【物理】物理曲线运动练习题含答案及解析

合集下载

高中物理 曲线运动 大题 解答题专题练习(含答案)

高中物理 曲线运动 大题 解答题专题练习(含答案)

曲线运动大题练习学校:___________姓名:___________班级:___________考号:___________一、解答题1.某同学设计了一个粗测玩具小车经过凹形桥模拟器最低点时的速度的实验。

所用器材有:玩具小车(可视为质点)、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R=0.20m)。

将凹形桥模拟器静置于托盘秤上,如图所示,托盘秤的示数为1.00kg;将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数为1.40kg;将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为1.80kg,凹形桥模拟器与托盘间始终无相对滑动。

取重力加速度g=10 m/s2,求:凹形桥模拟器托盘秤(1)玩具小车的质量m;(2)玩具小车经过凹形桥模拟器最低点时对其压力的大小F;(3)玩具小车经过最低点时速度的大小v。

2.如图所示,细绳的一端固定在竖直杆MN的M点,另一端系一质量为m的小球,绳长为L.第一次对杆施加水平向右的恒力,可使细绳与竖直杆间的夹角θ1保持不变;第二次使小球绕轴线在水平面内做匀速圆周运动,细绳与竖直杆间的夹角也为θ1后,继续使转速加大,可使细线与竖直杆间的夹角为θ2(θ2>θ1),此时小球在另一个水平面做稳定的圆周运动.求:(1)杆向右运动的加速度;(2)小球做圆周运动,细绳与竖直杆间的夹角也为θ1时,小球的动能;(3)在第二次做圆周运动的过程中,对小球做的功.3.如图所示,小球A质量为m,固定在长为L的轻细直杆一端,并随杆一起绕杆的另一端O点在竖直平面内做圆周运动.当小球经过最高点时,速度大小为1v=求:(1)小球到达最高时杆对球的作用力1F;(2)当小球经过最低点时,杆对球的作用力的大小27F mg=,求小球线速度的大小2v.4.如图:直杆上O1O2两点间距为L,细线O1A2A长为L,A端小球质量为m,要使两根细线均被拉直,杆应以多大的角速度ω转动.5.如图所示,质量m=1kg的小球用细线拴住,线长l=0.5m,细线所受拉力达到18F=N时就会被拉断。

高考必备物理曲线运动技巧全解及练习题(含答案)及解析

高考必备物理曲线运动技巧全解及练习题(含答案)及解析

高考必备物理曲线运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.如图所示,水平实验台A 端固定,B 端左右可调,将弹簧左端与实验平台固定,右端 有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连接),弹簧压缩量不同时, 将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因素为0.4的粗糙水平地面相切D 点,AB 段最长时,BC 两点水平距离x BC =0.9m,实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m ,θ=37°,已知 sin37° =0.6, cos37° =0.8.完成下列问題:(1)轨道末端AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B =3m/s ,求落到C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上继续滑行2m,求滑块在圆弧轨道上对D 点的压力大小:(3)通过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰好无碰撞从C 点进入圆弧 轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离. 【答案】(1)45°(2)100N (3)4m/s 、0.3m 【解析】(1)根据题意C 点到地面高度0cos370.08C h R R m =-=从B 点飞出后,滑块做平抛运动,根据平抛运动规律:212C h h gt -= 化简则0.3t s =根据 BC B x v t = 可知3/B v m s =飞到C 点时竖直方向的速度3/y v gt m s == 因此tan 1y Bv v θ==即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 阶段做匀减速直线运动,加速度大小fa g mμ== 根据222E D DE v v ax -=联立两式则4/D v m s =在圆弧轨道最低处2DN v F mg m R-= 则100N F N = ,即对轨道压力为100N .(3)滑块弹出恰好无碰撞从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨迹该出的切线,即0tan yv v α''= 由于高度没变,所以3/y y v v m s '== ,037α=因此04/v m s '= 对应的水平位移为01.2AC x v t m ='= 所以缩短的AB 段应该是0.3AB AC BC x x x m ∆=-=【点睛】滑块经历了弹簧为变力的变加速运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;涉及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动结合等时性研究.3.如图所示,光滑的水平平台上放有一质量M =2kg ,厚度d =0.2m 的木板,木板的左端放有一质量m =1kg 的滑块(视为质点),现给滑块以水平向右、的初速度,木板在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的A点,已知木板的长度l=10m,A点到平台边缘的水平距离s=1.6m,平台距水平地面的高度h=3m,重力加速度,不计空气阻力和碰撞时间,求:(1)滑块飞离木板时的速度大小;(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字)(3)开始时木板右端到平台边缘的距离;(结果保留两位有效数字)【答案】(1) (2)v=0.67m/s (3)x=0.29m【解析】【分析】【详解】(1)滑块飞离木板后做平抛运动,则有:解得(2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等.设木板第一次与挡板碰撞前瞬间,滑块的速度大小为,木板的速度大小为v由动量守恒定律有:,木板第一与挡板碰后:解得:v=0.67m/s(3)由匀变速直线运动的规律:,,由牛顿第二定律:解得:x=0.29m.【点睛】对于滑块在木板上滑动的类型,常常根据动量守恒定律和能量守恒定律结合进行研究.也可以根据牛顿第二定律和位移公式结合求出运动时间,再求木板的位移.4.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t =1 s此时滑块的位移为:x 1=v D t -a 1t 2,木板的位移为:x 2=a 2t 2,L =x 1-x 2,代入数据解得:L =2.5 m v 共=2 m/s x 2=1 m达到共同速度后木板又滑行x ′,则有:v 共2=2μ2gx ′,代入数据解得:x ′=1.5 m木板在水平地面上最终滑行的总位移为:x 木=x 2+x ′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.5.地面上有一个半径为R 的圆形跑道,高为h 的平台边缘上的P 点在地面上P′点的正上方,P′与跑道圆心O 的距离为L (L >R ),如图所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问:(1)当小车分别位于A 点和B 点时(∠AOB=90°),沙袋被抛出时的初速度各为多大? (2)要使沙袋落在跑道上,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件?【答案】(1)()2A gv L R h =-22()2B g L R v h+=(2)0((L R v L R -≤≤+(3)1(41)0,1,2,3...)2v n n π=+= 【解析】 【分析】 【详解】(1)沙袋从P 点被抛出后做平抛运动,设它的落地时间为t ,则h=12gt 2解得t =(1) 当小车位于A 点时,有x A =v A t=L-R (2)解(1)(2)得v A =(L-R当小车位于B 点时,有B B x v t ==3)解(1)(3)得Bv (2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为v 0min =v A =(L-R 4) 若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x c =v 0max t="L+R" (5)解(1)(5)得 v 0max =(L+R所以沙袋被抛出时的初速度范围为(L-R ≤v 0≤(L+R (3)要使沙袋能在B 处落入小车中,小车运动的时间应与沙袋下落时间相同 t AB =(n+14)2Rv π(n=0,1,2,3…)(6)所以t AB解得v=12(4n+1)n=0,1,2,3…). 【点睛】本题是对平抛运动规律的考查,在分析第三问的时候,要考虑到小车运动的周期性,小车并一定是经过14圆周,也可以是经过了多个圆周之后再经过14圆周后恰好到达B 点,这是同学在解题时经常忽略而出错的地方.6.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的动摩擦因数=0.2μ,重力加速度大小210m/s g =.求:(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有212P B AB E mv mgx μ=+ 代入数据得140J P E =(2)从B 到D ,根据机械能守恒定律有2211222B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2Dv F mg m R+=代入数据解得25N F =由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.7.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。

高中物理曲线运动经典练习题全集(含答案)

高中物理曲线运动经典练习题全集(含答案)

《曲线运动》超经典试题1、关于曲线运动,下列说法中正确的是( AC )A. 曲线运动一定是变速运动B. 变速运动一定是曲线运动C. 曲线运动可能是匀变速运动D. 变加速运动一定是曲线运动【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。

变速运动可能是速度的方向不变而大小变化,则可能是直线运动。

当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。

做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。

2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点( A )A.一定做匀变速运动B.一定做直线运动C.一定做非匀变速运动D.一定做曲线运动【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。

由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。

在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。

3、关于运动的合成,下列说法中正确的是( C )A. 合运动的速度一定比分运动的速度大B. 两个匀速直线运动的合运动不一定是匀速直线运动C. 两个匀变速直线运动的合运动不一定是匀变速直线运动D. 合运动的两个分运动的时间不一定相等【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。

两个匀速直线运动的合运动一定是匀速直线运动。

两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。

高一物理曲线运动测试题及答案

高一物理曲线运动测试题及答案

高一物理曲线运动测试题及答案曲线运动单元测试一、选择题(总分41分。

其中1-7题为单选题,每题3分;8-11题为多选题,每题5分,全部选对得5分,选不全得2分,有错选和不选的得分。

)1.关于运动的性质,以下哪个说法是正确的?()A。

曲线运动一定是变速运动。

B。

变速运动一定是曲线运动。

C。

曲线运动一定是变加速运动。

D。

物体加速度大小、速度大小都不变的运动一定是直线运动。

2.关于运动的合成和分解,以下哪个说法是正确的?()A。

合运动的时间等于两个分运动的时间之和。

B。

匀变速运动的轨迹可以是直线,也可以是曲线。

C。

曲线运动的加速度方向可能与速度在同一直线上。

D。

分运动是直线运动,则合运动必是直线运动。

3.关于从同一高度以不同初速度水平抛出的物体,比较它们落到水平地面上的时间(不计空气阻力),以下哪个说法是正确的?A。

速度大的时间长。

B。

速度小的时间长。

C。

一样长。

D。

质量大的时间长。

4.做平抛运动的物体,每秒的速度增量总是()A。

大小相等,方向相同。

B。

大小不等,方向不同。

C。

大小相等,方向不同。

D。

大小不等,方向相同。

5.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2,转动半径之比为1∶2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为()A。

1∶4.B。

2∶3.C。

4∶9.D。

9∶16.6.如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体A的受力情况是()A。

绳的拉力大于A的重力。

B。

绳的拉力等于A的重力。

C。

绳的拉力小于A的重力。

D。

绳的拉力先大于A的重力,后变为小于重力。

7.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在O点,有两个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。

两小环同时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为()A。

(2m+2M)g。

B。

Mg-2mv2/R。

C。

新教材高中物理第五章抛体运动1曲线运动练习(含解析)新人教版

新教材高中物理第五章抛体运动1曲线运动练习(含解析)新人教版

曲线运动(15分钟30分)一、单项选择题(本题共6小题,每小题4分,共24分)1.一质点(用字母O表示)的初速度v0与所受合力的方向如图所示,质点的运动轨迹用虚线表示,则所画质点的运动轨迹中可能正确的是 ( )【解析】选A。

轨迹弯向合力的方向,A正确,B、C、D错误。

2.如图所示为水平桌面上的一条弯曲轨道。

钢球进入轨道M端沿轨道做曲线运动,它从出口N 端离开轨道后的轨迹是 ( )【解析】选C。

钢球离开轨道时的速度方向与轨道曲线相切,离开轨道后沿直线运动,故选项C 正确。

3.鱼在水中沿直线斜向上匀速游动过程中,水对鱼的作用力方向合理的是 ( )【解析】选B。

鱼在水中做匀速运动,所受合力为零,故水对鱼的作用力与鱼的重力平衡,即竖直向上。

4.物体做曲线运动时,下列说法错误的是 ( )【解析】选C。

既然是曲线运动,它的速度的方向必定是改变的,所以曲线运动的条件是合力与速度不共线,一定存在加速度,曲线运动的物体受到的合外力一定不为零,故A、B正确;曲线运动一定存在加速度,但加速度可以恒定,故C错误;物体所受的合外力和它的速度方向不在同一直线上,物体就是在做曲线运动,故D正确。

0的方向及它受到的恒定合力F的方向,如图所示,则可能的轨迹是 ( )【解析】选B。

物体做曲线运动时,速度沿曲线的切线方向,合力方向和速度方向不共线,且指向曲线凹的一侧,即运动轨迹在合力方向与速度方向之间,且向合力的方向弯曲,A、C、D错误,B 正确。

( )A.瞬时速度是矢量,平均速度是标量B.做直线运动的物体,位移大小可能等于路程C.做曲线运动的物体,所受的合力可能为零D.做曲线运动的物体,可能处于平衡状态【解析】选B。

瞬时速度与平均速度都是矢量,故A错误;当物体做单向直线运动时,位移的大小等于路程,故B正确;曲线运动的速度方向是切线方向,时刻改变,一定是变速运动,一定具有加速度,合力一定不为零,不能处于平衡状态,故C、D错误。

二、非选择题(6分。

物理必修二-第五章曲线运动-大题练习及答案

物理必修二-第五章曲线运动-大题练习及答案

物理必修二-第五章曲线运动-大题练习及答案1.宇航员在月球上自高h处以初速度v0水平抛出一小球,测出水平射程为L(这时月球表面可以看作是平坦的),则月球表面处的重力加速度是多大?2.一条河宽500 m,河水的流速是3 m/s,一只小艇以5 m/s(在静水中的速度)的速度行驶。

若小艇以最短的时间渡河,所用时间是多少?若小艇要以最短的距离渡河,所用时间是多少?3.中国铁路经过两次提速后,由北京至广州列车时速已达到100 km/h。

若已知某铁路拐弯处的圆弧半径为500 m,两轨间距离为1 435 mm,若列车过此弯道的过程中对内、外轨均无压力,则由以上所提供的数据求出此弯道内、外轨的高度差。

(g取10 m/s2)4.在各种公路上拱形桥是常见的,质量为m的汽车在拱形桥上以速度v前进,桥面的圆弧半径为R,求:压力。

(2)若R取160 m,试讨论汽车过桥最高点的安全速度。

(g取10 m/s2)5.质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其它力的合力提供,不含重力),今测得当飞机的水平方向的位移为l时,它的上升高度为h,如图所示,求飞机受到的升力大小。

6.(10分) 水平抛出的一个石子,经过0.4s落到地面,落地时的速度方向跟水平方向的夹角是53° ,(g取10m/s2 )。

试求:(1)石子的抛出点距地面的高度;(2)石子抛出的水平初速度。

7.(10分)如图所示,实线为某质点平抛运动轨迹的一部分,测得AB 、BC4.021=∆=∆s s m ,高度差25.01=∆h 35.02=∆h m ,由此可知,求:(1)质点平抛的初速度0v(2)抛出点到A 为(g 取10m/s2)8.(10分)如图所示,质量m=1 kg的小球用细线拴住,线长L=0.5 m,细线所受拉力达到F =18 N时就会被拉断。

当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断。

高中物理曲线运动典型题及答案

高中物理曲线运动典型题及答案

高中物理曲线运动典题及答案一、单选题(本大题共14小题,共56.0分)1.某一滑雪运动员从滑道滑出并在空中翻转时经多次曝光得到的照片如图所示,每次曝光的时间间隔相等。

若运动员的重心轨迹与同速度不计阻力的斜抛小球轨迹重合,A,B,C和D表示重心位置,且A和D处于同一水平高度。

下列说法正确的是A. 相邻位置运动员重心的速度变化相同B. 运动员在A、D位置时重心的速度相同C. 运动员从A到B和从C到D的时间相同D. 运动员重心位置的最高点位于B和C中间2.在光滑的水平面上,质量m=1kg的物块在的水平恒力F作用下运动,如图所示为物块的一段轨迹。

已知物块经过P、Q两点时的速率均为v= 4m/s,用时为2s,且物块在P点的速度方向与PQ连线的夹角α=30°.关于物块的运动,下列说法正确的是( )A. 水平恒力F=4NB. 水平恒力F的方向与PQ连线成90°夹角C. 物块从P点运动到Q点的过程中最小速率为2m/sD. P、Q两点的距离为8m3.如图所示,从匀速运动的水平传送带边缘,垂直弹入一底面涂有墨汁的棋子,棋子在传送带表面滑行一段时间后随传送带一起运动.以传送带的运动方向为x轴,棋子初速度方向为y轴,以出发点为坐标原点,棋子在传送带上留下的墨迹为( )A. B. C. D.4.如图所示,水平桌面上有一涂有黑色墨水的小球,给小球一个初速度使小球向右做匀速直线运动,它经过靠近桌边的竖直木板ad边前方时,木板开始做自由落体运动。

若木板开始运动时,cd边与桌面相齐平,则小球在木板上留下的墨水轨迹是( )A. B.C. D.5.如图所示,长度为l的轻杆上端连着一质量为m的小球A(可视为质点),杆的下端用铰链固接于水平地面上的O点.置于同一水平面上的立方体B恰与A接触,立方体B的质量为M.今有微小扰动,使杆向右倾倒,各处摩擦均不计,而A与B刚脱离接触的瞬间,杆与地面夹角恰为37°(sin37°=0.6,cos37°=0.8),重力加速度为g,则下列说法正确的是( )A. A、B质量之比为27∶25B. A落地时速率为√2glC. A与B刚脱离接触的瞬间,A、B速率之比为3∶5D. A与B刚脱离接触的瞬间,B的速率为√3gl56.一带有乒乓球发射机的乒乓球台如图所示,水平台面的长和宽分别为L1和L2,中间球网高度为ℎ.发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3ℎ.不计空气的作用,重力加速度大小为g.若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是( )A. L12√g6ℎ<v<L1√g6ℎB. L14√gℎ<v<√(4L12+L22)g6ℎC. L12√g6ℎ<v<12√(4L12+L22)g6ℎD. L14√gℎ<v<12√(4L12+L22)g6ℎ7.在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪。

高中物理曲线运动经典练习题全集(答案)

高中物理曲线运动经典练习题全集(答案)

《曲线运动》超经典试题1、关于曲线运动,下列说法中正确的是(AC )A. 曲线运动一定是变速运动B. 变速运动一定是曲线运动C. 曲线运动可能是匀变速运动D. 变加速运动一定是曲线运动【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。

变速运动可能是速度的方向不变而大小变化,则可能是直线运动。

当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。

做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。

2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点(A )A.一定做匀变速运动B.一定做直线运动C.一定做非匀变速运动D.一定做曲线运动【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。

由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。

在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。

3、关于运动的合成,下列说法中正确的是(C )A. 合运动的速度一定比分运动的速度大B. 两个匀速直线运动的合运动不一定是匀速直线运动C. 两个匀变速直线运动的合运动不一定是匀变速直线运动D. 合运动的两个分运动的时间不一定相等【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。

两个匀速直线运动的合运动一定是匀速直线运动。

两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。

【物理】物理曲线运动练习题20篇含解析

【物理】物理曲线运动练习题20篇含解析

【物理】物理曲线运动练习题20篇含解析一、高中物理精讲专题测试曲线运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

高中物理 曲线运动 典型例题(含答案)【经典】

高中物理   曲线运动     典型例题(含答案)【经典】

第四章 曲线运动第一讲:曲线运动条件和运动特点、运动的合成与分解考点一:运动的合成与分解 1、(多选)质量为m =2 kg 的物体在光滑的水平面上运动,在水平面上建立xOy 坐标系,t =0时物体位于坐标系的原点O.物体在x 轴和y 轴方向的分速度vx 、vy 随时间t 变化的图线如图甲、乙所示.则( ). A .t =0时,物体速度的大小为3 m/s 答案 ADB .t =8 s 时,物体速度的大小为4 m/sC .t =8 s 时,物体速度的方向与x 轴正向夹角为37°D .t =8 s 时,物体的位置坐标为(24 m,16 m)2.(多选)在一光滑水平面内建立平面直角坐标系,一物体从t =0时刻起,由坐标原点O(0,0)开始运动,其沿x 轴和y 轴方向运动的速度—时间图象如图甲、乙所示,下列说法中正确的是( ).答案 AD A .前2 s 内物体沿x 轴做匀加速直线运动B .后2 s 内物体继续做匀加速直线运动,但加速度沿y 轴方向C .4 s 末物体坐标为(4 m,4 m)D .4 s 末物体坐标为(6 m,2 m) 3.(单选)如图,从广州飞往上海的波音737航班上午10点到达上海浦东机场,若飞机在降落过程中的水平分速度为60 m/s ,竖直分速度为6 m/s ,已知飞机在水平方向做加速度大小等于2 m/s2的匀减速直线运动,在竖直方向做加速度大小等于0.2 m/s2的匀减速直线运动,则飞机落地之前( ).答案 D A .飞机的运动轨迹为曲线B .经20 s 飞机水平方向的分速度与竖直方向的分速度大小相等C .在第20 s 内,飞机在水平方向的分位移与竖直方向的分位移大小相等D .飞机在第20 s 内,水平方向的平均速度为21 m/s4、(多选)质量为0.2 kg 的物体在水平面上运动,它的两个正交分速度图线分别如图甲、乙所示,由图可知( )A .最初4 s 内物体的位移为8 2 m 答案 ACB .从开始至6 s 末物体都做曲线运动C .最初4 s 内物体做曲线运动,接下来的2 s 内物体做直线运动D .最初4 s 内物体做直线运动,接下来的2 s 内物体做曲线运动 5、(单选)各种大型的货运站中少不了旋臂式起重机,如图所示,该起重机的旋臂保持不动,可沿旋臂“行走”的天车有两个功能,一是吊着货物沿竖直方向运动,二是吊着货物沿旋臂水平运动.现天车吊着货物正在沿水平方向向右匀速行驶,同时又启动天车上的起吊电动机,使货物沿竖直方向做匀减速运动.此时,我们站在地面上观察到货物运动的轨迹可能是下图中的( ). 答案 D6.汽车静止时,车内的人从矩形车窗ABCD 看到窗外雨滴的运动方向如图图线①所示.在汽车从静止开始匀加速启动阶段的t 1、t 2两个时刻,看到雨滴的运动方向分别如图线②③所示.E 是AB 的中点.则( ) A .t2=2t 1 B .t 2=2t 1 C .t 2=5t 1D .t 2=3t 1 答案 A解析 静止时,雨滴相对于地面做的是竖直向下的直线运动,设雨滴的速度为v0,汽车匀加速运动后,在t1时刻,看到的雨滴的运动方向如图线②,设这时汽车的速度为v1,这时雨滴水平方向相对于汽车的速度大小为v1,方向向左,在t2时刻,设汽车的速度为v2,则雨滴的运动方向如图线③,雨滴水平方向相对于汽车速度大小为v2,方向水平向左,根据几何关系,v1OA =v0AB ,v2OA =v012AB ,得v2=2v1,汽车做匀加速运动,则由v =at 可知,t2=2t1,A 项正确.7.一物体在光滑水平面上运动,它在x 方向和y 方向上的两个分运动的速度—时间图象如图所示. (1)判断物体的运动性质;(2)计算物体的初速度大小;(3)计算物体在前3 s 内和前6 s 内的位移大小.答案 (1)匀变速曲线运动 (2)50 m/s (3)3013m 180 m8.如图所示,为一次洪灾中,德国联邦国防军的直升机在小城洛伊宝根运送砂袋.该直升机A 用长度足够长的悬索(重力可忽略不计)系住一质量m =50 kg 的砂袋B ,直升机A 和砂袋B 以v0=10 m/s 的速度一起沿水平方向匀速运动,某时刻开始将砂袋放下,在5 s 时间内,B 在竖直方向上移动的距离以y =t2(单位:m)的规律变化,取g =10 m/s2.求在5 s 末砂袋B 的速度大小及位移大小.答案 10 2 m/s 25 5 m9、如图所示,在竖直平面内的xOy 坐标系中,Oy 竖直向上,Ox 水平向右.设平面内存在沿x 轴正方向的恒定风力.一小球从坐标原点沿Oy 方向竖直向上抛出,初速度为v0=4 m/s ,不计空气阻力,到达最高点的位置如图中M 点所示(坐标格为正方形,g =10 m/s2)求:(1)小球在M 点的速度v1;(2)在图中定性画出小球的运动轨迹并标出小球落回x 轴时的位置N ; (3)小球到达N 点的速度v2的大小.答案 (1)6 m/s (2)见解析图 (3)410 m/s解析 (1)设正方形的边长为x0. 竖直方向做竖直上抛运动,有v0=gt1,2x0=v02t1水平方向做匀加速直线运动,有3x0=v12t1. 解得v1=6 m/s.(2)由竖直方向的对称性可知,小球再经过t1到x 轴,水平方向做初速度为零的匀加速直线运动,所以回到x 轴时落到x =12处,位置N 的坐标为(12,0).(3)到N 点时竖直分速度大小为v0=4 m/s 水平分速度vx =a 水平tN =2v1=12 m/s , 故v2=v 20+v 2x =410 m/s.考点二:绳(杆)端速度分解模型(结合受力和机械能守恒)1、如图所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求物体A 的速度。

高一物理曲线运动练习题(含答案)

高一物理曲线运动练习题(含答案)

第五章 第一节 《曲线运动》练习题一 选择题1. 关于运动的合成的说法中,正确的是 ( )A .合运动的位移等于分运动位移的矢量和B .合运动的时间等于分运动的时间之和C .合运动的速度一定大于其中一个分运动的速度D .合运动的速度方向与合运动的位移方向相同A 此题考查分运动与合运动的关系,D 答案只在合运动为直线时才正确2. 物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是 ( )A .静止B .匀加速直线运动C .匀速直线运动D .匀速圆周运动B 其余各力的合力与撤去的力等大反向,仍为恒力。

3.某质点做曲线运动时 (AD )A.在某一点的速度方向是该点曲线的切线方向B.在任意时间内,位移的大小总是大于路程C.在某段时间里质点受到的合外力可能为零D.速度的方向与合外力的方向必不在同一直线上4 精彩的F 1赛事相信你不会陌生吧!车王舒马赫在2005年以8000万美元的年收入高居全世界所有运动员榜首。

在观众感觉精彩与刺激的同时,车手们却时刻处在紧张与危险之中。

这位车王在一个弯道上突然高速行驶的赛车后轮脱落,从而不得不遗憾地退出了比赛。

关于脱落的后轮的运动情况,以下说法正确的是( C )A. 仍然沿着汽车行驶的弯道运动B. 沿着与弯道垂直的方向飞出C. 沿着脱离时,轮子前进的方向做直线运动,离开弯道D. 上述情况都有可能5.一个质点在恒力F 作用下,在xOy 平面内从O 点运动到A 点的轨迹如图所示,且在A 点的速度方向与x 轴平行,则恒力F 的方向不可能( )A.沿x 轴正方向B.沿x 轴负方向C.沿y 轴正方向D.沿y 轴负方向ABC 质点到达A 点时,Vy=0,故沿y 轴负方向上一定有力。

6在光滑水平面上有一质量为2kg2N 力水平旋转90º,则关于物体运动情况的叙述正确的是(BC )A. 物体做速度大小不变的曲线运动B. 物体做加速度为在2m/s 2的匀变速曲线运动C. 物体做速度越来越大的曲线运动D. 物体做非匀变速曲线运动,其速度越来越大解析:物体原来所受外力为零,当将与速度反方向的2N 力水平旋转90º后其受力相当于如图所示,其中,是F x 、F y 的合力,即F=22N ,且大小、方向都不变,是恒力,那么物体的加速度为222==m F a m /s 2=2m /s 2恒定。

(物理)高考物理曲线运动试题(有答案和解析)

(物理)高考物理曲线运动试题(有答案和解析)

(物理)高考物理曲线运动试题( 有答案和解析 )一、高中物理精讲专题测试曲线运动1.以下列图,在风洞实验室中,从 A 点以水平速度 v0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F,经过一段时间小球运动到 A 点正下方的 B 点处,重力加速度为 g,在此过程中求(1)小球离线的最远距离;(2) A、 B 两点间的距离;(3)小球的最大速率 v max.【答案】(1)mv22m2 gv2( 3)v0F24m2g2 0(2)0F2F F 2【解析】【解析】(1)依照水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)依照水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A、 B 两点间的距离;(3)小球到达 B 点时水平方向的速度最大,竖直方向的速度最大,则 B 点的速度最大,依照运动学公式结合平行四边形定则求出最大速度的大小;【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解水平方向: F=ma x2v0= 2a x x m解得:x m=mv2 2F(2)水平方向速度减小为零所需时间t1=v 0a x总时间 t= 2t1竖直方向上:y= 1 gt2= 2m2 gv022 F 2(3)小球运动到 B 点速度最大v x=v0V y=gtv max= v x2v y2=vF 24m2g 2 F【点睛】解决此题的要点将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.2.以下列图,在竖直平面内有一倾角θ=37°的传达带BC.已知传达带沿顺时针方向运行的速度 v=4 m/s , B、 C两点的距离 L=6 m。

一质量 m=0.2kg 的滑块(可视为质点)从传达带上端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC方向滑人传达带,滑块与传达带间的动摩擦因数μ,取重力加速度g=10m/s 2, sin37 = °,cos37°。

(物理)物理曲线运动练习题含解析

(物理)物理曲线运动练习题含解析

(物理)物理曲线运动练习题含解析一、高中物理精讲专题测试曲线运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤4.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B 点。

高一物理必修2:曲线运动 单元测试题(含答案和详细解析) (1)

高一物理必修2:曲线运动 单元测试题(含答案和详细解析) (1)

曲线运动单元测试一、选择题(本大题共10个小题,每小题一个或者一个以上正确答案,请将正确答案的序号选出并填写在对应题号下的空格中,每小题4分,共40分)1、一质点在某段时间内做曲线运动,则在这段时间内()A.速度一定在不断地改变,加速度也一定不断地改变B.速度一定在不断地改变,加速度可以不变C.速度可以不变,加速度一定不断地改变D.速度可以不变,加速度也可以不变2、关于离心运动,下列说法中正确的是()A.物体突然受到向心力的作用,将做离心运动B.做匀速圆周运动的物体,当提供向心力的合力突然变大时将做离心运动C.做匀速圆周运动的物体,只要提供向心力的合力的数值发生变化,就做离心运动D.做匀速圆周运动的物体,当提供向心力的合力突然消失或变小时将做离心运动3、关于物体所受合力的方向,下列说法正确的是()A.物体做速率逐渐增大的运动时,其所受合力的方向一定与速度方向相同B.物体做变速曲线运动时,其所受合力的方向一定改变C.物体做变速圆周运动时,其所受合力的方向一定指向圆心D.物体做匀速曲线运动时,其所受合力的方向总是与速度方向垂直4、(多选)如图所示的皮带转动中小轮半径r a是大轮半径r b的一半,a、b分别是小轮和大轮边缘上的点,大轮上c点到轮心O的距离恰好等于r a,若皮带不打滑,则图中a、b、c三点()A.线速度之比为2∶1∶1B.角速度之比为2∶1∶2C.转动周期之比为1∶2∶2D.向心加速度大小之比为4∶2∶15、如图所示,吊车以速度v1沿水平直线匀速行驶,同时以恒定速度v2收拢绳索提升物体,下列表述正确的是()A.绳索保持竖直状态B.物体的实际运动速度为v1+v2C.物体相对地面做曲线运动D.绳索受到的拉力大于物体的重力6、近期,南京军区部队在邻近某小岛的东南沿海进行抢滩、海空联合作战演习。

如图所示,某登陆舰船头垂直河岸自A点出发,分别沿路径AB、AC在演练岛屿的B、C两点登陆,已知登陆舰在静水中的速度恒定且大于水速,则下列说法正确的是()A.沿AC航行所用时间较长B.沿AC航行时水速较大C.两次实际航速大小相等D.无论船头方向如何,登陆舰都无法在A点正对岸登陆7、刀削面是西北人喜欢的面食之一,全凭刀削得名。

物理曲线运动专题练习(及答案)含解析

物理曲线运动专题练习(及答案)含解析

物理曲线运动专题练习(及答案)含解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。

高考物理曲线运动题20套(带答案)及解析

高考物理曲线运动题20套(带答案)及解析

高考物理曲线运动题20 套( 带答案 ) 及分析一、高中物理精讲专题测试曲线运动1.如图,在竖直平面内,一半径为R 的圆滑圆弧轨道ABC 和水平轨道PA 在 A 点相切. BC 为圆弧轨道的直径.3O 为圆心, OA 和 OB 之间的夹角为α, sin α=,一质量为 m5的小球沿水平轨道向右运动,经 A 点沿圆弧轨道经过C点,落至水平轨道;在整个过程中,除遇到重力及轨道作使劲外,小球还向来遇到一水平恒力的作用,已知小球在 C 点所受协力的方向指向圆心,且此时小球对轨道的压力恰巧为零.重力加快度大小为g.求:(1)水平恒力的大小和小球抵达C 点时速度的大小;(2)小球抵达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.【答案】( 1)5gR (2) m23gR (3) 35R225g【分析】试题剖析本题考察小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动及其有关的知识点,意在考察考生灵巧运用有关知识解决问题的的能力.分析( 1)设水平恒力的大小为F0,小球抵达C点时所受协力的大小为F.由力的合成法例有F0tan①mgF 2(mg )2F02②设小球抵达 C 点时的速度大小为v,由牛顿第二定律得v2F m③R由①②③式和题给数据得F03mg ④4v5gR ⑤2(2)设小球抵达 A 点的速度大小为v1,作CD PA ,交PA于D点,由几何关系得DA R sin⑥CD R(1 cos)⑦由动能定理有mg CD F0DA 1 mv21mv12⑧22由④⑤⑥⑦⑧式和题给数据得,小球在 A 点的动量大小为p mv1m23gR ⑨2(3)小球走开 C 点后在竖直方向上做初速度不为零的匀加快运动,加快度大小为g.设小球在竖直方向的初速度为v ,从 C 点落至水平轨道上所用时间为t .由运动学公式有v t1gt 2CD ⑩2v vsin由⑤⑦⑩式和题给数据得35Rtg5点睛小球在竖直面内的圆周运动是常有经典模型,本题将小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动有机联合,经典创新.2.如下图 ,固定的圆滑平台上固定有圆滑的半圆轨道,轨道半径 R=0.6m, 平台上静止搁置着两个滑块 A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少许炸药 ,平台右边有一带挡板的小车,静止在圆滑的水平川面上.小车质量为M=0.3kg,车面与平台的台面等高 ,小车的上表面的右边固定一根轻弹簧 ,弹簧的自由端在Q 点,小车的上表面左端点 P 与 Q 点之间是粗拙的 ,PQ 间距离为 L 滑块 B 与 PQ 之间的动摩擦因数为μ=0.2,Q 点右边表面是圆滑的.点燃炸药后,A、B 分别瞬时 A 滑块获取向左的速度v =6m/s, 而滑块 B 则冲向小车.两滑块都能够看作质点,A炸药的质量忽视不计 ,爆炸的时间极短 ,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s2.求 :(1)滑块 A 在半圆轨道最高点对轨道的压力;(2)若 L=0.8m, 滑块 B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块 B 既能挤压弹簧 ,又最后没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】( 1) 1N,方向竖直向上(2)E P0.22 J (3)0.675m<L<1.35m【分析】【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:1m A v A21m A v2m A g 2R22在最高点由牛顿第二定律:v2m A g F N m A滑块在半圆轨道最高点遇到的压力为:F N=1NR由牛顿第三定律得:滑块对轨道的压力大小为1N,方向向上(2)爆炸过程由动量守恒定律:m A v A m B v B解得: v B=3m/s滑块 B 冲上小车后将弹簧压缩到最短时,弹簧拥有最大弹性势能,由动量守恒定律可知:m B v B( m B M )v共由能量关系:E P 1m B v B21(m B M )v共2 - m BgL22解得 E P=0.22J(3)滑块最后没有走开小车,滑块和小车拥有共同的末速度,设为u,滑块与小车构成的系统动量守恒,有:m B v B( m B M )v若小车 PQ 之间的距离 L 足够大,则滑块还没与弹簧接触就已经与小车相对静止,设滑块恰巧滑到 Q 点,由能量守恒定律得:m B gL11m B v B21(m B M )v2 22联立解得:L1=1.35m若小车 PQ 之间的距离 L 不是很大,则滑块必定挤压弹簧,因为Q 点右边是圆滑的,滑块必定被弹回到PQ 之间,设滑块恰巧回到小车的左端P 点处,由能量守恒定律得:2 m B gL21m B v B21(m B M )v2 22联立解得:L2=0.675m综上所述,要使滑块既能挤压弹簧,又最后没有走开小车,PQ 之间的距离L 应知足的范围是 0.675m <L< 1.35m3.如下图,质量为M4kg 的平板车P的上表面离地面高h 0.2m,质量为 m 1kg 的小物块 Q (大小不计,可视为质点)位于平板车的左端,系统本来静止在圆滑水平川面上,一不行伸长的轻质细绳长为R 0.9m ,一端悬于Q正上方高为R处,另一端系一质量也为 m 的小球(大小不计,可视为质点)。

高考物理一轮复习《曲线运动》练习题(含答案)

高考物理一轮复习《曲线运动》练习题(含答案)

高考物理一轮复习《曲线运动》练习题(含答案)一、单选题1.在弯道上高速行驶的汽车,后轮突然脱离赛车,关于脱离了的后轮的运动情况,以下说法正确的是()A.仍然沿着汽车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.沿着脱离时轮子前进的方向做直线运动,离开弯道D.上述情况都有可能2.“旋转纽扣”是一种传统游戏。

如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现。

拉动多次后,纽扣绕其中心的转速可达50r/s,此时纽扣上距离中心1cm处的点向心加速度大小约为()A.10m/s2B.100m/s2C.1000m/s2D.10000m/s23.如图所示,A、B两篮球从相同高度同时抛出后直接落入篮筐,落入篮筐时的速度方向相同,下列判断正确的是()A.A比B先落入篮筐B.A、B运动的最大高度相同C.A在最高点的速度比B在最高点的速度小D.A、B上升到某一相同高度时的速度方向相同4.无人配送小车某次性能测试路径如图所示,半径为3m的半圆弧BC与长8m的直线路径AB相切于B点,与半径为4m的半圆弧CD相切于C点。

小车以最大速度从A点驶入路径,到适当位置调整速率运动到B点,然后保持速率不变依次经过BC和CD。

为保证安全,小车速率最大为4m/s。

在ABC段的加速度最大为21m/s。

小车2m/s,CD段的加速度最大为2视为质点,小车从A 到D 所需最短时间t 及在AB 段做匀速直线运动的最长距离l 为( )A .7π2s,8m 4t l ⎛⎫=+= ⎪⎝⎭B .97πs,5m 42⎛⎫=+= ⎪⎝⎭t lC .576π26s, 5.5m 126⎛⎫=++= ⎪⎝⎭t lD .5(64)π26s, 5.5m 122⎡⎤+=++=⎢⎥⎣⎦t l 5.如图所示,某同学用一个小球在O 点对准前方的一块竖直放置的挡板,O 与A 在同一高度,小球的水平初速度分别是123v v v 、、,不计空气阻力。

高中物理曲线运动解题技巧分析及练习题(含答案)

高中物理曲线运动解题技巧分析及练习题(含答案)

高中物理曲线运动解题技巧分析及练习题 (含答案)一、高中物理精讲专题测试曲线运动1.光滑水平面AB 与竖直面内的圆形导轨在 B点连接,导轨半径 R = 0.5 m , —个质量m = 2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接•用手挡住小球不动,此时弹 簧弹性势能Ep = 49 J,如图所示•放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰 能通过最高点C , g 取10 m/s 1 2 .求:AH(1) 小球脱离弹簧时的速度大小; ⑵小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小.【答案】(1) 7m/s (2) 【解析】 【分析】 【详解】(1) 根据机械能守恒定律1 2E P = mV | ?®21 在小球脱离弹簧的过程中只有弹簧弹力做功 定理可以求出小球的脱离弹簧时的速度V ;2 小球从B 到C 的过程中只有重力和阻力做功 在最高点时的速度,从而根据动能定理求解从24J (3)25J2Ep= 7m/s ②m⑵由动能定理得一mg2R —小球恰能通过最高点,故 mg1 2W f = mv 222m V2④ R1 2 mv ③ 2V 1 =由②③④得 W f = 24 J (3) 根据动能定理:1 2 mg2R E kmv 2 2解得:E k 25J,根据弹力做功与弹性势能变化的关系和动能,根据小球恰好能通过最高点的条件得到小球 B 至C 过程中小球克服阻力做的功 ;故本题答案是:(1) 7m/s 【点睛】(2) 24J(3) 25J(3)小球离开C 点后做平抛运动,只有重力做功 ,根据动能定理求小球落地时的动能大小2.光滑水平面AB 与一光滑半圆形轨道在 B 点相连,轨道位于竖直面内,其半径为 R,个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经 B 点进入半圆形轨道瞬间,对轨道的压力为其重力的 后向上运动经C 点再落回到水平面,重力加速度为g •求:(1) 弹簧弹力对物块做的功;⑵物块离开C 点后,再落回到水平面上时距B 点的距离;(3) 再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的 取值范围为多少?(1) 由动能定理得在B 点由牛顿第二定律得: 9mg — mg = m 解得W = 4mgR (2)设物块经C 点落回到水平面上时距 B 点的距离为S,用时为t ,由平抛规律知 S=v c t1 £ 22R= gt 2从B 到C 由动能定理得 -2m£r/? = —mvt -至惘 ul 联立知,S= 4 R (3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知E p^mgR若物块刚好通过 C 点,则物块从 B 到C 由动能定理得1 . 19倍,之【答案】(1) 【解析】 【详解】(2) 4R ( 3)-- -mvl -戈m诚物块在C点时mg= m '511 7Ep > -mvi则 2联立知:E p > mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为5E p^mgR 或 E P 穆mgR.3.水平面上有一竖直放置长 H = 1.3m 的杆P0, —长L = 0.9m 的轻细绳两端系在杆上P 、Q两点,PQ 间距离为d = 0.3m ,一质量为 m = 1.0 kg 的小环套在绳上。

人教版(2019)高中物理必修二 5.1 曲线运动 练习(含答案)

人教版(2019)高中物理必修二 5.1 曲线运动 练习(含答案)

曲线运动练习一、单选题(本大题共8小题,共32.0分)1.关于曲线运动,下说法中正确的是()A. 曲线运动一定是变速运动B. 曲线运动的加速度可以为零C. 在恒力作用下,物体不可以做曲线运动D. 物体做曲线运动,动能一定会发生变化2.做曲线运动的物体,在运动过程中,一定变化的物理量是()A. 合外力B. 速率C. 速度D. 加速度3.物体在恒力F1,F2,F3的共同作用下做匀速直线运动,若突然撤去恒力F1,则物体的运动情况是()A. 一定做匀变速直线运动B. 可能做匀速直线运动C. 可能做曲线运动D. 速度大小一定增加4.关于曲线运动与其所受外力的说法,正确的是()A. 做曲线运动的物体的合外力一定不为零B. 做曲线运动的物体的合外力一定变化C. 做曲线运动的物体的合外力方向与加速度方向不在一条直线上D. 物体所受合外力的方向与速度方向不相同,物体一定做曲线运动5.质点沿曲线从M向P点运动,关于其在P点的速度v与加速度a的方向,下列图示正确的是()A. B.C. D.6.“嫦娥”四号卫星于2018年12月8日发射升空,如图所示,在“嫦娥”四号卫星沿曲线轨道MN运动,从M点到N点的飞行过程中,速度逐渐增大。

在此过程中“嫦娥”四号卫星所受合力的方向可能是()A. B. C. D.7.一个质点受到两个互成锐角的力F1、F2的作用,由静止开始运动,若保持二力方向不变,只将F1突然增大为2F1,则此后质点A. 不一定做曲线运动B. 可能做匀变速直线运动C. 可能做匀速直线运动D. 一定做匀变速运动8.一个钢球在水平桌面上做直线运动,在其经过的路径旁放一块磁铁,则钢球的运动路径就发生改变,如图所示,由此可知()A. 当物体受到合外力作用时,其运动方向一定发生改变B. 当物体受到合外力作用时,其惯性就消失了C. 当物体所受合力的方向与初速度方向不共线时,其运动方向发生改变D. 当物体所受合力的方向与初速度方向垂直时,其运动方向才发生改变二、多选题(本大题共2小题,共8.0分)9.如图所示,这是物体做匀变速曲线运动的轨迹示意图,已知物体在B点的加速度方向与速度方向垂直,则下列说法中错误的是()A. C点的加速度比B点的加速度大B. C点的加速度比A点的加速度大C. A点速率大于B点的速率D. 从A点到C点加速度与速度的夹角先增大后减小,速率是先减小后增大10.一个物体以初速度v0从A点开始在光滑水平面上运动.一个水平力作用在物体上,物体的运动轨迹如图中实线所示,图中B为轨迹上一点,虚线是过A、B两点并与运动轨迹相切的直线,虚线和实线将水平面划分为图示的5个区域.则关于该施力物体位置的判断,下列说法中正确的是()A. 如果这个力是引力,则施力物体一定在④区域B. 如果这个力是引力,则施力物体一定在②区域C. 如果这个力是斥力,则施力物体一定在②区域D. 如果这个力是斥力,则施力物体可能在①或③区域三、填空题(本大题共4小题,共16.0分)11.做曲线运动的物体的速度方向沿曲线上这一点的______方向,物体做曲线运动的条件是合外力的方向与______方向不在一条直线上。

高中物理《曲线运动》练习题(附答案解析)

高中物理《曲线运动》练习题(附答案解析)

高中物理《曲线运动》练习题(附答案解析)学校:___________姓名:___________班级:___________ 一、单选题1.下列关系式中不是利用物理量之比定义新的物理量的是()A.FEq=B.pEqϕ=C.Fam=D.tθω=2.一船以恒定的速率渡河,水速恒定(小于船速)。

要使船垂直河岸到达对岸,则()A.船应垂直河岸航行B.船的航行方向应偏向上游一侧C.船不可能沿直线到达对岸D.河的宽度一定时,船垂直到对岸的时间是任意的3.如图所示,一杂技演员驾驶摩托车沿半径为R的圆周做线速度大小为v的匀速圆周运动。

若杂技演员和摩托车的总质量为m,其所受向心力大小为()A.mvRB.2mvRC.22mvRD.2mvR4.如图所示,细线一端固定在A点,另一端系着小球。

给小球一个初速度,使小球在水平面内做匀速圆周运动,关于该小球的受力情况,下列说法中正确的是()A.受重力、向心力作用B.受细线拉力、向心力作用C.受重力、细线拉力作用D.受重力、细线拉力和向心力作用5.下列现象或措施中,与离心运动有关的是()A.汽车行驶过程中,乘客要系好安全带B.厢式电梯张贴超载标识C.火车拐弯处设置限速标志D.喝酒莫开车,开车不喝酒6.把地球设想成一个半径为地球半径R=6 400km的拱形桥,如图所示,汽车在最高点时,若恰好对“桥面”压力为0,g=9.8m/s2,则汽车的速度为()A.7.9m/s B.7.9m/h C.7.9km/s D.7.9km/h7.光滑平面上一运动质点以速度v通过原点O,v与x轴正方向成α角(如图所示),与此同时对质点加上沿x轴正方向的恒力Fx和沿y轴正方向的恒力Fy,则()A.因为有Fx,质点一定做曲线运动B.如果Fy>Fx,质点向y轴一侧做曲线运动C.质点不可能做直线运动D.如果Fy<Fx tanα,质点向x轴一侧做曲线运动8.在2022年2月5日北京冬奥会上,我国选手运动员在短道速滑比赛中的最后冲刺阶段如图所示,设甲、乙两运动员在水平冰面上恰好同时到达虚线PQ,然后分别沿半径为r1和r2(r2>r1)的滑道做匀速圆周运动,运动半个圆周后匀加速冲向终点线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在D点,根据牛顿运动定律有
代入数据解得
由牛顿第三定律知,小物块对轨道作用力大小为
(3)由D点到落地点物块做平抛运动竖直方向有
落地点与B点之间的距离为
代入数据解得
点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.
8.如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高度差为h1=0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C点到B点的高度差为h2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m=1 kg的滑块(可看作质点)从轨道的A点由静止滑下,然后从B点抛出,恰好以平行于传送带的速度从C点落到传送带上,传送带逆时针传动,速度大小为v=0.5 m/s,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g=10 m/s2,试求:
(1)求小球在最低点时的速度大小;
(2)如果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,求电场强度可能的大小。
【答案】(1) (2)
【解析】
【详解】
(1)在最低点,由向心力公式得:
解得:
(2)果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,说明小球能通过与圆心等的水平面,但不能通过最高点。
从O点到P点,变力 做功
根据动能定理有 ,解得
根据速度的合成与分解有 ,得 ,小球到达P点时速度与x轴正方向成
(2)小球离开P点后做平抛运动,根据平抛运动规律有 ,解得t=0.4s
小球位移在水平面内投影
设P点在地面的投影为 ,则
由几何关系可得 ,解得s=1.5m
滑块要与小球相遇,必须沿MN连线运动,由 ,得
(1)某同学给A一个水平瞬时冲量I,A开始在玻璃板上表面做圆周运动且刚好对玻璃板无压力,求I满足的表达式;
(2)A运动半周时刚好与静止的B发生对心弹性正碰,B从玻璃板表面飞出落地,求小球B的落点到O1的距离.
【答案】(1) (2)3H
【解析】
设细绳与竖直方向夹角为θ
(1) ,A圆周运动轨道半径为H
由A的受力分析可知:
解得:
②若小球能通过圆形轨道的最高点
小球能通过最高点有:
由机械能守恒定律得:
代入数值解得:
要使木板不会在竖直方向上跳起,木板对球的压力:
在最高点有:
由机械能守恒定律得:
解得:
综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是 或
2.如图所示,物体A置于静止在光滑水平面上的平板小车B的左端,物体在A的上方O点用细线悬挂一小球C(可视为质点),线长L=0.8m.现将小球C拉至水平无初速度释放,并在最低点与物体A发生水平正碰,碰撞后小球C反弹的速度为2m/s.已知A、B、C的质量分别为mA=4kg、mB=8kg和mC=1kg,A、B间的动摩擦因数μ=0.2,A、C碰撞时间极短,且只碰一次,取重力加速度g=10m/s2.
4.如图所示,半径为 ,质量为m的小球与两根不可伸长的轻绳a,b连接,两轻绳的另一端分别固定在一根竖直光滑杆的A,B两点上.已知A,B两点相距为l,当两轻绳伸直后A、B两点到球心的距离均为l,重力加速度为g.
(1)装置静止时,求小球受到的绳子的拉力大小T;
(2)现以竖直杆为轴转动并达到稳定(轻绳a,b与杆在同一竖直平面内).
①小球恰好离开竖直杆时,竖直杆的角速度 多大?
②轻绳b伸直时,竖直杆的角速度 多大?
【答案】(1) (2)①ω0= ②
【解析】
【详解】
(1)设轻绳a与竖直杆的夹角为α
对小球进行受力分析得
解得:
(2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。可知小球做圆周运动的半径为
r=
解得:
ω0=
②轻绳b刚伸直时,轻绳a与竖直杆的夹角为60°,可知小球做圆周运动的半径为
(1)小球到达P点时的速度大小和方向;
(2)M、N两点间的距离s和滑块速度v的大小;
(3)外力F2最小值的大小(结果可用根式表示)
【答案】(1)5m/s方向与x轴正方向成53°(2)1.5m;3.75m/s(3)
【解析】(1)小球在平台上做曲线运动,可分解为沿x轴方向的匀速直线运动和沿y轴方向的变加速运动,设小球在P点受到 与x轴夹角为
则小球不能通过最高点,
由动能定理得:


也不可以低于O水平面

所以电场强度可能的大小范围为
7.如图所示,粗糙水平地面与半径 的光滑半圆轨道 在 点平滑连接, 点是半圆轨道 的圆心, 三点在同一竖直线上,质量 的小物块(可视为质点)静止在水平地面上的 点.某时刻用一压缩弹簧(未画出)将小物块沿 方向水平弹出,小物块经过 点时速度大小为 (不计空气阻力).已知 ,小物块与水平地面间的动摩擦因数 ,重力加速度大小 .求:
(1)压缩弹簧的弹性势能;
(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小;
(3)小物块离开最高点后落回到地面上的位置与 点之间的距离.
【答案】(1)140J (2)25N (3)4.8m
【解析】
(1)设压缩弹簧的弹性势能为 ,从A到B根据能量守恒,有
代入数据得
(2)从B到D,根据机械能守恒定律有
(3)设外力 的方向与滑块运动方向(水平方向)的夹角为β,根据平衡条件
水平方向有: ,其中 ,竖直方向有
联立解得
由数学知识可得 ,其最小值 。
10.如图所示,A、B两球质量均为m,用一长为l的轻绳相连,A球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态.现给B球水平向右的初速度v0,经一段时间后B球第一次到达最高点,此时小球位于水平横杆下方l/2处.(忽略轻绳形变)求:
,解得:
(2)C点的水平分速度与B点的速度相等,则
从A到B点的过程中,据动能定理得: ,解得:
(3)滑块在传送带上运动时,根据牛顿第二定律得:
解得:
达到共同速度所需时间
二者间的相对位移
由于 ,此后滑块将做匀速运动。
滑块在传送带上运动时与传送带摩擦产生的热量
9.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x轴,在平台表面建有平面直角坐标系xoy,其坐标原点O与平台右侧距离为d=1.2m。平台足够宽,高为h=0.8m,长为L=3.3m。一个质量m1=0.2kg的小球以v0=3m/s的速度沿x轴运动,到达O点时,给小球施加一个沿y轴正方向的水平力F1,且F1=5y(N)。经一段时间,小球到达平台上坐标为(1.2m,0.8m)的P点时,撤去外力F1。在小球到达P点的同时,平台与地面相交处最内侧的M点,一个质量m2=0.2kg的滑块以速度v在水平地面上开始做匀速直线运动,滑块与地面间的动摩擦因数μ=0.5,由于摩擦力的作用,要保证滑块做匀速运动需要给滑块一个外力F2,最终小球落在N点时恰好与滑块相遇,小球、滑块均视为质点, , 。求:
(2)B球第一次到达最高点时,A、B速度大小、方向均相同,均为v1
以A、B系统为研究对象,以水平横杆为零势能参考平面,从开始到B球第一次到达最高点,根据机械能守恒定律,
得:
(3)从开始到B球第一次到达最高点的过程,对B球应用动能定理
(1).滑块运动至C点时的速度vC大小;
(2).滑块由A到B运动过程中克服摩擦力做的功Wf;
(3).滑块在传送带上运动时与传送带摩擦产生的热量Q.
【答案】(1)2.5 m/s (2)1 J (3)32 J
【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。
(1)在C点,竖直分速度:
解得:
ω=
轻绳b伸直时,竖直杆的角速度
5.如图所示,大小相同且质量均为m的A、B两个小球置于光滑的边长为 H的正方形玻璃板上,B静止,A由长为 H的轻质细绳悬挂于O3,静止时细绳刚好拉直,悬点距离玻璃板和玻璃板距离水平地面均为H,玻璃板中心O2位于悬点O3正下方,O3与O2的延长线和水平地面交于点O1.已知重力加速度为g.
对小球,由牛顿第二定律得:F﹣m0g=m0
代入数据解得:F=30N
(2)小球C与A碰撞后向左摆动的过程中机械能守恒,得:
所以: m/s
小球与A碰撞过程系统动量守恒,以小球的初速度方向为正方向,
由动量守恒定律得:m0v0=﹣m0vc+mvA
代入数据解得:vA=1.5m/s
(3)物块A与木板B相互作用过程,系统动量守恒,以A的速度方向为正方向,
由动量守恒定律得:mvA=(m+M)v
代入数据解得:v=0.5m/s
由能量守恒定律得:μmgx mvA2 (m+M)v2
代入数据解得:x=0.375m;
3.水平抛出一个物体,当抛出1秒后,它的速度方向与水平方向成45°角,落地时,速度方向与水平方向成60°角,(g取10m/s2)。求:
(1)初速度
(2)水平射程(结果保留两位有效数字)
动量定理:
(2)A与B发生弹性正碰
解得
B球被碰后,在桌面上匀速运动飞出桌面后平抛,设平抛的射程为x
由几何关系得
【点睛】(1)根据圆周运动向心力表达式即可求得;
(2)根据弹性碰撞机械能守恒动量守恒求得B小球的速度,再结合平抛运动的知识求得距离.
6.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L,重力加速度g,小球半径不计,质量为m,电荷q.不加电场时,小球在最低点绳的拉力是球重的9倍。
(1)B球刚开始运动时,绳子对小球B的拉力大小T;
(2)B球第一次到达最高点时,A球的速度大小v1;
(3)从开始到B球第一次到达最高点的过程中,轻绳对B球做的功W.
相关文档
最新文档