四平市实验中学2018-2019学年上学期高三期中数学模拟题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四平市实验中学2018-2019学年上学期高三期中数学模拟题
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 设复数1i z =-(i 是虚数单位),则复数
22z z
+=( ) A.1i - B.1i + C. 2i + D. 2i - 【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.
2. 在复平面内,复数
1z i +所对应的点为(2,1)-,i 是虚数单位,则z =( ) A .3i -- B .3i -+ C .3i - D .3i +
3. 设集合{|12}A x x =<<,{|}B x x a =<,若A B ⊆,则的取值范围是( )
A .{|2}a a ≤
B .{|1}a a ≤
C .{|1}a a ≥
D .{|2}a a ≥
4. ABC ∆的外接圆圆心为O ,半径为2,OA AB AC ++为零向量,且||||OA AB =,则CA 在BC 方向上的投影为( )
A .-3
B .
C .3
D 5. 在ABC ∆中,10a =,60B =,45C =,则等于( )
A .10
B .1)
C 1
D .6. 设为全集,是集合,则“存在集合使得是“”的( ) A 充分而不必要条件
B 必要而不充分条件
C 充要条件
D 既不充分也不必要条件
7. 执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为( )
A .243
B .363
C .729
D .1092
【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.
8.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线
段记为,,将线段竖直放置在同一水平线上,则大致的图形是()
A
B
C D
9. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若
2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )
A .2
B .3 C.1
D .4 10.执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( )
A.[0,2]e -
B. (,2]e -?
C.[0,5]
D.[3,5]e -
【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.
11.设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A
B =ð( ) A.{}|12x x <≤ B.{}|21x x -≤< C. {}|21x x -≤≤ D. {}|22x x -≤≤ 【命题意图】本题主要考查集合的概念与运算,属容易题.
12.如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )
A.直线
B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.若复数34sin (cos )i 55
z αα=-+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.
14.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.
15.已知函数2
1()sin cos sin 2f x a x x x =-+的一条对称轴方程为6
x π=,则函数()f x 的最大值为( )
A .1
B .±1
C
D .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.
16.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本小题满分12分)已知在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 且
)3(s i n ))(sin (sin c b C a b B A -=-+.
(Ⅰ)求角A 的大小;
(Ⅱ) 若2a =,ABC ∆c b ,.
18.(本小题满分12分)某市拟定2016年城市建设,,A B C 三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C 三项重点工程竞标成功的概率分别为a ,b ,14()a b >,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为34
.
(1)求a 与b 的值;
(2)公司准备对该公司参加,,A B C 三个项目的竞标团队进行奖励,A 项目竞标成功奖励2万元,B 项目竞标成功奖励4万元,C 项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.
【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.
19.(本小题满分13分)
椭圆C :22
221(0)x y a b a b
+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点M ,点M 在x 轴的上方.当0m =
时,1||2
MF =. (Ⅰ)求椭圆C 的方程;
(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且1212
3MF F NF F S S ∆∆=,求直线l 的方程.
20.(本小题满分12分)
两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.
(1)求0x =,1y =,2z =的概率;
(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.
【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.
21.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.
(I)求AM的长;
(Ⅱ)求面DCE与面BCE夹角的余弦值.
22.(本小题满分12分)
在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式x2cos C+4x sin C+6≥0对一切实数x恒
成立.
(1)求cos C的取值范围;
(2)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的
形状.
【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.
四平市实验中学2018-2019学年上学期高三期中数学模拟题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】A
【解析
】
2. 【答案】D
【解析】解析:本题考查复数的点的表示与复数的乘法运算.
21z i i
=-+,(1)(2)3z i i i =+-=+,选D . 3. 【答案】D
【解析】
试题分析:∵A B ⊆,∴2a ≥.故选D .
考点:集合的包含关系.
4. 【答案】B
【解析】
考点:向量的投影.
5. 【答案】B
【解析】
试题分析:由题意得,60B =,45C =,所以075A =,由正弦定理,得sin sin a c A C
=
0010sin 10sin 451)sin sin 75a C c A ⨯⇒====,故选B .1 考点:正弦定理. 6. 【答案】C
【解析】由题意A ⊆C ,则∁U C ⊆∁U A ,当B ⊆∁U C ,可得“A ∩B=∅”;若“A ∩B=∅”能推出存在集合C 使得A ⊆C ,B ⊆∁U C ,
∴U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B=∅”的充分必要的条件。
7.【答案】D
【解析】
8.【答案】C
【解析】根据题意有:
A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);
E的坐标为(4,3,12)
(1)l1长度计算
所以:l1=|AE|==13。
(2)l2长度计算
将平面A1B1C1D1沿Z轴正向平移AA1个单位,得到平面A2B2C2D2;显然有:
A2的坐标为:(0,0,24),B2的坐标为(11,0,24),C2的坐标为(11,7,24),D2的坐标为(0,7,24);
显然平面A2B2C2D2和平面ABCD关于平面A1B1C1D1对称。
设AE与的延长线与平面A2B2C2D2相交于:E2(x E2,y E2,24)
根据相识三角形易知:
x E2=2x E=2×4=8,
y E2=2y E=2×3=6,
即:E2(8,6,24)
根据坐标可知,E2在长方形A2B2C2D2内。
9.【答案】D
【解析】
考
点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.
【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差
OA OB BA -=,这是一个易错点,两个向量的和2OA OB OD +=(D 点是AB 的中点),另外,要选好基底
向量,如本题就要灵活使用向量,AB AC ,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等. 10.【答案】B
11.【答案】B
【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.
12.【答案】C.
【解析】易得//BP 平面11CC D D ,所有满足1PBD PBX ∠=∠的所有点X 在以BP 为轴线,以1BD 所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】3
4
-
【解析】由题意知3sin 05α-=,且4cos 05α-≠,所以4cos 5α=-,则3
tan 4
α=-.
14.【答案】
【解析】由y =x 2+3x 得y ′=2x +3, ∴当x =-1时,y ′=1,
则曲线y =x 2+3x 在点(-1,-2)处的切线方程为y +2=x +1,
即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0),
由y =ax +ln x 得y ′=a +1
x
(x >0),
∴⎩⎪⎨⎪
⎧a +1x 0
=1
y 0=x 0
-1y 0
=ax 0
+ln x
,解之得x 0
=1,y 0
=0,a =0. ∴a =0. 答案:0 15.【答案】A 【
解
析
】
16.【答案】8
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】解:(Ⅰ)由正弦定理及已知条件有2223c bc a b -=
-, 即bc a c b 3222=-+. 3分
由余弦定理得:2
32cos 222=
-+=bc a c b A ,又),0(π∈A ,故6π=A . 6分 (Ⅱ) ABC ∆
3sin 2
1
=∴A bc ,34=∴bc ①, 8分
又由(Ⅰ)2223c bc a b -=-及,2=a 得1622=+c b ,② 10分
由 ①②解得32,2==c b 或2,32==c b . 12分 18.【答案】
【解析】(1)由题意,得1
1424
131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩,因为a b >,解得1213a b ⎧=⎪⎪⎨⎪=
⎪⎩
.…………………4分
(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X , 则X 的值可以为0,2,4,6,8,10,12.…………5分
而4
1
433221)0(=⨯⨯==X P ;1231(2)2344P X ==⨯⨯=;
1131(4)2348P X ==⨯⨯=; 1211135
(6)23423424P X ==⨯⨯+⨯⨯=;
1211(8)23412P X ==⨯⨯=; 1111
(10)23424P X ==⨯⨯=;
1111
(12)23424
P X ==⨯⨯=.…………………9分
所以X 的分布列为:
于是,11()01234
5644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯12
=.……………12分
19.【答案】
【解析】解:(Ⅰ)由直线:1l x my =-经过点1F 得1c =,
当0m =时,直线l 与x 轴垂直,21||2
b MF a ==, 由21
2c b a
=⎧⎪⎨=
⎪⎩解得1a b ⎧=⎪⎨=⎪⎩C 的方程为22
12x y +=. (4分) (Ⅱ)设1122(,),(,)M x y N x y ,120,0y y >>,由12//MF NF 知121211
22
||3||MF F NF F S MF y S NF y ∆∆===.
联立方程22
1
1
2
x my x y =-⎧⎪⎨+=⎪⎩,消去x 得22
(2)210m y my +--=
,解得y =
∴1y =
,同样可求得2y =, (11分) 由1
23y y =得123y y =
3=,解得1m =, 直线l 的方程为10x y -+=. (13分) 20.【答案】
【解析】(1)由0x =,1y =,2z =知,甲、乙、丙3个盒中的球数分别为0,1,2,
此时的概率2
13
111324
P C ⎛⎫=⨯⨯= ⎪⎝⎭.
(4分)
21.【答案】解:(I)由已知可得AM⊥CD,又M为CD的中点,
∴;3分
(II)在平面ABED内,过AD的中点O作AD的垂线OF,交BE于F点,
以OA为x轴,OF为y轴,OC为z轴建立坐标系,
可得
,
∴,,5分
设
为面BCE 的法向量,由
可得=(1,2,﹣
),
∴cos <,
>=
=
,∴面DCE 与面BCE 夹角的余弦值为
4分
22.【答案】
【解析】(1)当cos C =0时,sin C =1,原不等式即为4x +6≥0对一切实数x 不恒成立.
当cos C ≠0时,应有⎩
⎪⎨⎪⎧cos C >0,
Δ=16sin 2
C -24cos C ≤0, (4分)
∴⎩
⎪⎨⎪⎧cos C >0,2cos 2
C +3cos C -2≥0, 解得cos C ≥12
.
∵C 是△ABC 的内角,∴1
2
≤cos C <1. (6分)
(2)∵0<C <π,12≤cos C <1,∴∠C 的最大值为π
3
,
(8分)
此时c =a 2+b 2-2ab cos π
3=a 2+b 2-ab ,
∴6=a +b +c =a +b +
a 2+
b 2-ab ≥2ab +
2ab -ab =3ab ,
∴ab ≤4(当且仅当a =b 时取“=”). (10分)
∴S △ABC =12ab sin π
3
≤3(当且仅当a =b 时取“=”).
此时,△ABC 面积的最大值为3,△ABC 为等边三角形.
(12分)。