数字逻辑第二版毛法尧课后题答案
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)F ( A, B, C, D) AB ACD AC BC
AB 00
01 11
10
CD
00 1
1
1
0
1
1
01
1
0
11 1
0
10 1
0
1
1
1
1
(2)F ( A, B,C, D) AB AC BC
最简或与表达式: F ABC ABC F F (A B C)(A B C)
(3)F ( A, B,C, D) BC D D(B C)( AD B) BC D AD B
AB AC D m(0,1,2,3,4,8,12)
2.8
(1)F ( A, B,C) m(0,1,2,4) (2)F ( A, B,C, ) m(0,3,5,6) (3)F ( A, B,C) m(3,5,6,7)
2.9)F f1 f2 (BCD BC C D)( ABC AD CD) BCD ABC D ABC D AC D BCD AC D ABC D BCD AC D BC D
2.7(1)F ( A, B,C) ( AB AC)
( A B)(A C) A BC m(3,4,5,6,7)
(2)F ( A, B,C, D) AB ABCD BC BC D
m(4,5,6,7,8,9,12,13)
(3)F ( A, B,C, D) ( A BC)(B C D)
2.2 用逻辑代数的公理、定理和规则证明下列表达式
(1)(AB AC) AB AC
证明:( AB AC) (A B)(A C)AB 1
证明:AB AB AB AB A A 1
(3) AABC ABC ABC ABC
(2)F ( A B AB)( A B) AB D
( A B) AB D D (0001 ,0011 ,0101 ,0111 ,1001 ,1011 ,1101 ,1111 )
(3)F ( A AC)D ( A B)CD AD AC D AB C D AB C D C 0, D 0或AB为01时,F 1 即:0000,0001,0010,0100,0101,0110, 0111,1000,1001,1010,1100,1101,1110时
2.4 求下列函数的反函数和对偶函数
(1)F AC BC F (A C)(B C) F' (A C)(B C)
(2)F AB BC A(C D) F (A B)(B C)(A CD) F' (A B)(B C)(A CD)
(3)F A[(B (C D EF) G] F A B[(C D)(E F) G] F' A B[(C D)(E F) G]
证明:AABC A( A B C) AB AC
ABC ABC ABC AB AC AABC ABC ABC ABC
(4)ABC ABC AB BC AC
证明:AB BC AC ( A B)(B C)( A C) ( AB AC BC)( A C) ABC ABC
1.9 分别用“对9的补数“和”对10的补数完成下列十进制 数的运算
(1)2550-123
解:(1)[2550-123]9补=[2550-0123]9补=[2550]9补+[-0123]9补 =02550+99876=02427
∴2550-123=+2427
[2550-123]10补=[2550-0123]10补=[2550]10补+[-0123]10补 =02550+99877=02427
1.8 用原码、反码和补码完成如下运算 (1)0000101-0011010
解(1)[0000101-0011010]原=10010101 ∴0000101-0011010=-0010101 [0000101-0011010]反=[0000101]反+[-0011010]反 =00000101+11100101=11101010 ∴0000101-0011010=-0010101 [0000101-0011010]反=[0000101]补+[-0011010]补 =00000101+11100110=11101011 ∴0000101-0011010=-0010101
(5)ABC AB BC AB
证明:ABC AB BC (A B C)(A B) BC AB AC AB BC BC A B AB
(6)A C D(A C)(A B)(B C) AC ABD BCD
证明:A C D( A C)(A B)(B C) AC D( AC AB BC) AC ACD ABD BCD AC ABCD ABCD ABCD ABCD ABCD ABCD AC ABCD ABCD ABCD ABCD ABCD ABCD AC ABD BCD
1.8 用原码、反码和补码完成如下运算
(2)0.010110-0.100110
解(2)[0.010110-0.100110]原=1.010000 ∴ 0.010110-0.100110=-0.010000 [0.010110-0.100110]反=[0.010110]反+[-0.100110]反 = 0.010110+1.011001=1.101111 ∴ 0.010110-0.100110=-0.010000 [0.010110-0.100110]补=[0.010110]补+[-0.100110]补 = 0.010110+1.011010=1.110000 ∴ 0.010110-0.100110=-0.010000
AB CD 00
00 0
01 11 10
1
1
0
01
1
1
11 1
1
1
1
1
1
10 0
1
1
0
(3)F B D
2.11用卡诺图判断函数 F(A、B、C、D)和G(A 、B、C、D)的关系
(1)F ( A, B,C, D) BD AD C D AC D
(1)G( A, B,C, D) BD CD ACD ABD
1.12 将下列一组数按从小到大顺序排序 (11011001)2,(135.6)8,(27)10,(3AF)16,(00111000)8421BCD
(11011001)2=(217)10 (135.6)8=(93.75)10 (3AF)16=(431)10
(00111000)8421BCD=(38)10
∴按从小到大顺序排序为:
(27)10 , (00111000)8421BCD ,(135.6)8,(11011001)2 (3AF)16,
第二章 逻辑代数基础
2.1 分别指出变量(A,B,C,D)在何种取值时, 下列函数的值为1?
(1)F BD ABC (0100,0111,1100,1101,1111)
1.11 试用8421BCD码、余3码和格雷码分别表示下列各数
(1)578)10 (2)(1100110)2
解:(578)10
=(010101111000)8421BCD =(100010101011)余3 =(1001000010)2 =(1101100011)G
解:(1100110)2
=(1010101)G =(102)10 =(000100000010)8421BCD =(010000110101)余3
(4)F A B C D E
F ABCDE
F' ABCDE
(5)F ( A B)(B AC)
F AB B ( A C) ( A B)(B AC)
F ' AB B ( A C)
2.5 答:(1)正确
(2)不正确,A=0时,B可以不等于C (3)不正确,A=1时,B可以不等于C (4)正确
2.10 用卡诺图化简下列函数 , 并写出最简“与 或”表达式和最简“或 与”表达式
(1)F ( A B)( AB C) ( A B)( A C)(B C)
AB
C
00 01 11 10
00
0
0
0
11
1
0
1
(1)F BC AC 最简或与表达式:F C AB F F C(A B)
∴2550-123=+2427
1.9 分别用“对9的补数“和”对10的补数完成下列十进制 数的运算
(2)537-846
解:(2)[537-846]9补=[537]9补+[-846]9补 =0537+9153=9690
∴537-846=-309
[537-846]10补=[537]10补+[-846]10补 =0537+9154=9691
1001 0000 1001 10.1101
10.01 11101 )10010001
1.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10 整除?
解:b1b0同为0时能整除,否则不能。
1.6 写出下列各数的原码、反码和补码。 (1)0.1011 (2)0.0000 (3)-10110 解:[0.1011]原=[0.1011]反=[0.1011]补=0.1011
(4)F A( A B C)(A C D)(E C D) A( A C D)(E C D) ( AC AD)(E C D) ACE ADE
(5)F AC ABC BC ABC
F AC ABC BC ABC ( AC ABC)(B C)(A B C) C(A B)(B C)(A B C) C(A B)(B C) C(B AC) BC
[0.0000]原=[0.0000]反=[0.0000]反=0.0000 [-10110]原=110110 [-10110]反=101001 [-10110]反=101010
1.7 已知[N]补=1.0110,求[N]原、[N]反和N 解: [N]原=1.1010 [N]反和=1.1001 N=-0.1010
AB CD 00 01 11 10
00 1 1 1 1 01 0 0 0 0
11 0 0 0 0
10 1 1 1 1
AB CD 00 01 11 10
00 0 0 0 0 01 1 1 1 1
11 1 1 1 1
10 0 0 0 0
(1)F G
(2)F ( A, B,C, D) ( AB AB)C ( AB AB)C ABC ABC ( A B)( A B)C ABC ABC ABC ABC
∴537-846=-309
1.10 将下列8421BCD码转换成十进制数和二进制数 (1)011010000011 (2)01000101.1001
解:(1)(011010000011)8421BCD=(683)D=(1010101011)2 (2)(01000101.1001)8421BCD=(45.9)D=(101101.1110)2
1.2 完成下列二进制表达式的运算
(1)10111+101.101 (2)1100-111.011
(3)10.01×1.01
(4)1001.0001÷11.101
10111 + 101.101 = 11100.101
11000.000 - 00111.011 = 10000.101
10.01 ×1.01
(4)F A(A B C)(A C D)(E CD) A(A C D)(E C D) A(C D)(E C D) A(C D)E
(5)F AC ABC BC ABC (AC ABC)(B C)(A B C) C(A B)(B C)(A B C) CB(A B) BC
2.6 用 代数法化简成最简“与或”表达式
(1)F AB B BCD AB B A B (2)F A AB AB AB A B AB A B A B 1 1
(3)F AB AD BD AC D AB AB AD BD AC D A AD BD AC D A BD