017·江苏卷)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若P A → ·PB → ≤20,则点P 的横坐标的取值范围是________.解析 设点P (x ,y ),且A (-12,0),B (0,6).则P A → ·PB → =(-12-x ,-y )·(-x ,6-y )=x (12+x )+y (y -6)≤20, 又x 2+y 2=50, ∴2x -y +5≤0,则点P 在直线2x -y +5=0上方的圆弧上(含交点). 联立⎩⎪⎨⎪⎧y =2x +5,x 2+y 2=50,解得x =-5或x =1,结合图形知,-52≤x ≤1.故点P 横坐标的取值范围是[-52,1]. 答案 [-52,1]应用3 正与反、主与次的转化【例6】 (1)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是________;(2)对于满足0≤p ≤4的所有实数p ,不等式x 2+px >4x +p -3恒成立,则x 的取值范围是________.解析 (1)g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t ,3)上总为单调函数, 则①g ′(x )≥0在(t ,3)上恒成立,或②g ′(x )≤0在(t ,3)上恒成立. 由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x .当x ∈(t ,3)时恒成立,∴m +4≥2t -3t 恒成立, 则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x ,当x ∈(t ,3)时恒成立,则m +4≤23-9,即m ≤-373. ∴使函数g (x )在区间(t ,3)上总不为单调函数的m 的取值范围为-373<m <-5. (2)设f (p )=(x -1)p +x 2-4x +3, 则当x =1时,f (p )=0.所以x ≠1.f (p )在0≤p ≤4上恒正,等价于⎩⎪⎨⎪⎧f (0)>0,f (4)>0,即⎩⎪⎨⎪⎧(x -3)(x -1)>0,x 2-1>0,解得x >3或x <-1.答案 ⎝ ⎛⎭⎪⎫-373,-5 (2)(-∞,-1)∪(3,+∞)探究提高 1.第(1)题是正与反的转化,由于不为单调函数有多种情况,先求出其反面,体现“正难则反”的原则.题目若出现多种成立的情形,则不成立的情形相对很少,从后面考虑较简单,因此,间接法多用于含有“至多”“至少”及否定性命题情形的问题中.2.第(2)题是把关于x 的函数转化为在[0,4]内关于p 的一次函数大于0恒成立的问题.在处理多变元的数学问题时,我们可以选取其中的参数,将其看作是“主元”,而把其它变元看作是参数.【训练6】 已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.解析 由题意,知g (x )=3x 2-ax +3a -5,令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1.对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧φ(1)<0,φ(-1)<0,即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0,解得-23<x <1.故当x ∈⎝ ⎛⎭⎪⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 答案 ⎝ ⎛⎭⎪⎫-23,11.分类讨论思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思想,降低问题难度.常见的分类讨论问题:(1)集合:注意集合中空集∅讨论.(2)函数:对数函数或指数函数中的底数a ,一般应分a >1和0<a <1的讨论,函数y =ax 2+bx +c 有时候分a =0和a ≠0的讨论,对称轴位置的讨论,判别式的讨论.(3)数列:由S n 求a n 分n =1和n >1的讨论;等比数列中分公比q =1和q ≠1的讨论.(4)三角函数:角的象限及函数值范围的讨论.(5)不等式:解不等式时含参数的讨论,基本不等式相等条件是否满足的讨论.(6)立体几何:点线面及图形位置关系的不确定性引起的讨论.(7)平面解析几何:直线点斜式中k 分存在和不存在,直线截距式中分b =0和b ≠0的讨论;轨迹方程中含参数时曲线类型及形状的讨论.(8)去绝对值时的讨论及分段函数的讨论等.2.转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而解决问题的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.。
高考数学难点突破_难点38__分类讨论思想(精编版)
![高考数学难点突破_难点38__分类讨论思想(精编版)](https://img.taocdn.com/s3/m/8c56ea2feff9aef8941e068f.png)
难点38 分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”1.(★★★★★)若函数514121)1(31)(23+-+-=x ax x a x f 在其定义域内有极值点,则a 的取值为 .2.(★★★★★)设函数f (x )=x 2+|x –a |+1,x ∈R .(1)判断函数f (x )的奇偶性;(2)求函数f (x )的最小值.[例1]已知{a n }是首项为2,公比为21的等比数列,S n 为它的前n 项和. (1)用S n 表示S n +1;(2)是否存在自然数c 和k ,使得21>--+cS c S k k 成立. 命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目.知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质.错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-223. 技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k ,c 轮流分类讨论,从而获得答案.解:(1)由S n =4(1–n21),得 221)211(411+=-=++n n n S S ,(n ∈N *) (2)要使21>--+c S c S k k ,只要0)223(<---kk S c S c 因为4)211(4<-=k k S 所以0212)223(>-=--k k k S S S ,(k ∈N *) 故只要23S k –2<c <S k ,(k ∈N *)因为S k +1>S k ,(k ∈N *) ① 所以23S k –2≥23S 1–2=1. 又S k <4,故要使①成立,c 只能取2或3.当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不成立.当k ≥2时,因为c S >=-252232,由S k <S k +1(k ∈N *)得 23S k –2<23S k +1–2 故当k ≥2时,23S k –2>c ,从而①不成立. 当c =3时,因为S 1=2,S 2=3,所以当k =1,k =2时,c <Sk 因为c S >=-4132233,又23S k –2<23S k +1–2 所以当k ≥3时,23S k –2>c ,从而①成立. 综上所述,不存在自然数c ,k ,使21>--+cS c S k k 成立. [例2]给出定点A (a ,0)(a >0)和直线l :x =–1,B 是直线l 上的动点,∠BOA 的角平分线交AB 于点C .求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.命题意图:本题考查动点的轨迹,直线与圆锥曲线的基本知识,分类讨论的思想方法.综合性较强,解法较多,考查推理能力和综合运用解析几何知识解题的能力.属★★★★★级题目.知识依托:求动点轨迹的基本方法步骤.椭圆、双曲线、抛物线标准方程的基本特点. 错解分析:本题易错点为考生不能巧妙借助题意条件,构建动点坐标应满足的关系式和分类讨论轨迹方程表示曲线类型.技巧与方法:精心思考,发散思维、多途径、多角度的由题设条件出发,探寻动点应满足的关系式.巧妙地利用角平分线的性质.解法一:依题意,记B (–1,b ),(b ∈R ),则直线OA 和OB 的方程分别为y =0和y =–bx .设点C (x ,y ),则有0≤x <a ,由OC 平分∠AOB ,知点C 到OA 、OB 距离相等.根据点到直线的距离公式得|y |=21||b bx y ++ ①依题设,点C 在直线AB 上,故有 )(1a x ab y -+-= 由x –a ≠0,得a x y a b -+-=)1( ② 将②式代入①式,得y 2[(1–a )x 2–2ax +(1+a )y 2]=0若y ≠0,则(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )若y =0则b =0,∠AOB =π,点C 的坐标为(0,0)满足上式.综上,得点C 的轨迹方程为(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )(i)当a =1时,轨迹方程化为y 2=x (0≤x <1) ③此时方程③表示抛物线弧段;(ii)当a ≠1,轨迹方程化为)0(11)1()1(22222a x a a y a a a a x <≤=-+--- ④ 所以当0<a <1时,方程④表示椭圆弧段;当a >1时,方程④表示双曲线一支的弧段.解法二:如图,设D 是l 与x 轴的交点,过点C 作CE ⊥x轴,E 是垂足.(i )当|BD |≠0时,设点C (x ,y ),则0<x <a ,y ≠0由CE ∥BD ,得)1(||||||||||a xa y EA DA CE BD +-=⋅=. ∵∠COA =∠COB =∠COD –∠BOD =π–∠COA –∠BOD∴2∠COA =π–∠BOD ∴COACOA COA 2tan 1tan 2)2tan(-=∠ BOD BOD tan )tan(-=∠-π ∵xy COA ||tan = )1(||||||tan a xa y OD BD BOD +-== ∴)1(||1||22a x a y x y x y +--=-⋅整理,得 (1–a )x 2–2ax +(1+a )y 2=0(0<x <a )(ii)当|BD |=0时,∠BOA =π,则点C 的坐标为(0,0),满足上式.综合(i)、(ii),得点C 的轨迹方程为(1–a )x 2–2ax +(1+a )y 2=0(0≤x <a )以下同解法一.解法三:设C (x ,y )、B (–1,b ),则BO 的方程为y =–bx ,直线AB 的方程为)(1a x ab y -+-=∵当b ≠0时,OC 平分∠AOB ,设∠AOC =θ,∴直线OC 的斜率为k =tan θ,OC 的方程为y =kx 于是2212tan 1tan 22tan kk -=-=θθθ 又tan2θ=–b∴–b =212k k - ① ∵C 点在AB 上 ∴)(1a x ab kx -+-= ② 由①、②消去b ,得)(12)1(2a x k k kx a --=+ ③ 又xy k =,代入③,有 )(12)1(22a x xy x y x x y a --⋅⋅⋅+ 整理,得(a –1)x 2–(1+a )y 2+2ax =0 ④当b =0时,即B 点在x 轴上时,C (0,0)满足上式:a ≠1时,④式变为11)1()1(22222=-+---a a y a a a a x 当0<a <1时,④表示椭圆弧段;当a >1时,④表示双曲线一支的弧段;当a =1时,④表示抛物线弧段.分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.分类讨论常见的依据是:1.由概念内涵分类.如绝对值、直线的斜率、指数对数函数、直线与平面的夹角等定义包含了分类.2.由公式条件分类.如等比数列的前n 项和公式、极限的计算、圆锥曲线的统一定义中图形的分类等.3.由实际意义分类.如排列、组合、概率中较常见,但不明显、有些应用问题也需分类讨论.在学习中也要注意优化策略,有时利用转化策略,如反证法、补集法、变更多元法、数形结合法等简化甚至避开讨论.一、选择题1.(★★★★)已知122lim =+-∞→nn nn n a a 其中a ∈R ,则a 的取值范围是( ) A.a <0 B.a <2或a ≠–2C.–2<a <2D.a <–2或a >22.(★★★★★)四面体的顶点和各棱的中点共10个点,在其中取4个不共面的点,不同的取法共有( )A.150种B.147种C.144种D.141种二、填空题3.(★★★★)已知线段AB 在平面α外,A 、B 两点到平面α的距离分别为1和3,则线段AB 的中点到平面α的距离为 .4.(★★★★★)已知集合A ={x |x 2–3x +2=0},B ={x |x 2–ax +(a –1)=0},C ={x |x 2–mx +2=0},且A ∪B =A ,A ∩C =C ,则a 的值为 ,m 的取值范围为 .三、解答题5.(★★★★)已知集合A ={x |x 2+px +q =0},B ={x |qx 2+px +1=0},A ,B 同时满足: ①A ∩B ≠∅,②A ∩B ={–2}.求p 、q 的值.6.(★★★★)已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0).求动点M 的轨迹方程,并说明它表示什么曲线.7.(★★★★★)已知函数y =f (x )的图象是自原点出发的一条折线.当n ≤y ≤n +1(n =0,1,2,…)时,该图象是斜率为b n 的线段(其中正常数b ≠1),设数列{x n }由f (x n )=n (n =1,2,…)定义.(1)求x 1、x 2和x n 的表达式;(2)计算∞→n lim x n ; (3)求f (x )的表达式,并写出其定义域.8.(★★★★★)已知a >0时,函数f (x )=ax –bx 2(1)当b >0时,若对任意x ∈R 都有f (x )≤1,证明a ≤2b ;(2)当b >1时,证明:对任意x ∈[0,1],|f (x )|≤1的充要条件是b –1≤a ≤2b ;(3)当0<b ≤1时,讨论:对任意x ∈[0,1],|f (x )|≤1的充要条件.参 考 答 案●难点磁场1.解析:即f (x )=(a –1)x 2+ax –41=0有解. 当a –1=0时,满足.当a –1≠0时,只需Δ=a 2–(a –1)>0. 答案:252252+-<<--a 或a =1 2.解:(1)当a =0时,函数f (–x )=(–x )2+|–x |+1=f (x ),此时f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (–a )=a 2+2|a |+1.f (–a )≠f (a ),f (–a )≠–f (a )此时函数f (x )既不是奇函数,也不是偶函数.(2)①当x ≤a 时,函数f (x )=x 2–x +a +1=(x –21)2+a +43 若a ≤21,则函数f (x )在(–∞,a ]上单调递减. 从而函数f (x )在(–∞,a ]上的最小值为f (a )=a 2+1若a >21,则函数f (x )在(–∞,a ]上的最小值为f (21)=43+a ,且f (21)≤f (a ). ②当x ≥a 时,函数f (x )=x 2+x –a +1=(x +21)2–a +43 若a ≤–21,则函数f (x )在[a ,+∞]上的最小值为f (–21)=43–a ,且f (–21)≤f (a ); 若a >–21,则函数f (x )在[a ,+∞)单调递增. 从而函数f (x )在[a ,+∞]上的最小值为f (a )=a 2+1.综上,当a ≤–21时,函数f (x )的最小值为43–a ; 当–21<a ≤21时,函数f (x )的最小值是a 2+1; 当a >21时,函数f (x )的最小值是a +43. ●歼灭难点训练一、1.解析:分a =2、|a |>2和|a |<2三种情况分别验证.答案:C2.解析:任取4个点共C 410=210种取法.四点共面的有三类:(1)每个面上有6个点,则有4×C 46=60种取共面的取法;(2)相比较的4个中点共3种;(3)一条棱上的3点与对棱的中点共6种.答案:C二、3.解析:分线段AB 两端点在平面同侧和异侧两种情况解决.答案:1或24.解析:A ={1,2},B ={x |(x –1)(x –1+a )=0},由A ∪B =A 可得1–a =1或1–a =2;由A ∩C =C ,可知C ={1}或∅.答案:2或3 3或(–22,22)三、5.解:设x 0∈A ,x 0是x 02+px 0+q =0的根.若x 0=0,则A ={–2,0},从而p =2,q =0,B ={–21}. 此时A ∩B =∅与已知矛盾,故x 0≠0.将方程x 02+px 0+q =0两边除以x 02,得 01)1()1(020=++x p x q . 即01x 满足B 中的方程,故01x ∈B . ∵A ∩B ={–2},则–2∈A ,且–2∈B .设A ={–2,x 0},则B ={01,21x -},且x 0≠2(否则A ∩B =∅). 若x 0=–21,则01x –2∈B ,与–2∉B 矛盾. 又由A ∩B ≠∅,∴x 0=01x ,即x 0=±1. 即A ={–2,1}或A ={–2,–1}.故方程x 2+px +q =0有两个不相等的实数根–2,1或–2,–1∴⎩⎨⎧=-⋅-==---=⎩⎨⎧-=⨯-==+--=2)1()2(3)12(21)2(1)12(q p q p 或 6.解:如图,设MN 切圆C 于N ,则动点M 组成的集合是P ={M ||MN |=λ|MQ |,λ>0}.∵ON ⊥MN ,|ON |=1,∴|MN |2=|MO |2–|ON |2=|MO |2–1设动点M 的坐标为(x ,y ), 则2222)2(1y x y x +-=-+λ即(x 2–1)(x 2+y 2)–4λ2x +(4λ2+1)=0.经检验,坐标适合这个方程的点都属于集合P ,故方程为所求的轨迹方程.(1)当λ=1时,方程为x =45,它是垂直于x 轴且与x 轴相交于点(45,0)的直线; (2)当λ≠1时,方程化为:2222222)1(31)12(-+=+--λλλλy x 它是以)0,12(22-λλ为圆心,|1|3122-+λλ为半径的圆. 7.解:(1)依题意f (0)=0,又由f (x 1)=1,当0≤y ≤1,函数y =f (x )的图象是斜率为b 0=1的线段,故由10)0()(11=--x f x f ∴x 1=1又由f (x 2)=2,当1≤y ≤2时,函数y =f (x )的图象是斜率为b 的线段,故由b x x x f x f =--1212)()( 即x 2–x 1=b1∴x 2=1+b1 记x 0=0,由函数y =f (x )图象中第n 段线段的斜率为b n –1,故得111)()(---=--n n n n n b x x x f x f 又由f (x n )=n ,f (x n –1)=n –1∴x n –x n –1=(b1)n –1,n =1,2,…… 由此知数列{x n –x n –1}为等比数列,其首项为1,公比为b 1. 因b ≠1,得∑==n k n x 1(x k –x k –1) =1+b 1+…+1)1(111--=--b b b bn n 即x n =1)1(1---b b b n (2)由(1)知,当b >1时,11)1(lim lim 1-=--=-∞→∞→b b b b b x n n n n 当0<b <1,n →∞, x n 也趋于无穷大.∞→n lim x n 不存在. (3)由(1)知,当0≤y ≤1时,y =x ,即当0≤x ≤1时,f (x )=x ;当n ≤y ≤n +1,即x n ≤x ≤x n +1由(1)可知f (x )=n +b n (x –x n )(n =1,2,…),由(2)知当b >1时,y =f (x )的定义域为[0,1-b b ); 当0<b <1时,y =f (x )的定义域为[0,+∞).8.(1)证明:依设,对任意x ∈R ,都有f (x )≤1 ∵ba b a x b x f 4)2()(22+--= ∴ba b a f 4)2(2=≤1 ∵a >0,b >0∴a ≤2b .(2)证明:必要性:对任意x ∈[0,1],|f (x )|≤1⇒–1≤f (x ),据此可以推出–1≤f (1)即a –b ≥–1,∴a ≥b –1对任意x ∈[0,1],|f (x )|≤1⇒f (x )≤1.因为b >1,可以推出f (b 1)≤1即a ·b1–1≤1, ∴a ≤2b ,∴b –1≤a ≤2b充分性:因为b >1,a ≥b –1,对任意x ∈[0,1].可以推出ax –bx 2≥b (x –x 2)–x ≥–x ≥–1即ax –bx 2≥–1因为b >1,a ≤2b ,对任意x ∈[0,1],可以推出ax –bx 2≤2b x –bx 2≤1 即ax –bx 2≤1,∴–1≤f (x )≤1综上,当b >1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是b –1≤a ≤2b .(3)解:∵a >0,0<b ≤1∴x ∈[0,1],f (x )=ax –bx 2≥–b ≥–1即f (x )≥–1f (x )≤1⇒f (1)≤1⇒a –b ≤1即a ≤b +1a ≤b +1⇒f (x )≤(b +1)x –bx 2≤1即f (x )≤1所以当a >0,0<b ≤1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是a ≤b +1.。
高中数学常见解题思想方法——思想篇(高三适用)九、分类讨论思想 含解析
![高中数学常见解题思想方法——思想篇(高三适用)九、分类讨论思想 含解析](https://img.taocdn.com/s3/m/5ca32268ec3a87c24128c499.png)
分类讨论思想是高中重要数学思想之一,是历年高考数学的重点与难点.突出考察思维的逻辑性、全面严谨性,比如在不等式、数列、导数应用相关的习题中,分类讨论思想很常见。
一、什么是分类讨论思想:每个数学结论都有其成立的条件,每一种数学方法的使用也往往有其适用范围,在我们所遇到的数学问题中,有些问题的结果不能唯一确定,有些问题的结论不能以统一的形式进行研究,还有些含参数的问题,参数的取值不同也会影响问题的结果,那么就要根据题目的要求,将题目分成若干类型,转化成若干个小问题来解决,这种按不同情况分类,然后再对分好的每类逐一研究、解决问题的数学思想,就是分类讨论思想。
二、分类讨论的一般步骤:第一,明确讨论对象,确定对象的取值范围;第二,确定分类标准,进行合理分类,不重不漏;第三,对分好的每类进行讨论,获得阶段性结果;第四,归纳总结,得出结论。
三、分类讨论的常见情形:1.由数学概念引起的分类:有的概念本身就是分类给出的,在不同条件下有不同结论,则必须进行分类讨论求解,如绝对值、指数与对数函数、直线和平面所成的角等。
2.由性质、定理、公式的限制引起的分类:有的数学定理、公式、性质是分类给出的,在不同条件下结论不一致,如二次函数y=ax2+bx+c(a≠0),由a的正负而导致开口方向不确定;等比数列前n项和公式因公比q是否为1而导致公式的表达式不确定等.3。
由某些数学运算要求引起的分类讨论:如解不等式ax2+bx+c >0,a=0,a<0,a>0解法是不同的;除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,指数中底数的要求,不等式两边同乘以一个正数、负数时不等号的方向,三角函数的定义域等.4。
由图形引的不确定性起的分类:有的图形的类型、位置需要分类,比如角的终边所在象限;立体几何中点、线、面的位置关系等。
5.由实际意义引起的分类:此类问题在实际应用题中常见.特别是在解决排列、组合中的计数问题时常用.6。
由参数变化引起的分类:如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,所以必须对参数的不同取值进行分类讨论;或对于不同的参数值运用不同的求解或证明方法.四、下面我们通过几种具体问题来看看常见的分类讨论情形:1。
二 分类讨论思想
![二 分类讨论思想](https://img.taocdn.com/s3/m/29707e4bad02de80d4d84050.png)
=2.
关闭
或 .
2
7
解析
答案
高频考点 命题热点一 命题热点二 命题热点三 命题热点四
-15-
根据字母的取值情况分类讨论 【思考】 题目中含有参数的分类讨论问题主要有哪些?求解的 一般思路是什么? 例4已知函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f'(x)为偶函数, 且曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c. (1)确定a,b的值; (2)若c=3,判断f(x)的单调性; (3)若f(x)有极值,求c的取值范围.
2
>0,t1<t 2,
1 x1= ln t 1 或 2 1 x2= ln 2
即 f'(x)=0 有两个根
t2.
当x1<x<x2时,f'(x)<0;又当x>x2时,f'(x)>0,从而f(x)在x=x2处取得极 小值. 综上知,若f(x)有极值,则c的取值范围为(4,+∞).
高频考点 命题热点一 命题热点二 命题热点三 命题热点四
高频考点 命题热点一 命题热点二 命题热点三 命题热点四
-7-
-������ + 6,������ ≤ 2, f ( x ) = 对点训练1若函数 3 + log������ ������,������ > 2 (a>0,且a≠1)的值域是 [4,+∞),则实数a的取值范围是 .
关闭
∵当 x≤2 时 ,f(x)∈[4,+∞), ∴当 x>2 时 ,函数 f(x)=3+logax 的值域为 [4,+∞)的子集 .
高考数学专题突破分类讨论思想
![高考数学专题突破分类讨论思想](https://img.taocdn.com/s3/m/fd929391a5e9856a57126061.png)
( 1)涉及的数学概念是分类讨论的;如绝对值 |a| 的定义分 a>0、 a= 0、 a<0 三种情
况。这种分类讨论题型可以称为概念型。
( 2)运用的数学定理、公式、或运算性质、法则是分类给出的;如等比数列的前
n
项和的公式,分 q=1 和 q≠ 1 两种情况。这种分类讨论题型可以称为性质型。
( 3)求解的数学问题的结论有多种情况或多种可能性;
图象、几何图形的直观性和对称特点有时可以简化甚至避开讨论。
二.命题趋势
分类讨论思想是一种重要的数学思想, 它在人的思维发展中有着重要的作用, 因此在近
几年的高考试题中,他都被列为一种重要的思维方法来考察。
分类讨论是每年高考必考的内容,预测 2008 年对本专题的考察为:将有一道中档或中
档偏上的试题, 其求解思路直接依赖于分类讨论, 特别关注以下方面: 涉及指数、 对数底的
综上所述, CA CB 为常数 1 .
点评:处理直线与圆锥曲线的位置关系时, 待定直线方程需要考虑斜率不存在这种情况,
分类讨论。 例 6.已知直角坐标平面上点
Q( 2,0)和圆 C:x2+y2=1,
动点 M到圆 C 的切线长与 |MQ|的比等于常数 λ (λ > 0)。
求动点 M的轨迹方程,说明它表示什么曲线。
, P,故这个方程为所求的轨迹方程。
当 λ =1 时,方程化为
,它表示一条直线, 该直线与 x 轴垂直且交 x 轴于点
;
当 λ≠1时,方程化为
,它表示圆,该圆圆心的坐标为
,半径为
。
点评: 本题在求出轨迹方程之后,在判定为何曲线时,因参数引起了分类讨论:一些问
题中的数学表达式中因含有会导致不同结论的参数,
分类讨论思想方法在解答高考试题中的应用
![分类讨论思想方法在解答高考试题中的应用](https://img.taocdn.com/s3/m/375abada3186bceb19e8bbae.png)
分类讨论思想广东 王远征考点透视:分类讨论思想是中学数学重要的思想方法之一,也是高考必考的热点.多年来的高考试题都涉及由含有参数的变化及变化过程需要一些条件限制而引起的分类讨论.试题能很好地考查考生思维的深刻性和灵活性,对学生解决问题的条理性、完整性及科学性等数学能力能够较好地考查.试题类型包含有选择题、填空题和解答题,分值为4~12分.解题时要求考生科学地思考、分析问题,避免发生“重复”和“遗漏”的错误,因此,运用分类讨论思想来指导解题是制胜法宝.高考的热点表现在如下几个方面:1.含有参数的函数问题;2.数列问题;3.几何(立体几何和解析几何)问题; 4.排列组合问题等.考题精讲:分类讨论思想是指把所要研究的数学对象划分为若干个不同的情形,然后再分类进行研究和求解的一种数学思想.因为很多数学问题不仅在涉及的范围上带有综合性,而且,问题本身,受多种条件的交叉制约,形成错综复杂的局面,很难从整体上着手解决,所以,只能化整为零,各个击破,最后到达整体的解决.例1(08年高考广东卷).设k ∈R ,函数111()1x x f x x ⎧<⎪-=⎨⎪⎩,≥,()()F x f x kx =-,x ∈R ,试讨论函数()F x 的单调性.分析:函数()F x 的单调性既与函数的定义域有关,还与字母k 的取值情况有关,因为k ∈R ,则对k 分为两种情况:0≤k 和0>k 进行讨论,并结合函数的定义域对)(x F '的符号进行分类讨论.解:1,1,1()(),1,kx x x F x f x kx kx x ⎧-<⎪-=-=⎨⎪≥⎩,21,1,(1)'(),1,k x x F x k x ⎧-<⎪-⎪=⎨⎪≥⎪⎩ 对于1()(1)1F x kx x x=-<-, 当0k ≤,∈x (,1)-∞时,0)(>'x F ,函数()F x 在(,1)-∞上是增函数;当0k >,∈x (,1-∞时,0)(<'x F ,函数()F x在(,1-∞上是减函数,在(1上0)(>'x F ,函数()F x 是增函数;对于()(1)F x k x =≥,当0k ≥时,函数()F x 在[)1,+∞上是减函数;当0k <时,函数()F x 在211,14k ⎡⎫+⎪⎢⎣⎭上是减函数,在211,4k ⎡⎫++∞⎪⎢⎣⎭上是增函数。
高考数学:五大主要解题新思路
![高考数学:五大主要解题新思路](https://img.taocdn.com/s3/m/1c90c37b59fafab069dc5022aaea998fcc2240f2.png)
高考数学:五大主要解题新思路高考数学:五大要紧解题新思路高考数学解题思想一:函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。
利用转化思想我们还可进行函数与方程间的相互转化。
高考数学解题思想二:数形结合思想中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,那个联系称之为数形结合或形数结合。
它既是查找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地明白得题意、快速地解决问题。
高考数学解题思想三:专门与一样的思想用这种思想解选择题有时专门有效,这是因为一个命题在普遍意义上成立时,在其专门情形下也必定成立,依照这一点,我们能够直截了当确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样杰出。
高考数学解题思想四:极限思想解题步骤极限思想解决问题的一样步骤为:(1)关于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果确实是所求的未知量;(3)构造函数(数列)并利用极限运算法则得出结果或利用图形的极限位置直截了当运算结果。
高考数学解题思想五:分类讨论思想死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。
分类讨论思想方法
![分类讨论思想方法](https://img.taocdn.com/s3/m/adc228130a4e767f5acfa1c7aa00b52acfc79cc5.png)
分类讨论思想1、专题概述分类讨论是一种逻辑方法与数学思想,在高考中占有重要位置,其原因有:〔1〕分类讨论问题一般都覆盖较多知识点,具有较强的综合性、探索性,有利于知识面的考查;〔2〕有关分类讨论思想的数学问题具有明显的逻辑性;〔3〕它需要有一定的分析能力与分类技巧,有利于培养学生思维的条理性和概括性;〔4〕分类讨论思想与生产实践和高等数学都紧密相关。
解分类讨论问题的实质是将整体问题化为假设干个部分解决,从而增加了题设条件,它表达了化整为零、积零为整的思想与归类整理的方法,这正是分类讨论的根本原因。
引起分类讨论的原因主要是以下几个方面:〔1〕问题所涉及到的数学概念是分类进行定义的。
如绝对值的定义、指对数函数的定义、直线的斜率与倾斜角等,这种分类讨论题型可以称为概念型。
〔2〕问题中涉及到的数学定理、公式和运算性质、法那么有X 围或者条件限制,或者是分类给出的。
如等比数列的前n 项和的公式,分q =1和q ≠1两种情况,这种分类讨论题型可以称为性质型。
〔3〕解含有参数的题目时,由于参数的取值不同会导致所得结果不同,或者由于不同的参数值而要不同的求解或证明方法,因此必须根据参数的不同取值X 围进行讨论,这称为含参型。
〔4〕由数学运算要求引起的分类讨论,如利用不等式性质时注意使用条件等。
〔5〕较复杂的或非常规的数学问题,需要采取分类讨论的解题策略来解决的。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都需要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时要遵循的原那么及其须知:〔1〕被分类的对象的集合的全域是确定的;〔2〕每一次分类的标准要统一,要分清主次、科学划分;〔3〕每一次分类必须要“不漏不重〞;〔4〕如需多次分类,必须是逐级进行,不越级讨论;〔5〕要注意简化或避免分类讨论,优化解题过程。
解答分类讨论问题时,我们的基本方法和步骤是:〔1〕确定讨论对象及其X 围;〔2〕确定分类标准,合理分类,分类互斥;〔3〕逐类进行讨论,分级进行,获取阶段性结果;〔4〕最后进行归纳小结,综合得出结论。
名校 状元 实战 经典---高考数学难点突破_难点38__分类讨论思想
![名校 状元 实战 经典---高考数学难点突破_难点38__分类讨论思想](https://img.taocdn.com/s3/m/ff7c1233f12d2af90242e6c5.png)
难点38 分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”1.(★★★★★)若函数514121)1(31)(23+-+-=x ax x a x f 在其定义域内有极值点,则a 的取值为 .2.(★★★★★)设函数f (x )=x 2+|x –a |+1,x ∈R .(1)判断函数f (x )的奇偶性;(2)求函数f (x )的最小值.[例1]已知{a n }是首项为2,公比为21的等比数列,S n 为它的前n 项和. (1)用S n 表示S n +1;(2)是否存在自然数c 和k ,使得21>--+cS c S k k 成立. 命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目.知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质.错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-223. 技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k ,c 轮流分类讨论,从而获得答案.解:(1)由S n =4(1–n21),得 221)211(411+=-=++n n n S S ,(n ∈N *) (2)要使21>--+c S c S k k ,只要0)223(<---kk S c S c 因为4)211(4<-=k k S 所以0212)223(>-=--k k k S S S ,(k ∈N *) 故只要23S k –2<c <S k ,(k ∈N *)因为S k +1>S k ,(k ∈N *) ① 所以23S k –2≥23S 1–2=1. 又S k <4,故要使①成立,c 只能取2或3.当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不成立.当k ≥2时,因为c S >=-252232,由S k <S k +1(k ∈N *)得 23S k –2<23S k +1–2 故当k ≥2时,23S k –2>c ,从而①不成立. 当c =3时,因为S 1=2,S 2=3,所以当k =1,k =2时,c <Sk 因为c S >=-4132233,又23S k –2<23S k +1–2 所以当k ≥3时,23S k –2>c ,从而①成立. 综上所述,不存在自然数c ,k ,使21>--+cS c S k k 成立. [例2]给出定点A (a ,0)(a >0)和直线l :x =–1,B 是直线l 上的动点,∠BOA 的角平分线交AB 于点C .求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.命题意图:本题考查动点的轨迹,直线与圆锥曲线的基本知识,分类讨论的思想方法.综合性较强,解法较多,考查推理能力和综合运用解析几何知识解题的能力.属★★★★★级题目.知识依托:求动点轨迹的基本方法步骤.椭圆、双曲线、抛物线标准方程的基本特点. 错解分析:本题易错点为考生不能巧妙借助题意条件,构建动点坐标应满足的关系式和分类讨论轨迹方程表示曲线类型.技巧与方法:精心思考,发散思维、多途径、多角度的由题设条件出发,探寻动点应满足的关系式.巧妙地利用角平分线的性质.解法一:依题意,记B (–1,b ),(b ∈R ),则直线OA 和OB 的方程分别为y =0和y =–bx .设点C (x ,y ),则有0≤x <a ,由OC 平分∠AOB ,知点C 到OA 、OB 距离相等.根据点到直线的距离公式得|y |=21||b bx y ++ ①依题设,点C 在直线AB 上,故有 )(1a x ab y -+-= 由x –a ≠0,得a x y a b -+-=)1( ② 将②式代入①式,得y 2[(1–a )x 2–2ax +(1+a )y 2]=0若y ≠0,则(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )若y =0则b =0,∠AOB =π,点C 的坐标为(0,0)满足上式.综上,得点C 的轨迹方程为(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )(i)当a =1时,轨迹方程化为y 2=x (0≤x <1) ③此时方程③表示抛物线弧段;(ii)当a ≠1,轨迹方程化为)0(11)1()1(22222a x a a y a a a a x <≤=-+--- ④ 所以当0<a <1时,方程④表示椭圆弧段;当a >1时,方程④表示双曲线一支的弧段.解法二:如图,设D 是l 与x 轴的交点,过点C 作CE ⊥x轴,E 是垂足.(i )当|BD |≠0时,设点C (x ,y ),则0<x <a ,y ≠0由CE ∥BD ,得)1(||||||||||a xa y EA DA CE BD +-=⋅=. ∵∠COA =∠COB =∠COD –∠BOD =π–∠COA –∠BOD∴2∠COA =π–∠BOD ∴COACOA COA 2tan 1tan 2)2tan(-=∠ BOD BOD tan )tan(-=∠-π ∵xy COA ||tan = )1(||||||tan a xa y OD BD BOD +-== ∴)1(||1||22a x a y x y x y +--=-⋅整理,得 (1–a )x 2–2ax +(1+a )y 2=0(0<x <a )(ii)当|BD |=0时,∠BOA =π,则点C 的坐标为(0,0),满足上式.综合(i)、(ii),得点C 的轨迹方程为(1–a )x 2–2ax +(1+a )y 2=0(0≤x <a )以下同解法一.解法三:设C (x ,y )、B (–1,b ),则BO 的方程为y =–bx ,直线AB 的方程为)(1a x ab y -+-=∵当b ≠0时,OC 平分∠AOB ,设∠AOC =θ,∴直线OC 的斜率为k =tan θ,OC 的方程为y =kx 于是2212tan 1tan 22tan kk -=-=θθθ 又tan2θ=–b∴–b =212k k - ① ∵C 点在AB 上 ∴)(1a x ab kx -+-= ② 由①、②消去b ,得)(12)1(2a x k k kx a --=+ ③ 又xy k =,代入③,有 )(12)1(22a x xy x y x x y a --⋅⋅⋅+ 整理,得(a –1)x 2–(1+a )y 2+2ax =0 ④当b =0时,即B 点在x 轴上时,C (0,0)满足上式:a ≠1时,④式变为11)1()1(22222=-+---a a y a a a a x 当0<a <1时,④表示椭圆弧段;当a >1时,④表示双曲线一支的弧段;当a =1时,④表示抛物线弧段.分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.分类讨论常见的依据是:1.由概念内涵分类.如绝对值、直线的斜率、指数对数函数、直线与平面的夹角等定义包含了分类.2.由公式条件分类.如等比数列的前n 项和公式、极限的计算、圆锥曲线的统一定义中图形的分类等.3.由实际意义分类.如排列、组合、概率中较常见,但不明显、有些应用问题也需分类讨论.在学习中也要注意优化策略,有时利用转化策略,如反证法、补集法、变更多元法、数形结合法等简化甚至避开讨论.一、选择题1.(★★★★)已知122lim =+-∞→nn nn n a a 其中a ∈R ,则a 的取值范围是( ) A.a <0 B.a <2或a ≠–2C.–2<a <2D.a <–2或a >22.(★★★★★)四面体的顶点和各棱的中点共10个点,在其中取4个不共面的点,不同的取法共有( )A.150种B.147种C.144种D.141种二、填空题3.(★★★★)已知线段AB 在平面α外,A 、B 两点到平面α的距离分别为1和3,则线段AB 的中点到平面α的距离为 .4.(★★★★★)已知集合A ={x |x 2–3x +2=0},B ={x |x 2–ax +(a –1)=0},C ={x |x 2–mx +2=0},且A ∪B =A ,A ∩C =C ,则a 的值为 ,m 的取值范围为 .三、解答题5.(★★★★)已知集合A ={x |x 2+px +q =0},B ={x |qx 2+px +1=0},A ,B 同时满足: ①A ∩B ≠∅,②A ∩B ={–2}.求p 、q 的值.6.(★★★★)已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0).求动点M 的轨迹方程,并说明它表示什么曲线.7.(★★★★★)已知函数y =f (x )的图象是自原点出发的一条折线.当n ≤y ≤n +1(n =0,1,2,…)时,该图象是斜率为b n 的线段(其中正常数b ≠1),设数列{x n }由f (x n )=n (n =1,2,…)定义.(1)求x 1、x 2和x n 的表达式;(2)计算∞→n lim x n ; (3)求f (x )的表达式,并写出其定义域.8.(★★★★★)已知a >0时,函数f (x )=ax –bx 2(1)当b >0时,若对任意x ∈R 都有f (x )≤1,证明a ≤2b ;(2)当b >1时,证明:对任意x ∈[0,1],|f (x )|≤1的充要条件是b –1≤a ≤2b ;(3)当0<b ≤1时,讨论:对任意x ∈[0,1],|f (x )|≤1的充要条件.参 考 答 案●难点磁场1.解析:即f (x )=(a –1)x 2+ax –41=0有解. 当a –1=0时,满足.当a –1≠0时,只需Δ=a 2–(a –1)>0. 答案:252252+-<<--a 或a =1 2.解:(1)当a =0时,函数f (–x )=(–x )2+|–x |+1=f (x ),此时f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (–a )=a 2+2|a |+1.f (–a )≠f (a ),f (–a )≠–f (a )此时函数f (x )既不是奇函数,也不是偶函数.(2)①当x ≤a 时,函数f (x )=x 2–x +a +1=(x –21)2+a +43 若a ≤21,则函数f (x )在(–∞,a ]上单调递减. 从而函数f (x )在(–∞,a ]上的最小值为f (a )=a 2+1若a >21,则函数f (x )在(–∞,a ]上的最小值为f (21)=43+a ,且f (21)≤f (a ). ②当x ≥a 时,函数f (x )=x 2+x –a +1=(x +21)2–a +43 若a ≤–21,则函数f (x )在[a ,+∞]上的最小值为f (–21)=43–a ,且f (–21)≤f (a ); 若a >–21,则函数f (x )在[a ,+∞)单调递增. 从而函数f (x )在[a ,+∞]上的最小值为f (a )=a 2+1.综上,当a ≤–21时,函数f (x )的最小值为43–a ; 当–21<a ≤21时,函数f (x )的最小值是a 2+1; 当a >21时,函数f (x )的最小值是a +43. ●歼灭难点训练一、1.解析:分a =2、|a |>2和|a |<2三种情况分别验证.答案:C2.解析:任取4个点共C 410=210种取法.四点共面的有三类:(1)每个面上有6个点,则有4×C 46=60种取共面的取法;(2)相比较的4个中点共3种;(3)一条棱上的3点与对棱的中点共6种.答案:C二、3.解析:分线段AB 两端点在平面同侧和异侧两种情况解决.答案:1或24.解析:A ={1,2},B ={x |(x –1)(x –1+a )=0},由A ∪B =A 可得1–a =1或1–a =2;由A ∩C =C ,可知C ={1}或∅.答案:2或3 3或(–22,22)三、5.解:设x 0∈A ,x 0是x 02+px 0+q =0的根.若x 0=0,则A ={–2,0},从而p =2,q =0,B ={–21}. 此时A ∩B =∅与已知矛盾,故x 0≠0.将方程x 02+px 0+q =0两边除以x 02,得 01)1()1(020=++x p x q . 即01x 满足B 中的方程,故01x ∈B . ∵A ∩B ={–2},则–2∈A ,且–2∈B .设A ={–2,x 0},则B ={01,21x -},且x 0≠2(否则A ∩B =∅). 若x 0=–21,则01x –2∈B ,与–2∉B 矛盾. 又由A ∩B ≠∅,∴x 0=01x ,即x 0=±1. 即A ={–2,1}或A ={–2,–1}.故方程x 2+px +q =0有两个不相等的实数根–2,1或–2,–1∴⎩⎨⎧=-⋅-==---=⎩⎨⎧-=⨯-==+--=2)1()2(3)12(21)2(1)12(q p q p 或 6.解:如图,设MN 切圆C 于N ,则动点M 组成的集合是P ={M ||MN |=λ|MQ |,λ>0}.∵ON ⊥MN ,|ON |=1,∴|MN |2=|MO |2–|ON |2=|MO |2–1设动点M 的坐标为(x ,y ), 则2222)2(1y x y x +-=-+λ即(x 2–1)(x 2+y 2)–4λ2x +(4λ2+1)=0.经检验,坐标适合这个方程的点都属于集合P ,故方程为所求的轨迹方程.(1)当λ=1时,方程为x =45,它是垂直于x 轴且与x 轴相交于点(45,0)的直线; (2)当λ≠1时,方程化为:2222222)1(31)12(-+=+--λλλλy x 它是以)0,12(22-λλ为圆心,|1|3122-+λλ为半径的圆. 7.解:(1)依题意f (0)=0,又由f (x 1)=1,当0≤y ≤1,函数y =f (x )的图象是斜率为b 0=1的线段,故由10)0()(11=--x f x f ∴x 1=1又由f (x 2)=2,当1≤y ≤2时,函数y =f (x )的图象是斜率为b 的线段,故由b x x x f x f =--1212)()( 即x 2–x 1=b1∴x 2=1+b1 记x 0=0,由函数y =f (x )图象中第n 段线段的斜率为b n –1,故得111)()(---=--n n n n n b x x x f x f又由f (x n )=n ,f (x n –1)=n –1∴x n –x n –1=(b 1)n –1,n =1,2,……由此知数列{x n –x n –1}为等比数列,其首项为1,公比为b 1.因b ≠1,得∑==nk n x 1(x k –x k –1) =1+b 1+…+1)1(111--=--b bb b n n即x n =1)1(1---b bb n(2)由(1)知,当b >1时,11)1(lim lim 1-=--=-∞→∞→b bb b b x n n n n当0<b <1,n →∞, x n 也趋于无穷大.∞→nlim x n 不存在. (3)由(1)知,当0≤y ≤1时,y =x ,即当0≤x ≤1时,f (x )=x ;当n ≤y ≤n +1,即x n ≤x ≤x n +1由(1)可知f (x )=n +b n (x –x n )(n =1,2,…),由(2)知当b >1时,y =f (x )的定义域为[0,1-b b);当0<b <1时,y =f (x )的定义域为[0,+∞).8.(1)证明:依设,对任意x ∈R ,都有f (x )≤1 ∵b ab a x b x f 4)2()(22+--= ∴b a b a f 4)2(2=≤1∵a >0,b >0∴a ≤2b .(2)证明:必要性:对任意x ∈[0,1],|f (x )|≤1⇒–1≤f (x ),据此可以推出–1≤f (1)即a –b ≥–1,∴a ≥b –1对任意x ∈[0,1],|f (x )|≤1⇒f (x )≤1.因为b >1,可以推出f (b 1)≤1即a ·b 1–1≤1,∴a ≤2b ,∴b –1≤a ≤2b充分性:因为b >1,a ≥b –1,对任意x ∈[0,1].可以推出ax –bx 2≥b (x –x 2)–x ≥–x ≥–1即ax –bx 2≥–1因为b >1,a ≤2b ,对任意x ∈[0,1],可以推出ax –bx 2≤2b x –bx 2≤1 即ax –bx 2≤1,∴–1≤f (x )≤1综上,当b >1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是b –1≤a ≤2b .(3)解:∵a >0,0<b ≤1∴x ∈[0,1],f (x )=ax –bx 2≥–b ≥–1即f (x )≥–1f (x )≤1⇒f (1)≤1⇒a –b ≤1即a ≤b +1a ≤b +1⇒f (x )≤(b +1)x –bx 2≤1即f (x )≤1所以当a >0,0<b ≤1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是a ≤b +1.。
分类讨论思想
![分类讨论思想](https://img.taocdn.com/s3/m/ec35dd5f77232f60ddcca16e.png)
分类讨论思想一.知识探究:分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。
1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种:(1)涉及的数学概念是分类讨论的;如绝对值|a|的定义分a>0、a=0、a<0三种情况。
这种分类讨论题型可以称为概念型。
(2)运用的数学定理、公式、或运算性质、法则是分类给出的;如等比数列的前n项和的公式,分q=1和q≠1两种情况。
这种分类讨论题型可以称为性质型。
(3)求解的数学问题的结论有多种情况或多种可能性;(4)数学问题中含有参变量,这些参变量的不同取值导致不同的结果的;如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。
这称为含参型。
(5)较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解决的。
2.分类原则:(1)对所讨论的全域分类要“即不重复,也不遗漏”(2)在同一次讨论中只能按所确定的一个标准进行(3)对多级讨论,应逐级进行,不能越级;3.分类方法:(1)概念和性质是分类的依据(2)按区域(定义域或值域)进行分类是基本方法(3)不定因素(条件或结论不唯一,数值大小的不确定,图形位置的不确定)是分类的突破口(4)二分发是分类讨论的利器(4)层次分明是分类讨论的基本要求;4.讨论的基本步骤:(1)确定讨论的对象和讨论的范围(全域)(2)确定分类的标准,进行合理的分类(3)逐步讨论(必要时还得进行多级分类)(4)总结概括,得出结论;5.简化和避免分类讨论的优化策略:(1)直接回避。
如运用反证法、求补法、消参法等方法有时可以避开烦琐讨论;(2)变更主元。
如分离参数、变参置换,构造以讨论对象为变量的函数得便感形式解题时可避开讨论;(3)合理运算。
如利用函数奇偶性、变量的对称轮换以及公式的合理选用等有时可以简化甚至避开讨论;(4)数形结合。
高考数学秘籍18法分类讨论思想在解题中的应用试题
![高考数学秘籍18法分类讨论思想在解题中的应用试题](https://img.taocdn.com/s3/m/9a823b8b03d276a20029bd64783e0912a2167cea.png)
高考数学秘籍18法 分类讨论思想在解题中的应用一、知识整合1.分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,开展人的思维有着重要帮助,因此,有关分类讨论的数学命题在高考试题中占有重要位置。
2.所谓分类讨论,就是当问题所给的对象不能进展统一研究时,就需要对研究对象按某个HY 分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。
本质上,分类讨论是“化整为零,各个击破,再积零为整〞的数学策略。
3.分类原那么:分类对象确定,HY 统一,不重复,不遗漏,分层次,不越级讨论。
4.分类方法:明确讨论对象,确定对象的全体,确定分类HY ,正确进展分类;逐类进展讨论,获取阶段性成果;归纳小结,综合出结论。
5.含参数问题的分类讨论是常见题型。
6.注意简化或者防止分类讨论。
二、例题分析例1.一条直线过点〔5,2〕,且在x 轴,y 轴上截距相等,那么这直线方程为〔 〕A. x y +-=70B. 250x y -=C.x y x y +-=-=70250或 D.x y y x ++=-=70250或分析:设该直线在x 轴,y 轴上的截距均为a, 当a=0时,直线过原点,此时直线方程为y x x y =-=25250,即; 当a ≠0时,设直线方程为x a yaa +==17,则求得,方程为x y +-=70。
例2.∆ABC A B C 中,已知,,求sin cos cos ==12513分析:由于C A B =-+π()[]∴=-+=--⋅cos cos()cos cos sin sin C A B A B A B因此,只要根据条件,求出cosA ,sinB 即可得cosC 的值。
但是由sinA 求cosA 时,是一解还是两解?这一点需经过讨论才能确定,故解此题时要分类讨论。
对角A 进展分类。
解:051322<=<cos B B ABC ,且为的一个内角∆∴<<=45901213 B B ,且sin 若为锐角,由,得,此时A A A A sin cos ===123032若为钝角,由,得,此时A A A A B sin ==+>12150180 这与三角形的内角和为180°相矛盾。
难点38 分类讨论思想
![难点38 分类讨论思想](https://img.taocdn.com/s3/m/922e560f2f60ddccda38a0ae.png)
难点38 分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”1.(★★★★★)若函数514121)1(31)(23+-+-=x ax x a x f 在其定义域内有极值点,则a 的取值为 .2.(★★★★★)设函数f (x )=x 2+|x –a |+1,x ∈R .(1)判断函数f (x )的奇偶性;(2)求函数f (x )的最小值.[例1]已知{a n }是首项为2,公比为21的等比数列,S n 为它的前n 项和. (1)用S n 表示S n +1;(2)是否存在自然数c 和k ,使得21>--+cS c S k k 成立. 命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目.知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质.错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-223. 技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k ,c 轮流分类讨论,从而获得答案.解:(1)由S n =4(1–n21),得 221)211(411+=-=++n n n S S ,(n ∈N *) (2)要使21>--+cS c S k k ,只要0)223(<---k k S c S c 因为4)211(4<-=k k S 所以0212)223(>-=--k k k S S S ,(k ∈N *) 故只要23S k –2<c <S k ,(k ∈N *) 因为S k +1>S k ,(k ∈N *) ①所以23S k –2≥23S 1–2=1. 又S k <4,故要使①成立,c 只能取2或3.当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不成立.当k ≥2时,因为c S >=-252232,由S k <S k +1(k ∈N *)得 23S k –2<23S k +1–2 故当k ≥2时,23S k –2>c ,从而①不成立. 当c =3时,因为S 1=2,S 2=3,所以当k =1,k =2时,c <Sk 因为c S >=-4132233,又23S k –2<23S k +1–2 所以当k ≥3时,23S k –2>c ,从而①成立. 综上所述,不存在自然数c ,k ,使21>--+cS c S k k 成立. [例2]给出定点A (a ,0)(a >0)和直线l :x =–1,B 是直线l 上的动点,∠BOA 的角平分线交AB 于点C .求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.命题意图:本题考查动点的轨迹,直线与圆锥曲线的基本知识,分类讨论的思想方法.综合性较强,解法较多,考查推理能力和综合运用解析几何知识解题的能力.属★★★★★级题目.知识依托:求动点轨迹的基本方法步骤.椭圆、双曲线、抛物线标准方程的基本特点. 错解分析:本题易错点为考生不能巧妙借助题意条件,构建动点坐标应满足的关系式和分类讨论轨迹方程表示曲线类型.技巧与方法:精心思考,发散思维、多途径、多角度的由题设条件出发,探寻动点应满足的关系式.巧妙地利用角平分线的性质.解法一:依题意,记B (–1,b ),(b ∈R ),则直线OA 和OB 的方程分别为y =0和y =–bx .设点C (x ,y ),则有0≤x <a ,由OC 平分∠AOB ,知点C 到OA 、OB 距离相等.根据点到直线的距离公式得|y |=21||b bx y ++ ①依题设,点C 在直线AB 上,故有 )(1a x ab y -+-= 由x –a ≠0,得a x y a b -+-=)1( ② 将②式代入①式,得y 2[(1–a )x 2–2ax +(1+a )y 2]=0若y ≠0,则(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )若y =0则b =0,∠AOB =π,点C 的坐标为(0,0)满足上式.综上,得点C 的轨迹方程为(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )(i)当a =1时,轨迹方程化为y 2=x (0≤x <1) ③此时方程③表示抛物线弧段;(ii)当a ≠1,轨迹方程化为)0(11)1()1(22222a x a a y a a a a x <≤=-+--- ④ 所以当0<a <1时,方程④表示椭圆弧段;当a >1时,方程④表示双曲线一支的弧段.解法二:如图,设D 是l 与x 轴的交点,过点C 作CE ⊥x轴,E 是垂足.(i )当|BD |≠0时,设点C (x ,y ),则0<x <a ,y ≠0由CE ∥BD ,得)1(||||||||||a xa y EA DA CE BD +-=⋅=. ∵∠COA =∠COB =∠COD –∠BOD =π–∠COA –∠BOD∴2∠COA =π–∠BOD ∴COACOA COA 2tan 1tan 2)2tan(-=∠ BOD BOD tan )tan(-=∠-π ∵xy COA ||tan = )1(||||||tan a xa y OD BD BOD +-== ∴)1(||1||22a x a y x y x y +--=-⋅整理,得 (1–a )x 2–2ax +(1+a )y 2=0(0<x <a )(ii)当|BD |=0时,∠BOA =π,则点C 的坐标为(0,0),满足上式.综合(i)、(ii),得点C 的轨迹方程为(1–a )x 2–2ax +(1+a )y 2=0(0≤x <a )以下同解法一.解法三:设C (x ,y )、B (–1,b ),则BO 的方程为y =–bx ,直线AB 的方程为)(1a x ab y -+-= ∵当b ≠0时,OC 平分∠AOB ,设∠AOC =θ,∴直线OC 的斜率为k =tan θ,OC 的方程为y =kx 于是2212tan 1tan 22tan k k -=-=θθθ 又tan2θ=–b∴–b =212k k - ① ∵C 点在AB 上 ∴)(1a x ab kx -+-= ② 由①、②消去b ,得)(12)1(2a x k k kx a --=+ ③ 又xy k =,代入③,有 )(12)1(22a x xy x y x x y a --⋅⋅⋅+ 整理,得(a –1)x 2–(1+a )y 2+2ax =0 ④当b =0时,即B 点在x 轴上时,C (0,0)满足上式:a ≠1时,④式变为11)1()1(22222=-+---a a y a a a a x 当0<a <1时,④表示椭圆弧段;当a >1时,④表示双曲线一支的弧段;当a =1时,④表示抛物线弧段.分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.分类讨论常见的依据是:1.由概念内涵分类.如绝对值、直线的斜率、指数对数函数、直线与平面的夹角等定义包含了分类.2.由公式条件分类.如等比数列的前n 项和公式、极限的计算、圆锥曲线的统一定义中图形的分类等.3.由实际意义分类.如排列、组合、概率中较常见,但不明显、有些应用问题也需分类讨论.在学习中也要注意优化策略,有时利用转化策略,如反证法、补集法、变更多元法、数形结合法等简化甚至避开讨论.一、选择题1.(★★★★)已知122lim =+-∞→nn nn n a a 其中a ∈R ,则a 的取值范围是( ) A.a <0 B.a <2或a ≠–2C.–2<a <2D.a <–2或a >22.(★★★★★)四面体的顶点和各棱的中点共10个点,在其中取4个不共面的点,不同的取法共有( )A.150种B.147种C.144种D.141种二、填空题3.(★★★★)已知线段AB 在平面α外,A 、B 两点到平面α的距离分别为1和3,则线段AB 的中点到平面α的距离为 .4.(★★★★★)已知集合A ={x |x 2–3x +2=0},B ={x |x 2–ax +(a –1)=0},C ={x |x 2–mx +2=0},且A ∪B =A ,A ∩C =C ,则a 的值为 ,m 的取值范围为 .三、解答题5.(★★★★)已知集合A ={x |x 2+px +q =0},B ={x |qx 2+px +1=0},A ,B 同时满足: ①A ∩B ≠∅,②A ∩B ={–2}.求p 、q 的值.6.(★★★★)已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0).求动点M 的轨迹方程,并说明它表示什么曲线.7.(★★★★★)已知函数y =f (x )的图象是自原点出发的一条折线.当n ≤y ≤n +1(n =0,1,2,…)时,该图象是斜率为b n 的线段(其中正常数b ≠1),设数列{x n }由f (x n )=n (n =1,2,…)定义.(1)求x 1、x 2和x n 的表达式;(2)计算∞→n lim x n ; (3)求f (x )的表达式,并写出其定义域.8.(★★★★★)已知a >0时,函数f (x )=ax –bx 2(1)当b >0时,若对任意x ∈R 都有f (x )≤1,证明a ≤2b ;(2)当b >1时,证明:对任意x ∈[0,1],|f (x )|≤1的充要条件是b –1≤a ≤2b ;(3)当0<b ≤1时,讨论:对任意x ∈[0,1],|f (x )|≤1的充要条件.参 考 答 案●难点磁场1.解析:即f (x )=(a –1)x 2+ax –41=0有解. 当a –1=0时,满足.当a –1≠0时,只需Δ=a 2–(a –1)>0. 答案:252252+-<<--a 或a =1 2.解:(1)当a =0时,函数f (–x )=(–x )2+|–x |+1=f (x ),此时f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (–a )=a 2+2|a |+1.f (–a )≠f (a ),f (–a )≠–f (a )此时函数f (x )既不是奇函数,也不是偶函数.(2)①当x ≤a 时,函数f (x )=x 2–x +a +1=(x –21)2+a +43 若a ≤21,则函数f (x )在(–∞,a ]上单调递减. 从而函数f (x )在(–∞,a ]上的最小值为f (a )=a 2+1若a >21,则函数f (x )在(–∞,a ]上的最小值为f (21)=43+a ,且f (21)≤f (a ). ②当x ≥a 时,函数f (x )=x 2+x –a +1=(x +21)2–a +43 若a ≤–21,则函数f (x )在[a ,+∞]上的最小值为f (–21)=43–a ,且f (–21)≤f (a ); 若a >–21,则函数f (x )在[a ,+∞)单调递增. 从而函数f (x )在[a ,+∞]上的最小值为f (a )=a 2+1.综上,当a ≤–21时,函数f (x )的最小值为43–a ; 当–21<a ≤21时,函数f (x )的最小值是a 2+1; 当a >21时,函数f (x )的最小值是a +43. ●歼灭难点训练一、1.解析:分a =2、|a |>2和|a |<2三种情况分别验证.答案:C2.解析:任取4个点共C 410=210种取法.四点共面的有三类:(1)每个面上有6个点,则有4×C 46=60种取共面的取法;(2)相比较的4个中点共3种;(3)一条棱上的3点与对棱的中点共6种.答案:C二、3.解析:分线段AB 两端点在平面同侧和异侧两种情况解决.答案:1或24.解析:A ={1,2},B ={x |(x –1)(x –1+a )=0},由A ∪B =A 可得1–a =1或1–a =2;由A ∩C =C ,可知C ={1}或∅.答案:2或3 3或(–22,22)三、5.解:设x 0∈A ,x 0是x 02+px 0+q =0的根.若x 0=0,则A ={–2,0},从而p =2,q =0,B ={–21}. 此时A ∩B =∅与已知矛盾,故x 0≠0.将方程x 02+px 0+q =0两边除以x 02,得 01)1()1(020=++x p x q . 即01x 满足B 中的方程,故01x ∈B . ∵A ∩B ={–2},则–2∈A ,且–2∈B .设A ={–2,x 0},则B ={01,21x -},且x 0≠2(否则A ∩B =∅). 若x 0=–21,则01x –2∈B ,与–2∉B 矛盾. 又由A ∩B ≠∅,∴x 0=01x ,即x 0=±1. 即A ={–2,1}或A ={–2,–1}.故方程x 2+px +q =0有两个不相等的实数根–2,1或–2,–1∴⎩⎨⎧=-⋅-==---=⎩⎨⎧-=⨯-==+--=2)1()2(3)12(21)2(1)12(q p q p 或 6.解:如图,设MN 切圆C 于N ,则动点M 组成的集合是P ={M ||MN |=λ|MQ |,λ>0}.∵ON ⊥MN ,|ON |=1,∴|MN |2=|MO |2–|ON |2=|MO |2–1设动点M 的坐标为(x ,y ), 则2222)2(1y x y x +-=-+λ即(x 2–1)(x 2+y 2)–4λ2x +(4λ2+1)=0.经检验,坐标适合这个方程的点都属于集合P ,故方程为所求的轨迹方程.(1)当λ=1时,方程为x =45,它是垂直于x 轴且与x 轴相交于点(45,0)的直线; (2)当λ≠1时,方程化为:2222222)1(31)12(-+=+--λλλλy x 它是以)0,12(22-λλ为圆心,|1|3122-+λλ为半径的圆. 7.解:(1)依题意f (0)=0,又由f (x 1)=1,当0≤y ≤1,函数y =f (x )的图象是斜率为b 0=1的线段,故由10)0()(11=--x f x f ∴x 1=1又由f (x 2)=2,当1≤y ≤2时,函数y =f (x )的图象是斜率为b 的线段,故由b x x x f x f =--1212)()( 即x 2–x 1=b1∴x 2=1+b1 记x 0=0,由函数y =f (x )图象中第n 段线段的斜率为b n –1,故得111)()(---=--n n n n n b x x x f x f 又由f (x n )=n ,f (x n –1)=n –1∴x n –x n –1=(b1)n –1,n =1,2,…… 由此知数列{x n –x n –1}为等比数列,其首项为1,公比为b 1. 因b ≠1,得∑==n k n x 1(x k –x k –1) =1+b 1+…+1)1(111--=--b b b bn n 即x n =1)1(1---b b b n (2)由(1)知,当b >1时,11)1(lim lim 1-=--=-∞→∞→b b b b b x n n n n 当0<b <1,n →∞, x n 也趋于无穷大.∞→n lim x n 不存在. (3)由(1)知,当0≤y ≤1时,y =x ,即当0≤x ≤1时,f (x )=x ;当n ≤y ≤n +1,即x n ≤x ≤x n +1由(1)可知f (x )=n +b n (x –x n )(n =1,2,…),由(2)知当b >1时,y =f (x )的定义域为[0,1-b b ); 当0<b <1时,y =f (x )的定义域为[0,+∞).8.(1)证明:依设,对任意x ∈R ,都有f (x )≤1 ∵ba b a x b x f 4)2()(22+--= ∴ba b a f 4)2(2=≤1 ∵a >0,b >0∴a ≤2b .(2)证明:必要性:对任意x ∈[0,1],|f (x )|≤1⇒–1≤f (x ),据此可以推出–1≤f (1)即a –b ≥–1,∴a ≥b –1对任意x ∈[0,1],|f (x )|≤1⇒f (x )≤1.因为b >1,可以推出f (b 1)≤1即a ·b1–1≤1, ∴a ≤2b ,∴b –1≤a ≤2b充分性:因为b >1,a ≥b –1,对任意x ∈[0,1].可以推出ax –bx 2≥b (x –x 2)–x ≥–x ≥–1即ax –bx 2≥–1因为b >1,a ≤2b ,对任意x ∈[0,1],可以推出ax –bx 2≤2b x –bx 2≤1 即ax –bx 2≤1,∴–1≤f (x )≤1综上,当b >1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是b –1≤a ≤2b .(3)解:∵a >0,0<b ≤1∴x ∈[0,1],f (x )=ax –bx 2≥–b ≥–1即f (x )≥–1f (x )≤1⇒f (1)≤1⇒a –b ≤1即a ≤b +1a ≤b +1⇒f (x )≤(b +1)x –bx 2≤1即f (x )≤1所以当a >0,0<b ≤1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是a ≤b +1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点38 分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”●难点磁场1.(★★★★★)若函数514121)1(31)(23+-+-=x ax x a x f 在其定义域内有极值点,则a 的取值为 .2.(★★★★★)设函数f (x )=x 2+|x –a |+1,x ∈R . (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值. ●案例探究[例1]已知{a n }是首项为2,公比为21的等比数列,S n 为它的前n 项和. (1)用S n 表示S n +1;(2)是否存在自然数c 和k ,使得21>--+cS cS k k 成立.命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目.知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质.错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-223. 技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k ,c 轮流分类讨论,从而获得答案.解:(1)由S n =4(1–n 21),得 221)211(411+=-=++n n n S S ,(n ∈N *)(2)要使21>--+cS c S k k ,只要0)223(<---k k S c S c 因为4)211(4<-=kk S 所以0212)223(>-=--k k k S S S ,(k ∈N *) 故只要23S k –2<c <S k ,(k ∈N *)因为S k +1>S k ,(k ∈N *) ① 所以23S k –2≥23S 1–2=1. 又S k <4,故要使①成立,c 只能取2或3.当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不成立. 当k ≥2时,因为c S >=-252232,由S k <S k +1(k ∈N *)得 23S k –2<23S k +1–2 故当k ≥2时,23S k –2>c ,从而①不成立.当c =3时,因为S 1=2,S 2=3,所以当k =1,k =2时,c <S k 不成立,从而①不成立因为c S >=-4132233,又23S k –2<23S k +1–2 所以当k ≥3时,23S k –2>c ,从而①成立.综上所述,不存在自然数c ,k ,使21>--+cS cS k k 成立.[例2]给出定点A (a ,0)(a >0)和直线l :x =–1,B 是直线l 上的动点,∠BOA 的角平分线交AB 于点C .求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.命题意图:本题考查动点的轨迹,直线与圆锥曲线的基本知识,分类讨论的思想方法.综合性较强,解法较多,考查推理能力和综合运用解析几何知识解题的能力.属★★★★★级题目.知识依托:求动点轨迹的基本方法步骤.椭圆、双曲线、抛物线标准方程的基本特点. 错解分析:本题易错点为考生不能巧妙借助题意条件,构建动点坐标应满足的关系式和分类讨论轨迹方程表示曲线类型.技巧与方法:精心思考,发散思维、多途径、多角度的由题设条件出发,探寻动点应满足的关系式.巧妙地利用角平分线的性质.解法一:依题意,记B (–1,b ),(b ∈R ),则直线OA 和OB 的方程分别为y =0和y =–bx .设点C (x ,y ),则有0≤x <a ,由OC 平分∠AOB ,知点C 到OA 、OB 距离相等.根据点到直线的距离公式得|y |=21||bbx y ++ ①依题设,点C 在直线AB 上,故有)(1a x aby -+-= 由x –a ≠0,得ax ya b -+-=)1( ②将②式代入①式,得y 2[(1–a )x 2–2ax +(1+a )y 2]=0 若y ≠0,则(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )若y =0则b =0,∠AOB =π,点C 的坐标为(0,0)满足上式. 综上,得点C 的轨迹方程为(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )(i)当a =1时,轨迹方程化为y 2=x (0≤x <1) ③ 此时方程③表示抛物线弧段; (ii)当a ≠1,轨迹方程化为)0(11)1()1(22222a x a a y a a a a x <≤=-+---④所以当0<a <1时,方程④表示椭圆弧段; 当a >1时,方程④表示双曲线一支的弧段.解法二:如图,设D 是l 与x 轴的交点,过点C 作CE ⊥x 轴,E 是垂足.(i )当|BD |≠0时,设点C (x ,y ),则0<x <a ,y ≠0由CE ∥BD ,得)1(||||||||||a xa y EA DA CE BD +-=⋅=.∵∠COA =∠COB =∠COD –∠BOD =π–∠COA –∠BOD∴2∠COA =π–∠BOD ∴COACOACOA 2tan 1tan 2)2tan(-=∠ BOD BOD tan )tan(-=∠-π∵xy COA ||tan =)1(||||||tan a xa y OD BD BOD +-==∴)1(||1||22a x a y x y x y +--=-⋅整理,得 (1–a )x 2–2ax +(1+a )y 2=0(0<x <a )(ii)当|BD |=0时,∠BOA =π,则点C 的坐标为(0,0),满足上式. 综合(i)、(ii),得点C 的轨迹方程为 (1–a )x 2–2ax +(1+a )y 2=0(0≤x <a ) 以下同解法一.解法三:设C (x ,y )、B (–1,b ),则BO 的方程为y =–bx ,直线AB 的方程为)(1a x aby -+-=∵当b ≠0时,OC 平分∠AOB ,设∠AOC =θ,∴直线OC 的斜率为k =tan θ,OC 的方程为y =kx 于是2212tan 1tan 22tan kk-=-=θθθ 又tan2θ=–b ∴–b =212k k- ① ∵C 点在AB 上 ∴)(1a x abkx -+-= ② 由①、②消去b ,得)(12)1(2a x kkkx a --=+ ③ 又xyk =,代入③,有 )(12)1(22a x xy x y x x y a --⋅⋅⋅+ 整理,得(a –1)x 2–(1+a )y 2+2ax =0 ④当b =0时,即B 点在x 轴上时,C (0,0)满足上式:a ≠1时,④式变为11)1()1(22222=-+---a a y a a a a x 当0<a <1时,④表示椭圆弧段;当a >1时,④表示双曲线一支的弧段; 当a =1时,④表示抛物线弧段. ●锦囊妙计分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.分类讨论常见的依据是:1.由概念内涵分类.如绝对值、直线的斜率、指数对数函数、直线与平面的夹角等定义包含了分类.2.由公式条件分类.如等比数列的前n 项和公式、极限的计算、圆锥曲线的统一定义中图形的分类等.3.由实际意义分类.如排列、组合、概率中较常见,但不明显、有些应用问题也需分类讨论.在学习中也要注意优化策略,有时利用转化策略,如反证法、补集法、变更多元法、数形结合法等简化甚至避开讨论.●歼灭难点训练 一、选择题1.(★★★★)已知122lim =+-∞→nnnn n a a 其中a ∈R ,则a 的取值范围是( ) A.a <0 B.a <2或a ≠–2C.–2<a <2D.a <–2或a >22.(★★★★★)四面体的顶点和各棱的中点共10个点,在其中取4个不共面的点,不同的取法共有( )A.150种B.147种C.144种D.141种 二、填空题3.(★★★★)已知线段AB 在平面α外,A 、B 两点到平面α的距离分别为1和3,则线段AB 的中点到平面α的距离为 .4.(★★★★★)已知集合A ={x |x 2–3x +2=0},B ={x |x 2–ax +(a –1)=0},C ={x |x 2–mx +2=0},且A ∪B =A ,A ∩C =C ,则a 的值为 ,m 的取值范围为 .三、解答题5.(★★★★)已知集合A ={x |x 2+px +q =0},B ={x |qx 2+px +1=0},A ,B 同时满足: ①A ∩B ≠∅,②A ∩B ={–2}.求p 、q 的值.6.(★★★★)已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0).求动点M 的轨迹方程,并说明它表示什么曲线.7.(★★★★★)已知函数y =f (x )的图象是自原点出发的一条折线.当n ≤y ≤n +1(n =0,1,2,…)时,该图象是斜率为b n 的线段(其中正常数b ≠1),设数列{x n }由f (x n )=n (n =1,2,…)定义.(1)求x 1、x 2和x n 的表达式;(2)计算∞→n lim x n ;(3)求f (x )的表达式,并写出其定义域.8.(★★★★★)已知a >0时,函数f (x )=ax –bx 2(1)当b >0时,若对任意x ∈R 都有f (x )≤1,证明a ≤2b ;(2)当b >1时,证明:对任意x ∈[0,1],|f (x )|≤1的充要条件是b –1≤a ≤2b ; (3)当0<b ≤1时,讨论:对任意x ∈[0,1],|f (x )|≤1的充要条件.参 考 答 案●难点磁场1.解析:即f (x )=(a –1)x 2+ax –41=0有解. 当a –1=0时,满足.当a –1≠0时,只需Δ=a 2–(a –1)>0. 答案:252252+-<<--a 或a =1 2.解:(1)当a =0时,函数f (–x )=(–x )2+|–x |+1=f (x ),此时f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (–a )=a 2+2|a |+1.f (–a )≠f (a ),f (–a )≠–f (a ) 此时函数f (x )既不是奇函数,也不是偶函数. (2)①当x ≤a 时,函数f (x )=x 2–x +a +1=(x –21)2+a +43 若a ≤21,则函数f (x )在(–∞,a ]上单调递减. 从而函数f (x )在(–∞,a ]上的最小值为f (a )=a 2+1若a >21,则函数f (x )在(–∞,a ]上的最小值为f (21)=43+a ,且f (21)≤f (a ). ②当x ≥a 时,函数f (x )=x 2+x –a +1=(x +21)2–a +43若a ≤–21,则函数f (x )在[a ,+∞]上的最小值为f (–21)=43–a ,且f (–21)≤f (a );若a >–21,则函数f (x )在[a ,+∞)单调递增.从而函数f (x )在[a ,+∞]上的最小值为f (a )=a 2+1. 综上,当a ≤–21时,函数f (x )的最小值为43–a ; 当–21<a ≤21时,函数f (x )的最小值是a 2+1; 当a >21时,函数f (x )的最小值是a +43.●歼灭难点训练一、1.解析:分a =2、|a |>2和|a |<2三种情况分别验证. 答案:C2.解析:任取4个点共C 410=210种取法.四点共面的有三类:(1)每个面上有6个点,则有4×C 46=60种取共面的取法;(2)相比较的4个中点共3种;(3)一条棱上的3点与对棱的中点共6种.答案:C二、3.解析:分线段AB 两端点在平面同侧和异侧两种情况解决. 答案:1或24.解析:A ={1,2},B ={x |(x –1)(x –1+a )=0}, 由A ∪B =A 可得1–a =1或1–a =2; 由A ∩C =C ,可知C ={1}或∅.答案:2或3 3或(–22,22) 三、5.解:设x 0∈A ,x 0是x 02+px 0+q =0的根. 若x 0=0,则A ={–2,0},从而p =2,q =0,B ={–21}. 此时A ∩B =∅与已知矛盾,故x 0≠0. 将方程x 02+px 0+q =0两边除以x 02,得01)1()1(20=++x p x q . 即01x 满足B 中的方程,故01x ∈B . ∵A ∩B ={–2},则–2∈A ,且–2∈B .设A ={–2,x 0},则B ={01,21x -},且x 0≠2(否则A ∩B =∅). 若x 0=–21,则01x –2∈B ,与–2∉B 矛盾. 又由A ∩B ≠∅,∴x 0=1x ,即x 0=±1. 即A ={–2,1}或A ={–2,–1}.故方程x 2+px +q =0有两个不相等的实数根–2,1或–2,–1 ∴⎩⎨⎧=-⋅-==---=⎩⎨⎧-=⨯-==+--=2)1()2(3)12(21)2(1)12(q p q p 或 6.解:如图,设MN 切圆C 于N ,则动点M 组成的集合是P ={M ||MN |=λ|MQ |,λ>0}.∵ON ⊥MN ,|ON |=1,∴|MN |2=|MO |2–|ON |2=|MO |2–1 设动点M 的坐标为(x ,y ),则2222)2(1y x y x +-=-+λ即(x 2–1)(x 2+y 2)–4λ2x +(4λ2+1)=0.经检验,坐标适合这个方程的点都属于集合P ,故方程为所求的轨迹方程. (1)当λ=1时,方程为x =45,它是垂直于x 轴且与x 轴相交于点(45,0)的直线; (2)当λ≠1时,方程化为:2222222)1(31)12(-+=+--λλλλy x 它是以)0,12(22-λλ为圆心,|1|3122-+λλ为半径的圆. 7.解:(1)依题意f (0)=0,又由f (x 1)=1,当0≤y ≤1,函数y =f (x )的图象是斜率为b 0=1的线段,故由10)0()(11=--x f x f∴x 1=1又由f (x 2)=2,当1≤y ≤2时,函数y =f (x )的图象是斜率为b 的线段,故由b x x x f x f =--1212)()(即x 2–x 1=b1∴x 2=1+b1 记x 0=0,由函数y =f (x )图象中第n 段线段的斜率为b n –1,故得111)()(---=--n n n n n b x x x f x f又由f (x n )=n ,f (x n –1)=n –1 ∴x n –x n –1=(b1)n –1,n =1,2,…… 由此知数列{x n –x n –1}为等比数列,其首项为1,公比为b1. 因b ≠1,得∑==nk n x 1(x k –x k –1)=1+b 1+…+1)1(111--=--b b b bn n 即x n =1)1(1---b b b n (2)由(1)知,当b >1时,11)1(lim lim 1-=--=-∞→∞→b b b b b x n n n n 当0<b <1,n →∞, x n 也趋于无穷大.∞→n lim x n 不存在.(3)由(1)知,当0≤y ≤1时,y =x ,即当0≤x ≤1时,f (x )=x ;当n ≤y ≤n +1,即x n ≤x ≤x n +1由(1)可知 f (x )=n +b n (x –x n )(n =1,2,…),由(2)知 当b >1时,y =f (x )的定义域为[0,1-b b ); 当0<b <1时,y =f (x )的定义域为[0,+∞). 8.(1)证明:依设,对任意x ∈R ,都有f (x )≤1∵ba b a x b x f 4)2()(22+--= ∴ba b a f 4)2(2=≤1∵a >0,b >0 ∴a ≤2b .(2)证明:必要性: 对任意x ∈[0,1],|f (x )|≤1⇒–1≤f (x ),据此可以推出–1≤f (1) 即a –b ≥–1,∴a ≥b –1对任意x ∈[0,1],|f (x )|≤1⇒f (x )≤1. 因为b >1,可以推出f (b 1)≤1即a ·b1–1≤1, ∴a ≤2b ,∴b –1≤a ≤2b充分性:因为b >1,a ≥b –1,对任意x ∈[0,1]. 可以推出ax –bx 2≥b (x –x 2)–x ≥–x ≥–1 即ax –bx 2≥–1因为b >1,a ≤2b ,对任意x ∈[0,1],可以推出ax –bx 2≤2b x –bx 2≤1 即ax –bx 2≤1,∴–1≤f (x )≤1综上,当b >1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是b –1≤a ≤2b . (3)解:∵a >0,0<b ≤1∴x ∈[0,1],f (x )=ax –bx 2≥–b ≥–1 即f (x )≥–1f (x )≤1⇒f (1)≤1⇒a –b ≤1 即a ≤b +1a ≤b +1⇒f (x )≤(b +1)x –bx 2≤1 即f (x )≤1所以当a >0,0<b ≤1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是a ≤b +1.。