明溪县高级中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
明溪县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinA
B .2bcosA
C .2bsinB
D .2bcosB
2. 下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( ) A .f (x )=﹣xe |x| B .f (x )=x+sinx C .f (x )
=
D .f (x )=x 2|x|
3. 函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3
y x π
=+
B .22sin(2)3y x π=+
C .2sin()23x y π=-
D .2sin(2)3
y x π=-
4. 如果点P 在平面区域220,
210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩
上,点Q 在曲线22
(2)1x y ++=上,那么||PQ 的最小值为( )
A
1 B
1-
C. 1 D
1 5. 已知α∈(0,π),且sin α+cos α
=,则tan α=( ) A
.
B
.
C .
D
.
6. 某几何体的三视图如图所示,该几何体的体积是( )
A .
B .
C .
D .
7. 已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x+2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( )
A .0
B .0或
C .
或
D .0或
8. 下列4个命题:
①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”; ②若“¬p 或q ”是假命题,则“p 且¬q ”是真命题;
③若p :x (x ﹣2)≤0,q :log 2x ≤1,则p 是q 的充要条件;
④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2; 其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个
9. 集合A={x|﹣1≤x ≤2},B={x|x <1},则A ∩B=( ) A .{x|x <1} B .{x|﹣1≤x ≤2} C .{x|﹣1≤x ≤1} D .{x|﹣1≤x <1}
10.已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则
数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列
C .公比为a 的等比数列
D .公比为的等比数列
11.已知命题:()(0x p f x a a =>且1)a ≠是单调增函数;命题5:(,)44
q x ππ
∀∈,sin cos x x >.
则下列命题为真命题的是( )
A .p q ∧
B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 12.命题“存在实数x ,使x >1”的否定是( ) A .对任意实数x ,都有x >1 B .不存在实数x ,使x ≤1
C .对任意实数x ,都有x ≤1
D .存在实数x ,使x ≤1 二、填空题
13.设函数f (x )=
,
①若a=1,则f (x )的最小值为 ;
②若f (x )恰有2个零点,则实数a 的取值范围是 .
14.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .
15.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111] 16.△ABC 中,
,BC=3,
,则∠C=
.
17.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:
甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.” 丁说:“我没考好.”
结果,四名学生中有两人说对了,则这四名学生中的 两人说对了.
18.把函数y=sin2x 的图象向左平移
个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵
坐标不变),所得函数图象的解析式为 .
三、解答题
19.(本小题满分12分)
中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各
(1)求各大学抽取的人数;
(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的 概率.
20.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连结BC′,证明:BC′∥面EFG.
21.设,证明:
(Ⅰ)当x>1时,f(x)<(x﹣1);
(Ⅱ)当1<x<3时,.
22.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.
(I)求证:平面BCE⊥平面A1ABB1;
(II)求证:EF∥平面B1BCC1;
(III )求四棱锥B ﹣A 1ACC 1的体积.
23.如图,四棱锥P ABC -中,,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====,M 为线段AD 上一点,2,AM MD N =为PC 的中点.
(1)证明://MN 平面PAB ;
(2)求直线AN 与平面PMN 所成角的正弦值;
24.已知双曲线C :
与点P (1,2).
(1)求过点P (1,2)且与曲线C 只有一个交点的直线方程;
(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.
明溪县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D 【解析】解:∵A=2B ,
∴sinA=sin2B ,又sin2B=2sinBcosB , ∴sinA=2sinBcosB ,
根据正弦定理==2R 得:
sinA=
,sinB=
,
代入sinA=2sinBcosB 得:a=2bcosB .
故选D
2. 【答案】A
【解析】解:满足“∀x ∈R ,f (x )+f (﹣x )=0,且f ′(x )≤0”的函数为奇函数,且在R 上为减函数, A 中函数f (x )=﹣xe |x|,满足f (﹣x )=﹣f (x ),即函数为奇函数,
且f ′(x )=
≤0恒成立,故在R 上为减函数,
B 中函数f (x )=x+sinx ,满足f (﹣x )=﹣f (x ),即函数为奇函数,但f ′(x )=1+cosx ≥0,在R 上是增函数,
C 中函数f (x )=
,满足f (﹣x )=f (x ),故函数为偶函数;
D 中函数f (x )=x 2|x|,满足f (﹣x )=f (x ),故函数为偶函数, 故选:A .
3. 【答案】B 【解析】
考点:三角函数()sin()f x A x ωϕ=+的图象与性质. 4. 【答案】A 【解析】
试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可
行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.
考点:线性规划求最值. 5. 【答案】D
【解析】解:将sin α+cos α=①两边平方得:(sin α+cos α)2
=1+2sin αcos α=
,即2sin αcos α=﹣<0,
∵0<α<π,∴<α<π,
∴sin α﹣cos α>0,
∴(sin α﹣cos α)2
=1﹣2sin αcos α=
,即sin α﹣cos α=②,
联立①②解得:sin α=,cos α=﹣,
则tan α=﹣. 故选:D .
6. 【答案】A
【解析】解:几何体如图所示,则V=,
故选:A.
【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.
7.【答案】D
【解析】解:∵f(x)是定义在R上的偶函数,当0≤x≤1时,f(x)=x2,
∴当﹣1≤x≤0时,0≤﹣x≤1,f(﹣x)=(﹣x)2=x2=f(x),
又f(x+2)=f(x),∴f(x)是周期为2的函数,
又直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,其图象如下:
当a=0时,直线y=x+a变为直线l1,其方程为:y=x,显然,l1与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点;
当a≠0时,直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,由图可知,直线y=x+a与函数y=f(x)相切,切点的横坐标x0∈[0,1].
由得:x2﹣x﹣a=0,由△=1+4a=0得a=﹣,此时,x0=x=∈[0,1].
综上所述,a=﹣或0
故选D.
8.【答案】C
【解析】解:①命题“若x2﹣x=0,则x=1”的逆否命题为“若x≠1,则x2﹣x≠0”,①正确;
②若“¬p或q”是假命题,则¬p、q均为假命题,∴p、¬q均为真命题,“p且¬q”是真命题,②正确;
③由p:x(x﹣2)≤0,得0≤x≤2,
由q:log2x≤1,得0<x≤2,则p是q的必要不充分条件,③错误;
④若命题p:存在x∈R,使得2x<x2,则¬p:任意x∈R,均有2x≥x2,④正确.
∴正确的命题有3个.
故选:C.
9.【答案】D
【解析】解:A∩B={x|﹣1≤x≤2}∩{x|x<1}={x|﹣1≤x≤2,且x<1}={x|﹣1≤x<1}.
故选D.
【点评】本题考查了交集,关键是理解交集的定义及会使用数轴求其公共部分.
10.【答案】A
【解析】解:∵,
∴a n=S(n)﹣s(n﹣1)=
=
∴a n﹣a n﹣1==a
∴数列{a n}是以a为公差的等差数列
故选A
【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用
11.【答案】D
【解析】
考点:1、指数函数与三角函数的性质;2、真值表的应用.
12.【答案】C
【解析】解:∵命题“存在实数x,使x>1”的否定是
“对任意实数x,都有x≤1”
故选C
二、填空题
13.【答案】≤a<1或a≥2.
【解析】解:①当a=1时,f(x)=,
当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,
当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,
当1<x<时,函数单调递减,当x>时,函数单调递增,
故当x=时,f(x)min=f()=﹣1,
②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)
若在x<1时,h(x)=与x轴有一个交点,
所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,
而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,
所以≤a<1,
若函数h(x)=2x﹣a在x<1时,与x轴没有交点,
则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,
当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),
当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,
综上所述a的取值范围是≤a<1,或a≥2.
14.【答案】1
【解析】
试题分析:两直线垂直满足()0
2
-
1
2=
⨯
+
⨯a,解得1=
a,故填:1.
考点:直线垂直
【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,
:
1
1
1
1
=
+
+c
y
b
x
a
l,0
:
2
2
2
2
=
+
+c
y
b
x
a
l,当两直线垂直时,需满足0
2
1
2
1
=
+b
b
a
a,当两直线平行时,
需满足01221=-b a b a 且1221c b c b ≠,或是
2
1
2121c c b b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.1
15.【答案】[]1,1- 【解析】
考
点:函数的定义域.
16.【答案】
【解析】解:由,a=BC=3,c=,
根据正弦定理
=得:
sinC==,
又C 为三角形的内角,且c <a , ∴0<∠C <,
则∠C=
.
故答案为:
【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C 的范围.
17.【答案】乙 ,丙
【解析】【解析】
甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。
故答案为:乙,丙。
18.【答案】 y=cosx .
【解析】解:把函数y=sin2x 的图象向左平移个单位长度,得,即y=cos2x 的图象,把y=cos2x
的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx 的图象;
故答案为:y=cosx .
三、解答题
19.【答案】(1)甲,乙,丙,丁;(2)2
5
P =. 【解析】
试题分析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲,乙,丙,丁;(2)利用列举出从参加问卷调查的40名学生中随机抽取两名学生的方法共有15种,这来自同一所大学的取法共有种,再利用古典慨型的概率计算公式即可得出.
试题解析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲2,乙3,丙2,丁3.
(2)设乙中3人为123,,a a a ,丁中3人为123,,b b b ,从这6名学生中随机选出2名学生发言的结果为12{,}a a ,
13{,}a a ,11{,}a b ,12{,}a b ,13{,}a b ,32{,}a a ,12{,}b a ,22{,}b a ,32{,}b a ,31{,}a b ,32{,}a b ,33{,}a b ,
12{,}b b ,13{,}b b ,23{,}b b ,共15种,
这2名同学来自同一所大学的结果共6种,所以所求概率为62155
P ==. 考点:1、分层抽样方法的应用;2、古典概型概率公式. 20.【答案】 【解析】解:(1)如图
(2)它可以看成一个长方体截去一个小三棱锥,
设长方体体积为V 1,小三棱锥的体积为V 2,则根据图中所给条件得:V 1=6×4×4=96cm 3
,
V 2=••2•2•2=cm 3,
∴V=v 1﹣v 2=
cm 3
(3)证明:如图,
在长方体ABCD ﹣A ′B ′C ′D ′中,连接AD ′,则AD ′∥BC ′
因为E ,G 分别为AA ′,A ′D ′中点,所以AD ′∥EG ,从而EG ∥BC ′,
又EG⊂平面EFG,所以BC′∥平面EFG;
2016年4月26日
21.【答案】
【解析】证明:(Ⅰ)(证法一):
记g(x)=lnx+﹣1﹣(x﹣1),则当x>1时,g′(x)=+﹣<0,
又g(1)=0,有g(x)<0,即f(x)<(x﹣1);…4′
(证法二)由均值不等式,当x>1时,2<x+1,故<+.①
令k(x)=lnx﹣x+1,则k(1)=0,k′(x)=﹣1<0,故k(x)<0,即lnx<x﹣1②
由①②得当x>1时,f(x)<(x﹣1);
(Ⅱ)记h(x)=f(x)﹣,由(Ⅰ)得,
h′(x)=+﹣
=﹣
<﹣
=,
令g(x)=(x+5)3﹣216x,则当1<x<3时,g′(x)=3(x+5)2﹣216<0,
∴g(x)在(1,3)内是递减函数,又由g(1)=0,得g(x)<0,
∴h′(x)<0,…10′
因此,h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0,
于是,当1<x<3时,f(x)<…12′
22.【答案】
【解析】(I)证明:在三棱柱ABC﹣A1B1C1中,BB1⊥底面ABC,
所以,BB1⊥BC.
又因为AB⊥BC且AB∩BB1=B,
所以,BC⊥平面A1ABB1.
因为BC⊂平面BCE,
所以,平面BCE⊥平面A1ABB1.
(II)证明:取BC的中点D,连接C1D,FD.
因为E,F分别是A1C1,AB的中点,
所以,FD∥AC且.
因为AC∥A1C1且AC=A1C1,
所以,FD∥EC1且FD=EC1.
所以,四边形FDC1E是平行四边形.
所以,EF∥C1D.
又因为C1D⊂平面B1BCC1,EF⊄平面B1BCC1,
所以,EF∥平面B1BCC1.
(III)解:因为,AB⊥BC
所以,.
过点B作BG⊥AC于点G,则.
因为,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AA1⊂平面A1ACC1
所以,平面A1ACC1⊥底面ABC.
所以,BG⊥平面A1ACC1.
所以,四棱锥B﹣A1ACC1的体积.
【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.
23.【答案】(1)证明见解析;(2.
【解析】
试题解析:
(2)在三角形AMC 中,由2
2,3,cos 3
AM AC MAC ==∠=
,得 2222cos 5CM AC AM AC AN MAC =+-∠=, 222AM MC AC +=,则AM MC ⊥, ∵PA ⊥底面,ABCD PA ⊂平面PAD ,
∴平面ABCD ⊥平面PAD ,且平面ABCD
平面PAD AD =,
∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD ,
在平面PAD 内,过A 作AF PM ⊥,交PM 于F ,连结NF ,则ANF ∠为直线AN 与平面PMN 所成角。
在Rt PAM ∆中,由PA AM PM AF =,得AF =sin ANF ∠=
所以直线AN 与平面PMN .1
考点:立体几何证明垂直与平行.
24.【答案】
【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.…
当直线l的斜率存在时,设直线l的方程为y﹣2=k(x﹣1),代入C的方程,
并整理得(2﹣k2)x2+2(k2﹣2k)x﹣k2+4k﹣6=0 (*)
(ⅰ)当2﹣k2=0,即k=±时,方程(*)有一个根,l与C有一个交点
所以l的方程为…
(ⅱ)当2﹣k2
≠0,即k≠±时
△=[2(k2﹣2k)]2﹣4(2﹣k2)(﹣k2+4k﹣6)=16(3﹣2k),
①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l与C有一个交点.
所以l的方程为3x﹣2y+1=0…
综上知:l的方程为x=1或或3x﹣2y+1=0…
(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),
则2x12﹣y12=2,2x22﹣y22=2,
两式相减得2(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2)…
又∵x1+x2=2,y1+y2=4,
∴2(x1﹣x2)=4(y1﹣y2)
即k AB==,…
∴直线AB的方程为y﹣2=(x﹣1),…
代入双曲线方程2x2﹣y2=2,可得,15y2﹣48y+34=0,
由于判别式为482﹣4×15×34>0,则该直线AB存在.…
【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题.。