八年级数学上册全等三角形单元测试卷(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册全等三角形单元测试卷(含答案解析)
一、八年级数学轴对称三角形填空题(难)
1.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.
【答案】10
【解析】
【分析】
由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.
【详解】
解:∵BC CD =,∴∠CBD =∠CDB ,
∵BD 平分ADC ∠,∴∠ADB =∠CDB ,
∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,
∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,
∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,
∴CA=CD ,∴CB=CA=CD ,
过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152
DE BD ==,12
BCF ACB ∠=∠, ∵12BDC ADC ∠=
∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD ,
∴△BCF ≌△CDE (AAS ),∴CF=DE =5,
∴11451022
ABC S AB CF =⋅=⨯⨯=. 故答案为:10.
【点睛】
本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.
2.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.
【答案】①③④
【解析】
【分析】
①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则∠C=12
∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于
∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.
【详解】
∵∠BAC=90°,AD ⊥BC ,
∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,
∴∠ABC=∠DAC ,∠BAD=∠C ,
故①正确;
若∠EBC=∠C ,则∠C=
12
∠ABC , ∵∠BAC=90°,
那么∠C=30°,但∠C 不一定等于30°,
故②错误;
∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,
∴∠ABF=∠EBD ,
∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,
又∵∠BAD=∠C ,
∴∠AFE=∠AEF ,
∴AF=AE ,
故③正确;
∵AG 是∠DAC 的平分线,AF=AE ,
∴AN ⊥BE ,FN=EN ,
在△ABN 与△GBN 中,
∵90ABN GBN BN BN ANB GNB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩
,
∴△ABN ≌△GBN (ASA ),
∴AN=GN ,
又∵FN=EN ,∠ANE=∠GNF ,
∴△ANE ≌△GNF (SAS ),
∴∠NAE=∠NGF ,
∴GF ∥AE ,即GF ∥AC ,
故④正确;
∵AE=AF ,AE=FG ,
而△AEF 不一定是等边三角形,
∴EF 不一定等于AE ,
∴EF 不一定等于FG ,
故⑤错误.
故答案为:①③④.
【点睛】
本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.
3.如图,A,B,C 三点在同一直线上,分别以AB,BC (AB>BC )为边,在直线AC 的同侧作等边ΔABD 和等边ΔBCE,连接AE 交BD 于点M,连接CD 交BE 于点N,连接MN. 以下结论:
①AE=DC ,②MN//AB ,③BD ⊥AE ,④∠DPM=60°,⑤ΔBMN 是等边三角形.其中正确的是__________(把所有正确的序号都填上).
【答案】①②④⑤
【解析】
【分析】
①由三角形ABD与三角形BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到三角形ABE与三角形DBC全等即可得结论;
②由①中三角形ABE与三角形DBC全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA 可得出三角形EMB与三角形CNB全等,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出三角形BMN为等边三角形;可得∠BMN=60°,进行可得∠BMN=∠ABD,故MN//AB,从而可判断②,⑤正确;
③无法证明PM=PN,因此不能得到BD⊥AE;
④由①得∠EAB=∠CDB,根据三角形内角和和外角的性质可证得结论.
【详解】
①∵等边△ABD和等边△BCE,
∴AB=DB,BE=BC,∠ABD=∠EBC=60°,
∴∠ABE=∠DBC=120°,
在△ABE和△DBC中,
∵
AB DB
ABE DBC BE BC
⎪
∠
⎪
⎩
∠
⎧
⎨
=
=
=
,
∴△ABE≌△DBC(SAS),∴AE=DC,
故①正确;
∵△ABE≌△DBC,
∴∠AEB=∠DCB,
又∠ABD=∠EBC=60°,
∴∠MBE=180°-60°-60°=60°,即∠MBE=∠NBC=60°,
在△MBE和△NBC中,
∵
AEB DCB EB CB
MBE NBC ∠∠
∠
⎧
⎪
⎪
⎩∠
⎨
=
=
=
,