初三数学复习
初三数学复习资料

初三数学复习资料初三数学复习资料11、弧长公式n°的圆心角所对的弧长l的计算公式为L=nπr/1802、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.S=﹙n/360﹚πR2=1/2×lR3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.S=1/2×l×2πr=πrl4、弦切角定理弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角.弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角.一、选择题1.(20__o珠海,第4题3分)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为()A.24πcm2B.36πcm2C.12cm2D.24cm2考点:圆柱的计算.分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解.解答:解:圆柱的侧面积=2π×3×4=24π.故选A.点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法.2.(20__o广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.分析:连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.解答:解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选B.初三数学复习资料2因式分解的方法1.十字相乘法(1)把二次项系数和常数项分别分解因数;(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;(3)确定合适的十字图并写出因式分解的结果;(4)检验。
初三数学复习题带答案

初三数学复习题带答案1. 已知一个二次函数的图像开口向上,且经过点(1,0)和(-1,0),求该二次函数的解析式。
解析:由于二次函数图像开口向上,我们可以设二次函数的解析式为y=ax^2+bx+c。
因为图像经过点(1,0)和(-1,0),所以这两个点满足函数解析式,即:\[ a(1)^2+b(1)+c=0 \]\[ a(-1)^2+b(-1)+c=0 \]解得b=0,c=-a。
又因为图像开口向上,所以a>0。
因此,二次函数的解析式为y=ax^2-a。
答案:y=ax^2-a(a>0)2. 计算下列有理数的混合运算:\(\frac{1}{2} - \frac{1}{3} +\frac{5}{6}\)。
解析:首先找到这三个分数的最小公倍数,即6,然后将每个分数转换为相同的分母:\[ \frac{1}{2} = \frac{3}{6} \]\[ \frac{1}{3} = \frac{2}{6} \]\[ \frac{5}{6} \]接下来,将这些分数相加减:\[ \frac{3}{6} - \frac{2}{6} + \frac{5}{6} = \frac{3-2+5}{6} = \frac{6}{6} = 1 \]答案:13. 一个长方体的长、宽、高分别为3cm、4cm和5cm,求其体积。
解析:长方体的体积可以通过长、宽、高的乘积来计算,即:\[ V = 长 \times 宽 \times 高 \]将给定的尺寸代入公式中:\[ V = 3cm \times 4cm \times 5cm = 60cm^3 \]答案:60cm^34. 已知一个圆的半径为5cm,求其周长和面积。
解析:圆的周长公式为C=2πr,面积公式为A=πr^2。
将半径r=5cm 代入公式中:周长:\[ C = 2 \times \pi \times 5cm = 10\pi cm \]面积:\[ A = \pi \times (5cm)^2 = 25\pi cm^2 \]答案:周长为10π cm,面积为25π cm^25. 一个等腰三角形的底边长为6cm,两腰长为5cm,求其周长。
初三数学复习策略与方法

初三数学复习策略与方法初三数学复习是提高数学成绩的关键。
以下是一些初三数学复习的策略和方法,有助于巩固基础知识、提高解题能力和应对考试。
1. 确定复习计划:根据考试日期制定详细的复习计划,合理安排每天的学习时间和内容。
包括复习要点、题目量、做题时间等。
每周进行一次复习总结,查漏补缺,及时调整复习计划。
2. 复习基础知识:初三的数学复习首要任务是巩固基础知识。
熟悉掌握各个章节的公式、定理、性质和要点。
可以使用课本、习题册等工具进行温故知新。
重点理解和掌握易错知识点和典型题型。
3. 做题强化练习:通过大量的题目练习,培养解题思维和技巧。
选择各种难度的题目进行练习,包括选择题、填空题、解答题等。
可从试卷、习题册、网上资源等多渠道获取题目。
在做题过程中,可以注重解题方法和思路,培养快速解题的能力。
4. 学会归纳总结:经常对复习过的知识点进行归纳总结,整理出错题集、笔记等。
对易错知识点进行反复阅读和巩固,强化记忆。
利用图表和思维导图等可视化工具,提高知识的理解和记忆效果。
5. 制定错题集:将每次做错的题目整理成一个错题集,及时复习和解析错题,分析错误原因,找出解题思路和规律。
通过对错题的梳理和复习,避免同类错误的再次发生。
6. 多做试卷:根据学校的模拟试卷和历年试题,进行多次模拟考试。
模拟考试可以检验复习效果,评估自己的学习进度和能力水平。
对错题进行仔细分析和归纳总结,及时纠正错误,找出弱点并加以强化练习。
7. 加强与老师的互动:与老师保持良好的沟通和互动,及时请教问题和解疑惑。
反复向老师请教难点和疑难问题,听取老师的解析和解题思路。
老师可以给予指导和建议,帮助学生提高学习效果。
8. 注重解题技巧:学会灵活运用解题方法和技巧。
通过解题技巧的应用,可以提高解题速度和准确率。
要注意观察题目的特点和要求,运用相关规律和知识点解题,避免走入思维误区。
9. 小组合作学习:与同学组成学习小组,合作解题和互相讨论。
相互共享学习资源和经验,提高学习效果。
初三数学复习计划精选10篇

初三数学复习计划精选10篇时间的脚步是无声的,它在不经意间流逝,我们又将续写新的诗篇,展开新的旅程,此时此刻需要制定一个详细的计划了。
拟起计划来就毫无头绪?下面是美丽的小编帮大家整理的初三数学复习计划精选10篇。
初三数学复习计划篇一中考的数学复习分为五轮进行。
一轮:(3月1日——4月1日)分册复习1、在认真研究20__年考试复习大纲,摸清初中数学内容的脉络,开展基础知识系统复习。
主要以课本分册复习,一章一单元过关,使知识系统化,练习专题化,专题规律化。
通过典型的实例、习题讲解让学生掌握学习方法,对例、习题能举一反三,触类旁通。
同时并定期检测,定期检查学生完成的作业。
对于作业、练习、测验中的问题,采用集中讲授和个别辅导相结合,因材施教,全面提高复习效率。
第二轮:(4月2日——5月1日)按复习资料复习按照所订的复习资料复习,从数与代数、空间与图形、统计与概率、实践与综合应用等25讲的内容进行系统的复习。
如在复习统计与概率时,将统计与概率的有关知识按照课本要求中的识记、理解、运用整理出来,然后以课本进行基础知识系统复习。
第三轮:(5月2日——5月28日)专题复习专题复习的主要目的是为了将一轮、第二轮复习知识点、线结合,交织成知识网,注重与现实的联系,以达到能力的培养和提高。
“专题复习”我们按照中考题型分为“填空、选择题”、“商品经济问题”“阅读材料题”、“开放性题”等。
同时还要根据历年中考试卷命题的特点,精心选择一些新颖的、有代表性的题型进行专题训练。
第四轮:(5月29日——6月14日)强化练习从近年来的中考卷中选题,编制与中考数学试题完全接轨的、符合新课改标准及命题特点和规律的、高质量的模拟试卷进行训练,每份的练习要求学生独立完成,老师要及时批改,重点讲评,讲解时要善于引导学生自己去发现规律、问题,使学生在主动学习中去体会,感悟概念、定理和规律。
第五轮:(6月15日——6月21日)查漏补缺通过强化练习后存在的问题,要指导学生进行回味练习,扫清盲点,帮助学生对以前做错和容易错的题目进行较后一遍清扫。
初三数学中考复习3篇

初三数学中考复习第一篇:初三数学中考复习之代数基础代数是初中数学的重要部分,掌握代数知识对中考至关重要。
以下是代数基础的重点知识。
一、代数式代数式是用字母与数的组合表示的数学式子,例如:3x+5、x²+2x-1。
代数式中含有自变量和系数。
自变量就是字母,通常用x,y等表示。
系数就是字母前面的数字,例如:3x中的系数是3。
二、方程方程是等式的一种,它的形式为:ax+b=c,其中a、b、c 是已知数,x是未知数。
方程的解就是使等式成立的未知数的值。
例如:3x+2=5,x=1,x=1就是这个方程的解。
解方程的方法有加减消法、积分消法、代入法和配方法等。
三、函数函数的概念是一个自变量的取值对应一个函数值。
函数由自变量x和函数值y组成,通常用y=f(x)表示。
例如:y=x²-1,当x=2时,y=3。
函数有最大值、最小值、零点、单调性、奇偶性等概念。
四、初中数学常用公式1. 一元二次方程的根公式:x1、x2 = (-b±√(b²-4ac))/2a2. 数列通项公式:an = a1+(n-1)d3. 平面图形面积公式:(1)三角形面积公式:S=1/2bh(2)矩形面积公式:S=lw(3)平行四边形面积公式:S=bh(4)梯形面积公式:S=1/2(a+b)h以上就是初三数学中考复习之代数基础的知识点,希望同学们认真复习,顺利通过中考。
第二篇:初三数学中考复习之几何基础初中数学中的几何是重要的部分,包含了图形、空间、证明等知识点。
以下是几何基础的知识点。
一、平面几何平面几何包括了线段、角、三角形、四边形、多边形、圆等图形的分类、性质、判定和计算等。
1. 直角三角形的勾股定理直角三角形中,直角边的平方等于斜边上两条线段平方和。
即:a²+b²=c²。
2. 极角的概念平面直角坐标系原点引一条射线,叫做极轴。
极轴与射线的夹角叫做极角,记作θ。
二、立体几何立体几何包括了立体图形的分类、性质、判定和计算等。
数学中考复习备考方案(精选6篇)

数学中考复习备考方案(精选6篇)数学中考复习备考方案1一、指导思想以课程标准为指南,以考试说明为依据,以教材为载体,以训练为主线,以考试为渠道,以心理素养和应试实力培育为突破口,面对全体学生,全面提中学考成果。
二、复习原则1、低起点,小步伐,快反馈,高密度;2、讲练结合,以练代讲;3、面对全体,关注差异;4、培优扶差;5、有效教学,向课堂要质量。
三、复习设计(一)确立目标,结合每次考试成果比照指标找差距1、学校制定升学指标。
把重点中学一榜、指标到校、一般中学、职高指标确定总数后分解到各班级,张榜公示。
2、班级制定升学指标。
即对分解到班级的指标落实到人头。
要和学生谈话、沟通、指导,让学生给自己定位。
3、任课老师制定分数指标。
对每一名学生应当达到多少分定位。
4、学生自我设计目标。
对升入学校,各科志向分数预设。
(二)制订安排1、初三上半年结束全年课程;2、寒假时间同科老师集体探讨制订复习安排,体现:(1)复习课时;(2)每课时复习内容;(3)复习方法;(4)实现目标。
制订复习安排要从二个方面入手:(1)资源:课标——比照课标,反复学习,吃透标准,明确方向;考纲——依据考纲,反复探讨,定量、定位。
考题——收集近几年中考题,老师做题、析题、探讨各学问点,生成的题型、分值和难易度。
教材——不离教材,挖掘教材,提炼升华,熟知教材编写意图、体系,归纳学问点,形成学问网络。
学情——充分了解学生,知根知底,知彼知己,对症下药,因材施教。
信息——刚好捕获中考有关的信息,筛选、疏理,择用和调整。
(2)三轮复习法:第一轮:单元章节复习。
(3月1日——4月20日)复习时重点抓学科学问的单元、章节过关。
每天定量记忆。
复习各学问点、考点时,将其题型化(即设计成题)。
要四平八稳,要由易到难;重视基础学问和基本实力的训练。
其次轮:专项复习(4月20日——5月20日)首先要对中考的考点学问进行训练,其次要对中考题型进行专项训练。
在训练考点学问时,着重训练标准和考纲所涉及的重点和难点。
2025年中考数学总复习第一部分考点精讲第二章方程(组)与不等式(组)第三节分式方程及其应用

耽搁,故李老师骑自行车先行出发,20 min后,张老师乘坐汽车出发,结果
两人同时到达①.已知汽车的平均速度是自行车平均速度的2倍,求李老师骑自
行车的平均速度;
2025版
数学
甘肃专版
解:设自行车的平均速度为x km/h,则汽车的平均速度为2x km/h,根据题意,
2025版
第三节
数学
甘肃专版
分式方程及其应用
2025版
数学
甘肃专版
2025版
分
式
方
程
及
其
应
用
相
关
概
念
数学
甘肃专版
2025版
分
式
方
程
及
其
应
用
数学
甘肃专版
2025版
分
式
方
程
及
其
应
用
分
式
方
程
的
实
际
应
用
数学
甘肃专版
2025版
分
式
方
程
及
其
应
用
分
式
方
程
的
实
际
应
用
数学
甘肃专版
2025版
数学
甘肃专版
2025版
得
- = ,解得x=15,
经检验,x=15是原分式方程的解,且符合题意.
答:李老师骑自行车的平均速度为15 km/h.
2025版
数学
甘肃专版
【分层分析】
第一步:设自行车的平均速度为x km/h;
初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
初三数学复习重点

初三数学复习重点(一)不等式的概念1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法。
不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
一元一次不等式1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1.一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集。
(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
初三数学复习计划总结大全6篇

初三数学复习计划总结大全6篇为了应对考试、升学和就业等决定人的下一个阶段的生活,对前期所学所做的事情进行回顾。
为了达成更好回顾效果而制定的周密详尽可操作性强的任务时间表,叫做复习计划。
接下来是小编为大家整理的初三数学复习计划总结,希望大家喜欢!初三数学复习计划总结一一、第一轮复习(3-4周)1、第一轮复习的形式:“梳理知识脉络,构建知识体系”----理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。
②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,换元法,判别式法(韦达定理),待定系数法,构造法,反证法等。
③过基本技能关。
应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。
(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。
①数与代数分为3个大单元:数与式、方程与不等式、函数。
②空间和图形分为3个大单元:几何基本概念(线与角),平面图形,立体图形③统计与概率分为2个大单元:统计与概率(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。
(2)必须深钻教材,不能脱离课本按中考试卷的设计原则,基础题都是送分的题,有不少基础题都是课本上的原题或改造。
(3)掌握基础知识,一定要从理解角度出发数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。
相对而言,“题海战术”在这个阶段是不适用的。
二、第二轮复习(3周)1、第二轮复习的形式:“突出重点,综合提高”----练习专题化,专题规律化(1)目的:融会贯通考纲上的所有知识点①进行专题化训练将所有考纲上要求的知识点分为为多个专题,按专题进行复习,进行有针对性的、典型性、层次性、切中要害的强化练习。
九年级数学复习方法

九年级数学复习方法九年级数学复习方法指导九年级数学复习方法指导:一、数学复习计划分为三个阶段第一阶段:以回顾基础知识为主。
即单元复习,全面复习基础知识,加强基本技能训练。
第二阶段:专题复习。
第三阶段:中考模拟。
具体实施如下:第一阶段:以回顾基础知识为主。
这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统、形成知识网络。
我们将初中三年来的知识分成九个单元,即:《数与式》、《方程和不等式(组)》、《函数及其图象》、《统计与概率》、《图形初步认识和三角形》、《四边形》、《相似和解直角三角形》、《圆》、《图形的变换、投影与视图》。
第一阶段的复习我们主要采取了以下措施:1、加强了数学教师之间的合作,明确了每位教师的任务。
即对每个单元的复习必须出示至少4份试卷。
第一份试卷,以引导学生系统梳理教材、构建知识结构,归纳和总结各种概念、公理、定理、公式为主。
教师要力求对每个概念以及公式定理讲解到位,使学生对基础知识的掌握达到“内化”的要求,并形成学生的能力,使学生能应用知识去解决问题、分析问题。
对每个重要的概念和公式,要有专门的跟踪练习,这部分练习不易过难,主要考察对基础知识的理解和掌握。
这份试卷试卷一般提前3天完成。
第二份试卷,以归纳总结本单元的常用结论、解题方法、一题多解、一题多变为主。
第一轮复习要扎扎实实地抓基础,使每个学生对初中数学知识能达到"理解"和"掌握"的要求,在应用基础知识时能做到熟练、正确和迅速。
不搞题海战术,精讲精练,举一反三、触类旁通。
进行有针对性、典型性、层次性、切中要害的强化练习。
定期检查学生完成的作业,及时反馈。
教师对于作业、练习、测验中的问题,应采用集中讲授和个别辅导相结合,引导学生做好解题后的反思和总结。
注重思想教育,不断激发学生学好数学的自信心,并创造条件,让学困生体验成功。
第二阶段:专题复习进行如下专题复习:“图表信息问题”、“阅读理解题”、“情景应用问题”、“开放性问题”、“探索性问题” 、“数学思想方法”、“方案设计问题” 、“综合性问题”等以便学生熟悉、适应这些题型。
初三数学总复习大纲

初三数学总复习大纲
第一部分数与式
●实数
●平方根和立方根
●科学计数法、近似数和有效数字
●指数
●整式运算
●因式分解
●分式
●二次根式
第二部分方程(组)和不等式(组)
●一元一次方程、一元二次方程
●分式方程
●一次方程组
●不等式(组)
●一元二次方程根的判别式
●列方程或方程组解应用题
第三部分函数
●平面直角坐标系、自变量x的取值范围
●正(反)比例函数
●一次函数的图像和性质
●二次函数的图像和性质
第四部分概率统计
●统计初步
●随机事件与简单事件的概率
●用频率估计概率、用列举法计算概率
●统计图表
●数据的收集、样本估计总体
第五部分几何基本概念
●基本概念
●平行线
第六部分空间图形
●简单的几何图形
第七部分三角形
●一般三角形
●等腰三角形
●直角三角形
●锐角三角形
●解直角三角形
●全等三角形
第八部分四边形
●平行四边形
●矩形、菱形、正方形
●梯形
第九部分图形与变换
●图形的平移、旋转与轴对称第十部分相似形
●比例线段
●相似三角形的判定与性质第十一部分圆
●远的有关概念及一些性质●和圆有关的角
●直线和圆的位置关系
●圆与圆的位置关系
●与圆相关的某些图形的计算●作图题。
初三数学复习计划(优秀5篇)

初三数学复习计划(优秀5篇)篇一:初三数学复习计划篇一(一)复习目标(1)第22章、23章“二次根式”、“一元二次方程”主要是计算,教师提前先把概念、性质、方法综合复习,加入适当的练习,特别是“一元二次方程”的三个重要题型:①一元二次方程的定义:②一元二次方程的解法;③一元二次方程的应用。
在课堂上要逐一对这些题型归纳讲解,多强调解题方法的针对性。
最后针对平时练习中存在的问题,查漏补缺。
(2)第24章、25章“相似图形”、“解直角三角形”是几何部分。
这凉章的重点是相似三角形、直角三角形的性质及其应用。
所以记住性质是关键,学会应用是重点。
要学会生活中的图形是随时都可以转化成数学问题,不同图形之间的区别和联系要非常熟悉,形成一个有机整体。
对常见的解直角三角形的题要多练多总结。
(3)第26章“随机事件的概率”,主要是要能用列表法或画树状图法求两步或以上的事件的概率。
(二)复习措施(1)强化训练这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练。
特别是一元二次方程和解直角三角形,在复习过程中要分类型练习,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。
还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果。
(2)加强管理严格要求根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查。
对能力较强的个别学生要引导他们多做课外习题,适当提高做题难度。
(3)加强证明题的训练通过近三年的学习,我发现还有部分学生对证明题掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路。
在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生如何弄懂题意、怎样分析、怎样写证明过程。
力争让学生把各种类型题做全并抓住其特点。
(4)加强学困生的辅导制定详细的复习计划,对他们要多表扬多鼓励,调动他们学习的积极性,利用课余时间对他们进行辅导,辅导时要有耐心,要心平篇二:初三数学复习计划篇二一、教学内容分析本学期,将利用2个周时间结束九年级下册最后一个单元,开始进入初中数学总复习。
初三数学八种复习方法

初三数学八种复习方法一、抓好基础数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。
只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。
二、制定好计划和奋斗目标复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。
三、严防题海战术,克服盲目做题而不注重归纳的现象做习题是为了巩固知识、提高应变能力、思维能力、计算能力。
学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的。
但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。
因此要精做习题,注意知识的理解和灵活应用。
四、常做高考题,揭开高考试题的神秘面纱高考题是最好的习题,它在考查知识点时的切入点新而不俗,它正确地控制了对所考查的知识点的难度。
解答一定的高考题,有助于把握高考对该知识点的难度要求;有助于判断高考题目与平时常见题目的异同,增强判断题目信度的能力,防止做偏题、怪题。
五、归纳数学大思维、大策略数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。
六、打好最后阶段复习这一仗,促成数学学习的飞跃最后阶段的复习是专题讲座,老师讲对重点知识、重点解题方法、重点数学思想的详细讲座和强化训练。
七、积累一定的考试经验本学期每月初都有大的考试,加之每单元的单元测验和模拟考试有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技巧,使自己应有的水平在考试中得到充分的发挥。
初三数学总复习知识点整理归纳

初三数学总复习知识点整理归纳1500字初三数学总复习知识点整理归纳一、集合与函数1.集合的基本概念:元素、空集、全集、子集、真子集等。
2.集合的运算:交集、并集、差集、补集等。
3.集合的表示方法:列举法、描述法、区间法等。
4.函数的概念:自变量、因变量、定义域、值域、对应关系等。
5.函数的表示方法:映射图、方程、表格、函数关系式等。
6.函数的性质:单调性、奇偶性、周期性等。
二、整式与分式1.整式的概念:常数项、单项式、多项式等。
2.整式的基本运算:四则运算、乘法公式、乘法分配律等。
3.公因式与最大公因式:辗转相除法、分解因式、提取公因式等。
4.分式的概念:分子、分母、分数等。
5.分式的基本运算:四则运算、分数的化简、分数的比较等。
6.分式方程:一次分式方程、二次分式方程等。
三、一次方程与不等式1.一次方程:含有未知数的等式,解方程的常用方法、表示方法等。
2.一次不等式:含有未知数的不等式,解不等式的常用方法、表示方法等。
3.解一次方程与不等式的联立:解法及注意事项等。
4.设方程与不等式:通过设未知数解决问题的方法。
5.一元一次方程组:几何解法、代入法、消元法等。
四、二次方程与不等式1.二次方程的概念:一元二次方程、二项式平方、完全平方公式等。
2.二次方程的解法:因式分解法、配方法、求根公式等。
3.方程的解的个数与形式:零点个数与相似形、判别式等。
4.二次不等式:二次不等式的解法、图解法等。
五、函数的应用1.函数关系与函数图像:函数图象的刻画、函数图象的性质等。
2.函数的最值与代数曲线:最值的求法、函数最值的应用等。
3.函数的图像:函数图像与方程、曲线代数方程的研究等。
六、几何图形的性质1.多边形的性质:内角和、外角和、边的关系等。
2.三角形的性质:内角和、直角三角形的性质等。
3.全等三角形:全等的判定、全等的性质等。
4.相似三角形:相似的判定、相似三角形的性质等。
5.观察、发现和证明的方法与技巧等。
初三数学复习的最佳时间安排

初三数学复习的最佳时间安排初三的数学复习,像是一场漫长而紧张的马拉松比赛,规划得当才能在终点线上稳稳站立。
初三的数学复习需要智慧的安排,就像细心照料的花朵一般,要注意时间的施肥和浇水,才能开出最绚烂的花朵。
首先,最佳的复习时间安排应当从学期初就开始进行。
这个阶段,初三的数学知识尚在记忆的初期阶段,是复习的黄金时期。
定期的短时间复习,每周可以安排两到三次,每次大约三十分钟至一小时,通过不断温习已学知识,能帮助巩固基础,防止遗忘。
初期的复习任务轻松而愉快,如同晨间的阳光,给予你一天的活力。
进入学期中期,数学的复习需要更加细致且有针对性。
这时,可以将复习的重点放在各个章节的难点和重点上。
安排每日的复习时间为一小时到一小时半,每天进行不同章节的练习,形成一个系统化的知识框架。
在这个阶段,复习如同在花园里修剪枝叶,帮助数学知识更加清晰有序,去除多余的杂草。
随着中期复习的深入,考试的脚步越来越近,此时的复习应更加集中和高效。
安排每周的复习时间为两到三小时,重点放在模拟考试和错题的总结上。
这段时间的复习,像是雕刻师在精雕细琢作品一样,精确地修正每一个错误,提升整体的解题能力。
通过模拟考试的练习,能够发现自己在考试中的薄弱环节,及时调整复习策略,逐步接近数学的“极限”。
在考试前的最后冲刺阶段,复习应当集中在高频考点和易错题上。
每天的复习时间可以安排为两到三小时,通过高强度的复习和集中训练,迅速提高解题的速度和准确率。
此时的复习就像是运动员最后的训练,必须集中全力,确保各项技能的提升,以最佳的状态迎接考试的挑战。
总之,初三数学复习的最佳时间安排,既需要系统化的规划,也需根据个人的实际情况灵活调整。
将复习时间分配得当,如同细致的园艺师,能帮助学生在数学的学习之路上,顺利收获丰硕的果实。
这样,数学的知识将变得扎实且牢固,为期末考试打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点一、一元一次方程的概念
1、方程:含有未知数的等式叫做方程。
2、方程的解:能使方程两边相等的未知数的值叫做方程的解。
3、等式的性质
(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
4、一元一次方程
只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程
)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b
是常数项。
例1 解方程
(1)()()() 3175301x x x --+=+; (2)21101
136
x x ++-=.
例2 当m 取什么整数时,关于x 的方程1
514
()2323
mx x -=-的解是正整数?
例3 (08福州)今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了
巨大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:
条信息:
信息一:这三个班的捐款总金额是7700元;
信息二:(2)班的捐款金额比(3)班的捐款金额多300元; 信息三:(1)班学生平均每人捐款的金额大于..48元,小于..51元. 请根据以上信息,帮助吴老师解决下列问题:
(1)求出(2)班与(3)班的捐款金额各是多少元; (2)求出(1)班的学生人数.
【中考演练】
1.若5x -5的值与2x -9的值互为相反数,则x =_____.
2. 关于x 的方程0)1(2=--a x 的解是3,则a 的值为________________.
3. 某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( ) A .15025%x =⨯ B . 25%150x ⋅= C .
%25150=-x
x
D . 15025%x -= 4.解方程
16
1
10312=+-+x x 时,去分母、去括号后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x x C. 611024=--+x x D. 611024=+-+x x 5.解下列方程:
()()()(1) 3175301x x x --+=+; (2)
121253
x x x
-+-=-.
6. 某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 %.该厂第一季度生产甲、乙两种机器各多少台?
考点七、二元一次方程组
1、二元一次方程:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。
2、二元一次方程的解:使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
3、二元一次方程组:两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。
4、二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
5、二元一次方正组的解法:(1)代入法(2)加减法
6、三元一次方程:把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。
7、三元一次方程组:由三个(或三个以上)一次方程组成,且含有三个未知数的方程组,叫做三元一次方程组。
【典例精析】 例1 解下列方程组:
(1){
4519323a b a b +=--= (2){
220
7441
x y x y ++=-=-
例2 若方程组{
31x y x y +=-=与方程组{
8
4
mx ny mx ny +=-=的解相同,求m 、n 的值.
【中考演练】 1. 若⎩⎨
⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩
⎨⎧==______________
b a . 2. 在方程3x +4y =16中,当x =3时,y =___;若x 、y 都是正整数,这个方程的解为_____.
3. 下列方程组中,是二元一次方程组的是( )
A .⎪⎩
⎪
⎨⎧=+=+9114y x y x
B .⎩⎨⎧=+=+75z y y x
C .⎩⎨⎧=-=6
231
y x x
D .⎩⎨
⎧=-=-1
y x xy
y x
4. 关于x 、y 的方程组⎩⎨
⎧=-=+m
y x m
y x 932的解是方程3x +2y =34的一组解,那么m =( )
A .2
B .-1
C .1
D .-2
5.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:
2 3
表格中捐款2若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组
A .272366x y x y +=⎧⎨+=⎩
B .2723100x y x y +=⎧⎨+=⎩
C .273266x y x y +=⎧⎨+=⎩
D .2732100x y x y +=⎧⎨+=⎩
考点三、一元二次方程的解法
1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2
)(的一元二次方程。
根据平方根的定义可知,a
x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法
配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式2
2
2
)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有2
2
2
)(2b x b bx x ±=+±。
3、公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02
≠=++a c bx ax 的求根公式: )04(242
2≥--±-=
ac b a
ac b b x 4、因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
考点四、一元二次方程根的判别式
根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程
)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆
考点五、一元二次方程根与系数的关系
如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a
b
x x -
=+21,a c x x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
【典例精析】
例1 选用合适的方法解下列方程:
(1))4(5)4(2+=+x x ; (2)x x 4)1(2=+; (3)22)21()3(x x -=+; (4)31022=-x x .
例2 已知一元二次方程
0437122=-+++-m m mx x m )(有一个根为零,求m 的值.
例3 用22长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能
否折成面积是32㎝2的矩形呢?为什么?
1.方程 (5x -2) (x -7)=9 (x -7)的解是_________. 2.已知2是关于x 的方程
2
3x 2
-2 a =0的一个解,则2a -1的值是_________. 3.关于y 的方程22320y py p +-=有一个根是2y =,则关于x 的方程23x p -=的解
为_____.
4.下列方程中是一元二次方程的有( )
①9 x 2
=7 x ②3
2
y =8 ③ 3y(y-1)=y(3y+1) ④ x 2-2y+6=0
⑤ 2( x 2+1)=10 ⑥
2
4
x -x-1=0 A . ①②③ B. ①③⑤ C. ①②⑤ D. ⑥①⑤
5. 一元二次方程(4x +1)(2x -3)=5x 2+1化成一般形式ax 2+bx +c =0(a ≠0)后a,b,c
的值为( )
A .3,-10,-4 B. 3,-12,-2 C. 8,-10,-2 D. 8,-12,4
6.一元二次方程2x 2-(m +1)x +1=x (x -1) 化成一般形式后二次项的系数为1,一次项的系数为-1,则m 的值为( )
A. -1
B. 1
C. -2
D. 2 7.解方程
(1) x 2-5x -6=0 ; (2) 3x 2-4x -1=0(用公式法);
(3) 4x 2
-8x +1=0(用配方法); (4)x 222 x+1=0.
8.某商店4月份销售额为50万元,第二季度的总销售额为182万元,若5、6两个
月的月增长率相同,求月增长率.。