河北省2019年中考数学复习四边形第28讲正方形与四边形综合试题(含解析)

合集下载

中考数学复习《四边形》经典题型及测试题(含答案)

中考数学复习《四边形》经典题型及测试题(含答案)

中考数学复习《四边形》经典题型及测试题(含答案)命题点分类集训命题点1 平行四边形的判定与计算【命题规律】1.考查内容:①平行四边形的性质及其相关计算;②平行四边形的判定.2.考查形式:①根据平行四边形的性质考查结论判断;②利用平行四边形的性质求角度、线段或面积;③添加条件使四边形为平行四边形.3.考查题型:性质在选择和填空题中考查居多,判定题近年来多在解答题中考查,有时会在二次函数压轴题中探究平行四边形的存在问题.【命题预测】平行四边形是四边形中主要的图形之一,性质与判定常常考查,是近年命题的重点. 1. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE1. D第1题图 第2题图2. 如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC =2,▱ABCD 的周长是14,则DM 等于( )A . 1B . 2C . 3D . 42. C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABM =∠CMB ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CBM =∠CMB ,∴CB =MC =2,∴AD =BC =2,∵▱ABCD 的周长是14,∴AB =CD =5,∴DM =DC -MC =3.3. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形. 3. AD ∥BC (答案不唯一)第3题图 第4题图 第5题图 4. 如图,▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是________.4. 1<a <7 【解析】如解图,对角线AC ,BD 相交于点O ,则OA =12AC =4,OD =12BD =3,在△OAD中,OA -OD <AD <OA +OD ,即1<a <7.5. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________. 5. 50°6. 如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD.(1)求证:四边形CEDF 是平行四边形; (2)若AB =3,AD =4,∠A =60°,求CE 的长.6. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴DE ∥FC.∵F 是BC 的中点, ∴FC =12BC =12AD ,∵DE =12AD ,∴FC =DE ,∴四边形CEDF 是平行四边形. (2)解:如解图,过点D 作DH ⊥BC 于点H. 由(1)知四边形DECF 是平行四边形,∴DF =CE.∵四边形ABCD 是平行四边形,∠A =60°,AB =3,AD =4, ∴BC =4,CD =3,∠BCD =60°, 在Rt △DHC 中,HC =DC·cos ∠HCD =32,DH =DC ·sin ∠HCD =332,∵F 是BC 的中点, ∴FC =2,∴FH =FC -HC =2-32=12,在Rt △DFH 中,由勾股定理得DF =DH 2+FH 2=(332)2+(12)2=7,∴CE =7.命题点2 矩形的判定与计算【命题规律】考查形式:①利用矩形性质,结合勾股定理求线段长或面积;②矩形的判定,一般在解答题中考查,也常在二次函数综合题中考查矩形的存在性问题;③矩形折叠的相关计算与证明(见命题点6:图形折叠的相关计算).【命题预测】矩形性质将勾股定理、全等、相似等重要知识综合考查,是全国命题趋势之一. 7. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF7. B 【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B只有当∠ADF =30°时,才有AF =12AD 成立×C由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB =DC ,∴AB =AF√D∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √8. 已知矩形的对角线AC 与BD 相交于点O ,若AO =1,那么BD =________. 8. 2第7题图 第8题图 第9题图 9. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.9. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3. 10. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF. (1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.10. (1)证明:∵点E 是AD 的中点, ∴AE =DE. ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE , ∴△EAF ≌△EDC(AAS ), ∴AF =DC. ∵AF =BD , ∴BD =DC ,即D 是BC 的中点.(2)解:四边形AFBD 是矩形.证明如下: ∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC ,∴四边形AFBD 是矩形.11. 如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和点G ,H. (1)求证:△PHC≌△CFP;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.11. (1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC , ∴四边形PFCH 是矩形, ∴∠PHC =∠PFC =90°,PH =CF ,HC =PF , ∴△PHC ≌△CFP(SAS ).(2)证明:由(1)知AB ∥EF ∥CD , AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形, ∵四边形ABCD 是矩形, ∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形, ∴S 矩形PEDH =S 矩形PGBF .命题点3 菱形的判定与计算【命题规律】1.考查内容和形式:①根据菱形性质判断结论正误;②菱形的判定;③根据菱形的性质求角度、周长和面积;④与二次函数压轴题结合考查菱形的存在性问题.2.三大题型均会出现.【命题预测】菱形是特殊平行四边形中的重要内容,是中考常考知识,对菱形的性质与判定应做到牢固掌握.12. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC12. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.第12题图 第13题图13. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)13. D 【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF ,∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4,根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x ,直线AD 的函数解析式是y =-15x +1,联立得:⎩⎨⎧y =12x y =-15x +1,解得⎩⎨⎧x =107y =57,∴点P 的坐标为(107,57).14. 如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________. 14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.第14题图 第15题图15. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.15. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD=12×8×6=24. 16. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.16. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.17. 如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC. 求证:四边形ADCF 是菱形.17. 证明:∵∠B =90°,AC =2AB , ∴sin ∠ACB =12,∴∠ACB =30°, ∴∠CAB =60°, ∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,∠CAD =∠ACD ,∴AD =CD , ∵AF ∥CD ,∴∠DCE =∠FAE ,∠AFE =∠CDE , 又∵AE =CE ,∴△AFE ≌△CDE(AAS ), ∴AF =CD , 又AF ∥CD ,∴四边形ADCF 是平行四边形, 又AD =CD ,∴四边形ADCF 是菱形.命题点4 正方形的判定与计算【命题规律】正方形的考查相对比较综合,难度较大,常在选择或填空的压轴题位置出现,考查知识点综合性强,涉及到正方形面积、边长和周长的计算.【命题预测】正方形综合了所有特殊四边形的性质,因此以正方形为背景出题更具有对知识的检验性,倍受命题人青睐,考生应加以关注.18. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A . 2B . 2 2C . 2+1D . 22+118. B 【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF=(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2. 19. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC⊥BD,请添加一个条件:________,使得▱ABCD 为正方形. 19. ∠BAD =90°(答案不唯一)20. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于________.20. 89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM=MB ,∴正方形MNPQ 的边长为a ,正方形AEFG 的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a ×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89.第20题图 第21题图21. 如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE 于点M ,交BD 于点F ,则FM 的长为________. 21.55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO 中,⎩⎪⎨⎪⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO ,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD 的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM1=15,∴FM =55.22. 如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H. (1)求sin ∠EAC 的值; (2)求线段AH 的长.22.解:(1)由题意知EC =2,AE =10,如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(2)在△GDC 与△EDA 中,⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ),∴∠GCD =∠EAD , 又∵∠HEC =∠DEA ,∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,∵S △AGC =12×AG ×DC =12×GC ×AH ,∴12×4×3=12×10×AH , ∴AH =6510.命题点5 多边形及其性质【命题规律】1.考查内容:①多边形的内外角和公式;②正多边形的有关计算.2.考查形式:①已知正多边形一个内角或外角的度数或内角之间的关系求边数;②已知正多边形的边数求内角度数;③求多边形的内外角和.【命题预测】多边形是三角形和四边形的延伸拓展,也是中考命题不容忽视的知识点. 23. 六边形的内角和是( )A . 540°B . 720°C . 900°D . 1080°23. B24. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或924. D 【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.25. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.25. 6 【解析】设这个多边形的边数为n ,则内角和为(n -2)·180°,外角和为360°,则根据题意有:(n -2)·180°=2×360°,解得n =6. 26. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.26. 8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.命题点6 图形折叠的相关证明与计算【命题规律】考查内容和形式:图形折叠计算以矩形折叠考查居多,常考查:①图形的折叠计算角度;②图形的折叠计算线段长或边长;③图形折叠的证明和计算结合;④图形折叠的操作探究.【命题预测】图形折叠将原有图形变得可操作化,且又很好地引入了对称知识,使问题升华,有效地考查学生的知识迁移能力和掌握程度,是全国命题的主流趋势之一,值得每位考生关注.27. 如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE27. D28. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A . 2B . 3C . 2D . 128. B第28题图 第29题图29. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处.若∠2=40°,则图中∠1的度数为( )A . 115°B . 120°C . 130°D . 140°29. A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.30. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°30. C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎪⎨⎪⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.第30题图 第31题图 第32题图31. 如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB =7,BC =6,则△BCD 的周长为________. 31. 13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.32. 如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,A D′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.32. 36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED=180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.33.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.33. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,此时CE最小,且CE=CD=3;如解图②,当点G与点A重合时,CE最大.设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.34.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.34. (1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,由折叠性质可知,∠D=∠AD′E=60°,∴∠AD′E=∠B=60°,∴ED′∥BC,又∵EC∥D′B,∴四边形BCED′是平行四边形,∴ED′=BC=AD=1,∴DE=ED′=1,又DC=AB=2,∴EC =1, ∴EC =ED′,∴四边形BCED′是菱形. (2)解:如解图所示,由折叠性质PD′=PD ,BD 之长即为所求, 作DG ⊥BA 的延长线于点G , ∵∠DAB =120°, ∴∠DAG =60°, ∵∠G =90°, ∴∠ADG =30°,在Rt △ADG 中,AD =1, ∴AG =12,DG =32,∵AB =2, ∴BG =52,在Rt △BDG 中,由勾股定理得:BD 2=BG 2+DG 2=7, ∴BD =7,即PD′+PB 的最小值为7.方法指导“将军饮马”模型:直线同侧两定点,在直线上确定一点使该点到两定点的距离和最小.作法:作其中一点关于直线的对称点,连接另一点和对称点的线段即是最短距离和;最短距离计算方法:构造以最短距离线段为斜边的直角三角形,利用勾股定理求解.中考冲刺集训一、选择题1.关于▱ABCD 的叙述,正确的是( )A . 若A B⊥BC,则▱ABCD 是菱形B . 若AC⊥BD,则▱ABCD 是正方形C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形2.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A . a >bB . a =bC . a <bD . b =a +180°3.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m).则点E 的坐标是( )A . (2,-3)B . (2,3)C . (3,2)D . (3,-2)第3题图 第4题图4.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( )A . 10B . 14C . 20D . 225.菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为( )A . 2 2B . 4 2C . 6 2D . 8 2第5题图 第6题图 第7题图6.如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )A . 3 cmB . 4 cmC . 5 cmD . 8 cm7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE∶EC =2∶1,则线段CH 的长是( )A . 3B . 4C . 5D . 68.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF∥AD,与AC 、DC 分别交于点G 、F2H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题9.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.10.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =8,BD =6,则菱形ABCD 的高DH =________.第9题图 第10题图 第11题图11.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB=30°,则∠E=________度. 12.如图,正方形ABCO 的顶点C ,A 分别在x 轴,y 轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC =2,则点D 的坐标是________.第12题图 第13题图 第14题图 13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________°.14.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm . 15.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论: ①∠EBG =45°;②△DEF∽△ABG;③S △ABG =32S △FGH ;④AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)第15题图 第16题图16.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm . 三、解答题17.如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF 、CE. 求证:AF∥CE.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.20.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.22.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.23.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE,连接BD 、CE 交于点F. (1)求证:△AEC≌△ADB;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG. (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.答案与解析:1. C2. B3. C4. B5. A 【解析】∵E ,F 分别是 AD ,CD 边上的中点,即EF 是△ACD 的中位线,∴AC =2EF =22,则菱形ABCD 的面积=12AC ·BD =12×22×2=2 2.6. B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.7. B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.8. D 【解析】逐项分析如下表:序号逐项分析正误难点突破对于多选项判断正误性的题目,几乎每个选项之间都是紧密联系的,单独判断其中每个的正误或跳跃式判断往往使题目变得复杂而无法求解,本题目难点在于④中,需将S △FDH 与已知条件AE AB =23联系起来,并用含相同未知数的代数式分别表示出S △EDH 和S △DHC ,继而求解.9. 110° 【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.10. 4.8 【解析】∵S =1AC·BD =2AB·DH ,∴AC ·BD =2AB·DH.∵四边形ABCD 是菱形,∴∠AOB =90°,AO =12AC =4,BO =12BD =3,∴在Rt △AOB 中,AB =42+32=5,∴DH =8×62×5=4.8.第11题解图11. 15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB=15°.第12题解图12. (3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).13. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第14题解图14. 13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.15. ①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴ED FD =43≠ABAG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.第16题解图16.233或33【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎪⎨⎪⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm . 17. 证明:∵四边形ABCD 是平行四边形,第17题解图∴AD ∥BC ,AD =BC , ∴∠1=∠2, 又∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.∴△ADF ≌△CBE(SAS ). ∴∠AFD =∠CEB ,∴AF ∥CE.18. (1)【思路分析】根据四边形ABCD 是菱形,∠ABC ∶∠BAD =1∶2,可求出∠DBC 的度数,其正切值可求出.解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC ,∴∠ABC +∠BAD =180°, 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan 30°=33. (2)【思路分析】由BE ∥AC ,CE ∥BD 可知四边形BOCE 是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE 是矩形.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC =90°, ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,且∠BOC =90°,∴四边形OBEC 是矩形.19. (1)证明:∵AE ⊥BD ,CF ⊥BD , ∴AM ∥CN ,又∵四边形ABCD 是平行四边形, ∴MC ∥AN ,∴四边形CMAN 是平行四边形.(2)解:∵四边形ABCD 是平行四边形, ∴∠ADE =∠CBF ,AD =CB , 又∵∠AED =∠CFB =90°, ∴△AED ≌△CFB(AAS ), ∴DE =BF =4,∴在Rt △BFN 中,BN =32+42=5.20. (1)【思路分析】要证∠CEB =∠CBE ,结合CE ∥DB ,可得到∠CEB =∠DBE ,从而只需证明∠CBE =∠DBE ,结合△ABC ≌△ABD 即可得证.证明:∵△ABC ≌△ABD , ∴∠ABC =∠ABD , ∵CE ∥BD ,∴∠CEB =∠DBE ,∴∠CEB =∠CBE.(2)证明:∵△ABC ≌△ABD ,∴BC =BD , 由(1)得∠CEB =∠CBE , ∴CE =CB , ∴CE =BD , ∵CE ∥BD ,∴四边形BCED 是平行四边形, ∵BC =BD ,∴四边形BCED 是菱形.21. (1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中, ⎨⎪⎧∠APD =∠AQB =90°∠ADP =∠BAQ ,∴△DAP ≌△ABQ(AAS ),∴AP =BQ.(2)解:①AQ 和AP ;②DP 和AP ;③AQ 和BQ ;④DP 和BQ.【解法提示】①由题图直接得:AQ -AP =PQ ;②∵△ABQ ≌△DAP ,∴AQ =DP ,∴DP -AP = AQ -AP =PQ ;③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ;④∵△ABQ ≌△DAP ,∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.22. (1)证明:在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AB =AD ∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎪⎨⎪⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,∴tan ∠AED =AH EH =x y =1.82.6=913. 23. (1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.24. (1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,第24题解图∠EFA =∠DFA ,EG =GD.∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系; 解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE. ∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF,即EF 2=FH·AF , ∴EG 2=12GF·AF. (3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4, ∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8. ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,∴EC DF =DE AF ,即EC 25=810, ∴EC =855, ∴BE =BC -EC =AD -EC =45-855=1255.。

2019中考数学解四边形专题试卷精选汇编(含解析答案)

2019中考数学解四边形专题试卷精选汇编(含解析答案)

2019中考数学解四边形专题试卷精选汇编(含解析答案)1解四边形专题东城区21.如图,已知四边形ABCD 是平⾏四边形,延长BA ⾄点E ,使AE = AB ,连接DE ,AC . (1)求证:四边形ACDE 为平⾏四边形; (2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.21.(1) 证明:∵平⾏四边形ABCD ,∴=AB DC ,AB DC ∥. ∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平⾏四边形. -------------------2分 (2) ∵=AB AC ,∴=AE AC .∴平⾏四边形ACDE 为菱形. ∴AD ⊥CE .∵AD BC ∥,∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==,∴=2BC .根据勾股定理,求得BC 分西城区21.如图,在ABD △中,ABD ADB ∠=∠,分别以点B ,D 为圆⼼,AB 长为半径在BD 的右侧作弧,两弧交于点C ,分别连接BC ,DC ,AC ,记AC 与BD 的交点为O .(1)补全图形,求AOB ∠的度数并说明理由;(2)若5AB =,3cos 5ABD ∠=,求BD 的长.2 BDA【解析】(1)补全的图形如图所⽰.90AOB ∠=?.证明:由题意可知BC AB =,DC AB =,∵在ABD △中,ABD ADB∠=∠,∴AB AD =,∴BC DC AD AB ===,∴四边形ABCD 为菱形,∴AC BD ⊥,∴90AOB ∠=?.(2)∵四边形ABCD 为菱形,∴OB OD =.在Rt ABO △中,90AOB ∠=?,5AB =,3cos 5ABD ∠=,∴cos 3OB AB ABD =?∠=,∴26BD OB ==.ABCDO海淀区21.如图,□ABCD 的对⾓线,AC BD 相交于点O ,且AE∥BD ,BE∥AC ,OE = CD . (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是__________时,四边形AOBE 的⾯积取得最⼤值是_______.3C B EOAD21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平⾏四边形. ………………1分∵四边形ABCD 是平⾏四边形,∴DC AB =. ∵OE CD =, ∴OE AB =.∴平⾏四边形AEBO 是矩形. ………………2分∴90BOA ∠=?. ∴AC BD ⊥.∴平⾏四边形ABCD 是菱形. ………………3分 (2) 正⽅形; ………………4分2. ………………5分丰台区21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.ABCEDF21.(1)证明:∵BF =BA ,BE =BC ,∴四边形AEFC 为平⾏四边形. ………………………1分∵四边形ABCD 为菱形,∴BA =BC .∴BE =BF .∴BA + BF = BC + BE ,即AF =EC .∴四边形AEFC 为矩形. ………………………2分(2)解:连接DB . 由(1)知,AD ∥EB ,且AD =EB . ∴四边形AEBD 为平⾏四边形∵DE ⊥AB ,∴四边形AEBD 为菱形.∴AE =EB ,AB =2AG ,ED =2EG . ………………………4分∵矩形ABCD 中,EB =AB ,AB=4,∴AG =2,AE =4.∴Rt△AEG 中,EG=.∴ED=分(其他证法相应给分)4⽯景⼭区21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,BC CD ==,CE AD ⊥于点E .(1)求证:AE CE =;(2)若tan 3D =,求AB 的长.21.(1)证明:(法⼀)过点B 作BH ⊥CE 于H ,如图1.∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=?.∵∠BCD =90°,∴1290∠+∠=?,∴2D ∠=∠.⼜BC =CD∴BHC △≌CED △.∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°,∴四边形ABHE 是矩形,∴AE BH =.∴AE CE =. ………………3分(法⼆)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略.(2)解:∵四边形ABHE 是矩形,∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴CD ==.∴2x =.∴2DE =,6CE =. ………………4分∵2CH DE ==.∴624AB HE ==-=. ………………5分朝阳区21. 如图,在△ABC 中,D 是AB 边上任意⼀点,E 是BC 边中点,过点C作AB 的平⾏线,交DE 的延长线于点F ,连接BF ,CD .(1)求证:四边形CDBF 是平⾏四边形;(2)若∠FDB =30°,∠ABC =45°,BC =,求DF 的长.21.(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD .5∵E 是BC 中点,∴CE =BE .∵∠CEF =∠BED ,∴△CEF ≌△BED . ∴CF =BD .∴四边形CDBF 是平⾏四边形. ………………………2分(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平⾏四边形,BC =24,∴2221==BC BE ,DE DF 2=. 在Rt △EMB 中,2sin =∠?=ABC BE EM . ……………………3分在Rt △EMD 中,42==EM DE . …………………4分∴DF =8. ………………………………………………………5分燕⼭区23.如图,在△ABC 中,D,E 分别是AB,AC 的中点,BE=2DE ,延长DE 到点F ,使得EF=BE,连接CF .(1)求证:四边形BCFE 是菱形;(2)若∠BCF =120°,CE=4,求菱形BCFE 的⾯积.23. (1)证明:∵点 D,E, 是 AB,AC 中点∴DE ∥BC, DE=12BC ……………………….1′⼜BE=2DE,即DE=12BE∴BC=BE ⼜EF=BE ∴EF ∥BC, EF=BC∴四边形BCFE 是平⾏四边形……………………….2′⼜EF=BE∴四边形BCFE 是菱形 ……………………….3′(2)∵四边形BCFE 是菱形∴BC=BE ⼜∠BCF =120° ∴∠BCE=60°∴△BCE 是等边三⾓形∴连结BF 交EC 于点O .∴BF ⊥EC在Rt △BOC 中,BO=32242222=-=-OC BC ……………………….4′322322121=??=??=?OC BO S BOC∴∴ ……………………….5′门头沟区21.在矩形ABCD 中,连接AC ,AC 的垂直平分线交AC 于点O ,分别交AD 、BC 于点E 、F ,连接CE 和AF .(1)求证:四边形AECF 为菱形;A AB CD E F38324=?=BCFE S菱形(2)若AB=4,BC=8,求菱形AECF的周长.21. (1)证明:∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,……………………1分∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,在△AEO和△CFO中,∵∠EAO=∠FCO,AO=CO,∠AOE=∠COF,∴△AEO≌△CFO(ASA),∴OE=OF.……………2分⼜∵OA=OC,∴四边形AECF是平⾏四边形,⼜∵EF⊥AC,∴平⾏四边形AECF是菱形;……………3分(2)设AF=x,∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x,………………………………………4分在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,42+(8﹣x)2=x2,解得x=5,∴AF=5,∴菱形AECF的周长为20.…………………5分⼤兴区21. 如图,矩形ABCD的对⾓线AC、BD交于点O,且DE=O C,CE=O D.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的⾯积.21.(1)证明:∵DE=OC,CE=OD,∴四边形OCED是平⾏四边形………………………………1分∵矩形ABCD,∴AC=BD,OC=12AC,OD=12BD.∴OC=OD.∴平⾏四边形OCED是菱形………………………………2分(2)解:在矩形ABCD中,∠ABC=90°,∠BAC=30°,AC=4,∴BC=2.∴AB=DC=…………………………………………………3分连接OE,交CD于点F. ∵四边形OCED为菱形,∴F为CD中点.∵O为BD中点,∴OF=12BC=1.∴OE=2OF=2 …………………………………………………4分∴S菱形OCED=12OE·CD=12×2×=5分平⾕区6721.如图,在平⾯直⾓坐标系xOy 中,函数()0ky k x=≠的图象与直线y =x +1交于点A (1,a ).(1)求a ,k 的值;(2)连结OA ,点P 是函数()0ky k x=≠上⼀点,且满⾜OP=OA ,直接写出点P 的坐标(点A 除外).21.解:(1)∵直线y =x +1经过点A (1,a ),∴a =2. ··························· 1 ∴A (1,2).∵函数()0ky k x=≠的图象经过点A (1,2),∴k =2. (2)(2)点P 的坐标(2,1),(-1,-2),(-2,-1). (5)怀柔区21.直⾓三⾓形ABC 中,∠BAC=90°,D 是斜边BC 上⼀点,且AB=AD ,过点C 作CE⊥AD,交AD 的延长线于点E ,交AB 延长线于点F. (1)求证:∠ACB=∠DCE;(2)若∠BAD=45°,AF =B 作BG⊥FC 于点G ,连接DG .依题意补全图形,并求四边形ABGD 的⾯积.21.(1)∵AB=AD,∴∠ABD=∠ADB,………………………………1分∵∠ADB=∠CDE,∴∠ABD=∠CDE. ∵∠BAC=90°,∴∠ABD+∠ACB=90°.∵CE⊥AE,∴∠DCE+∠CDE=90°.∴∠ACB=∠DCE. …………………………………2分(2)补全图形,如图所⽰ …………………………3分∵∠BAD=45°,∠BAC=90°,∴∠BAE=∠CAE=45°, ∠F=∠ACF=45°, ∵AE⊥CF, BG⊥CF,∴AD∥BG.∵BG⊥CF, ∠BAC=90°,且∠ACB=∠DCE, ∴AB=BG.8 ∵AB=AD,∴BG=AD.∴四边形ABGD 是平⾏四边形. ∵AB=AD∴平⾏四边形ABGD 是菱形.………………4分设AB=BG=GD=AD=x ,∴BF=2BG=2x.∴AB+BF=x+2x=2+2. ∴x=2,过点B 作BH⊥AD 于H. ∴BH=22AB=1. ∴S 四边形ABDG =AD×BH=2. ……………………………………………………………………5分延庆区21.如图,Rt△ABC 中,∠ABC =90°,点D ,F 分别是AC ,AB 的中点,CE ∥DB ,BE ∥DC .(1)求证:四边形DBEC 是菱形;(2)若AD =3, DF =1,求四边形DBEC ⾯积.FEDCBA21.(1)在Rt△ABC 中,∵CE //DC ,BE //DC∴四边形DBEC 是平⾏四边形∵D 是AC 的中点,∠ABC =90°∴BD=DC ……1分∴四边形DBEC 是菱形 ……2分(2)∵F 是AB 的中点∴BC =2DF =2,∠AFD =∠ABC =90° 在Rt△AFD 中,……3分∴……4分……5分顺义区21.如图,四边形ABCD 中,AD ∥BC ,∠A =90°,BD =BC ,点E 为CD 的中点,射线BE 交AD 的延长线于点F ,连接CF .(1)求证:四边形BCFD 是菱形;(2)若AD =1,BC =2,求BF的长. 21.(1)证明:∵BD=BC ,点E 是CD 的中点,∴∠1=∠2. …………………………………………………… 1分∵AD ∥BC ,∴∠2=∠3. F E AB CD 321FEABCD∴∠1=∠3.…………………………… 2分∴BD=DF.∵BD=BC,∴DF=BC.⼜∵DF∥BC,∴四边形BCFD是平⾏四边形.∵BD=BC,∴□BCFD是菱形.…………………………………………………… 3分(2)解:∵∠A =90?,AD=1,BD=BC=2,∴AB==∵四边形BCFD是菱形,∴DF=BC=2.………………………………………………………… 4分∴AF=AD+DF=3.∴BF== 5分9。

2019年河北省中考数学试卷(含解析版)

2019年河北省中考数学试卷(含解析版)

2019年河北省中考数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3B.﹣3C.﹣D.+3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5B.+x≥5C.≤5D.+x=55.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1B.2C.3D.47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S=()俯A.x2+3x+2B.x2+2C.x2+2x+1D.2x2+3x15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1D.有两个相等的实数根16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣12n B 勾股数组Ⅰ/8勾股数组Ⅱ35/22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD 与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S头的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE 与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.2019年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.【分析】根据正多边形的定义;各个角都相等,各条边都相等的多边形叫做正多边形可得答案.【解答】解:正五边形五个角相等,五条边都相等,故选:D.【点评】此题主要考查了正多边形,关键是掌握正多边形的定义.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3B.﹣3C.﹣D.+【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC【分析】根据仰角的定义进行解答便可.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.【点评】本题主要考查了仰角的识别,熟记仰角的定义是解题的关键.仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5B.+x≥5C.≤5D.+x=5【分析】x的即x,不超过5是小于或等于5的数,按语言叙述列出式子即可.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.5.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°【分析】由菱形的性质得出AB∥CD,∠BAD=2∠1,求出∠BAD=30°,即可得出∠1=15°.【解答】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.【点评】此题考查了菱形的性质,以及平行线的性质,熟练掌握菱形的性质是解本题的关键.6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1B.2C.3D.4【分析】直接利用单项式乘以多项式以及多项式除以单项式运算法则计算得出答案.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.【点评】此题主要考查了单项式乘以多项式以及多项式除以单项式运算,正确掌握相关运算法则是解题关键.7.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【分析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.【点评】本题考查了平行线的判定,三角形外角的性质,比较简单.8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:=0.00002=2×10﹣5.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.2【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n的最小值为3,故选:C.【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.10.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【分析】根据三角形外心的定义,三角形外心为三边的垂直平分线的交点,然后利用基本作图格选项进行判断.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①【分析】根据题意和频数分布表、扇形统计图制作的步骤,可以解答本题.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.【点评】本题考查扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q【分析】由函数解析式可知函数关于y轴对称,即可求解;【解答】解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.【点评】本题考查反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤x<1故表示﹣的值的点落在②故选:B.【点评】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S=()俯A.x2+3x+2B.x2+2C.x2+2x+1D.2x2+3x【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.【点评】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1D.有两个相等的实数根【分析】直接把已知数据代入进而得出c的值,再解方程求出答案.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.【点评】此题主要考查了根的判别式,正确得出c的值是解题关键.16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对【分析】平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;丙的思路与计算都错误,图示情况不是最长;故选:B.【点评】本题考查了矩形的性质与旋转的性质,熟练运用矩形的性质是解题的关键.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为﹣3.【分析】直接利用同底数幂的乘法运算法则进而得出答案.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.【点评】此题主要考查了同底数幂的乘法运算,正确掌握相关运算法则是解题关键.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=3x;(2)当y=﹣2时,n的值为1.【分析】(1)根据约定的方法即可求出m;(2)根据约定的方法即可求出n.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.【点评】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;【点评】本题考查勾股定理,解题的关键是根据A、B、C三点的坐标求出相关线段的长度,本题属于中等题型.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【分析】(1)根据有理数的加减法可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点评】本题考查有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣12n B勾股数组Ⅰ/817勾股数组Ⅱ35/37【分析】先根据整式的混合运算法则求出A,进而求出B,再把n的值代入即可解答.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=17;当n2﹣1=35时,n2+1=37.故答案为:17;37【点评】本题考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿【分析】(1)由概率公式求出8元球的个数,由众数的定义即可得出答案;(2)①由中位数的定义即可得出答案;②用列表法得出所有结果,乙组两次都拿到8元球的结果有4个,由概率公式即可得出答案.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.【点评】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD 与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.【分析】(1)由条件易证△ABC≌△ADE,得∠BAC=∠DAE,∴∠BAD=∠CAE.(2)PD=AD﹣AP=6﹣x,∵点P在线段BC上且不与B、C重合,∴AP的最小值即AP⊥BC时AP的长度,此时PD可得最大值.(3)I为△APC的内心,即I为△APC角平分线的交点,应用“三角形内角和等于180°“及角平分线定义即可表示出∠AIC,从而得到m,n的值.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠P AC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠P AC,∠PCA,∴∠IAC=∠P AC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠P AC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.【点评】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30°的角所对的直角边等于斜边的一半,全等三角形的判定和性质,三角形内心概念及角平分线定义等,解题关键是将PD最大值转化为P A的最小值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S头的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.【分析】(1)①排头与O的距离为S头(m).等于排头行走的路程+队伍的长300,而排头行进的时间也是t(s),速度是2m/s,可以求出S头与t的函数关系式;②甲赶到排头位置的时间可以根据追及问题的数量关系得出,代入求S即可;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m)是在S的基础上减少甲返回的路程,而甲返回的时间(总时间t减去甲从排尾赶到排头的时间),于是可以求S甲与t的函数关系式;(2)甲这次往返队伍的总时间为T(s),是甲从排尾追到排头用的时间与从排头返回排尾用时的和,可以根据追及问题和相遇问题的数量关系得出结果;在甲这次往返队伍的过程中队伍行进的路程=队伍速度×返回时间.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×﹣=400;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为400m.【点评】考查行程问题中相遇、追及问题的数量关系的理解和应用,同时函数思想方法的应用,切实理解变量之间的变化关系,由于时间有重合的部分,容易出现错误.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE 与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.【分析】(1)由三角函数定义知:Rt△PBC中,=tan∠PBC=tan∠DAB=,设CP =4k,BP=3k,由勾股定理可求得BP,根据“直径所对的圆周角是直角”可得PE⊥AD,由此可得PE⊥BC;(2)作CG⊥AB,运用勾股定理和三角函数可求CG和AG,再应用三角函数求∠CAP,应用弧长公式求劣弧长度,再比较它与AP长度的大小;(3)当⊙O与线段AD只有一个公共点时,⊙O与AD相切于点A,或⊙O与线段DA 的延长线相交于另一点,此时,BP只有最小值,即x≥18.【解答】解:(1)如图1,AP经过圆心O,∵CP与⊙O相切于P,∴∠APC=90°,∵▱ABCD,∴AD∥BC,∴∠PBC=∠DAB∴=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由CP2+BP2=BC2,得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,∴x=BP=3×3=9,故当x=9时,圆心O落在AP上;∵AP是⊙O的直径,。

2019年部分省市中考数学试题分类汇编共28专题17四边形平行四边形,矩形,菱形,正方形38页

2019年部分省市中考数学试题分类汇编共28专题17四边形平行四边形,矩形,菱形,正方形38页

图6F EDCBA21(2010哈尔滨)1。

如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C ′处,折痕为EF ,若∠ABE =20°,那么∠EFC ′的度数为 度.125(2010珠海)如图,P 是菱形ABCD 对角线BD 上一点,PE ⊥AB 于点E ,PE =4cm , 则点P 到BC 的距离是_____cm. 4(2010红河自治州)下列命题错误的是( B )a) 四边形内角和等于外角和 b) 相似多边形的面积比等于相似比c) 点P (1,2)关于原点对称的点的坐标为(-1,-2) d)三角形的中位线平行于第三边,且等于第三边的一半(2010红河自治州)18. (本小题满分9分)如图6,在正方形ABCD 中,G 是BC上的任意一点,(G 与B 、C 两点不重合),E 、F 是AG 上的两点(E 、F 与A 、G 两点不重合),若AF=BF+EF ,∠1=∠2,请判断线段DE 与BF 有怎样的位置关系,并证明你的结论.解:根据题目条件可判断DE//BF.证明如下:∵四边形ABCD 是正方形, ∴AB=AD ,∠BAF+∠2=90°.∵AF=AE+EF ,又AF=BF+EF∴AE=BF∵∠1=∠2,∴△ABF ≌△DAE (SAS ). ∴∠AFB=∠DEA ,∠BAF=∠ADE. ∴∠ADE+∠2=90°, ∴∠AED=∠BFA=90°. ∴DE//BF.(2010年镇江市)10.如图,在平行四边形ABCD 中,CD=10,F 是AB 边上一点,DF 交AC 于点E ,且的面积的面积则CDE AEF EC AE ∆∆=,52= 254,BF= 6 . (2010年镇江市)27.探索发现(本小题满分9分)如图,在直角坐标系OCD Rt OAB Rt xOy ∆∆和中,的直角顶点A ,C 始终在x轴的正半轴上,B ,D 在第一象限内,点B 在直线OD 上方,OC=CD ,OD=2,M 为OD 的中点,AB 与OD 相交于E ,当点B 位置变化时,.21的面积恒为OAB Rt ∆ 试解决下列问题:(1)填空:点D 坐标为 ;(2)设点B 横坐标为t ,请把BD 长表示成关于t 的函数关系式,并化简; (3)等式BO=BD 能否成立?为什么?(4)设CM 与AB 相交于F ,当△BDE 为直角三角形时,判断四边形BDCF 的形状,并证明你的结论.(1))2,2(;(1分)(2)),1,(,21tt B OAB Rt 得的面积为由∆4)1(221)21()2(22222++-+=-+==∴t t tt t t BD ① (2分).)21(2)1(22)1(22-+=++-+=tt t t t t (3分).21|21|-+=-+=∴tt t t BD ② (4分)(注:不去绝 对值符号不扣分)(3)[法一]若OB=BD ,则.22BD OB =由①得,4)1(2212222++-1+=+t t tt t t (5分) [法二]若OB=BD ,则B 点在OD 的中垂线CM 上.∴直线CM 的函数关系式为2+-=x y , ③ (5分) 联立③,④得:0122=+-x x ,[法三]若OB=BD ,则B 点在OD 的中垂线CM 上,如图27 – 1 过点B 作,,H y CM G y BG 轴于交轴于⊥(4)如果ο45,=∠∆BED BDE 因为为直角三角形,①当三点重合此时时M E F EBD ,,,90ο=∠,如图27 – 2 ∴此时四边形BDCF 为直角梯形.(7分) ②当,90时ο=∠EBD 如图27 – 3∴此时四边形BDCF 为平行四边形.(8分) 下证平行四边形BDCF 为菱形: [法一]在222,BD OD OB BDO +=∆中, [方法①]OD BD t t 在Θ,01222=+-上方121,12;21,12-=+=+=-=tt t t 或解得(舍去).得),12,12(+-B[方法②]由②得:.222221=-=-+=tt BD 此时,2==CD BD∴此时四边形BDCF 为菱形(9分) [法二]在等腰EDB Rt OAE Rt ∆∆与等腰中(2010台州市)9.如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N .则DM +CN 的值为(用含a 的代数式表示)(▲) A .a B .a 54C .a 22 D . a 23答案:C(2010遵义市)(10分)如图(1),在△ABC 和△EDC 中,AC =CE =CB =CD ,∠ACB =∠ECD =ο90,AB 与CE 交于F ,ED 与AB 、BC 分别交于M 、H . (1)求证:CF =CH ;(2)如图(2),△ABC 不动,将△EDC 绕点C 旋转到∠BCE=ο45时,试判断四边形ACDM 是什么四边形?并证明你的结论.解:(1)(5分) 证明:在△ACB 和△ECD 中∵∠ACB=∠ECD=ο90∴∠1+∠ECB=∠2+∠ECB,∴∠1=∠2又∵AC=CE=CB=CD,∴∠A=∠D=ο45∴△ACB ≌△ECD,∴CF=CH(2)(5分) 答: 四边形ACDM 是菱形证明: ∵∠ACB=∠ECD=ο90, ∠BCE=ο45 ∴∠1=ο45, ∠2=ο45 又∵∠E=∠B=ο45, ∴∠1=∠E, ∠2=∠B∴AC ∥MD, CD ∥AM , ∴ACDM 是平行四边形又∵AC=CD, ∴ACDM 是菱形(玉溪市2010)19.如图9,在ABCD 中,E 是AD 的中点,请aMCDB (第9添加适当条件后,构造出一对全等的三角形,并说明理由. 解:添加的条件是连结B 、E,过D 作DF ∥BE 交BC 于点F,构造的全等三角形是△ABE 与△CDF. …………4分理由: ∵平行四边形ABCD ,AE=ED, …………5分∴在△ABE 与△CDF 中,AB=CD, (6)分∠EAB=∠FCD, (7)分AE=CF , (8)分∴△ABE ≌△CDF. (9)分(桂林2010)16.正五边形的内角和等于______度.540(桂林2010)21.(本题满分8分) 求证:矩形的对角线相等.21.(本题8 分)已知:四边形ABCD 是矩形, AC 与BD 是对角线 ……………2分求证:AC =BD ………………………………………3分证明: ∵四边形ABCD 是矩形∴AB=DC ,∠ABC =∠DCB =90°…………4分 ABCD又∵BC=CB …………………………5分 ∴△ABC ≌△DCB …………6分 ∴AC=BD ……………………7分 所以矩形的对角线相等. …………8分(2010年兰州)11. 如图所示,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,sin A=53,则下列结论正确的个数有①cm DE 3= ②cm BE 1= ③菱形的面积为215cm ④cm BD 102= A . 1个 B . 2个 C . 3个 D . 4个答案C(2010年兰州)27.(本题满分10分)已知平行四边形ABCD 中,对角线AC 和BD 相交于点O ,AC=10,BD=8.(1)若AC ⊥BD ,试求四边形ABCD 的面积 ;(2)若AC 与BD 的夹角∠AOD=ο60,求四边形ABCD 的面积; (3)试讨论:若把题目中“平行四边形ABCD ”改为“四边形ABCD ”,且∠AOD=θAC=a ,BD=b ,试求四边形ABCD 的面积(用含θ,a ,b 的代数式表示).第 27题图答案(本题满分10分) 解:(1)∵AC ⊥BD∴四边形ABCD 的面积………………………………………2分(2)过点A 分别作AE ⊥BD ,垂足为E …………………………………3分∵四边形ABCD 为平行四边形在Rt ⊿AOE 中,AO AE AOE =∠sin∴ 23523560sin sin =⨯=⨯=∠•=o AO AOE AO AE …………4分∴3552342121=⨯⨯⨯=•=∆AE OD S AOD ………………………………5分∴四边形ABCD 的面积 3204==∆AOD S S ……………………………………6分(3)如图所示过点A,C 分别作AE ⊥BD ,CF ⊥BD ,垂足分别为E,F …………7分在Rt ⊿AOE 中,AO AEAOE =∠sin同理可得θsin sin ⨯=∠•=CO COF CO CF ………………………………8分∴四边形ABCD 的面积 (2010年连云港)7.如图,四边形ABCD 的对角线AC 、BD 互相垂直,则下列条件能判定四边形ABCD 为菱形的是( )A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD 答案 B(2010年连云港)18.矩形纸片ABCD 中,AB =3,AD =4,将纸片折叠,使点B 落在边CD 上的B ’处,折痕为AE .在折痕AE 上存在一点P 到边CD 的距离与到点B 的距离相等,则此相等距离为________.答案 52(2010年连云港)27.(本题满分10分)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有________;(2)如图1,梯形ABCD 中,AB ∥DC ,如果延长DC 到E ,使CE =AB ,连接AE ,那么有S梯形ABCD=S △ABE .请你给出这个结论成立的理由,并过点A 作出梯形ABCD 的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD 中,AB 与CD 不平行,S △ADC >S △ABC ,过点A 能否作出四边形ABCD 的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.答案(1) 中线所在的直线 ..........................................................................................................2分(2)法一:连接BE ,因为AB ∥CE,AB=CE ,所以四边形ABEC 为平行四边形 所以BE∥AC ............................................................θθθsin 21sin 21)(sin 212121ab AC BD CO AO BD CFBD AE BD S S S CBDABD=•=+=•+•=+=∆∆………………………………..........................................................3分 所以△ABC 和△AEC 的公共边AC 上的高也相等 所以有ABC AEC S S =V V 所以ACD ABC ACD AEC AED ABCD S S S S S S =+=+=V V V V V 梯形 ...................................................5分法二: 设 AE 与BC 相交于点F因为AB ∥CE ,所以,ABF ECF BAF CEF ∠=∠∠=∠ 又因为 AB=CE 所以 ABF ECF ≅V V所以ABF CBF AED ABCD AFCD AFCD S S S S S S =+=+=V V V 梯形四边形四边形 过点A 的梯形ABCD 的面积等分线的画法如右图(1)所示(3)能.连接AC,过点B 作BE ∥AC 交DC 的延长线于点E,连接AE.因为BE ∥AC,所以△ABC 和△AEC 的公共边AC 上的高也相等所以有ABC AEC S S =V V所以ACD ABC ACD AEC AED ABCD S S S S S S =+=+=V V V V V 梯形 因为ACD ABC S S V V >所以面积等分线必与CD 相交,取DE 中点F则直线AF 即为要求作的四边形ABCD 的面积等分线 作图如右图(2)所示(2010宁波市)21.如图1,有一张菱形纸片ABCD ,AC =8,BD =6. (1)请沿着AC 剪一刀,把它分成两部分,把剪开的两部分分拼成一个平行四边形,在图2中用实线画出你所拼成的平行四边形;若沿着BD 剪 开,请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行 四边形的周长.(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形.(注:上述所画的平行四边形都不能与原菱形全等)24. (2010年金华) (本题12分)如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,.动点P从A点开始沿折线AO-OB-BA运动,点P 在AO,OB,BA上运动的速度分别为12 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以33(长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P 同时停止运动.请解答下列问题:(1)过A,B两点的直线解析式是▲;(2)当t﹦4时,点P的坐标为▲;当t ﹦▲,点P与点E 重合;(3)①作点P关于直线EF的对称点P′. 在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?②当t﹦2?若存在, 求出点Q的坐标;若不存在,请说明理由.解:(1)333+-=xy;………4分(2分(各2分)(第24(3)①当点P 在线段AO 上时,过F 作FG ⊥x 轴,G 为垂足(如图1) ∵FG OE =,FP EP =,∠=EOP ∠=FGP 90°又∵t FG OE 33==,∠=A 60°,∴t FG AG 3160tan 0== 而t AP =,∴t OP -=3,t AG AP PG 32=-=由tt 323=-得59=t当点P 在线段OB 当点P 在线段BA 上时,过P 作PH ⊥EF ,PM ⊥OB ,H 、M∴6921tEF EH MP -===, 又∵)6(2-=t BP 在Rt△BMP 中,MP BP =⋅060cos 即6921)6(2tt -=⋅-,解得745=t .…………………………………………………1分②存在﹒理由如下:将△BEP 绕点E 顺时针方向旋转△EC B '(如图3)(图1)(图2)∵OB ⊥EF ,∴点B '在直线EF 上,C 点坐标为(332,332-1) 过F 作FQ ∥C B ',交EC 于点Q ,则△FEQ ∽△EC B '由3=='=QECEFE E B FE BE ,可得Q 的坐标为(-32,33)………………………1分根据对称性可得,Q 关于直线EF 的对称点Q '(-32,3)也符合条件.……1分22.(2010年长沙)在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED .(1)求证:△BEC ≌△DEC ;于F ,当∠BED =120°时,求∠EFD 的度数.答案:(1)证明:∵四边形ABCD 是正方形 ∴BC =CD ,∠ECB =∠ECD =45°又EC =EC …………………………2分 ∴△ABE ≌△ADE ……………………3分 (2)∵△ABE ≌△ADE∴∠BEC =∠DEC =12∠BED …………4分∵∠BED =120°∴∠BEC =60°=∠AEF ……………5分 ∴∠EFD =60°+45°=105° …………………………6分第22题(2010年湖南郴州市)22.一种千斤顶利用了四边形的不稳定性. 如图,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变ADC ∠的大小(菱形的边长不变),从而改变千斤顶的高度(即A 、CADC 从60︒变为120︒答案22.解: 连结AC ,与BD 相交于点OQ 四边形ABCD 是菱形 \AC ^BD ,ÐADB =ÐCDB ,AC =2AO ……1分 当ÐADC =60°时,V ADC 是等边三角形\AC =AD =AB =40 …………………3分当ÐADC =120°时,ÐADO =60°\AO =AD ×sin ÐADO =40×\AC =40 …………………………5分因此增加的高度为-40=40´0.732»29(cm ) ……………6分 (说明:当ÐADC =120°时,求AC 的长可在直角三角形用勾股定理)(2010年湖南郴州市)23.已知:如图,把ABC V 绕边BC 的中点O 旋转180°得到DCB V . 求证:四边形ABDC 是平行四边形.答案23.证明:因为 DCB V 是由ABC V 旋转180︒2分所以点A 、D ,B 、C 关于点O 中心对称4分所以OB =OC OA =OD ………………………………6分 所以四边形ABCD 是平行四边形 ………………………………8分(注:还可以利用旋转变换得到AB =CD ,AC =BD 相等;或证明ABC DCB ≅V V 证第22C B第23ABCD 是平行四边形)(2010湖北省荆门市)19.(本题满分9分)将三角形纸片ABC (AB >AC )沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展平纸片,如图(1);再次折叠该三角形纸片,使得点A 与点D 重合,折痕为EF ,再次展平后连接DE 、DF ,如图2,证明:四边形AEDF 是菱形.答案19.证明:由第一次折叠可知:AD 为∠CAB 的平分线,∴∠1=∠2……………………2分由第二次折叠可知:∠CAB =∠EDF ,从而,∠3=∠4………………………………4分∵AD 是△AED 和△AFD 的公共边,∴△AED ≌△AFD (ASA)………………………6分 ∴AE =AF ,DE =DF又由第二次折叠可知:AE =ED ,AF =DF ∴AE=ED =DF =AF …………………………………………………………………………8分图1 图4321EAFDCCDBA(1) (2)ABDCCDF AE故四边形AEDF 是菱形.……………………………………………………………………9分8.(2010湖北省咸宁市)如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成,则线段AC 的长为 A .3 B .6 C .33 D .63 答案:D13. (2010年郴州市)如图,已知平行四边形ABCD ,E 是AB 延长线上一点,连结DE 交BC 于点F ,在不添加任何辅助线的情况下,请补充一个条件,使CDF BEF △≌△,这个条件是.(只要填一个)答案:DC EB =或CF BF =或DF EF = 或F 为DE 的中点或F 为BC 的中点或AB BE 或B 为AE 的中点7.(2010年怀化市)如图2,在菱形ABCD 中,对角线AC=4,∠BAD=120°, 则菱形ABCD 的周长为( )A .20B .18C .16D .15 答案:C18.(2010年怀化市)如图5,在直角梯形ABCD 中,AB ∥CD ,AD ⊥CD ,AB=1cm ,AD=6cm ,CD=9cm ,则BC= cm . 答案:1022.(2010湖北省咸宁市)问题背景A 2S A B EFDC第13题(1)如图1,△ABC 中,DE ∥BC 分别交AB ,AC 于D ,E 两点, 过点E 作EF ∥AB 交BC 于点F .请按图示数据填空:四边形DBFE 的面积S = , △EFC 的面积1S = , △ADE 的面积2S = . 探究发现(2)在(1)中,若BF a =,FC b =,DE 与BC 间的距离为h .请证明2124S S S =. 拓展迁移(3)如图2,□DEFG 的四个顶点在△ABC的三边上,若△ADG 、△DBE 、△GFC 的面积分别为2、5、3,试利用..(2.) 中的结论....求△ABC 的面积. 22.(1)6S =,19S =,21S =.……3分(2)证明:∵DE ∥BC ,EF ∥AB ,∴四边形DBFE 为平行四边形,AED C ∠=∠,A CEF ∠=∠. ∴△ADE ∽△EFC .……4分∵112S bh =, ∴222122a a h S S b b =⨯=.……5分而S ah =, ∴2124S S S =……6分(3)解:过点G 作GH ∥AB 交BC 于H ,则四边形DBHG 为平行四边形. ∴GHC B ∠=∠,BD HG =,DG BH =.∵四边形DEFG 为平行四边形,∴BE HF =. ∴△DBE ≌△GHF .∴△GHC 的面积为538+=.……8分由(2)得,□DBHG 的面积为8.……9分 ∴△ABC 的面积为28818++=.22.(2010是一个菱形,中间通过螺杆连接,转动手柄可改变∠变),从而改变千斤顶的高度(即A 、C 之间的距离).若变为120︒ 1.414, 1.732,结果保留整数)22.解: 连结AC ,与BD 相交于点OQ 四边形ABCD 是菱形 \AC ^BD ,ÐADB =ÐCDB ,AC =2AO 当ÐADC =60°时,V ADC 是等边三角形B CD GF E 图AB CD G FE 图AH 第22\AC =AD =AB =40当ÐADC =120°时,ÐADO =60°\AO =AD ×sin ÐADO =40×32=203\AC =403因此增加的高度为403-40=40´0.732»29(cm )23.(2010年郴州市)已知:如图,把ABC V 绕边BC 的中点O 旋转180°得到DCB V. 求证:四边形ABDC 是平行四边形.23.证明:因为 DCB V 是由ABC V 旋转180︒所得所以点A 、D ,B 、C 关于点O 中心对称 所以OB =OC OA =OD所以四边形ABCD 是平行四边形(注:还可以利用旋转变换得到AB =CD ,AC =BD 相等;或证明ABC DCB ≅V V 证ABCD 是平行四边形)23. (2010年怀化市) 如图7,平行四边形ABCD 的对角线相交于点O ,直线EF 经过点O,分别与AB,CD 的延长线交于点E,F.求证:四边形AECF 是平行四边形. 23. 证明:∵四边形ABCD 是平行四边形,∴OD=OB,OA=OC …………………1分CD AB //………………………………………………2分∴∠DFO=∠BEO, ∠FDO=∠EBO (3)分OCBDA 第23O 手柄CDBA图7∴△FDO ≌△EBO ……………………………………………………………4分 ∴OF=OE …………………………………………………………………5分∴四边形AECF 是平行四边形北京4. 若菱形两条对角线的长分别为6和8,则这个菱形的周长为 (A) 20 (B) 16(C) 12 (D) 10。

河北省2019年中考数学试卷(含解析)

河北省2019年中考数学试卷(含解析)

2019年河北省中考数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形为正多边形的是()A.B.C.D.2.(3分)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3B.﹣3C.﹣D.+3.(3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)语句“x的与x的和不超过5”可以表示为()A.+x≤5B.+x≥5C.≤5D.+x=55.(3分)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.(3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1B.2C.3D.47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①12.(2分)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.(2分)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S=()俯A.x2+3x+2B.x2+2C.x2+2x+1D.2x2+3x15.(2分)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1D.有两个相等的实数根16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若7﹣2×7﹣1×70=7p,则p的值为.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练. ①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由; ②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.23.(9分)如图,△ABC 和△ADE 中,AB =AD =6,BC =DE ,∠B =∠D =30°,边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD 异侧,I 为△APC 的内心. (1)求证:∠BAD =∠CAE ;(2)设AP =x ,请用含x 的式子表示PD ,并求PD 的最大值;(3)当AB ⊥AC 时,∠AIC 的取值范围为m °<∠AIC <n °,分别直接写出m ,n 的值.24.(10分)长为300m 的春游队伍,以v (m /s )的速度向东行进,如图1和图2,当队伍排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v (m /s ),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t (s ),排头与O 的距离为S 头(m ).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE 与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.2019年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:正五边形五个角相等,五条边都相等,故选:D.2.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.3.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.4.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.5.【解答】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.6.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.7.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.8.【解答】解:=0.00002=2×10﹣5.故选:D.9.【解答】解:如图所示,n的最小值为3,故选:C.10.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.11.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.12.【解答】解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.13.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤x<1故表示﹣的值的点落在②故选:B.14.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.15.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.16.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;乙的思路与计算都错误,图示情况不是最长;故选:B.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.18.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.19.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.21.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=15;当n2﹣1=35时,n2+1=37.故答案为:15;3722.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.23.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠P AC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠P AC,∠PCA,∴∠IAC=∠P AC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠P AC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.24.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×(T﹣150)=v×(﹣﹣150)=400﹣150v;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为(400﹣150v)m.25.【解答】解:(1)如图1,AP经过圆心O,∵CP与⊙O相切于P,∴∠APC=90°,∵▱ABCD,∴AD∥BC,∴∠PBC=∠DAB∴=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由CP2+BP2=BC2,得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,∴x=BP=3×3=9,故当x=9时,圆心O落在AP上;∵AP是⊙O的直径,∴∠AEP=90°,∴PE⊥AD,∵▱ABCD,∴BC∥AD∴PE⊥BC(2)如图2,过点C作CG⊥AP于G,∵▱ABCD,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB=,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP===1,∴∠CAP=45°;连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP=2×45°=90°,PH=AP =,在Rt△CPG中,==13,∵CP是⊙O的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即PH×CP=CG×OP,×13=12OP,∴OP=∴劣弧长度==,∵<2π<7∴弦AP的长度>劣弧长度.(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD ≥90°,当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥1826.【解答】解:(1)当x=0吋,y=x﹣b=﹣b,∴B(0,﹣b),∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4.∴L:y=﹣x2+4x,∴L的对称轴x=2,当x=2吋,y=x﹣4=﹣2,∴L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x﹣)2+,∴L的顶点C()∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b﹣)=(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点∴总计4042个点,∵这两段图象交点有2个点重复重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1009个偶数,并且在﹣1和2019.5之间还有整数0,验证后可知0也符合条件,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.。

2019年河北省中考数学试卷含答案解析(word版)

2019年河北省中考数学试卷含答案解析(word版)

2019年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2019年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。

2019年河北省中考数学试卷 (含答案解析)

2019年河北省中考数学试卷 (含答案解析)

毕业学校_____________ 姓名_____________ 考生号_____________ ____________________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效------------绝密★启用前河北省2019年初中毕业生升学文化课考试数 学一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列图形为正多边形的是( )ABCD2.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作 ( ) A.3+B.3-C.13-D.13+3.如图,从点C 观测点D 的仰角是( )A.∠DABB.∠DCEC.∠DCAD.∠ADC 4.语句x 的18与x 的和不超过5可以表示为( )A.58xx +≤ B.58xx +≥C.855x ≤+ D.8=55x + 5.如图,菱形ABCD 中,150D ∠=︒,则1∠=( )A.30︒B.25︒C.20︒D.15︒6.小明总结了以下结论:①()a b c ab ac +=+;②()a b c ab ac -=-; ③()(0)b c a b a c a a -÷÷-÷≠=;④()(0)a b c a b a c a ÷+=÷+÷≠ 其中一定成立的个数是( )A.1B.2C.3D.47.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是( )A.◎代表FEC ∠B.@代表同位角C.▲代表EFC ∠D.※代表AB8.一次抽奖活动特等奖的中奖率为150000,把150000用科学记数法表示为( ) A.4510⨯﹣B.5510⨯﹣C.4210⨯﹣D.5210⨯﹣9.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为( )A.10B.6C.3D.2 10.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )ABCD11.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤: ①从扇形图中分析出最受学生欢迎的种类;②去图书馆收集学生借阅图书的记录 ③绘制扇形图来表示各个种类所占的百分比;④整理借阅图书记录并绘制频数分布表 正确统计步骤的顺序是( )A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①12.如图,函数()()1010x xy x x⎧⎪⎪=⎨⎪-⎪⎩>,<的图象所在坐标系的原点是( )A.点MB.点NC.点PD.点Q 13.如图,若x 为正整数,则表示22(2)1441x x x x +-+++的值的点落在( )A.段①B.段②C.段③D.段④14.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A.232x x ++B.22x +C.221x x ++D.223x x +15.小刚在解关于x 的方程20(0)ax bx c a ++=≠时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A.不存在实数根B.有两个不相等的实数根C.有一个根是1x =-D.有两个相等的实数根16.对于题目:如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n .甲、乙、丙作了自认为边长最小的正方形,先求出该边长x ,再取最小整数n .甲:如图2,思路是当x 为矩形对角线长时就可移转过去;结果取13n =. 乙:如图3,思路是当x 为矩形外接圆直径长时就可移转过去;结果取14n =. 丙:如图4,思路是当x 为矩形的长与宽之和的√22倍时就可移转过去;结果取13n =. 下列正确的是( )A.甲的思路错,他的n 值对B.乙的思路和他的n 值都对C.甲和丙的n 值都对D.甲、乙的思路都错,而丙的思路对毕业学校_____________ 姓名_____________ 考生号_____________ ____________________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效------------二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上) 17.若2107777p --⨯⨯=,则p 的值为 .18.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数. 示例:即437+=则(1)用含x 的式子表示m = ; (2)当2y =-时,n 的值为 .19.勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:km )笔直铁路经过A ,B 两地. (1)A ,B 间的距离为 km ;(2)计划修一条从C 到铁路AB 的最短公路l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为 km三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.有个填写运算符号的游戏:在“1269□□□”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果. (1)计算:1269+--;(2)若12696÷⨯=-,请推算□内的符号;(3)在“1269-□□”的□内填入符号后,使计算所得数最小,直接写出这个最小数. 21.已知:整式22212A n n =+(﹣)(),整式0B >.尝试 化简整式A . 发现 2A B =,求整式B .联想 由上可知,22221)()(2B n n +=-,当1n >时,21n -,2n ,B 为直角三角形的三边长,如图.填写下表中B 的值: 直角三角形三边 21n -2n B 勾股数组Ⅰ / 8 勾股数组Ⅱ35/22.某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P (一次拿到8元球)12=. (1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率. 又拿 先拿23.如图ABC △和ADE △中,630AB AD BC DE B D ===∠=∠=︒,,,边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD 异侧,I 为APC △的内心. (1)求证:BAD CAE ∠∠=;(2)设AP x =,请用含x 的式子表示PD ,并求PD 的最大值;(3)当AB AC ⊥时,AIC ∠的取值范围为m AIC n ︒∠︒<<,分别直接写出m ,n 的值.24.长为300 m 的春游队伍,以v (m /s )的速度向东行进,如图1和图2,当队伍排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v (m /s ),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t (s ),排头与O 的距离为S 头(m ).(1)当2v =时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S 头的值;在甲从排头返回到排尾过程中,设甲与位置O 的距离为S m 甲(),求S 甲与t 的函数关系式(不写t 的取值范围)(2)设甲这次往返队伍的总时间为T (s ),求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程.25.如图1和2,ABCD 中,4315tan =3AB BC DAB ==∠,,点P 为AB 延长线上一点,过点A 作O 切CP 于点P ,设BP x =.(1)如图1,x 为何值时,圆心O 落在AP 上?若此时O 交AD 于点E ,直接指出PE 与BC 的位置关系;(2)当4x =时,如图2,O 与AC 交于点Q ,求CAP ∠的度数,并通过计算比较弦AP 与劣弧PQ 长度的大小;(3)当O 与线段AD 只有一个公共点时,直接写出x 的取值范围.26.如图,若b 是正数,直线l :y b =与y 轴交于点A ;直线a y x b =-:与y 轴交于点B ;抛物线L :2y x bx =-+的顶点为C ,且L 与x 轴右交点为D . (1)若8AB =,求b 的值,并求此时L 的对称轴与a 的交点坐标; (2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设00x ≠,点(0x ,1y ),(0x ,2y ),(0x ,3y )分别在l ,a 和L 上,且y 3是y 1,y 2的平均数,求点(0x ,0)与点D 间的距离;(4)在L 和a 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为美点,分别直接写出201920195b b .==和时“美点”的个数.毕业学校_____________ 姓名_____________ 考生号_____________ ____________________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效------------河北省2019年初中毕业生升学文化课考试数学答案解析一、选择题 1.【答案】D【解析】正五边形五个角相等,五条边都相等, 故选:D 。

中考数学复习考点知识专题讲义第28讲 尺规作图

中考数学复习考点知识专题讲义第28讲 尺规作图

利用基本作图作三角形 1.已知三边、两边及其夹角、两角及其夹边作三角形. 2.已知底边及底边上的高线作等腰三角形. 3.已知一直角边和斜边作直角三角形.
利用基本作图作与圆有关的图形 1.过不在同一直线上的三点作圆. 2.作三角形的外接圆、内切圆. 3.作圆的内接正方形和正六边形.
尺规作图及其要求 1.尺规作图:利用没有刻度的直尺和圆规的作图称作尺规作图. 2.在尺规作图中,了解作图的道理,保留作图痕迹,不要求写出作法.
【跟踪训练】 2.如图,已知△ABC,用尺规作出△ABC 的内切圆⊙O,并标出⊙O 与边 AB,BC, AC 的切点 D,E,F.(保留作图痕迹,不写作法)
解:如解图所示.
利用尺规作图探究结论 例 3 (逻辑推理)综合与探究——用直尺与圆规作图和探究线段的关系 任务 1:如图 1,在△ABC 和△DCB 中,∠A=∠D=90°,AC 与 BD 相交于点 O, 图中有哪些线段相等?
图1
(1)小明观察得出相等的线段有 AC=BD,AB=CD,OA=OD,OB=OC.小明说:
“若用圆规验证得到 AC=BD,就可证明其余结论均成立”.请判断小明的说法是否正 确,并说明理由.
解:小明的说法正确.理由:若 AC=BD,又 BC=CB,∠A=∠D=90°,
∴Rt△ABC≌Rt△DCB. ∴AB=DC,∠ACB=∠DBC. ∴OB=OC. ∴OA=OD.
︵ (1)在射线 OA 上取一点 C,以点 O 为圆心,OC 长为半径作PQ ,交射线 OB 于点 D, 连接 CD;
︵ (2)分别以点 C,D 为圆心,CD 长为半径作弧,交PQ于点 M,N; (3)连接 OM,MN. 根据以上作图过程及所作图形,下列结论中错误的是( D ) A.∠COM=∠COD B.若 OM=MN,则∠AOB=20° C.MN∥CD D.MN=3CD

第28讲中考数学总复习(练习题) 尺规作图

第28讲中考数学总复习(练习题) 尺规作图
∴∠ADE=∠AED,

∴∠ADE=∠CDE,∴∠CDE=∠ADE= ∠ADC,

∵CF平分∠BCD,∴∠FCD= ∠BCD,
∴∠CDE+∠FCD=90°,
∴∠CPD=90°,∴△CDP为直角三角形.
本课结束
谢谢观看
线,∵∠C=90°,
∴DE=DC,∠B+∠BDE=∠B+∠BAC=90°,
∴∠BDE=∠BAC.
AD=AD,
在 Rt△AED 和 Rt△ACD 中,
DE=DC,
∴Rt△AED≌Rt△ACD(HL),∴AE=AC,
∵DE不是AB的垂直平分线,故不能证明∠BAD=∠B,
综上所述:A,C,D不符合题意,B符合题意.
作法,答案不唯一)
解:如图,点P即为所求.
导航
6.(2021·绥化)(1)如图,已知△ABC,P为边AB上一点,请用尺规
作图的方法在边AC上求作一点E,使AE+EP=AC.(保留作图痕
迹,不写作法)
(2)在图中,如果AC=6 cm,AP=3 cm,则△APE的周长是
cm.
导航
解:(1)如图,点E即为所求.
课时作业
第28讲 尺规作图
基 础 演 练
能 力 提 升
导航
基 础 演 练
1.(2021·通辽)如图,在Rt△ABC中,∠ACB=90°,根据尺规作图
的痕迹,判断以下结论错误的是( B )
A.∠BDE=∠BAC B.∠BAD=∠B
C.DE=DC
D.AE=AC
导航
解析:根据尺规作图的痕迹可得,DE⊥AB,AD是∠BAC的平分
4
值为 4+9π .
导航

2019年河北中考数学专题训练集锦多边形与平行四边形

2019年河北中考数学专题训练集锦多边形与平行四边形

第26讲多边形与平行四边形1. (2012,河北)如图,在▱ABCD中,∠A=70°.将平行四边形折叠,使点D,C分别落在点F,E处(点F,E都在AB所在的直线上),折痕为MN,则∠AMF的度数为(B)第1题图A. 70°B. 40°C. 30°D. 20°【解析】∵四边形ABCD是平行四边形,∴AB∥CD.根据折叠的性质,可得MN∥AE,∠FMN=∠DMN.∴AB∥CD∥MN.∵∠A=70°,∴∠FMN=∠DMN=∠A=70°.∴∠AMF =180°-∠DMN-∠FMN=180°-70°-70°=40°.2. (2012,河北)如图①,用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形.如图②,用n个全等的正六边形按这种方式拼接.若围成一圈后中间也形成一个正多边形,则n的值为 6 .第2题图【解析】 因为正六边形的每个内角都是120°,所以拼成的正多边形的每个内角的度数为360°-120°-120°=120°.列方程,得()n -2×180°n=120°.解得n =6.3. (2015,河北,导学号5892921)如图,平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,则∠3+∠1-∠2= 24°.第3题图【解析】 正三角形的每个内角的度数是180°÷3=60°,正方形的每个内角的度数是360°÷4=90°,正五边形的每个内角的度数是(5-2)×180°÷5=108°,正六边形的每个内角的度数是(6-2)×180°÷6=120°,则∠3+∠1-∠2=(90°-60°)+(120°-108°)-(108°-90°)=24°.4. (2015,河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形的对边相等.【思路分析】连接BD,证明△ABD≌△CDB,利用全等三角形的性质来证明四边形ABCD 为平行四边形.主要考查了平行四边形的判定定理和逆命题的表述.(1)解:CD平行(2)证明:如答图,连接BD.∵AB=CD,AD=BC,BD=DB,∴△ABD≌△CDB.∴∠1=∠3,∠2=∠4.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形.(3)解:平行四边形的对边相等第4题答图借助多边形边与角的性质解决问题例1 (2018,杭州临安区模拟)用一条宽相等的足够长的纸条,打一个结,如图①所示,然后轻轻拉紧、压平就可以得到如图②所示的正五边形ABCDE,其中∠BAC=36°.例1题图【解析】 ∵∠ABC =(5-2)×180°5=108°,△ABC 是等腰三角形,∴∠BAC =∠BCA=36°.针对训练1 (2018,唐山二模)如图所示的是由射线AB ,BC ,CD ,DE ,EA 组成的平面图形.若∠1+∠2+∠3+∠4=225°,ED ∥AB ,则∠1的度数为(B)训练1题图A. 55°B. 45°C. 35°D. 25°【解析】 如答图.由多边形的外角和等于360°,可知∠1+∠2+∠3+∠4+∠5= 360°.∵∠1+∠2+∠3+∠4=225°,∴∠5=135°.∴∠AED =45°.∵ED ∥AB ,∴∠1=∠AED =45°.训练1答图针对训练2 (2018,济宁)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP 分别平分∠EDC,∠BCD,则∠P的度数是(C)训练2题图A. 50°B. 55°C. 60°D. 65°【解析】∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°.∵DP,CP分别平分∠EDC,∠BCD,∴∠PDC+∠PCD=120°.∴∠P=180°-(∠PDC+∠PCD)=180°-120°=60°.借助平行四边形的性质求边和角例2 (2018,绵阳游仙区模拟)如图,EF 过▱ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F .若▱ABCD 的周长为18,OE =2,则四边形EFCD 的周长为(B)例2题图A. 14B. 13C. 12D. 10【解析】 ∵四边形ABCD 是平行四边形,周长为18,∴AB =CD ,BC =AD ,OA =OC ,AD ∥BC .∴CD +AD =9,∠OAE =∠OCF .在△AEO 和△CFO 中,⎩⎪⎨⎪⎧∠OAE =∠OCF ,OA =OC ,∠AOE =∠COF ,∴△AEO≌△CFO (ASA).∴OE =OF =2,AE =CF .∴四边形EFCD 的周长为ED +CD +CF +EF =(DE+CF )+CD +EF =AD +CD +EF =9+4=13.针对训练3 (2018,长春九台区模拟)如图,在▱ABCD 中,∠C =130°,BE 平分∠ABC ,则∠AEB 等于(D)训练3题图A. 55°B. 45°C. 35°D. 25°【解析】∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.∴∠ABC+∠C=180°,∠AEB=∠CBE.∵∠C=130°,∴∠ABC=180°-∠C=50°.∵BE平分∠ABC,∴∠CBE=12∠ABC=25°.∴∠AEB=∠CBE=25°.平行四边形的判定和性质例3 (2018,济南模拟)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边三角形ACD,等边三角形ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.求证:(1)AC=EF;(2)四边形ADFE是平行四边形;(3)AC⊥DF.例3题图【思路分析】 (1)首先在Rt △ABC 中,由∠BAC =30°可以得到AB =2BC .又△ABE 是等边三角形,EF ⊥AB ,由此得到AB =2AF ,然后即可证明Rt △AFE ≌Rt △BCA ,再根据全等三角形的性质即可证明AC =EF .(2)根据(1)知EF =AC ,而△ACD 是等边三角形,所以EF =AC =AD .易证AD ⊥AB ,而EF ⊥AB ,由此得到EF ∥AD ,再根据平行四边形的判定定理即可证明四边形ADFE 是平行四边形.(3)先求∠EAC =90°,由▱ADFE 得AE ∥DF ,可以得AC ⊥DF .证明:(1)∵在Rt △ABC 中,∠BAC =30°, ∴AB =2BC .∵△ABE 是等边三角形,EF ⊥AB , ∴AB =2AF ,AB =AE . ∴AF =BC .在Rt △BCA 和Rt △AFE 中,⎩⎪⎨⎪⎧AB =EA ,BC =AF ,∴Rt △BCA ≌Rt △AFE (HL).∴AC =EF .(2)∵△ACD 是等边三角形, ∴∠DAC =60°,AC =AD .∴∠DAB =∠DAC +∠BAC =90°. ∵EF ⊥AB , ∴EF ∥AD . ∵AC =EF , ∴EF =AD .∴四边形ADFE 是平行四边形. (3)∵四边形ADFE 是平行四边形, ∴AE ∥FD .∵∠EAC =∠EAF +∠BAC =60°+30°=90°, ∴AE ⊥AC . ∴AC ⊥DF .针对训练4 (2018,东营)如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F ,AB =BF .添加一个条件使四边形ABCD 是平行四边形,下面四个条件中可选择的是(D)训练4题图A. AD =BCB. CD =BFC. ∠A =∠CD. ∠F =∠CDF【解析】 正确选项是D.理由:∵∠F =∠CDF ,∠BEF =∠CED ,BE =CE ,∴△BFE ≌△CDE ,CD ∥AF .∴BF =CD .∵BF =AB ,∴CD =AB .∴四边形ABCD 是平行四边形.针对训练5 (2018,海南)如图,▱ABCD 的周长为36,对角线AC ,BD 相交于点O ,E 是CD 的中点,BD =12,则△DOE 的周长为(A)训练5题图A. 15B. 18C. 21D. 24【解析】 ∵▱ABCD 的周长为36,∴BC +CD =18.∵OD =OB ,DE =EC ,∴OE +DE = 12(BC +CD )=9.∵BD =12,∴OD =12BD =6.∴△DOE 的周长为9+6=15.一、选择题1. (2018,黔西南州)如图,在▱ABCD中,已知AC=4 cm.若△ACD的周长为13 cm,则▱ABCD的周长为(D)A. 26 cmB. 24 cmC. 20 cmD. 18 cm【解析】 ∵AC =4 cm ,△ADC 的周长为13 cm ,∴AD +DC =13-4=9(cm).∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC .∴▱ABCD 的周长为2(AD +CD )=18 cm.2. (2018,铜仁)如果一个多边形的内角和是外角和的3倍,那么这个多边形的边数是(A) A. 8 B. 9 C. 10 D. 11 【解析】 根据题意,得180°·(n -2)=3×360°.解得n =8.3. (2018,贵阳模拟)一个多边形的边数由原来的3增加到n 时(n >3,且n 为正整数),它的外角和(D)A. 增加(n -2)×180°B. 减小(n -2)×180°C. 增加(n -1)×180°D. 没有改变【解析】 多边形的外角和等于360°,与边数无关.4. (2018,宜宾)在▱ABCD 中,若∠BAD 与∠CDA 的角平分线交于点E ,则△AED 的形状是(B)A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定【解析】 如答图.∵四边形ABCD 是平行四边形,∴AB ∥CD .∴∠BAD +∠ADC = 180°.∵∠EAD =12∠BAD ,∠ADE =12∠ADC ,∴∠EAD +∠ADE =12(∠BAD +∠ADC )=90°.∴∠E =90°.∴△ADE 是直角三角形.第4题答图5. (2018,邯郸一模)已知▱ABCD ,根据图中尺规作图的痕迹,判断下列结论不一定成立的是(C)第5题图A. ∠DAE =∠BAEB. ∠DEA =12∠DAB C. DE =BE D. BC =DE【解析】 A. 由作法可知AE 平分∠DAB ,所以∠DAE =∠BAE ,本选项不符合题意.B. ∵CD ∥AB ,∴∠DEA =∠BAE =12∠DAB ,本选项不符合题意.C. 无法证明DE =BE ,本选项符合题意.D. 易证∠DAE =∠DEA ,∴AD =DE .∵AD =BC ,∴BC =DE ,本选项不符合 题意.6. (2018,宁波)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,E 是边CD 的中点,连接OE .若∠ABC =60°,∠BAC =80°,则∠1的度数为(B)第6题图A. 50°B. 40°C. 30°D. 20°【解析】 ∵∠ABC =60°,∠BAC =80°,∴∠BCA =180°-60°-80°=40°.∵对角线AC 与BD 相交于点O ,E 是边CD 的中点,∴EO 是△DBC 的中位线.∴EO ∥BC .∴∠1=∠ACB =40°.7. (2018,保定一模)如图,在▱ABCD 中,AB =8,BC =5,以点A 为圆心,以任意长为半径作弧,分别交AD ,AB 于点P ,Q ,再分别以点P ,Q 为圆心,大于1PQ 的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为(A)第7题图A. 3B. 5C. 2D. 6.5【解析】根据作图的方法,得AE平分∠DAB,∴∠DAE=∠EAB.∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB=8,AD=BC=5.∴∠DEA=∠EAB.∴∠DAE=∠DEA.∴DE =AD=5.∴CE=DC-DE=8-5=3.8. (2018,安徽)在▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是(B)A. BE=DFB. AE=CFC. AF∥CED. ∠BAE=∠DCF【解析】如答图,连接AC与BD相交于点O.在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需得到OE=OF即可.A. 若BE=DF,则OB-BE=OD-DF,即OE=OF,故本选项不符合题意.B. 若AE=CF,则无法判定OE=OF,故本选项符合题意.C. AF∥CE能够利用“AAS”证明△AOF≌△COE,从而得到OE=OF,故本选项不符合题意.D. ∠BAE=∠DCF能够利用“ASA”证明△ABE≌△CDF,从而得到BE=DF,然后同选项A,故本选项不符合题意.9. (2018,承德模拟)如图,在正五边形ABCDE 中,AF ∥CD ,交DB 的延长线于点F ,则∠DF A 等于(B)第9题图A. 30°B. 36°C. 45°D. 32°【解析】 在正五边形ABCDE 中,∠C =15×(5-2)×180°=108°.∵正五边形ABCDE的边BC =CD ,∴∠CBD =∠CDB .∴∠CDB =12(180°-108°)=36°.∵AF ∥CD ,∴∠DF A=∠CDB =36°.10. (2018,枣庄薛城区模拟)如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC =4CF ,四边形DCFE 是平行四边形,则图中阴影部分的面积为(C)A. 3B. 4C. 6D. 8【解析】 设△ABC 中BC 边上的高为h .∵四边形DCFE 是平行四边形,∴DE =CF ,DE ∥CF .∵BC =4CF ,∴DE =14BC .∵S △ABC =12BC ·h =24.∴S 阴影=S △ADE +S △DEB =12DE ·h =12×14BC ·h =14×12BC ·h =6. 二、 填空题11. (2018,常州)如图,在▱ABCD 中,∠A =70°,DC =DB ,则∠CDB = 40°.第11题图【解析】 ∵四边形ABCD 是平行四边形,∴∠A =∠C =70°.∵DC =DB ,∴∠C =∠DBC =70°.∴∠CDB =180°-70°-70°=40°.12. (2018,临沂)如图,在▱ABCD 中,AB =10,AD =6,AC ⊥BC ,则BD第12题图【解析】 ∵四边形ABCD 是平行四边形,∴BC =AD =6,OB =OD ,OA =OC .∵AC ⊥BC ,∴AC =AB 2-BC 2=8.∴OC =4.∴OB =OC 2+BC 2=213.∴BD =2OB =413.▱ABCD 的面积为16 cm 2,则△PEF 的面积(阴影部分)是 2 cm 2.第13题图【解析】 ∵▱ABCD 的面积为16 cm 2,∴S △PBC =12S ▱ABCD =8 cm 2.∵E ,F 分别是PB ,PC的中点,∴EF ∥BC ,且EF =12BC .∴△PEF ∽△PBC .∴S △PEF S △PBC =⎝⎛⎭⎫EF BC 2,即S △PEF 8=14.∴S △PEF =2 cm 2.三、 解答题14. (2018,大庆)如图,在Rt △ABC 中,∠ACB =90°,D ,E 分别是AB ,AC 的中点,连接CD ,过点E 作EF ∥DC 交BC 的延长线于点F .(1)求证:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是25 cm ,AC 的长为5 cm ,求线段AB 的长度.第14题图【思路分析】 (1)由三角形中位线定理推知ED ∥FC ,然后结合已知条件EF ∥DC ,利用两组对边平行得到四边形CDEF 为平行四边形.(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB =2DC ,再结合由三角形中位线定理得到的2DE =BC ,即可得出四边形(1)证明:∵D,E分别是AB,AC的中点,∴ED∥FC.∵EF∥DC,∴四边形CDEF是平行四边形.(2)解:∵四边形CDEF是平行四边形,∴DC=EF,DE=CF.∵D,E分别是AB,AC的中点,∴BC=2DE,DC是Rt△ABC斜边AB上的中线.∴AB=2DC.∴四边形CDEF的周长为AB+BC.∵四边形CDEF的周长为25,∴BC=25-AB.∵在Rt△ABC中,∠ACB=90°,AC=5,∴AB2=BC2+AC2,即AB2=(25-AB)2+52.解得AB=13.∴AB的长为13 cm.15. (2018,青岛)如图,在▱ABCD中,对角线AC与BD相交于点E,G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.第15题图【思路分析】(1)只要证明AB=CD,AF=CD即可解决问题.(2)四边形ACDF是矩形.先得四边形ACDF是平行四边形,再根据对角线相等的平行四边形是矩形判断即可.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠AFC=∠DCG.∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC.∴AF=DC.(2)解:四边形ACDF是矩形.证明:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形.∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°.∴∠F AG=60°.∵AG=AB=AF,∴△AFG是等边三角形.∴AG=GF.∵△AGF≌△DGC,∴FG=CG.∵AG=GD,∴AD=CF.∴四边形ACDF是矩形.16. (2018,黄冈)如图,在▱ABCD中,分别以边BC,CD为边作等腰三角形BCF,等腰三角形CDE,使BF=BC,DE=CD,∠CBF=∠CDE,连接AF,AE.(1)求证:△ABF≌△EDA;(2)延长AB与CF交于点G.若AF⊥AE,求证:BF⊥BC.第16题图【思路分析】(1)只要证明AB=DE,FB=AD,∠ABF=∠ADE即可解决问题.(2)只要证明FB⊥AD即可解决问题.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ABC=∠ADC.∵BC=BF,CD=DE,∴BF=AD,AB=DE.∵∠ADE+∠ADC+∠CDE=360°,∠ABF+∠ABC+∠CBF=360°,∠CDE=∠CBF,∴∠ABF=∠ADE.∴△ABF≌△EDA.∵AE⊥AF,∴∠EAF=90°.∵△ABF≌△EDA,∴∠EAD=∠AFB.∵∠EAD+∠F AH=90°,∴∠F AH+∠AFB=90°.∴∠AHF=90°,即FB⊥AD.∵AD∥BC,∴FB⊥BC.第16题答图1. (2018,眉山,导学号5892921)如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF,BF.下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF.其中正确的结论共有(D)第1题图A. 1个B. 2个C. 3个D. 4个【解析】如答图,延长EF交BC的延长线于点G,取AB的中点H,连接FH.∵CD=2AD,DF=FC,∴CF=AD=CB.∴∠CFB=∠CBF.∵CD∥AB,∴∠CFB=∠FBH.∴∠CBF=∠FBH.∴∠ABC=2∠ABF,①正确.∵DE∥CG,∴∠D=∠FCG.∵DF=FC,∠DFE=∠CFG,∴△DFE≌△CFG.∴FE=FG.∵BE⊥AD,∴∠AEB=90°.∵AD∥BC,∴∠EBG=∠AEB=90°.∴BF=EF=FG,②正确.∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,③正确.∵AH =HB,DF=CF,AB=CD,∴CF=BH.∵CF∥BH,∴四边形BCFH是平行四边形.∵CF=BC,∴四边形BCFH是菱形.∴∠BFC=∠BFH.∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE.∴∠BFH=∠EFH=∠DEF.∴∠EFC=3∠DEF,④正确.第1题答图2. (2018,株洲,导学号5892921)如图,在▱ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠P AB,则AP= 6 .第2题图【解析】∵BD=CD,AB=CD,∴BD=BA.∵AM⊥BD,DN⊥AB,∴DN=AM=3 2.∵∠ABD=∠MAP+∠P AB,∠ABD=∠P+∠BAP,∴∠P=∠P AM.∴△APM是等腰直角三角形,∴AP=2AM=6.3. (2018,重庆A,导学号5892921)如图,在▱ABCD中,O是对角线AC的中点,E是BC 上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC 于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=2CG.第3题图【思路分析】(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积.(2)过点A作AM⊥BC于点M,交BG于点K,过点G作GN⊥BC于点N,判定△AME≌△BNG,可得ME=NG,进而得出BE=2GC,再判定△AFO≌△CEO,可得AF=CE,即可得到DF =BE=2CG.(1)解:∵AH=3,HE=1,∴AB=AE=4.在Rt△ABH中,BH=AB2-AH2=7,∴S △ABE =12AE ·BH =12×4×7=27. (2)证明:如答图,过点A 作AM ⊥BC 于点M ,交BG 于点K ,过点G 作GN ⊥BC 于点N ,则∠AMB =∠AME =∠BNG =90°.∵∠ACB =45°,∴∠MAC =∠NGC =45°.∵AB =AE ,∴BM =EM =12BE ,∠BAM =∠EAM . ∵AE ⊥BG ,∴∠AHK =90°=∠BMK .∵∠AKH =∠BKM ,∴∠MAE =∠NBG .设∠BAM =∠MAE =∠NBG =α,则∠BAG =45°+α,∠BGA =∠GCN +∠GBC =45°+α.∴∠BAG =∠BGA .∴AB =BG .∴AE =BG .∴△AME ≌△BNG (AAS).∴ME =NG .∵在等腰直角三角形CNG 中,NG =NC ,∴GC =2NG =2ME =22BE . ∴BE =2GC .∵O 是AC 的中点,∴OA =OC .∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC .∴∠OAF =∠OCE ,∠AFO =∠CEO .∴△AFO ≌△CEO (AAS).∴AF =CE .∴AD -AF =BC -EC ,即DF =BE .∴DF =BE =2CG .第3题答图。

中考数学专题复习——与四边形有关的综合题集(含压轴题)带答案

中考数学专题复习——与四边形有关的综合题集(含压轴题)带答案

中考专题复习——与四边形有关的综合题集(含压轴题)带答案一.选择题(共9小题)1.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF;④CG与BD 一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.12.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF =2S△ABE,其中结论正确的个数为()A.2个 B.3个 C.4个 D.5个3.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH 与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•D G,其中正确结论的个数为()A .2B .3C .4D .54.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF ;②AE ⊥BF ;③sin ∠BQP=;④S 四边形ECFG =2S △BGE .A .4B .3C .2D .15.如图,在矩形ABCD 中,BC=AB ,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O ,给出下列命题:(1)∠AEB=∠AEH (2)DH=2EH (3)OH=AE (4)BC ﹣BF=EH其中正确命题的序号( )A .(1)(2)(3)B .(2)(3)(4)C .(2)(4)D .(1)(3)6.如图,在边长为1的正方形ABCD 中,动点F ,E 分别以相同的速度从D ,C 两点同时出发向C 和B 运动(任何一个点到达即停止),过点P 作PM ∥CD 交BC 于M 点,PN ∥BC 交CD 于N 点,连接MN ,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个 B.3个 C.4个 D.5个7.如图,正方形ABCD中,以AD为底边作等腰△ADE,将△ADE沿DE折叠,点A落到点F处,连接EF刚好经过点C,再连接AF,分别交DE于G,交CD于H.在下列结论中:①△ABM≌△DCN;②∠DAF=30°;③△AEF是等腰直角三角形;④EC=CF;⑤S△HCF=S△ADH,其中正确的结论有()A.2个 B.3个 C.4个 D.5个8.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF =S△AEF,其中正确的结论有()个.A .①②B .①②③C .①②④D .①②③④9.如图,正方形ABCD 的边CD 与正方形CGFE 的边CE 重合,O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于H ,连接OH 、FH 、EG 与FH 交于M ,对于下面四个结论:①GH ⊥BE ;②HO BG ;③点H 不在正方形CGFE 的外接圆上;④△GBE ∽△GMF . 其中正确的结论有( )A .1个B .2个C .3个D .4个评卷人 得 分二.填空题(共7小题)10.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=.下列结论:①△APD ≌△AEB ;②EB ⊥ED ;③点B 到直线AE 的距离为;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是 .11.如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE=BF ;③点G 运动的路径长为π;④CG 的最小值为﹣1.其中正确的说法是 .(把你认为正确的说法的序号都填上)12.如图,在菱形ABCD 中,AB=6,∠DAB=60°,AE 分别交BC 、BD 于点E 、F ,CE=2,连接CF ,以下结论:①△ABF ≌△CBF ;②点E 到AB 的距离是2;③tan ∠DCF=;④△ABF 的面积为.其中一定成立的是 (把所有正确结论的序号都填在横线上).13.如图,在矩形ABCD 中,AB=2,AD=,在边CD 上有一点E ,使EB 平分∠AEC .若P 为BC 边上一点,且BP=2CP ,连接EP 并延长交AB 的延长线于F .给出以下五个结论:①点B 平分线段AF ;②PF=DE ;③∠BEF=∠FEC ;④S 矩形ABCD =4S △BPF ;⑤△AEB是正三角形.其中正确结论的序号是 .14.如图,在矩形ABCD 中,AD=AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论: ①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有 .15.如图所示,在正方形ABCD的对角线上取点E,使得∠BAE=15°,连结AE,CE.延长CE到F,连结BF,使得BC=BF.若AB=1,则下列结论:①AE=CE;②F 到BC的距离为;③BE+EC=EF;④;⑤.其中正确的是.16.如图,Rt△ABC中,∠C=90°,BC=3cm,AB=5cm.点P从点A出发沿AC以1.5cm/s的速度向点C匀速运动,到达点C后立刻以原来的速度沿CA返回;点Q 从点B出发沿BA以1cm/s的速度向点A匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线PC﹣CB﹣BQ于点E.点P、Q同时出发,当点Q到达点A时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0),则当t=秒时,四边形BQDE为直角梯形.评卷人得分三.解答题(共34小题)17.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.18.如图,在△ABC中,∠C=90°,AC=BC=6.点P在边AC上运动,过点P作PD ⊥AB于点D,以AP、AD为邻边作▱PADE.设□PADE与△ABC重叠部分图形的面积为y,线段AP的长为x(0<x≤6).(1)求线段PE的长(用含x的代数式表示).(2)当点E落在边BC上时,求x的值.(3)求y与x之间的函数关系式.(4)直接写出点E到△ABC任意两边所在直线距离相等时x的值.19.问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N 分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM 和BN,交于点P.求△APB周长的最大值.20.如图1,在边长为4的菱形ABCD中,AC为其对角线,∠ABC=60°点M、N 分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN.MN交AC于点P.(1)△AMN是什么特殊的三角形?说明理由.并求其面积最小值;(2)求点P到直线CD距离的最大值;(3)如图2,已知MB=NC=1,点E、F分别是边AM、边AN上的动点,连接EF、PF,EF+PF是否存在最小值?若存在,求出最小值及此时AE、AF的长;若不存在,请说明理由.21.如图①,正方形ABCD边长为1,将正方形ABCD绕点A逆时针旋转α度后得到正方形AB'C'D'(0°<α<90°),C'D'与直线CD相交于点E,C'B'与直线CD相交于点F.问题发现:(1)试猜想∠EAF=;三角形EC'F的周长.问题探究:如图②,连接B'D'分别交AE,AF于P,Q两点.(2)在旋转过程中,若D'P=a,QB'=b,试用a,b来表示PQ,并说明理由.(3)在旋转过程中△APQ的面积是否存在最小值,若存在,请求出这个值;若不存在,请说明理由.22.如图,在矩形ABCD中,AB=CD=4cm,AD=BC=6cm,AE=DE=3cm,点P从点E出发,沿EB方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CD方向匀速运动,速度为2cm/s,连接PQ,设运动时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ⊥CD?(2)设四边形PBCQ的面积为y(cm2),求y与t的函数关系式;(3)是否存在某一时刻t,使S四边形PBCQ :S四边形PQDE=22:5?若存在,求出t的值;若不存在,说明理由.(4)是否存在某一时刻t,使A,P,Q三点在同一直线上?若存在,求出t的值;若不存在,说明理由.23.已知,在梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,在射线BC任取一点M,联结DM,作∠MDN=∠BDC,∠MDN的另一边DN交直线BC 于点N(点N在点M的左侧).(1)当BM的长为10时,求证:BD⊥DM;(2)如图(1),当点N在线段BC上时,设BN=x,BM=y,求y关于x的函数关系式,并写出它的定义域;(3)如果△DMN是等腰三角形,求BN的长.24.如图,在边长为2的正方形ABCD中,点P是边AD上的动点(点P不与点A、点D重合),点Q是边CD上一点,联结PB、PQ,且∠PBC=∠BPQ.(1)当QD=QC时,求∠ABP的正切值;(2)设AP=x,CQ=y,求y关于x的函数解析式;(3)联结BQ,在△PBQ中是否存在度数不变的角?若存在,指出这个角,并求出它的度数;若不存在,请说明理由.25.已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF的面积;(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.26.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.27.已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE :S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.28.如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.(1)当t=时,△PQR的边QR经过点B;(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.29.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C 重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.30.已知:四边形ABCD中,对角线的交点为O,E是OC上的一点,过点A作AG⊥BE于点G,AG、BD交于点F.(1)如图1,若四边形ABCD是正方形,求证:OE=OF;(2)如图2,若四边形ABCD是菱形,∠ABC=120°.探究线段OE与OF的数量关系,并说明理由;(3)如图3,若四边形ABCD是等腰梯形,∠ABC=α,且AC⊥BD.结合上面的活动经验,探究线段OE与OF的数量关系为(直接写出答案).31.如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD 上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M 作MG⊥EM,交直线BC于点G.(1)若M为边AD中点,求证△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.32.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC 的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC 的长度.33.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF :S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t 的值;若不存在,请说明理由.34.如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.35.给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.36.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=,AP=.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=.37.已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.38.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,E点F点分别为AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)求菱形AEDF的面积;(3)若H从F点出发,在线段FE上以每秒2cm的速度向E点运动,点P从B 点出发,在线段BC上以每秒3cm的速度向C点运动,问当t为何值时,四边形BPHE是平行四边形?当t取何值时,四边形PCFH是平行四边形?39.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M 作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.40.如图(1),E是正方形ABCD的边BC上的一个点(E与B、C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE;过点F作FG⊥BC交BC的延长线于点G.(1)求证:FG=BE;(2)连接CF,如图(2),求证:CF平分∠DCG;(3)当=时,求sin∠CFE的值.41.如图,已知在矩形ABCD中,AD=10,CD=5,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度移动,当B、E、F三点共线时,两点同时停止运动,此时BF⊥CE.设点E移动的时间为t(秒).(1)求当t为何值时,两点同时停止运动;(2)求当t为何值时,EC是∠BED的平分线;(3)设四边形BCFE的面积为S,求S与t之间的函数关系式,并写出t的取值范围;(4)求当t为何值时,△EFC是等腰三角形.(直接写出答案)42.如图1,将矩形ABCD绕点A顺时针旋转至矩形B点正好落在CD上的点E 处,连结BE.(1)求证:∠BAE=2∠CBE;(2)如图2,连BG交AE于M,点N为BE的中点,连MN、AF,试探究AF与MN的数量关系,并证明你的结论;(3)若AB=5,BC=3,直接写出BG的长.43.将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.(1)如图(1),在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标;(2)如图(2),在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上D′点,过D′作D′G∥AO交E′F于T点,交OC于G点,求证:TG=AE′;(3)在(2)的条件下,设T(x,y).①探求:y与x之间的函数关系式.②指出变量x的取值范围.44.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A 出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形.(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点P,使△PQD是等腰三角形(不考虑QD=PD)?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.45.如图,在平面直角坐标系中,四边形OABC是矩形,其中点A在x轴的正半轴上,点B的坐标为(4,2),点D为对角线OB上一个动点(不包括端点),∠BCD的平分线交OB于点E.(1)求线段OB所在直线的函数表达式,并写出CD的取值范围.(2)当∠BCD的平分线经过点A时,求点D的坐标.(3)点P是线段BC上的一个动点,求CD十DP的最小值.46.如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.(1)求证:CE=BD;(2)若AB=4,求AF的长度;(3)求sin∠EFC的值.47.如图①,在长方形ABCD中,AB=DC=3cm,BC=5cm,点P从点B出发,以1cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=cm.(用含t的代数式表示);(2)当t为何值时,△ABP≌△DCP,请说明理由;(3)如图②,当点P从点B开始运动时,点Q从点C出发,以acm/s的速度沿CD向点D运动,是否存在这样a的值,使得△ABP与△PCQ全等?若存在,请求出a的值,若不存在,请说明理由.48.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴上的点,且S=,试判断△AOE与△AOD是否相似?并△AOE说明理由.(3)在直线AB上是否存在点F,使以A、C、F为顶点的三角形是等腰三角形?如果存在,请直接写出点F的坐标.49.如图,已知四边形ABCD中,AB∥DC,AB=DC,且AB=6cm,BC=8cm,对角线AC=l0cm.(1)求证:四边形ABCD是矩形;(2)如图(2),若动点Q从点C出发,在CA边上以每秒5cm的速度向点A匀速运动,同时动点P从点B出发,在BC边上以每秒4cm的速度向点C匀速运动,运动时间为t秒(0≤t<2),连接BQ、AP,若AP⊥BQ,求t的值;(3)如图(3),若点Q在对角线AC上,CQ=4cm,动点P从B点出发,以每秒1cm的速度沿BC运动至点C止.设点P运动了t 秒,请你探索:从运动开始,经过多少时间,以点Q、P、C为顶点的三角形是等腰三角形?请求出所有可能的结果.50.如图,点E为正方形ABCD的边BC所在直线上的一点,连接AE,过点C作CF⊥AE于F,连接BF.(1)如图1,当点E在CB的延长线上,且AC=EC时,求证:BF=;(2)如图2,当点E在线段BC上,且AE平分∠BAC时,求证:AB+BE=AC;(3)如图3,当点E继续往右运动到BC中点时,过点D作DH⊥AE于H,连接BH.求证:∠BHF=45°.四边形综合题集参考答案与试题解析一.选择题(共9小题)1.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:=CG2;③若AF=2DF,则BG=6GF;④CG与BD ①△AED≌△DFB;②S四边形BCDG一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.1【分析】①先证明△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S=S四边形BCDG,易求后者的面积;四边形CMGN③过点F作FP∥AE于P点,根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF;④因为点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,当点E,F分别是AB,AD中点时,CG⊥BD;⑤∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°.【解答】解:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED ≌△DFB ,故本选项正确;②∵∠BGE=∠BDG +∠DBF=∠BDG +∠GDF=60°=∠BCD ,即∠BGD +∠BCD=180°,∴点B 、C 、D 、G 四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C 作CM ⊥GB 于M ,CN ⊥GD 于N (如图1),则△CBM ≌△CDN (AAS ),∴S 四边形BCDG =S 四边形CMGN ,S 四边形CMGN =2S △CMG ,∵∠CGM=60°,∴GM=CG ,CM=CG ,∴S 四边形CMGN =2S △CMG =2××CG ×CG=CG 2,故本选项错误;③过点F 作FP ∥AE 交DE 于P 点(如图2),∵AF=2FD ,∴FP :AE=DF :DA=1:3,∵AE=DF ,AB=AD ,∴BE=2AE ,∴FP :BE=FP :2AE=1:6,∵FP ∥AE ,∴PF ∥BE ,∴FG :BG=FP :BE=1:6,即BG=6GF ,故本选项正确;④当点E ,F 分别是AB ,AD 中点时(如图3),由(1)知,△ABD ,△BDC 为等边三角形,∵点E ,F 分别是AB ,AD 中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选:B.【点评】此题综合考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键.2.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF =2S△ABE,其中结论正确的个数为()A.2个 B.3个 C.4个 D.5个【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,得到CE=CF;由正方形的性质就可以得出∠AEB=75°;设EC=x,由勾股定理得到EF,表示出BE,利用三角形的面积公式分别表示出S△CEF 和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,∴CE=CF,故①正确;∵∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°,∴∠AEB=75°,故②正确;设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AG≠2GC,③错误;∵CG=x,AG=x,∴AC=x∴AB=AC•=x,∴BE=x﹣x=x,∴BE+DF=(﹣1)x,∴BE+DF≠EF,故④错误;∵S△CEF=x2,S△ABE=×BE×AB=x×x=x2,∴2S△ABE ═S△CEF,故⑤正确.综上所述,正确的有3个,故选:B.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.3.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH 与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的个数为()A.2 B.3 C.4 D.5【分析】①②、证明△ABH≌△ADF,得AF=AH,再得AC平分∠FAH,则AM既是中线,又是高线,得AC⊥FH,证明BH=HM=MF=FD,则FH=2BH;所以①②都正确;≠1,错误;③可以直接求出FC的长,计算S△ACF④根据正方形边长为2,分别计算CE和AF的长得结论正确;还可以利用图2证明△ADF≌△CDN得:CN=AF,由CE=CN=AF;⑤利用相似先得出EG2=FG•CG,再根据同角的三角函数列式计算CG的长为1,则DG=CG,所以⑤也正确.【解答】解:①②如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=∠FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=2,MC=DF=2﹣2,∴FC=2﹣DF=2﹣(2﹣2)=4﹣2,S△AFC=CF•AD≠1,所以选项③不正确;④AF===2,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;⑤延长CE和AD交于N,如图2,∵AE⊥CE,AE平分∠CAD,∴CE=EN,∵EG∥DN,∴CG=DG,在Rt△FEC中,EG⊥FC,∴EG2=FG•CG,∴EG2=FG•DG,故选项⑤正确;本题正确的结论有4个,故选:C.【点评】本题是四边形的综合题,综合考查了正方形、相似三角形、全等三角形的性质和判定;求边时可以利用三角形相似列比例式,也可以直接利用同角三角函数列式计算;同时运用了勾股定理求线段的长,勾股定理在正方形中运用得比较多.4.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF ;②AE ⊥BF ;③sin ∠BQP=;④S 四边形ECFG =2S △BGE .A .4B .3C .2D .1【分析】首先证明△ABE ≌△BCF ,再利用角的关系求得∠BGE=90°,即可得到①AE=BF ;②AE ⊥BF ;△BCF 沿BF 对折,得到△BPF ,利用角的关系求出QF=QB ,解出BP ,QB ,根据正弦的定义即可求解;根据AA 可证△BGE 与△BCF 相似,进一步得到相似比,再根据相似三角形的性质即可求解.【解答】解:∵E ,F 分别是正方形ABCD 边BC ,CD 的中点,∴CF=BE ,在△ABE 和△BCF 中,,∴Rt △ABE ≌Rt △BCF (SAS ),∴∠BAE=∠CBF ,AE=BF ,故①正确;又∵∠BAE +∠BEA=90°,∴∠CBF +∠BEA=90°,∴∠BGE=90°,∴AE ⊥BF ,故②正确;根据题意得,FP=FC ,∠PFB=∠BFC ,∠FPB=90°∵CD ∥AB ,∴∠CFB=∠ABF ,∴∠ABF=∠PFB ,∴QF=QB ,令PF=k (k >0),则PB=2k在Rt △BPQ 中,设QB=x ,∴x 2=(x ﹣k )2+4k 2,∴x=,∴sin=∠BQP==,故③正确; ∵∠BGE=∠BCF ,∠GBE=∠CBF ,∴△BGE ∽△BCF ,∵BE=BC ,BF=BC , ∴BE :BF=1:,∴△BGE 的面积:△BCF 的面积=1:5,∴S 四边形ECFG =4S △BGE ,故④错误.故选:B.【点评】本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.5.如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE 于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,给出下列命题:(1)∠AEB=∠AEH (2)DH=2EH(3)OH=AE (4)BC﹣BF=EH其中正确命题的序号()A.(1)(2)(3)B.(2)(3)(4)C.(2)(4)D.(1)(3)【分析】(1)根据矩形的性质得到AD=BC=AB=CD,由DE平分∠ADC,得到△ADH是等腰直角三角形,△DEC是等腰直角三角形,得到DE=CD,得到等腰三角形求出∠AED=67.5°,∠AEB=67.5°,得到(1)正确;(2)设DH=1,则AH=DH=1,AD=DE=,求出HE=﹣1,得到2HE≠1,所以(2)不正确;(3)通过角的度数求出△AOH和△OEH是等腰三角形,从而得到(3)正确;(4)由△AFH≌△CHE,到AF=EH,由△ABE≌△AHE,得到BE=EH,于是得到BC﹣BF=(BE+CE)﹣(AB﹣AF)=(CD+EH)﹣(CD﹣EH)=2EH,从而得到(4)不正确.【解答】解:(1)在矩形ABCD中,AD=BC=AB=CD,∠ADC=∠BCD=90°,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AH⊥DE,∴△ADH是等腰直角三角形,∴AD=AH,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AED=67.5°,∴∠AEB=180°﹣45°﹣67.5°=67.5°,∴∠AEH=∠AEB,所以(1)结论正确;(2)设DH=1,则AH=DH=1,AD=DE=,∴HE=DE﹣DH=﹣1,∴2HE=2(﹣1)=4﹣2≠1,所以(2)结论不正确;(3)∵∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=180°﹣90°﹣67.5°=22.5°,∴∠OAH=∠OHA=22.5°,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE=OA,∴OH=AE,所以(3)正确;(4)∵AH=DH,CD=CE,在△AFH与△CHE中,,∴△AFH≌△CHE,∴AF=EH,在Rt△ABE与Rt△AHE中,,∴△ABE≌△AHE,∴BE=EH,∴BC﹣BF=(BE+CE)﹣(AB﹣AF)=(CD+EH)﹣(CD﹣EH)=2EH,所以(2)不正确,故选:D.【点评】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.6.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C 两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC 于M点,PN∥BC交CD于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个 B.3个 C.4个 D.5个。

2019年河北省中考数学试卷含答案-答案在前

2019年河北省中考数学试卷含答案-答案在前

河北省2019年初中毕业生升学文化课考试数学答案解析一、选择题1.【答案】D【解析】正五边形五个角相等,五条边都相等,故选:D 。

【提示】根据正多边形的定义;各个角都相等,各条边都相等的多边形叫做正多边形可得答案。

【考点】多边形2.【答案】B【解析】“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作-3。

故选:B 。

【提示】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示。

“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作3-。

【考点】正数和负数3.【答案】B【解析】∵从点C 观测点D 的视线是CD ,水平线是CE ,∴从点C 观测点D 的仰角是DCE ∠,【提示】根据仰角的定义进行解答便可。

【考点】解直角三角形的应用-仰角俯角问题4.【答案】A【解析】“x 的18与x 的和不超过5”用不等式表示为158x x +≤故选:A 。

【提示】x 的18即18x ,不超过5是小于或等于5的数,按语言叙述列出式子即可。

【考点】由实际问题抽象出一元一次不等式5.【答案】D【解析】∵四边形ABCD 是菱形,150D ∠=︒,∴AB CD ∥,21BAD ∠=∠,∴180BAD D ∠+∠=︒,∴18015030BAD ∠=︒-︒=︒,∴115∠=︒;故选:D 。

【提示】由菱形的性质得出21AB CD BAD ∠=∠∥,,求出30BAD ∠=︒,即可得出115∠=︒。

【考点】菱形的性质6.【答案】C【解析】①a b c ab ac +=+(),正确;②a b c ab ac -=-(),正确;③0b c a b a c a a -÷=÷-÷≠()(),正确; ④0a b c a b a c a ÷+=÷+÷≠()(),错误,无法分解计算。

故选:C 。

【提示】直接利用单项式乘以多项式以及多项式除以单项式运算法则计算得出答案。

专题28 四边形综合-中考数学一轮复习精讲+热考题型(解析版)

专题28 四边形综合-中考数学一轮复习精讲+热考题型(解析版)

专题28 四边形综合【知识要点】四边形之间的从属关系特殊四边形的性质与判定:【考查题型】考查题型一四边形综合典例1.(浙江温州市·中考真题)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR 的长为()A.14B.15C.D.【答案】A【提示】连接EC,CH,设AB交CR于点J,先证得△ECP∽△HCQ,可得12PC CE EPCQ CH HQ===,进而可求得CQ=10,AC:BC=1:2,由此可设AC=a,则BC=2a,利用AC∥BQ,CQ∥AB,可证得四边形ABQC为平行四边形,由此可得AB=CQ=10,再根据勾股定理求得AC=BC=求得4CJ=,进而可求得CR的长.【详解】解:如图,连接EC,CH,设AB交CR于点J,∵四边形ACDE,四边形BCIH都是正方形,∴∠ACE=∠BCH=45°,∵∠ACB=90°,∠BCI=90°,∴∠ACE+∠ACB+∠BCH=180°,∠ACB+∠BCI=180°,∴点E 、C 、H 在同一直线上,点A 、C 、I 在同一直线上, ∵DE ∥AI ∥BH , ∴∠CEP =∠CHQ , ∵∠ECP =∠QCH , ∴△ECP ∽△HCQ , ∴12PC CE EP CQ CH HQ ===, ∵PQ =15, ∴PC =5,CQ =10, ∵EC :CH =1:2, ∴AC :BC =1:2, 设AC =a ,则BC =2a , ∵PQ ⊥CR ,CR ⊥AB , ∴CQ ∥AB ,∵AC ∥BQ ,CQ ∥AB , ∴四边形ABQC 为平行四边形, ∴AB =CQ =10, ∵222AC BC AB +=, ∴25100a =,∴a =∴AC =BC = ∵1122AC BC AB CJ ⋅⋅=⋅⋅,∴4CJ =, ∵JR =AF =AB =10, ∴CR =CJ +JR =14, 故选:A .变式1-1.(江苏无锡市·中考真题)如图,在四边形ABCD 中()AB CD >,90ABC BCD ∠=∠=︒,3AB =,BC =,把Rt ABC ∆沿着AC 翻折得到Rt AEC ∆,若tan 2AED ∠=,则线段DE 的长度为( )A .3B .3C .2D .5【答案】B【提示】根据已知,易求得AC =CD 交AE 于F ,可得2AF CF ==,则=1EF ,再过点D作DG EF ⊥,设DG =,则2GE x =,ED =,12FG x =-,在t R FGD 中,根据GD =,代入数值,即可求解.【详解】解:如图∵ 90B ∠=︒,BC =,3AB =,∴30BAC ∠=︒,∴AC =∵90DCB ∠=︒, ∴//AB CD ,∴30DCA ∠=︒,延长CD 交AE 于F , ∴ 2AF CF ==,则=1EF ,=60EFD ∠︒ ,过点D 作DG EF ⊥,设DG =,则2GE x =,ED =,∴12FG x =-,∴在t R FGD GD =)12x -, 解得:1=3x ,∴3ED =. 故选B .变式1-2.(浙江中考真题)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD 的内角,正方形ABCD 变为菱形ABC ′D ′.若∠D ′AB =30°,则菱形ABC ′D ′的面积与正方形ABCD 的面积之比是( )A .1B .12C .2D 【答案】B 【提示】如图,连接DD ',延长C 'D '交AD 于E ,由菱形ABC 'D ',可得AB ∥C 'D ',进一步说明∠ED 'D=30°,得到菱形AE=12AD;又由正方形ABCD,得到AB=AD,即菱形的高为AB 的一半,然后分别求出菱形ABC 'D '和正方形ABCD 的面积,最后求比即可. 【详解】解:如图:延长C 'D '交AD 于E ∵菱形ABC 'D ' ∴AB ∥C 'D '∵∠D 'AB=30°∴∠A D 'E=∠D 'AB=30° ∴AE=12AD 又∵正方形ABCD∴AB=AD,即菱形的高为AB 的一半∴菱形ABC ′D ′的面积为212AB ,正方形ABCD 的面积为AB 2. ∴菱形ABC ′D ′的面积与正方形ABCD 的面积之比是12. 故答案为B .变式1-3.(四川眉山市·中考真题)如图,在菱形ABCD 中,已知4AB =,60ABC ∠=,60EAF ∠=,点E 在CB 的延长线上,点F 在DC 的延长线上,有下列结论:①BE CF =;②EAB CEF ∠=∠;③ABEEFC ∆∆;④若15BAE∠=,则点F 到BC 的距离为2-.则其中正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】B 【提示】①只要证明BAE CAF ∆≅∆即可判断;②根据等边三角形的性质以及三角形外角的性质即可判断;③根据相似三角形的判定方法即可判断;④求得点F 到BC 的距离即可判断.综上即可得答案. 【详解】∵四边形ABCD 是菱形,∴AB BC =,ACB ACD ∠=∠, ∵∠ABC=60°,∴ABC ∆是等边三角形, ∴∠ACD=∠ACB=60°,AB=AC , ∴∠ABE=∠ACF=120°, ∵60BAC EAF ∠=∠=,∴∠BAE+∠BAF=∠CAF+∠BAF=60°, ∴BAE CAF ∠=∠, ∴ABE ACF ∠=∠,在BAE ∆和CAF ∆中,BAE CAF AB AC ABE ACF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BAE CAF SAS ∆≅∆,∴AE AF =,BE CF =.故①正确; ∵60EAF ∠=, ∴AEF ∆是等边三角形, ∴60AEF ∠=,∵60AEB CEF AEB EAB ∠+∠=∠+∠=, ∴EAB CEF ∠=∠,故②正确; ∵60ACD ACB ∠=∠=, ∴60ECF ∠=, ∵60AEB ∠<,∴ABE ∆和EFC ∆不会相似,故③不正确;过点A 作AG BC ⊥于点G ,过点F 作FH EC ⊥于点H , ∵15EAB ∠=,60ABC ∠=, ∴45AEB ∠=,∵在Rt AGB ∆中,60ABC ∠=,4AB =,∴2BG =,AG =∵在Rt AEG ∆中,45AEG EAG ∠=∠=,∴AG GE ==∴2EB EG BG =-=, ∵AEB AFC ∆≅∆,∴120ABE ACF ∠=∠=,2EB CF ==, ∴60FCE ∠=,∴在Rt CHF ∆中,30CFH ∠=,2CF =,∴112CH CF ==.∴)13FH ===∴点F 到BC 的距离为3,故④不正确. 综上,正确结论有①②,共2个, 故选B .变式1-4.(四川攀枝花市·九年级一模)如图,正方形ABCD 中,E 为CD 的中点,AE 的垂直平分线分别交AD ,BC 及AB 的延长线于点F ,G ,H ,连接HE ,HC ,OD ,连接CO 并延长交AD 于点M .则下列结论中: ①FG=2AO ;②OD ∥HE ;③BH AMEC MD=;④2OE 2=AH•DE ;⑤GO+BH=HC 正确结论的个数有( )A .2B .3C .4D .5【答案】B 【提示】建立以B 点位坐标原点的平面直角坐标系,分别求出相应直线的解析式和点的坐标,求出各线段的距离,可得出结论. 【详解】 解:如图,建立以B 点为坐标原点的平面直角坐标系,设正方形边长为2,可分别得各点坐标, A(0,2),B(0,0),C(2,0),D(2,2), E 为CD 的中点,可得E 点坐标(2,1),可得AE 的直线方程,122y x =-+,由OF 为直线AE 的中垂线可得O 点为02213(,)(1,)222++=,设直线OF 的斜率为K ,得1()12k ⨯-=-,可得k=2,同时经过点O(31,2),可得OF 的直线方程:122y x =-,可得OF 与x 轴、y 轴的交点坐标G(14,0),H(0,12-),及F(54,2),同理可得:直线CO 的方程为:332y x =-+,可得M 点坐标(23,2),=,AO=1122AE =, 故FG=2AO ,故①正确;②:由O 点坐标3(1,)2,D 点坐标(2,2),可得OD 的方程:112y x =+, 由H 点坐标(0,12-),E 点坐标(2,1),可得HE 方程:3142y x =-,由两方程的斜率不相等,可得OD 不平行于HE ,故②错误;③由A(0,2),M (23,2),H(0,12-),E (2,1), 可得:BH=12,EC=1,AM=23,MD=24233-=,故BH AM EC MD ==12, 故③正确;④:由O 点坐标3(1,)2,E (2,1),H(0,12-),D(2,2), 可得:222315(12)(1)1244OE =-+-=+=,AH=15222+=,DE=1,∴有2OE 2=AH•DE ,故④正确; ⑤:由G(14,0),O 点坐标3(1,)2,H(0,12-),C(2,0),可得:GO ==,BH=12=可得:GO≠BH+HC, 故正确的有①③④, 故选B.变式1-5.(广东九年级三模)如图,在一张矩形纸片ABCD 中,4AB =,8BC =,点E ,F 分别在AD , BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分DCH ∠;③线段BF 的取值范围为34BF ≤≤;④当点H 与点A重合时,EF =以上结论中,你认为正确的有( )个.A .1B .2C .3D .4【答案】C【提示】①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;③点H与点A重合时,设BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出最大值BF=4,然后写出BF的取值范围,判断出③正确;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.【详解】解:①∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,(故①正确);②∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,(故②错误);③点H与点A重合时,此时BF最小,设BF=x,则AF=FC=8-x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8-x)2,解得x=3,点G与点D重合时,此时BF最大,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,(故③正确);过点F作FM⊥AD于M,则ME=(8-3)-3=2,由勾股定理得,EF=(故④正确);综上所述,结论正确的有①③④共3个,故选C.考查题型二连接四边形中点得到新四边形,探索其性质典例2.(黑龙江双鸭山市模拟)若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是( )A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形【答案】D【提示】根据三角形的中位线定理得到EH∥FG,EF=FG,EF=12BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=12AC,EH∥AC,FG=12AC,FG∥AC,EF=12BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=12AC,EF=12BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D .变式2-1.(河北模拟)如图,AC ,BD 是四边形ABCD 的对角线,点E ,F 分别是AD ,BC 的中点,点M ,N 分别是AC ,BD 的中点,连接EM ,MF ,FN ,NE ,要使四边形EMFN 为正方形,则需添加的条件是( )A .AB CD =,AB CD ⊥ B .AB CD =,AD BC = C .AB CD =,AC BD ⊥ D .AB CD =,//AD BC【答案】A 【提示】证出EN 、NF 、FM 、ME 分别是ABD ∆、BCD ∆、ABC ∆、ACD ∆的中位线,得出////EN AB FM ,////ME CD NF ,12EN AB FM ==,12ME CD NF ==,证出四边形EMFN 为平行四边形,当AB CD =时,EN FM ME NF ===,得出平行四边形ABCD 是菱形;当AB CD ⊥时,EN ME ⊥,即90MEN ∠=︒,即可得出菱形EMFN 是正方形.【详解】点E ,F 分别是AD ,BC 的中点,点M ,N 分别是AC ,BD 的中点,EN ∴、NF 、FM 、ME 分别是ABD ∆、BCD ∆、ABC ∆、ACD ∆的中位线,////EN AB FM ∴,////ME CD NF ,12EN AB FM ==,12ME CD NF ==, ∴四边形EMFN 为平行四边形,当AB CD =时,EN FM ME NF ===,∴平行四边形ABCD 是菱形;当AB CD ⊥时,EN ME ⊥,即90MEN ∠=︒,∴菱形EMFN 是正方形;故选:A .变式2-2.(四川成都市一模)顺次连结一个平行四边形的各边中点所得四边形的形状是( )A.平行四边形B.矩形C.菱形D.正方形【答案】A【详解】试题提示:连接平行四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.解:顺次连接平行四边形ABCD各边中点所得四边形必定是:平行四边形,理由如下:(如图)根据中位线定理可得:GF=12BD且GF∥BD,EH=12BD且EH∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形.故选A.变式2-3.(河北保定市模拟)如图,在任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各边中点,且AC BD=时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC BD⊥时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【提示】当E,F,G,H是四边形ABCD各边中点时,连接AC、BD,如图,根据三角形的中位线定理可得四边形EFGH是平行四边形,然后根据菱形的定义和矩形的定义即可对A、B两项进行判断;画出符合题意的平行四边形EFGH,但满足E,F,G,H不是各边中点即可判断C项;画出符合题意的菱形EFGH,但满足E,F,G,H不是各边中点即可判断D项,进而可得答案.【详解】解:A.当E,F,G,H是四边形ABCD各边中点时,连接AC、BD,如图,则由三角形的中位线定理可得:EH=12BD,EH∥BD;FG=12BD,FG∥BD,所以EH=FG,EH∥FG,所以四边形EFGH是平行四边形;当AC=BD时,∵EH=12BD,EF=12AC,∴EF=EH,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,如上图,由三角形的中位线定理可得:EH∥BD,EF∥AC,所以EH⊥EF,故平行四边形EFGH为矩形,故B正确;C.如图所示,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,此时E,F,G,H不是四边形ABCD各边中点,故C正确;D.如图所示,若EF=FG=GH=HE,则四边形EFGH为菱形,此时E,F,G,H不是四边形ABCD各边中点,故D错误;故选:D.变式2-4.(广东惠州市·九年级一模)已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有()A .8048个B .4024个C .2012个D .1066个 【答案】B 【解析】:第1个图形,有4个直角三角形, 第2个图形,有4个直角三角形, 第3个图形,有8个直角三角形, 第4个图形,有8个直角三角形, …,依次类推,当n 为奇数时,三角形的个数是2(n+1),当n 为偶数时,三角形的个数是2n 个, 所以,第2012个图形中直角三角形的个数是2×2012=4024. 故选B .变式2-5.(南昌市模拟)如图,四边形ABCD 中,AC =m ,BD =n ,且AC ⊥BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……,如此进行下去,得到四边形A 5B 5C 5D 5的周长是( )A .4m n+ B .52mn C .5m n+ D .2n mn 【答案】A 【提示】根据三角形中位线定理、矩形的判定定理得到四边形A 1B 1C 1D 1是矩形,根据菱形的判定定理得到四边形A 2B 2C 2D 2是平行四边形,得到四边形A 5B 5C 5D 5为矩形,计算即可. 【详解】解:点A 1,D 1分别是AB 、AD 的中点,∴A 1D 1∥BD ,A 1D 1=12BD =12n , 同理:B 1C 1∥BD ,B 1C 1=12BD =12n ,∴A 1D 1∥B 1C 1,A 1D 1=B 1C 1, ∴四边形A 1B 1C 1D 1是平行四边形, ∵AC ⊥BD ,AC ∥A 1B 1,BD ∥A 1D 1, ∴A 1B 1⊥A 1D 1,∴四边形A 1B 1C 1D 1是矩形,其周长为2×(12m +12n )=m +n , 同理,四边形A 2B 2C 2D 2是平行四边形, ∵A 2B 2=12A 1C 1,B 2C 2=12A 1C 1, ∴A 2B 2=B 2C 2,∴四边形A 2B 2C 2D 2是菱形, 同理,A 3B 3C 3D 3为矩形,周长为2m n+, ∴矩形A 5B 5C 5D 5的周长为4m n+, 故选:A .考查题型三 利用平行四边形(特殊)的对称性求阴影面积典例3.(山东济南市一模)如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,矩形ABCD 内的一个动点P 落在阴影部分的概率是( )A .B .C .D .【答案】B 【解析】试题提示:矩形的对角线将矩形分割成面积相等的四部分,如图,因为△DOF 和△EOB 是全等三角形,将△DOF 切割到△EOB 与△AOE 合并成△AOB ,刚好占了该矩形面积的,所以P 落在阴影部分的概率是.考点:矩形的性质和事件概率变式3-1.下面各图中,所有大正方形边长是4cm,所有小正方形边长是3cm.下面各图中阴影部分面积最大的是( )A.B.C.D.【答案】B【提示】大正方形的边长为4,小正方形的边长为3,根据:三角形的面积=底×高÷2,平行四边形的面积=底×高,分别求出四个选项中阴影部分的面积,然后进行比较即可.【详解】解:大正方形的边长为4,小正方形的边长为3,则:A、阴影部分的面积为:3×4=12;B、阴影部分的面积为:4×(3+4)÷2=14;C、阴影部分的面积为:3×(3+4)÷2=10.5;D、阴影部分的面积为:4×4÷2+3×3÷2=12.5;B图形的阴影面积最大.故选:B.变式3-2.(天津市一模)正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是( )cm2.A.B.C.D.【答案】B【解析】试题提示:阴影部分的面积可转化为两个三角形面积之和,根据角平分线定理,可知阴影部分两个三角形的高相等,正方形的边长已知,故只需将三角形的高求出即可,根据△DON∽△DEC可将△ODC的高求出,进而可将阴影部分两个三角形的高求出.连接AC,过点O作MN∥BC交AB于点M,交DC于点N,PQ∥CD交AD于点P,交BC于点Q∵AC为∠BAD的角平分线,∴OM=OP,OQ=ON;设OM=OP=h1,ON=OQ=h2,∵ON∥BC∴,即,解得∴OM=OP故选B.变式3-3.(襄樊市一模)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积为()A.0.7B.0.9C.2√2−2D.√22【答案】C【解析】试题提示:如图,求出AE、BE的长度,证明△CFB1∽△BAB1,列出比例式求出CF的长度,运用三角形的面积公式即可解决问题.试题解析:如图:∵∠B=45°,AE⊥BC∴∠BAE=∠B=45°∴AE=BE由勾股定理得:BE2+AE2=22解得:BE=√2由题意得:△ABE≌△AB1E∴∠BAB1=2∠BAE=90°,BE=B1E=√2∴BB1=2√2,B1C=2√2-2∵四边形ABCD为菱形,∴∠FCB1=∠B=45°,∠CFB1=∠BAB1=90°,∴∠CB1F=45°,CF=B1F∵CF∥AB∴△CFB1∽△BAB1,∴CFAB =B1CBB1,解得:CF=2-√2∴△AEB1、△CFB1的面积分别为:12×√2×√2=1,12×(2−√2)2=3−2√2.∴△AB1E与四边形AECD重叠部分的面积=1−(3−2√2)=2√2−2.故选C.考查题型四平行四边形(特殊)动点问题典例4.(江苏南通市·中考真题)如图①,E为矩形ABCD的边AD上一点,点P从点B出发沿折线B﹣E ﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD的面积是()A.96cm2B.84cm2C.72cm2D.56cm2【答案】C【提示】过点E作EH⊥BC,由三角形面积公式求出EH=AB=6,由图2可知当x=14时,点P与点D重合,则AD=12,可得出答案.【详解】解:从函数的图象和运动的过程可以得出:当点P运动到点E时,x=10,y=30,过点E作EH⊥BC,由三角形面积公式得:y=111030 22BQ EH EH•=⨯⨯=,解得EH=AB=6,∴BH=AE=8,由图2可知当x=14时,点P与点D重合,∴ED=4,∴BC=AD=12,∴矩形的面积为12×6=72.故选:C.变式4-1.(贵州铜仁市·中考真题)如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B 开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.【答案】D【提示】分别求出0≤x≤4、4<x<7时函数表达式,即可求解.【详解】解:由题意当0≤x≤4时,y=12×AD×AB=12×3×4=6,当4<x<7时,y=12×PD×AD=12×(7﹣x)×4=14﹣2x.故选:D.变式4-2.(江西赣州市模拟)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米/秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A .B .C .D .【答案】D 【提示】应根据0≤t <2和2≤t <4两种情况进行讨论.把t 当作已知数值,就可以求出S ,从而得到函数的解析式,进一步即可求解. 【详解】当0≤t <2时,S=12(4﹣t )=2t ;当2≤t <4时,S=12×4×2×(4﹣t )= 只有选项D 的图形符合, 故选D .变式4-3.(邵阳市模拟)如图,正方形ABCD 边长为4,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点,且AE =BF =CG =DH .设A 、E 两点间的距离为x ,四边形EFGH 的面积为y ,则y 与x 的函数图象可能是( )A .B .C .D .【答案】A【提示】本题考查了动点的函数图象,先判定图中的四个小直角三角形全等,再用大正方形的面积减去四个直角三角形的面积,得函数y 的表达式,结合选项的图象可得答案. 【详解】解:∵正方形ABCD 边长为4,AE =BF =CG =DH ∴AH =BE =CF =DG ,∠A =∠B =∠C =∠D ∴△AEH ≌△BFE ≌△CGF ≌△DHG ∴y =4×4﹣12x (4﹣x )×4 =16﹣8x+2x 2 =2(x ﹣2)2+8∴y 是x 的二次函数,函数的顶点坐标为(2,8),开口向上,从4个选项来看,开口向上的只有A 和B ,C 和D 图象开口向下,不符合题意; 但是B 的顶点在x 轴上,故B 不符合题意,只有A 符合题意. 故选:A .考查题型五 求四边形中线段最值问题典例5.(西藏中考真题)如图,在矩形ABCD 中,63AB AD =,=,动点P 满足13PAB ABCD S S ∆矩形=,则点P 到A B 、两点距离之和PA PB +的最小值为( )A .B .C . D【答案】A 【提示】先由13PAB ABCD S S ∆矩形=,得出动点P 在与AB 平行且与AB 的距离是2的直线l 上,作A 关于直线l 的对称点E ,连接AE BE ,,则BE 的长就是所求的最短距离.然后在直角三角形ABE 中,由勾股定理求得BE 的值,即可得到PA PB +的最小值. 【详解】设ABP ∆中AB 边上的高是h .13PAB ABCD S S ∆矩形=,1123AB h AB AD ∴⋅=⋅, 223h AD ∴==, ∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE BE ,,则BE 的长就是所求的最短距离, 在Rt ABE ∆中,6224AB AE +=,==,BE ∴==,即PA PB +的最小值为 故选:A .变式5-1.(浙江杭州市模拟)如图,在平行四边形ABCD 中,∠C=120°,AD=2AB=4,点H 、G 分别是边CD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点,点F 为GH 的中点,连接EF ,则EF 的最大值与最小值的差为( )A .1B 1C .2D .2【答案】C 【解析】如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N .∵四边形ABCD 是平行四边形,∠BCD=120°, ∴∠D=180°-∠BCD=60°,AB=CD=2, ∵AM=DM=DC=2, ∴△CDM 是等边三角形,∴∠DMC=∠MCD=60°,AM=MC , ∴∠MAC=∠MCA=30°, ∴∠ACD=90°,∴,在Rt △ACN 中,∵,∠ACN=∠DAC=30°,∴AN=12 ∵AE=EH ,GF=FH , ∴EF=12AG , 易知AG 的最大值为AC 的长,最小值为AN 的长,∴AG 的最大值为∴EF 2,∴EF 变式5-2.(洛阳模拟)如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为 ( )A .65B .52C .53D .54【提示】先根据矩形的判定得出四边形AEPF 是矩形,再根据矩形的性质得出EF ,AP 互相平分且相等,再根据垂线段最短可以得出当⊥AP BC 时,AP 的值最小,即AM 的值最小,根据面积关系建立等式求解即可. 【详解】解:∵3AB =,4AC =,5BC =, ∴90EAF ∠=︒, ∵PE AB ⊥,PF AC ⊥, ∴四边形AEPF 是矩形, ∴EF ,AP 互相平分,且EF AP =,又∵M 为EF 与AP 的交点, ∴当AP 的值时,AM 的值就最小,而当⊥AP BC 时,AP 有最小值,即此时AM 有最小值, ∵1122AP BC AB AC =, ∴AP BC AB AC =,∵3AB =,4AC =,5BC =, ∴534AP =⨯, ∴125AP =, ∴1625AM AP ==. 故选:A .变式5-3.(辽宁铁岭市模拟)如图,在矩形ABCD 中,AB=9,BC=12,点E 是BC 中点,点F 是边CD 上的任意一点,当△AEF 的周长最小时,则DF 的长为( )A .4B .6C .8D .9【答案】B作点E关于直线CD的对称点E′,连接AE′交CD于点FAE的长度是固定的,要△AEF的周长最小,只要AF+EF最小即可,又根据三角形两边之和大于第三边可知,对CD上任意点F′,总有AF′+E′F′>AE′,所以点F是使得AF+EF最小的点.∵在矩形ABCD中,AB=9,BC=12,点E是BC中点,∴BE=CE=CE′=6,∵AB⊥BC,CD⊥BC,∴△CE′F∽△BE′A,即CE′·AB=CF·BE′,即6×9=CF·(12+6),解得CF=3,∴DF=CD-CF=9-3=6故选B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第28讲正方形与四边形综合1. (2013,河北) 一个正方形和两个等边三角形的位置如图所示.若∠3=50°,则∠1+∠2的度数为(B)第1题图A. 90°B. 100°C. 130°D. 180°【解析】如答图.∠BAC=180°-90°-∠1=90°-∠1,∠ABC=180°-60°-∠3=120°-∠3,∠ACB=180°-60°-∠2=120°-∠2.在△ABC中,∠BAC+∠ABC+∠ACB =180°,∴90°-∠1+120°-∠3+120°-∠2=180°.∴∠1+∠2=150°-∠3.∵∠3=50°,∴∠1+∠2=150°-50°=100°.第1题答图2. (2015,河北,导学号5892921)如图所示的是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则(A)第2题图A. 甲、乙都可以B. 甲、乙都不可以C. 甲不可以,乙可以D. 甲可以,乙不可以【解析】甲、乙都可以拼一个与原来面积相等的正方形,所拼图形如答图所示.第2题答图3. (2016,河北)关于▱ABCD的叙述,正确的是(C)A. 若AB⊥BC,则▱ABCD是菱形B. 若AC⊥BD,则▱ABCD是正方形C. 若AC=BD,则▱ABCD是矩形D. 若AB=AD,则▱ABCD是正方形【解析】∵在▱ABCD中,AB⊥BC,∴四边形ABCD是矩形,不一定是菱形.故选项A错误.∵在▱ABCD中,AC⊥BD,∴四边形ABCD是菱形,不一定是正方形.故选项B错误.∵在▱ABCD中,AC=BD,∴四边形ABCD是矩形.故选项C正确.∵在▱ABCD中,AB=AD,∴四边形ABCD 是菱形,不一定是正方形.故选项D 错误.4. (2017,河北)如图所示的是边长为10 cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的是(A)第4题图A B C D【解析】 该正方形的对角线的长是10 2 cm ≈14.14 cm ,所以正方形内部的每一个点,到正方形的顶点的距离都要小于14.14 cm.正方形的性质例1 (2018,深圳二模)如图,P 为正方形ABCD 的对角线BD 上任意一点,过点P 作PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF .给出以下4个结论:①△FPD 是等腰直角三角形;②AP =EF ;③AD =PD ;④∠PFE =∠BAP .其中正确的结论是(C)例1题图A. ①②B. ①④C. ①②④D. ①③④【解析】 如答图,连接PC .∵P 为正方形ABCD 的对角线BD 上任意一点,∴PA =PC ,∠BCD =90°.∵PE ⊥BC ,PF ⊥CD ,∴∠PEC =∠DFP =∠PFC =∠BCD =90°.∴四边形PECF 是矩形.∴PC =EF .∴PA =EF .故②正确.∵BD 是正方形ABCD 的对角线,∴∠ABD =∠BDC =∠DBC =45°.∵∠PFD =∠BCD =90°,∴PF ∥BC .∴∠DPF =∠DBC =45°.∴△FPD 是等腰直角三角形.故①正确.在△PAB 和△PCB 中,⎩⎪⎨⎪⎧AB =CB ,∠ABP =∠CBP ,BP =BP ,∴△PAB ≌△PCB .∴∠BAP =∠BCP .易证∠PFE =∠BCP ,∴∠PFE =∠BAP .故④正确.∵P 是正方形对角线BD 上任意一点,∴AD 不一定等于PD .故③错误.例1答图针对训练1 (2018,唐山丰南区二模)如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC的度数为(B)训练1题图A. 75°B. 60°C. 55°D. 45°【解析】∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°.∵△ADE是等边三角形,∴∠DAE=60°,AD=AE.∴∠BAE=90°+60°=150°,AB=AE.∴∠ABE=∠AEB=12×(180°-150°)=15°.∴∠BFC=∠BAF+∠ABE=45°+15°=60°.正方形的判定例2 (2018,桂林灌阳县模拟)如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠ACD的平分线于点F.若点O运动到AC的中点,要使四边形AECF是正方形,则∠ACB的度数是(D)例2题图A. 30°B. 45°C. 60°D. 90°【解析】∵CE,CF分别为∠ACB,∠ACD的平分线,∴∠ECF=90°.∵MN∥BC,∴∠FEC=∠ECB.∵∠ECB=∠ECO,∴∠FEC=∠ECO.∴OE=OC.同理OC=OF.∴OE=OF.∵点O 运动到AC的中点,∴OA=OC.∴四边形AECF为矩形.若∠ACB=90°,则AC⊥EF.∴四边形AECF为正方形.针对训练2 如图,在菱形ABCD中,对角线AC,BD交于点O.添加一个条件,能使菱形ABCD 成为正方形的是(C)训练2题图A. BD=ABB. AC=ADC. ∠ABC=90°D. OD=AC【解析】要使菱形成为正方形,只要菱形满足以下条件之一即可:①有一个内角是直角;②对角线相等.平行四边形、矩形、菱形、正方形的关系例3 (2018,临沂)如图,E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点.下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是(A)例3题图A. 1B. 2C. 3D. 4【解析】 由三角形中位线定理可知四边形的四边中点组成的四边形是平行四边形.本题中,当AC =BD 时,四边形EFGH 是菱形;当AC ⊥BD 时,四边形EFGH 是矩形;当AC =BD 且AC ⊥BD 时,四边形EFGH 是正方形.反之,四边形EFGH 是正方形时,AC 与BD 互相垂直且相等.只有说法④正确.针对训练3 (2018,盐城盐都区模拟)如图,在四边形ABCD 中,AB =CD ,E ,F ,G ,H 分别为AD ,BC ,BD ,AC 的中点,顺次连接E ,G ,F ,H .(1)求证:四边形EGFH 是菱形;(2)当∠ABC 与∠DCB 满足什么关系时,四边形EGFH 为正方形,并说明理由;(3)猜想:∠GFH ,∠ABC ,∠DCB 三个角之间的关系.(直接写出结果)训练3题图【思路分析】 (1)根据三角形中位线的性质得到EG =12AB ,EH =12CD ,HF =12AB ,GF =12CD .根据菱形的判定定理即可得到结论.(2)根据平行线的性质得到∠ABC =∠HFC ,∠DCB =∠GFB .根据平角的定义得到∠GFH =90°,于是得到结论.(3)由平行线的性质得到∠ABC =∠HFC ,∠DCB =∠GFB .根据平角的定义即可得到结论.(1)证明:∵E ,F ,G ,H 分别为AD ,BC ,BD ,AC 的中点,∴EG =12AB ,EH =12CD ,HF =12AB ,GF =12CD . ∵AB =CD ,∴EG =EH =HF =GF .∴四边形EGFH 是菱形.(2)解:当∠ABC +∠DCB =90°时,四边形EGFH 为正方形.理由:∵E ,F ,G ,H 分别为AD ,BC ,BD ,AC 的中点,∴HF ∥AB ,GF ∥CD .∴∠ABC =∠HFC ,∠DCB =∠GFB .∵∠ABC +∠DCB =90°,∴∠HFC +∠GFB =90°.∴∠GFH =90°.∴菱形EGFH 是正方形.(3)解:∠GFH +∠ABC +∠DCB =180°.一、 选择题1. (2018,石家庄二模)如图,从正方形纸片的顶点沿虚线剪开,则∠1的度数可能是(A)第1题图A. 44°B. 45°C. 46°D. 47°【解析】 如答图.∵四边形为正方形,∴∠2=45°.∵∠1<∠2,∴∠1<45°.第1题答图2. (2018,宜昌)如图,正方形ABCD 的边长为1,E ,F 分别是对角线AC 上的两点,EG ⊥AB ,EI ⊥AD ,FH ⊥AB ,FJ ⊥AD ,垂足分别为G ,I ,H ,J ,则图中阴影部分的面积为(B)第2题图A. 1B. 12C. 13D. 14【解析】 根据对称性,可知四边形EFHG 的面积与四边形EFJI 的面积相等.∴S 阴影= 12S 正方形ABCD =12.3. (2018,梧州)如图,在正方形ABCD 中,A ,B ,C 三点的坐标分别是(-1,2),(-1,0),(-3,0).将正方形ABCD 向右平移3个单位长度,则平移后点D 的坐标是(B)第3题图A. (-6,2)B. (0,2)C. (2,0)D. (2,2)【解析】 ∵在正方形ABCD 中,A ,B ,C 三点的坐标分别是(-1,2),(-1,0),(-3,0),∴点D 的坐标为(-3,2).∴将正方形ABCD 向右平移3个单位长度,平移后点D 的坐标是(0,2).4. (2018,湘西州)下列说法中,正确的有(B)①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形; ④对角线互相垂直平分且相等的四边形为正方形.A. 1个B. 2个C. 3个D. 4个【解析】 ①对顶角相等,故①正确.②两直线平行,同旁内角互补,故②错误.③对角线互相垂直平分的四边形为菱形,故③错误.④对角线互相垂直平分且相等的四边形为正方形,故④正确.5. (2018,湘潭)如图,已知E ,F ,G ,H 分别是菱形ABCD 各边的中点,则四边形EFGH 是(B)第5题图A. 正方形B. 矩形C. 菱形D. 平行四边形【解析】 由菱形对角线的性质和三角形中位线定理可得四边形EFGH 是矩形.6. 如图,已知正方形ABCD 的边长为1,连接AC ,BD ,CE 平分∠ACD 交BD 于点E ,则DE 的长为(A)第6题图 A. 2-1 B. 22 C. 1 D. 1-22【解析】 如答图,过点E 作EF ⊥DC 于点F .∵四边形ABCD 是正方形,∴AC ⊥BD .∵CE 平分∠ACD ,∴EO =EF .∵正方形ABCD 的边长为1,∴AC = 2.∴CO =12AC =22.∴CF =CO =22.∴EF =DF =DC -CF =1-22.∴DE =2DF =2-1.第6题答图7. 如图,正方形OABC 的两边OA ,OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上.以点C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是(C)第7题图A. (-2,0)B. (-2,10)C. (2,10)或(-2,0)D. (10,2)或(-2,10)【解析】 因为点D (5,3)在边AB 上,所以AB =BC =5,BD =5-3=2.①若把△CDB 顺时针旋转90°,则点D ′在x 轴上,OD ′=2,所以D ′(-2,0).②若把△CDB 逆时针旋转 90°,则点D ′到x 轴的距离为10,到y 轴的距离为2,所以D ′(2,10).综上,旋转后点D 的对应点D ′的坐标为(-2,0)或(2,10).8. 如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是(D)第8题图A. 12B. 33C. 1-33D. 2-1 【解析】 ∵绕顶点A 顺时针旋转45°,∴∠D ′CE =45°,∠CD ′E =90°.∴CD ′=D ′E .∵AC =12+12=2,∴CD ′=2-1.∴正方形重叠部分的面积是12×1×1-12×(2-1)×(2-1)=2-1.二、 填空题9. 如图,在正方形ABCD 中,E 为AD 的中点,连接EC ,过点E 作EF ⊥EC ,交AB 于点F ,则tan ∠ECF =( 12) .第9题图【解析】 ∵四边形ABCD 是正方形,∴AD =DC ,∠A =∠D =90°.∵AE =ED ,∴CD =AD =2AE .∵∠FEC =90°,∴∠AEF +∠DEC =90°.∵∠DEC +∠DCE =90°,∴∠AEF =∠DCE .∵∠A =∠D ,∴△AEF ∽△DCE .∴EF EC =AE DC =12.∴tan ∠ECF =EF EC =12. 10. 如图,E 为正方形ABCD 外一点,AE =AD ,∠ADE =75°,则∠AEB = 30° .第10题图【解析】 ∵AE =AD ,∠ADE =75°,∴∠DAE =180°-2∠ADE =180°-2×75°= 30°.∴∠BAE =∠BAD +∠DAE =90°+30°=120°.∵AB =AD ,∴AB =AE .∴∠AEB = 12(180°-∠BAE )=12×(180°-120°)=30°.11. (2018,武汉)以正方形ABCD 的边AD 为边作等边三角形ADE ,则∠BEC 的度数是 30°或150°.【解析】 如答图①.∵四边形ABCD 为正方形,△ADE 为等边三角形,∴AB =BC =CD =AD=AE =DE ,∠BAD =∠ABC =∠BCD =∠ADC =90°,∠AED =∠ADE =∠DAE =60°.∴∠BAE =∠CDE =150°.∴∠AEB =∠CED =15°.∴∠BEC =∠AED -∠AEB -∠CED =30°.如答图②.同理∠CDE =∠ADC -∠ADE =90°-60°=30°.∴∠CED =∠ECD =12×(180°-30°)=75°.∴∠BEC =360°-75°×2-60°=150°.第11题答图12. (2018,咸宁)如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为 (-1,5) .第12题图【解析】 如答图,过点E 作x 轴的垂线EH ,垂足为H ,过点G 作x 轴的垂线GM ,垂足为M ,连接GE ,FO 相交于点O ′.∵四边形OEFG 是正方形,∴OG =EO .易证∠GOM =∠OEH ,∠OGM =∠EOH .∴△OGM ≌△EOH (ASA).∴GM =OH =2,OM =EH =3.∴G (-3,2).∴O ′⎝ ⎛⎭⎪⎫-12,52.∵点F 与点O 关于点O ′对称,∴点F 的坐标为(-1,5).第12题答图三、 解答题13. (2018,宁夏)如图,已知E 为正方形ABCD 的边AD 上一点,连接BE ,过点C 作CN ⊥BE ,垂足为M ,交AB 于点N .(1)求证:△ABE ≌△BCN ;(2)若N 为AB 的中点,求tan ∠ABE .第13题图【思路分析】 (1)根据正方形的性质和全等三角形的判定定理证明即可.(2)根据全等三角形的性质和三角函数解答即可.(1)证明:如答图.∵四边形ABCD 为正方形,∴AB =BC ,∠A =∠CBN =90°,∠1+∠2=90°.∵CM ⊥BE ,∴∠2+∠3=90°.∴∠1=∠3.在△ABE 和△BCN 中,⎩⎪⎨⎪⎧∠A =∠CBN ,AB =BC ,∠1=∠3,∴△ABE ≌△BCN (ASA).(2)解:∵N 为AB 的中点,∴BN =12AB . ∵△ABE ≌△BCN ,∴AE =BN =12AB . 在Rt △ABE 中,tan ∠ABE =AE AB =12AB AB =12.第13题答图14. (2018,盐城)如图,在正方形ABCD 中,对角线BD 所在的直线上有两点E ,F 满足BE =DF ,连接AE ,AF ,CE ,CF .(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.第14题图【思路分析】 (1)根据正方形的性质和全等三角形的判定定理证明即可.(2)四边形AECF 是菱形,根据对角线垂直且互相平分的四边形是菱形即可判断.(1)证明:∵四边形ABCD 是正方形,∴AB =AD .∴∠ABD =∠ADB .∴∠ABE =∠ADF .在△ABE 和△ADF 中,⎩⎪⎨⎪⎧AB =AD ,∠ABE =∠ADF ,BE =DF ,∴△ABE ≌△ADF (SAS).(2)解:四边形AECF 是菱形.理由:如答图,连接AC .∵四边形ABCD 是正方形,∴OA =OC ,OB =OD ,AC ⊥EF .∴OB +BE =OD +DF .∴OE =OF .∴四边形AECF 是菱形.第14题答图15. (2018,白银)如图,在矩形ABCD 中,E 是AD 边上的一个动点,F ,G ,H 分别是BC ,BE ,CE 的中点.(1)求证:△BGF ≌△FHC ;(2)设AD =a ,当四边形EGFH 是正方形时,求矩形ABCD 的面积.第15题图【思路分析】 (1)根据三角形中位线定理和全等三角形的判定证明即可.(2)利用正方形的性质和矩形的面积公式解答即可.(1)证明:∵F ,G ,H 分别是BC ,BE ,CE 的中点,∴FH ∥BE ,FH =12BE ,GE =BG =12BE ,BF =FC . ∴∠CFH =∠CBG ,FH =BG .∴△BGF ≌△FHC .(2)解:如答图,连接EF ,GH .当四边形EGFH 是正方形时,得EF ⊥GH 且EF =GH . ∵在△BEC 中,G ,H 分别是BE ,CE 的中点,∴GH =12BC =12AD =12a ,且GH ∥BC . ∴EF ⊥BC .∵四边形ABCD 为矩形,∴AB =EF =GH =12a . ∴矩形ABCD 的面积为AB ·AD =12a ·a =12a 2.第15题答图16. (2018,遵义)如图,正方形ABCD 的对角线交于点O ,点E ,F 分别在AB ,BC 上(AE <BE ),且∠EOF =90°,OE ,DA 的延长线相交于点M ,OF ,AB 的延长线相交于点N ,连接MN .(1)求证:OM =ON ;(2)若正方形ABCD 的边长为4,E 为OM 的中点,求MN 的长.(结果保留根号)第16题图【思路分析】 (1)证△OAM ≌△OBN 即可得.(2)作OH ⊥AD ,由正方形的边长为4且E 为OM 的中点知OH =HA =2,HM =4,再根据勾股定理得OM =2 5.由等腰直角三角形的性质知MN =2OM .(1)证明:∵四边形ABCD 是正方形, ∴OA =OB ,∠DAO =∠OBA =45°. ∴∠OAM =∠OBN =135°.∵∠EOF =90°,∠AOB =90°, ∴∠AOM =∠BON .∴△OAM ≌△OBN (ASA).∴OM =ON .(2)解:如答图,过点O 作OH ⊥AD 于点H . ∵正方形ABCD 的边长为4, ∴OH =HA =2.∵E 为OM 的中点, ∴HM =4.∴OM =22+42=2 5. ∴MN =2OM =210.第16题答图1. (2018,无锡)如图,已知E 是矩形ABCD 的对角线AC 上的一动点,正方形EFGH 的顶点G ,H 都在边AD 上.若AB =3,BC =4,则tan ∠AFE 的值为(A)第1题图A. 37B. 33C. 34D. 随点E 位置的变化而变化【解析】 ∵EF ∥AD ,∴∠AFE =∠FAG .∴HE ∥CD .∴△AEH ∽△ACD .∴EH AH =CD AD =34.设EH =3x ,AH =4x ,∴HG =GF =3x .∴tan ∠AFE =tan ∠FAG =GF AG =3x 3x +4x =37. 2. (2018,青岛)如图,已知正方形ABCD 的边长为5,点E ,F 分别在AD ,DC 上,AE =DF =2,BE 与AF 相交于点G ,H 为BF 的中点,连接GH ,则GH 的长为 (342).(结果保留根号)第2题图【解析】 ∵四边形ABCD 为正方形,∴∠BAE =∠D =90°,AB =AD .∵AE =DF ,∴△ABE ≌△DAF (SAS).∴∠ABE =∠DAF .∵∠ABE +∠BEA =90°,∴∠DAF +∠BEA =90°.∴∠BGF =∠AGE =90°.∵H 为BF 的中点,∴GH =12BF .∵BC =5,CF =CD -DF =5-2=3,∴BF =BC 2+CF2=34.∴GH =12BF =342.3. (2018,台州,导学号5892921)如图,在正方形ABCD 中,AB =3,点E ,F 分别在CD ,AD 上,CE =DF ,BE ,CF 相交于点G .若图中阴影部分的面积与正方形ABCD 的面积之比为2∶3,则△BCG 结果保留根号)第3题图【解析】 ∵阴影部分的面积与正方形ABCD 的面积之比为2∶3,∴阴影部分的面积为23×9=6.∴空白部分的面积为9-6=3.由CE =DF ,BC =CD ,∠BCE =∠CDF =90°,可得△BCE ≌△CDF ,∴△BCG 的面积与四边形DEGF 的面积相等,均为12×3=32.易证∠BGC =90°.设BG =a ,CG =b ,则12ab =32.又∵a 2+b 2=32,∴a 2+2ab +b 2=9+6=15,即(a +b )2=15.∴a+b =15,即BG +CG =15.∴△BCG 的周长为15+3.4. (2018,北京,导学号5892921)如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A ,B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH .(1)求证:GF =GC ;(2)用等式表示线段BH 与AE 的数量关系,并证明.第4题图【思路分析】 (1)连接DF ,根据对称的性质,得△ADE ≌△FDE ,再由HL 证明Rt △DFG ≌Rt △DCG ,可得结论.(2)作辅助线,构建AM =AE ,先证明∠EDG =45°,得DE =EH ,证明△DME ≌△EBH ,则EM =BH ,根据勾股定理得EM =2AE ,得结论.(1)证明:如答图,连接DF . ∵四边形ABCD 是正方形, ∴DA =DC ,∠A =∠C =90°.∵点A 关于直线DE 的对称点为F , ∴△ADE ≌△FDE .∴DA =DF ,∠DFE =∠A =90°. ∴DF =DC ,∠DFG =90°.在Rt △DFG 和Rt △DCG 中,⎩⎪⎨⎪⎧DG =DG ,DF =DC ,∴Rt △DFG ≌Rt △DCG (HL).∴GF =GC .(2)解:BH =2AE .证明:如答图,在线段AD 上截取AM ,使AM =AE . ∵AD =AB , ∴DM =BE .由(1)知∠1=∠2,∠3=∠4. ∵∠ADC =90°,∴∠1+∠2+∠3+∠4=90°.∴∠2+∠3=45°,即∠EDG =45°. ∵EH ⊥DE , ∴∠DEH =90°.∴∠AED +∠BEH =∠AED +∠1=90°,△DEH 是等腰直角三角形. ∴∠1=∠BEH ,DE =EH . ∴△DME ≌△EBH . ∴EM =BH .在Rt △AEM 中,∠A =90°,AM =AE , ∴EM =2AE . ∴BH =2AE .第4题答图。

相关文档
最新文档