三门县高中2018-2019学年高二下学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三门县高中2018-2019学年高二下学期第二次月考试卷数学
一、选择题
1. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为( )
A .6
B .9
C .12
D .18 2. 若,则下列不等式一定成立的是( ) A . B .
C .
D .
3. 设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为( ) A .(﹣1,0) B .(0,1) C .(1,2) D .(2,3)
4. 下列各组表示同一函数的是( )
A .
y=
与y=
(
)2
B .y=lgx 2与y=2lgx
C .
y=1+与
y=1+
D .y=x 2﹣1(x ∈R )与y=x 2﹣1(x ∈N )
5. 已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( ) A .∅ B .{x|x >0} C .{x|x <1} D .{x|0<x <1}
可.
6. 下列四个命题中的真命题是( )
A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示
B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
C .不经过原点的直线都可以用方程
1x y
a b
+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示
7. 设x ,y ∈R ,且x+y=4,则5x +5y 的最小值是( )
A .9
B .25
C .162
D .50 8.
设向量
,满足:
||=3,
||=4
,
=0
.以
,
,
﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )
A .3
B .4
C .5
D .6
9. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,2
0010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2
C π
=
”的充要条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 10.若直线2y x =上存在点(,)x y 满足约束条件
30,230,,x y x y x m +-≤⎧⎪
--≤⎨⎪≥⎩
则实数m 的最大值为 A 、1- B 、 C 、
3
2
D 、2 11.459和357的最大公约数( ) A .3 B .9
C .17
D .51
12.设等比数列{a n }的公比q=2,前n 项和为S n
,则=( )
A .2
B .4
C
.
D
.
二、填空题
13
.已知
是圆
为圆心)上一动点,线段AB 的垂直平分线交
BF 于P ,则动点P 的轨迹方程为 .
14.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 . 15.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 .
16.设抛物线C :y 2=3px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为 .
17.(若集合A⊊{2,3,7},且A中至多有1个奇数,则这样的集合共有个.
18.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次
服药,则第二天上午点服完药时,药在其体内的残留量是毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)
三、解答题
19.在平面直角坐标系xOy中,点P(x,y)满足=3,其中=(2x+3,y),=(2x﹣﹣3,3y).(1)求点P的轨迹方程;
(2)过点F(0,1)的直线l交点P的轨迹于A,B两点,若|AB|=,求直线l的方程.
20.如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.
(Ⅰ)求证AB•PC=PA•AC
(Ⅱ)求AD•AE的值.
21.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)在某一个周期内的图象时,
1,x 2,x 3的值,并写出函数f (x )的解析式;
(Ⅱ)将f (x )的图象向右平移个单位得到函数
g (x )的图象,若函数g (x )在区间[0,m](3<m <4)上的图象的最高点和最低点分别为M ,N ,求向量与
夹角θ的大小.
22.如图,已知五面体ABCDE ,其中△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC . (Ⅰ)证明:AD ⊥BC
(Ⅱ)若AB=4,BC=2,且二面角A
﹣BD ﹣C 所成角θ的正切值是2,试求该几何体ABCDE 的体积.
23.本小题满分10分选修4
4-:坐标系与参数方程选讲
在直角坐标系xoy 中,直线的参数方程为322
x y ⎧=-
⎪⎪⎨⎪=⎪⎩为参数,在极坐标系与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴中,圆C 的方程为ρθ=.
Ⅰ求圆C 的圆心到直线的距离;
Ⅱ设圆C 与直线交于点A B 、,若点P 的坐标为(3,,求PA PB +.
24.(本小题满分13分)
在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2
ABC π
∠=
,AD =33AB DC ==.
(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;
(Ⅱ)若PA PD ==
PB PC =,求直线PA 与平面PBC 所成角的大小.
25.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:
(1率分布直方图.
A
B
C
D
P
26.已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程x2﹣x+m﹣4=0的两根异号”.若p∨q为
真,¬p为真,求实数m的取值范围.
三门县高中2018-2019学年高二下学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】
【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a=18,选D.
法二:a=6 102,b=2 016,r=54,
a=2 016,b=54,r=18,
a=54,b=18,r=0.
∴输出a=18,故选D.
2.【答案】D
【解析】
因为,有可能为负值,所以排除A,C,因为函数为减函数且,所以,排除B,故选D
答案:D
3.【答案】C
【解析】解:f(x)=e x+x﹣4,
f(﹣1)=e﹣1﹣1﹣4<0,
f(0)=e0+0﹣4<0,
f(1)=e1+1﹣4<0,
f(2)=e2+2﹣4>0,
f(3)=e3+3﹣4>0,
∵f(1)•f(2)<0,
∴由零点判定定理可知,函数的零点在(1,2).
故选:C.
4.【答案】C
【解析】解:A.y=|x|,定义域为R,y=()2
=x,定义域为{x|x≥0},定义域不同,不能表示同一函数.B.y=lgx2,的定义域为{x|x≠0},y=2lgx的定义域为{x|x>0},所以两个函数的定义域不同,所以不能表示同一函数.
C.两个函数的定义域都为{x|x≠0},对应法则相同,能表示同一函数.
D.两个函数的定义域不同,不能表示同一函数.
故选:C.
【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.
5.【答案】D
【解析】解:由已知M={x|﹣1<x<1},
N={x|x>0},则M∩N={x|0<x<1},
故选D.
【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题,
6.【答案】B
【解析】
考点:直线方程的形式.
【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 7.【答案】D
【解析】解:∵5x>0,5y>0,又x+y=4,
∴5x+5y≥2=2=2=50.
故选D.
【点评】本题考查基本不等式,关键在于在应用基本不等式时灵活应用指数运算的性质,属于基础题.
8.【答案】B
【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,
∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,
对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,
但5个以上的交点不能实现.
故选B
【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.
9.【答案】D
10.【答案】B
【解析】如图,当直线m x =经过函数x y 2=的图象 与直线03=-+y x 的交点时,
函数x y 2=的图像仅有一个点P 在可行域内,
由230y x x y =⎧⎨+-=⎩
,得)2,1(P ,∴1≤m .
11.【答案】D
【解析】解:∵459÷357=1…102, 357÷102=3…51, 102÷51=2,
∴459和357的最大公约数是51, 故选:D .
【点评】本题考查辗转相除法,这是一个算法案例,还有一个求最大公约数的方法是更相减损法,这种题目出现的比较少,但是要掌握题目的解法.本题也可以验证得到结果.
12.【答案】C
【解析】解:由于q=2,
∴
∴
;
故选:C .
二、填空题
13.【答案】
.
【解析】解:依题意可知|BP|+|PF|=2,|PB|=|PA|
4
25
4141
5
4
3
2
∴|AP|+|PF|=2
根据椭圆的定义可知,点P的轨迹为以A,F为焦点的椭圆,
a=1,c=,则有b=
故点P的轨迹方程为
故答案为
【点评】本题主要考查了用定义法求轨迹方程的问题.考查了学生综合分析问题和解决问题的能力.
14.【答案】.
【解析】解:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),
∴设直线l方程为y=k(x﹣1),
由,消去x得.
设A(x1,y1),B(x2,y2),
可得y1+y2=,y1y2=﹣4①.
∵|AF|=3|BF|,
∴y1+3y2=0,可得y1=﹣3y2,代入①得﹣2y2=,且﹣3y22=﹣4,
消去y
得k2=3,解之得k=±.
2
故答案为:.
【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.
15.【答案】.
【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,
其中4个点构成平行四边形的选法有3个,
∴4个点构成平行四边形的概率P==.
故答案为:.
【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.16.【答案】y2=4x或y2=16x.
【解析】解:因为抛物线C方程为y2=3px(p>0)所以焦点F坐标为(,0),可得|OF|=
因为以MF为直径的圆过点(0,2),所以设A(0,2),可得AF⊥AM
Rt△AOF中,|AF|=,
所以sin∠OAF==
因为根据抛物线的定义,得直线AO切以MF为直径的圆于A点,
所以∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,
因为|MF|=5,|AF|=,
所以=,整理得4+=,解之可得p=或p=
因此,抛物线C的方程为y2=4x或y2=16x.
故答案为:y2=4x或y2=16x.
【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.
17.【答案】6
【解析】解:集合A为{2,3,7}的真子集有7个,奇数3、7都包含的有{3,7},则符合条件的有7﹣1=6个.
故答案为:6
【点评】本题考查集合的子集问题,属基础知识的考查.
18.【答案】, 无.
【解析】【知识点】等比数列
【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,
所以)=300,=350.
由,
所以是一个等比数列,
所以
所以若该患者坚持长期服用此药无明显副作用。
故答案为:, 无.
三、解答题
19.【答案】
【解析】解:(1)由题意,=(2x+3)(2x﹣3)+3y2
=3,
可化为4x2+3y2=12,即:;
∴点P的轨迹方程为;
(2)①当直线l的斜率不存在时,|AB|=4,不合要求,舍去;
②当直线l的斜率存在时,设方程为y=kx+1,A(x1,y1),B(x2,y2),
代入椭圆方程可得:(4+3k2)x2+6kx﹣9=0,
∴x1+x2=,x1x2=,
∴|AB|=•|x1﹣x2|==,
∴k=±,
∴直线l的方程y=±x+1.
【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,属于中档题.
20.【答案】
【解析】(1)证明:∵PA为圆O的切线,
∴∠PAB=∠ACP,又∠P为公共角,
∴△PAB∽△PCA,
∴,
∴AB•PC=PA•AC.…
(2)解:∵PA为圆O的切线,BC是过点O的割线,
∴PA2=PB•PC,
∴PC=40,BC=30,
又∵∠CAB=90°,∴AC2+AB2=BC2=900,
又由(1)知,
∴AC=12,AB=6,
连接EC,则∠CAE=∠EAB,
∴△ACE∽△ADB,∴,
∴.
【点评】本题考查三角形相似的证明和应用,考查线段乘积的求法,是中档题,解题时要注意切割线定理的合理运用.
21.【答案】
【解析】解:(Ⅰ)由条件知,,,
∴,,
∴,.
(Ⅱ)∵函数f(x)的图象向右平移个单位得到函数g(x)的图象,
∴,
∵函数g(x)在区间[0,m](m∈(3,4))上的图象的最高点和最低点分别为M,N,
∴最高点为,最低点为,∴,,
∴,又0≤θ≤π,∴.
【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.
22.【答案】
【解析】(Ⅰ)证明:∵AB是圆O的直径,
∴AC⊥BC,
又∵DC⊥平面ABC
∴DC⊥BC,
又AC∩CD=C,
∴BC⊥平面ACD,
又AD⊂平面ACD,
∴AD⊥BC.
(Ⅱ)解:设CD=a,以CB,CA,CD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示.
则C(0,0,0),B(2,0,0),,D(0,0,a).
由(Ⅰ)可得,AC⊥平面BCD,
∴平面BCD 的一个法向量是=
,
设=(x ,y ,z )为平面ABD 的一个法向量,
由条件得, =, =(﹣2,0,a ).
∴
即
,
不妨令x=1,则y=,z=,
∴=
.
又二面角A ﹣BD ﹣C 所成角θ的正切值是2,
∴.
∴
=cos θ=
,
∴==,解得a=2.
∴V ABCDE =V E ﹣ADC +V E ﹣ABC
=+
=+
=
=8.
∴该几何体ABCDE 的体积是8.
【点评】本题考查了向量相互垂直与数量积的关系证明线面垂直、利用法向量的夹角求出二面角的方法、三棱锥的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题.
23.【答案】
【解析】Ⅰ∵:C ρθ= ∴2
:sin C ρθ=
∴22:0C x y +-=,即圆C 的标准方程为22
(5x y +=.
直线的普通方程为30x y +-=.
所以,圆C
2
=
.
Ⅱ由22(53
x y y x ⎧+=⎪⎨=-⎪⎩
,解得12x y =⎧⎪⎨=⎪⎩
或21x y =⎧⎪⎨=⎪⎩
所以 24.【答案】
【解析】解: (Ⅰ)当1
3PE PB =
时,//CE 平面PAD . 设F 为PA 上一点,且1
3PF PA =,连结EF 、DF 、EC ,
那么//EF AB ,1
3EF AB =.
∵//DC AB ,1
3
DC AB =,∴//EF DC ,EF DC =,∴//EC FD .
又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分) (Ⅱ)设O 、G 分别为AD 、BC 的中点,连结OP 、OG 、PG ,
∵PB PC =,∴PG BC ⊥,易知OG BC ⊥,∴BC ⊥平面POG ,∴BC OP ⊥. 又∵PA PD =,∴OP AD ⊥,∴OP ⊥平面ABCD . (8分)
建立空间直角坐标系O xyz -(如图),其中x 轴//BC ,y 轴//AB ,则有(1,1,0)A -,(1,2,0)B ,
(1,2,0)C -
.由(6)(2PO ==-=知(0,0,2)P . (9分)
设平面PBC 的法向量为(,,)n x y z =,(1,2,2)PB =-,(2,0,0)CB =u r
则00
n PB n CB ⎧⋅=⎪⎨⋅=⎪⎩ 即22020x y z x +-=⎧⎨=⎩,取(0,1,1)n =.
设直线PA 与平面PBC 所成角为θ,(1,1,2)AP =-u u u r ,则||3
sin |cos ,|2||||
AP n AP n AP n θ⋅=<>==
⋅, ∴
π
θ=
,∴直线PB 与平面PAD 所成角为3
π
. (
13分) 25.【答案】
【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.
A
||||PA PB +==
(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分.平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5,
即估计选择理科的学生的平均分为79.5分.
26.【答案】
【解析】解:若命题p是真命题:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”,则<1,解得1﹣
若命题q是真命题:“方程x2﹣x+m﹣4=0的两根异号”,则m﹣4<0,解得m<4.
若p∨q为真,¬p为真,
则p为假命题,q为真命题.
∴.
∴实数m的取值范围是或.
【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考
查了推理能力与计算能力,属于中档题.。