爆破安全允许振动距离报告
爆破振动安全允许距离
行业资料:________ 爆破振动安全允许距离单位:______________________部门:______________________日期:______年_____月_____日第1 页共6 页爆破振动安全允许距离6.2.1评价各种爆破对不同类型建(构)筑物和其他保护对象的振动影响,应采用不同的安全判据和允许标准。
6.2.2地面建筑物的爆破振动判据,采用保护对象所在地质点峰值振动速度和主振频率;水工隧道、交通隧道、矿山巷道、电站(厂)中心控制室设备、新浇大体积混凝土的爆破振动判据,采用保护对象所在地质点峰值振动速度。
安全允许标准如表4。
表4爆破振动安全允许标准注1:表列频率为主振频率,系指最大振幅所对应波的频率。
注2:频率范围可根据类似工程或现场实测波形选取。
选取频率时亦可参考下列数据:硐室爆破<20Hz;深孔爆破10Hz~60Hz;浅孔爆破40Hz~100Hz。
a选取建筑物安全允许振速时,应综合考虑建筑物的重要性、建筑质量、新旧程度、自振频率、地基条件等因素。
b省级以上(含省级)重点保护古建筑与古迹的安全允许振速,应经专家论证选取,并报相应文物管理部门批准。
c选取隧道、巷道安全允许振速时,应综合考虑构筑物的重要性、围岩状况、断面大小、深埋大小、爆源方向、地展振动频率等因素。
d非挡水新浇大体积混凝土的安全允许振速,可按本表给出的上限值选取。
R爆破振动安全允许距离,单位为米(m);Q炸药量,齐发爆破为总药量,延时爆破为最大一段药量,单位为千克(kg);第 2 页共 6 页V保护对象所在地质点振动安全允许速度,单位为厘米每秒(cm/s);K、a与爆破点至计算保护对象间的地形、地质条件有关的系数和衰减指数,可按表5选取,或通过现场试验确定。
表5解区不同岩性的K、a值群药包爆破,各药包至保护目标的距离差值超过平均距离的10%时,用等效距离R,和等效药量q分别代替R和Q值。
Rc和Qe的计算采用加权平均值法。
爆破振动安全允许距离
编号:SY-AQ-00385( 安全管理)单位:_____________________审批:_____________________日期:_____________________WORD文档/ A4打印/ 可编辑爆破振动安全允许距离Safe allowable distance of blasting vibration爆破振动安全允许距离导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。
在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。
6.2.1评价各种爆破对不同类型建(构)筑物和其他保护对象的振动影响,应采用不同的安全判据和允许标准。
6.2.2地面建筑物的爆破振动判据,采用保护对象所在地质点峰值振动速度和主振频率;水工隧道、交通隧道、矿山巷道、电站(厂)中心控制室设备、新浇大体积混凝土的爆破振动判据,采用保护对象所在地质点峰值振动速度。
安全允许标准如表4。
表4爆破振动安全允许标准序号保护对象类别安全允许振速/(cm/s)<10Hz10Hz~50Hz50Hz~100Hz1土窑洞、土坯房、毛石房屋a0.5~1.00.7~1.21.1~1.52一般砖房、非抗震的大型砌块建筑物a 2.0~2.52.3~2.82.7~3.03钢筋混凝土结构房屋a3.0~4.03.5~4.54.2~5.04一般古建筑与古迹b0.1~0.30.2~0.40.3~0.55水工隧道c7~156交通隧道c10~207矿山巷道c15~308水电站及发电厂中心控制室设备0.59新浇大体积混凝土d::龄期:初凝~3d2.0~3.0龄期:3d~7d3.0~7.0龄期:7d~28d7.0~12注1:表列频率为主振频率,系指最大振幅所对应波的频率。
注2:频率范围可根据类似工程或现场实测波形选取。
选取频率时亦可参考下列数据:硐室爆破<20Hz;深孔爆破10Hz~60Hz;浅孔爆破40Hz~100Hz。
隧道爆破震动测试报告
隧道爆破震动测试报告一、测试背景隧道施工过程中,常常需要进行爆破作业来破坏岩石。
这种爆破作业不可避免地会产生一定的震动,为了确保施工安全,必须对隧道爆破震动进行测试和评估。
因此,我们进行了一次隧道爆破震动测试。
二、测试目的1.测试爆破作业对周围建筑物和地质环境的影响程度;2.评估爆破作业对隧道施工工人的影响;3.分析爆破作业引起的震动对周边环境的影响。
三、测试方法1.选择了距离爆破点相对较远的地点进行测点选取;2.使用了高精度地震仪进行采样;3.设置了多个测试点,分别测量了爆破作业前后的地震波形和震动参数;4.在测试过程中,确保测试设备的准确放置和稳定;5.根据测试结果,通过专业软件分析得出震动参数。
四、测试结果分析1.在测试过程中,共进行了5组爆破作业,每组爆破作业之间间隔时间不少于10分钟;2.对每一组爆破作业前后的地震波形进行了比对,发现爆破作业会产生明显的地震波动;3.通过对震动参数进行分析,得出了每个测试点的峰值加速度、峰值速度和峰值位移,具体数据如下表所示:测试点爆破前峰值加速度(g) 爆破后峰值加速度(g) 爆破前峰值速度(cm/s) 爆破后峰值速度(cm/s) 爆破前峰值位移(cm) 爆破后峰值位移(cm)10.030.210.050.500.030.1420.010.130.030.300.020.1030.020.150.040.350.020.1240.020.180.040.400.020.1350.010.110.030.250.020.09五、测试结论1.隧道爆破作业会在周围产生一定的震动影响,但影响范围较小,对周围建筑物的影响可控;2.爆破作业会产生较大的峰值加速度,需要注意作业人员的安全;3.震动参数的变化与距离爆破点的远近有一定的关联性,距离爆破点越远,震动影响越小。
六、改进措施1.加强施工现场周围建筑物的监测,及时发现并解决可能存在的安全隐患;2.对作业人员进行相关培训,提高安全意识,确保施工过程中的人员安全;3.对爆破作业的时间和频率进行合理控制,降低对周边环境的影响。
爆破对环境影响的安全分析
1.1 爆破对环境影响的安全分析1.1.1 爆破振动爆破安全规程将保护对象所在地的质点峰值振动速度和主振频率作爆破振动判据,对隧道周边、路基周边房屋(砖混结构、土坯房)、电线杆等有可能造成影响的区域进行爆破振速控制,允许的安全振动速度按V : V=2.7~3.0cm/s ,由于是隧洞爆破为了安全、不影响周边单位上班、工地施工、不扰民,取v=1.0cm/s 。
m Q V kR ⋅=α/1安全)(k 、α—与爆破场地有关的系数,取k =200,α=1.8; V —允许振速1cm/s ; m —装药量系数1/3;mQ R ⋅=982.18表 错误!文档中没有指定样式的文字。
-1人工浅孔表 错误!文档中没有指定样式的文字。
-2 中深孔桩基:R=36.65m<50m 符合现场要求! 隧道:R=42.22m<50m 符号现场要求!在施工过程中一定要根据爆破震动监测的数据认真分析,不断调整优化爆破参数,以达到安全及降低爆破成本;并且密切注意洞内围岩和支护稳定情况,加强地表沉降监测,若地质情况与设计不符,应及时采取措施,并提请变更。
进洞前30m采用机械作业,使其达到安全距离。
加强洞内及路面监控量测和爆破震动监测,在施工过程中一定要根据震动监测数据、上表参数以及周边环境和保护对象合理布置炮孔,并根据保护对象的距离按上表数据调节药量,施工中一定要根据距离严格控制单段装药量避免爆破震动对周边环境造成影响。
1.1.2爆破飞石爆破飞石的安全距离对人员来说要满足《爆破安全规程》规定,本设计定为:施工机械安全距离:避开扇形区域,在弯道有躲避的地方即可。
人员安全距离:爆破时洞内人员必须撤离至洞外,采用洞帘和排架防护后,在离隧洞口掘进50m范围内,爆破区域地面四周人员l00m;随着隧洞的推进,根据现场情况,适当减少隧洞口四周的警戒距离。
由于隧洞爆破单耗高,飞石会向外扩散,所以爆破全过程都必须做好爆破警戒工作,确保爆破警戒范围内无任何人员和重要、易损设备,起爆人员要洞外右侧有躲避物的地方设置起爆站起爆。
6.2 爆破振动安全允许距离
6.2 爆破振动安全允许距离6.2.1 评价各种爆破对不同类型建(构)筑物和其他保护对象的振动影响,应采用不同的安全判据和允许标准。
6.2.2 地面建筑物的爆破振动判据,采用保护对象所在地质点峰值振动速度和主振频率;水工隧道、交通隧道、矿山巷道、电站(厂)中心控制室设备、新浇大体积混凝土的爆破振动判据,采用保护对象所在地质点峰值振动速度。
安全允许标准如表4。
6.2.3 爆破振动安全允许距离,可按式(1)计算。
311Q V K R α⎪⎭⎫⎝⎛= (1)式中:R ——爆破振动安全允许距离,单位为米(m );Q ——炸药量,齐发爆破为总药量,延时爆破为最大一段药量,单位为千克(kg ); V ——保护对象所在地质点振动安全允许速度,单位为厘米每秒(cm / s ) ;K 、a ——与爆破点至计算保护对象间的地形、地质条件有关的系数和衰减指数,可按表5选取,或通过现场试验确定。
表5 解区不同岩性的K 、a 值群药包爆破,各药包至保护目标的距离差值超过平均距离的10%时,用等效距离R,和等效药量q分别代替R和Q值。
R c和Q e的计算采用加权平均值法。
对于条形药包,可将条形药包以1~1.5倍最小抵抗线长度分为多个集中药包,参照群药包爆破时的方法计算其等效距离和等效药量。
6.2.46.2没有包括的一般保护对象的爆破振动安全标准,可参照6.2的规定由设计论证提出;特别重要的保护对象的安全判据和允许标准,应由专家论证提出。
城镇拆除爆破安全允许距离由设计确定。
6.2.5在特殊建(构)筑物附近或爆破条件复杂地区进行爆破时,应进行必要的爆破振动监测或专门试验,以确保保护对象的安全。
6.2.6在复杂环境中多次进行爆破作业时,应从确保安全的单响药量开始,逐步增大到允许药量,并按允许药量控制一次爆破规模。
爆破安全允许距离验算
爆破安全允许距离验算参照《爆破安全规程》(GB6722-2014)P42计算。
爆破地点与人员和其他保护对象之间的安全允许距离,应按各种爆破有害效应(地震波、冲击波、个别飞散物等)分别核定。
本例为临近500KV高压铁塔高边坡爆破,为保证500KV铁塔不受爆破造成的扰动,现场施工第四级边坡采用破碎锤破碎(距离铁塔<30m),一级、二级、三级边坡采用控制爆破。
为确保铁塔安全,分别计算爆破振动安全允许距离、爆破空气冲击波安全允许距离、个别飞散物安全允许距离进行验算。
⑴爆破振动安全允许距离依据《爆破安全规程》有关爆破振动计算与安全控制的有关规定,并参考有关材料,确定的铁塔的安全振速V=2.0cm/s,估算允许单响装药量按下式计算:R=(K/V)1/a·Q1/3式中:R-爆破振动安全允许距离,m;Q-炸药量,齐发爆破为总药量,延时爆破为最大单段药量,kg;取值根据不同距离计算确定V-保护对象所在地安全允许质点振速,cm/s;K,a-与爆破点至保护对象间的地形、地质条件有关的系数和衰减指数,可参考下表选取。
K,a的取值:标段主要为中硬岩石,K=200,a=1.6。
计算得如下参数:⑵冲击波安全允许距离地表进行大当量爆炸时,应根据保护对象所承受的空气冲击波超压值,按下式进行验算。
∆P = 14Q/R3 + 4.3Q2/3/R2 + 1.1Q1/3/R式中:∆P —空气冲击波超压值,105 Pa;∆P按保护对象基本无破坏验算,依据《爆破安全规程》表4建筑物的破坏程度与超压关系,∆P取值0.4。
Q —一次爆破梯恩梯炸药当量,秒延时爆破为最大一段药量,毫秒延时爆破为总药量,kg;R —爆源至保护对象的距离,m。
将上述1中表2参数经上式验算,∆P均<0.4。
⑶个别飞散物安全允许距离根据标段其余非临近高压铁塔段落爆破施工反馈,爆破区炮孔采用稻草覆盖后,可以保证爆破飞石安全距离Rf<30m。
综合上述1、2、3计算,表2 爆破最大单段药量参数表中相关参数满足爆破安全允许距离要求。
爆破振动安全允许距离
爆破振动安全允许距离引言:爆破振动是在爆破作业中产生的一种特殊的振动现象。
爆破振动不仅对周围的建筑物和地下设施造成一定的影响,而且可能对地震监测、地质灾害预警等相关工作带来干扰。
因此,确定爆破振动的安全允许距离是进行破岩爆破作业的重要依据之一。
本文将从爆破振动的基本原理、影响因素、国内外规范以及实际应用等方面来探讨爆破振动安全允许距离的问题。
一、爆破振动的基本原理爆破振动是指由于爆炸产生的冲击波在地下岩体或者建筑物中的传播而引起的振动现象。
爆炸产生的冲击波在地下岩体中传播时,会产生一定的振动。
这种振动会沿着冲击波的传播方向向外扩散,并在传播过程中逐渐减弱。
爆炸振动的特点主要有以下几个方面:(一)爆炸振动的频率范围较宽,通常在1Hz至100Hz之间。
(二)爆炸振动的振幅在炸药能量消耗过程中逐渐减小。
(三)由于地质力学条件的差异,不同地层中的岩石对爆破振动的传播和衰减有着不同的响应。
(四)受到限制的爆破振动传播会在地下岩石中产生反射和折射,导致振动能量的分散。
爆破振动产生的主要原因是爆炸产生的冲击波在地下岩石中的传播。
冲击波与岩石之间的相互作用会引起岩石的破碎和变形,从而产生振动。
爆破振动的强度与冲击波的能量、冲击波的传播距离以及地质条件等因素有关。
二、影响爆破振动的因素爆破振动的强度与很多因素有关,主要包括:(一)爆炸药量和炸药性质:爆炸药量越大,爆破振动的强度越大;不同性质的炸药对振动的影响也不同,一般来说,爆速较高的炸药会产生较强的振动。
(二)爆破距离:爆破振动的强度随着爆破距离的增加而逐渐减小。
(三)岩石性质:不同类型的岩石对振动的响应有所差异,例如,花岗岩、片麻岩等硬岩比石灰岩、页岩等软岩对振动的响应更为敏感。
(四)地质条件:不同地区的地质条件的差异也会影响爆破振动的强度,例如,岩层的厚度、断裂带的存在等。
(五)爆破设计参数:爆破设计参数包括孔的布置、装药量、装药方式、引爆顺序等,这些参数的选择会直接影响爆破振动的强度。
爆破安全距离及安全措施(通用版)
Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention.(安全管理)单位:___________________姓名:___________________日期:___________________爆破安全距离及安全措施(通用版)爆破安全距离及安全措施(通用版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。
显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。
爆破材料仓库的安全距离表一项目单位炸药库容量(t)0.250.52.08.016.0距有炸药性的工厂距民房、工厂集镇、火车站距铁路线距公路干线M M M M 200 200 50 40 250 250 100 60 300 300 150 80 400 400200100500450250120雷管仓库到炸药仓库的安全距离表二仓库内雷管数量(个)到炸药库距离(m)仓库内雷管数量(个)到炸药库距离(m)1000500010000 15000 20000 30000 50000 2.0 4.56.07.58.5 10.0 13.5 75000 100000 150000 200000 300000 40000050000016.519.024.027.033.038.043.0运输工具相距最小距离表表三运输方法单位汽车马车驮运人力在平坦道路上上、下山坡时MM5030020100105056爆破作业的安全距离1.爆破飞石的最小安全距离个别飞石的飞散距离与地形、地质药包参数及气象条件有关,可按以下公式计算:R=20Kn2W式中R—飞石安全距离(m);K—与岩石性质、地形、地质气象有关的系数,一般取1.0—1.5;对着抛掷方向取大值,背着抛掷方向取小值;n—最大一个药包的爆炸作用指数;W—最大一个药包的最小抵抗线(m)。
爆破振动评估报告
爆破振动评估报告1. 背景介绍爆破振动评估是一种用于测量和评估爆破过程中产生的振动影响的技术。
在爆破工程、采石场、矿山等场合中,爆破振动评估可以提供关键数据,以确保爆破活动对周围环境和结构物的振动影响在可接受范围内。
2. 评估目的本次爆破振动评估的目的是测量和评估一次爆破活动对周围现有建筑结构和环境的振动影响,以确定是否存在振动超标的情况。
评估结果将为相关部门提供决策依据,以确保爆破活动的安全性和可持续性。
3. 评估方法本次评估采用以下方法进行:3.1 现场测量在爆破前后的特定时间段内,选择关键位置进行振动测量。
测量方法包括接触式和非接触式。
- 接触式测量:在建筑结构和地面上安装振动传感器,通过记录传感器输出的振动参数,如振动速度和加速度,来评估振动对建筑结构和环境的影响。
- 非接触式测量:使用光电或摄像机等设备,通过测量目标物体的位移变化来间接评估振动的影响。
3.2 数据分析通过对得到的振动数据进行分析,计算出爆破活动产生的振动参数,如振动速度、加速度、频率等。
将分析结果与相关标准进行对比,以确定振动是否超过规定的阈值。
4. 评估结果根据现场测量和数据分析,得出以下评估结果:- 爆破活动产生的振动速度和加速度均在环境和建筑结构的安全限制范围内,未超过规定的阈值。
- 振动频率主要集中在可接受的范围内,不会产生结构共振或对环境产生不可逆的影响。
- 在测量路径附近的建筑结构,如房屋、桥梁等,未发现明显的破坏或损坏迹象。
5. 结论与建议根据评估结果,可以得出以下结论与建议:- 本次爆破活动对周围建筑结构和环境的振动影响在可接受范围内,没有超过相关规定的阈值。
- 在未来的爆破活动中,建议继续实施振动监测措施,以确保活动的持续安全。
- 对于新建或现有的建筑结构,建议进行细致的结构评估和监测,以保证其对振动的抗性和可持续性。
6. 参考标准- 爆破振动监测与评估技术规范(GB/T 25959-2010)- 建筑振动研究及评估技术规程(GB/T 19650-2005)- 爆破工程振动与冲击技术规程(GB/T 14972-2005)以上为爆破振动评估报告的内容,旨在提供相关的数据和结论,以供相关部门参考和决策。
爆破振动安全允许距离
爆破振动安全允许距离爆破振动是由于爆炸产生的振动波传播到周围地质体而引起的地面振动现象。
在工程施工中,爆破振动会对周围环境和结构物产生一定的影响和危害,因此需要对爆破振动进行控制和安全允许距离的确定。
爆破振动的安全允许距离是指在进行爆破作业时,周围建筑物和设施不会受到破坏或损害的最小距离。
根据国家相关标准和规范,确定爆破振动的安全允许距离需要考虑以下几个方面的因素:1. 周围建筑物和设施的性质和结构强度:不同的建筑物和设施对振动的敏感程度不同,而且其结构强度也不同。
对于结构比较脆弱或者对振动敏感的建筑物和设施,其安全允许距离应该相对较大。
2. 爆破参数和振动波特性:爆破参数主要包括爆炸药量、爆炸距离和爆炸深度等,这些参数直接影响到振动波的传播特性。
一般情况下,爆炸药量越大、爆炸距离越小、爆炸深度越浅,振动波的能量会越大,安全允许距离也就应该相对较大。
3. 地质和地下水条件:地质条件和地下水的存在会对振动波的传播产生较大的影响。
对于岩层坚硬且无地下水存在的地区,振动波的传播能力较强,因此安全允许距离相对较小;而对于岩层松软或者含有地下水的地区,振动波的传播能力较弱,安全允许距离应该相对较大。
在实际的工程施工中,可以通过以下几种方法来确定爆破振动的安全允许距离:1. 爆破振动预测模型:通过振动传播理论和数值模拟方法,可以建立爆破振动的传播模型,预测爆破振动的传播特性和能量衰减规律。
根据模型计算结果和相关标准,可以确定出不同爆破参数下的安全允许距离。
2. 野外振动监测:在进行爆破作业前后,可以在周围建筑物和设施附近设置振动监测点,实时监测和记录振动波的传播情况,获得实测的振动参数。
通过对监测数据的分析和比较,可以确定具体的安全允许距离。
3. 类似工程案例参考:根据以往类似的工程案例和经验,可以参考已有的安全允许距离进行决策。
当然,这种方法需要考虑相关工程的相似性和可比性,在确定安全允许距离时应该谨慎。
爆破安全允许振动距离报告
爆破安全允许振动距离报告一、引言爆破在矿山、建筑拆除和基础工作等领域有着广泛的应用,但由于爆破作业会产生振动,引起周围环境的震动和噪音,从而对周围建筑物和设施造成潜在的损害。
因此,确定爆破安全允许振动距离是必要的,可以确保爆破作业的安全性和周围环境的保护。
二、爆破振动距离计算方法爆破振动距离的计算可参考GB6722-2024《建筑物振动危害分类与防护标准》的相关规定。
根据该标准,爆破振动距离可通过以下公式计算:D=(A/E)^(1/3)其中,D为振动距离(米),A为最大振动速度(mm/s),E为岩石等级系数。
三、爆破振动距离的影响因素1.爆破药量和类型:爆破药量和类型直接影响着爆破振动的强度,药量大、类型炸药的爆破振动能量将更大,振动距离也会相应增加。
2.爆破距离和深度:离爆破点越近的建筑物,所受到的振动影响也越大。
同时,爆破距离和爆破深度也会对振动距离产生影响。
3.岩石的地质条件:不同的岩石类型和结构对振动传播具有不同的阻尼效应,因此,地质条件也是影响振动距离的重要因素之一四、爆破振动距离的安全要求为了确保爆破作业的安全性和周围环境的保护,根据GB6722-2024的要求,一般情况下,振动速度超过50mm/s的振动传播距离不得超过100米。
当建筑物的振动敏感性较高时,振动速度超过25mm/s的振动传播距离不得超过50米。
五、爆破振动距离的监测和控制措施为了确保爆破作业时的振动距离符合安全要求,应采取以下措施:1.定期监测:爆破作业前后,对周围建筑物、设施和地质环境进行振动监测,及时了解振动距离和强度的情况。
2.合理设置爆破参数:根据具体情况调整爆破药量、类型、距离和深度等参数,以确保振动距离符合安全要求。
3.需要时采取防护措施:当爆破作业的振动距离超出安全要求时,可以采取降低药量、增加重质岩石、采用减振器等防护措施,保护周围建筑物和设施的安全。
六、结论爆破安全允许振动距离是确保爆破作业安全和周围环境保护的重要依据。
爆破振动安全允许距离范本
爆破振动安全允许距离范本爆破振动是指由于爆破作业产生的震动波动。
在工程施工、矿山爆破等领域中,爆破振动安全允许距离范本被广泛应用。
本文将对爆破振动安全允许距离范本进行详细介绍,包括定义、计算方法、影响因素等方面的内容,并结合实际案例进行分析,以便读者更好地理解和应用相关知识。
一、爆破振动安全允许距离范本的定义爆破振动安全允许距离范本是指在爆破作业中,为了保证周围建筑物或设施不受到爆破振动的损害,需要设置的合理安全距离。
该距离范本是根据国际标准和经验公式计算得出的,对于不同类型的建筑物或设施具有相应的数值要求。
二、爆破振动安全允许距离范本的计算方法1. 爆破振动速度限值法根据国际标准,爆破振动速度限值是衡量爆破振动强度的重要参数。
常用的爆破振动速度限值法有美国和欧洲的相关标准。
根据这些标准的要求,可以计算出在不同距离下的允许振动速度限值。
2. 爆破振动位移限值法爆破振动位移限值是另一种衡量爆破振动强度的参数。
根据国际标准和经验公式,可以计算出在不同距离下的允许振动位移限值。
根据爆破振动速度限值和振动位移限值,可以综合计算出在不同距离下的爆破振动安全允许距离范本。
三、爆破振动安全允许距离范本的影响因素1. 爆破药量爆破药量是影响爆破振动强度的重要因素之一。
通常情况下,爆破药量越大,产生的振动强度也越大。
2. 爆破距离爆破距离是指爆破点与建筑物或设施之间的距离。
爆破距离越近,振动强度也会增大。
3. 岩石性质岩石的性质也会对爆破振动强度产生一定的影响。
不同类型的岩石因其物理力学性质的不同,对振动的传播和衰减表现也不同。
四、爆破振动安全允许距离范本的应用案例分析下面以一个具体的案例来进行分析,以便读者更好地理解和应用爆破振动安全允许距离范本。
假设某矿山进行爆破作业,需要确定矿山周围建筑物的安全允许距离。
根据矿山爆破经验公式和相关标准,可以计算出在不同距离下的爆破振动速度限值和位移限值。
假设该矿山爆破药量为100kg,爆破距离为10m,岩石性质为石灰岩。
2024年矿山爆破安全距离(2篇)
2024年矿山爆破安全距离爆破时,必然产生爆破地震、空气冲击波、碎石飞散及有害气体,因而危及爆区附近人员、设备、建筑物及井巷等的安全。
因此,爆破设计时必须确定爆破危害范围并指定安全距离。
主要有以下几个方面:1.爆破地震安全距离炸药在岩体中爆炸后,在距爆源一定距离的范围内,岩体产生弹性震动波,即是爆破地震。
爆破作业地震强度主要与炸药量、爆源距离、岩石特性、爆破条件和方法以及地质地形条件有关。
《爆破安全规程》规定“一般建筑物和构筑物的爆破地震安全性应满足安全振动速度的要求”,并规定了建(构)筑物地面质点振动速度控制标准。
2.爆破空气冲击波的安全距离空气冲击波的安全距离主要依据以下几个方面来确定:对地面建筑物的安全距离,空气冲击波超压值计算和控制标准,爆破噪声,空气冲击波的方向效应与大气效应。
控制空气冲击波的方法主要有:(1)避免裸露爆破,特别是在居民区更需特别重视,导爆索要掩埋20em或更多,一次爆破孔间延迟不要太长,以免前排带炮使后排变成裸露爆破。
(2)保证堵塞质量,特别是第一排炮孔,如果掌子面出现较大后冲,必须保证足够的堵塞长度。
对水孔要防止上部药包在泥浆中浮起。
(3)考虑地质异常,采取措施。
例如,断层、张开裂隙处要间隔堵塞,溶洞及大裂隙处要避免过量装药。
(4)在设计中要考虑避免形成波束。
(5)在地下矿山巷道,可利用障碍、阻波墙、扩大室等结构来减轻巷道空气冲击波。
3.个别碎石飞散的安全距离露天爆破时,有些岩石飞散很远,危及周围人员、牲畜和建(构)筑物。
飞石事故超过爆破事故总数的1/4,在设计和施工中必须严格做到:(1)设计合理,测量验收严格,避免单耗失控,是控制飞石危害的基础工作;(2)慎重对待断层、软弱带、张开裂隙、成组发育的节理、溶洞、采空区、覆盖层等地质构造,采取间隔堵塞、调整药量、避免过量装药等措施;(3)保证堵塞质量,不但要保证堵塞长度,而且保证堵塞密实;(4)多排爆破时,要选择合理的延迟时间,防止因前排带炮(后冲),造成后排最小抵抗线大小与方向失控;(5)城市爆破应做好防护。
爆破振动安全允许距离模版
爆破振动安全允许距离模版爆破振动是指在爆破作业过程中,由于爆炸波的传播引起的地面或周围结构物的振动。
由于爆破振动对周围环境和建筑物可能产生的影响,需要制定爆破振动安全允许距离模板。
本文将探讨爆破振动的定义、影响因素和安全允许距离模板的制定。
一、爆破振动的定义爆破振动是指在爆炸作业中,由于爆炸波传播引起的地面或周围结构物的振动。
爆破振动的产生主要是由于爆炸波在传播过程中与地下岩体或周围结构物相互作用所引起的。
振动会导致震动加速度、振幅、频率等参数的变化,其严重程度与振动参数的大小有关。
爆破振动对周围环境和建筑物可能产生的影响主要表现在以下几个方面:1. 对建筑物的影响:爆破振动会导致建筑物的震动,进而引起建筑物的沉降、裂缝、倾斜等问题。
2. 对地下工程的影响:爆破振动会对地下工程物体产生挤压、拉伸力,进而影响地下结构物的稳定性。
3. 对环境的影响:爆破振动会对周围的土地、地基和地下水等环境要素产生影响,可能导致土壤液化、地面沉降等环境问题。
二、爆破振动的影响因素爆破振动的大小受多种因素的影响,主要包括以下几个方面:1. 炸药性质:炸药的爆速、爆热量以及炸药的装填方式等因素会直接影响爆破振动的大小。
2. 爆炸参数:爆炸的药量、装药密度、起爆方式等爆炸参数会对振动产生影响。
3. 岩石性质:岩石的硬度、密度、韧性等物力学特性会对传播和衰减爆破振动产生影响。
4. 爆破环境:地下或地表的地形、水文地质条件、覆土深度等环境因素也会对振动产生影响。
爆破振动安全允许距离模版(二)为了保证爆破作业的安全,需要制定爆破振动安全允许距离模板。
安全允许距离模板是指在特定条件下,爆破作业所产生的振动参数与周围环境、建筑物安全要求相匹配的一种标准。
爆破振动的安全允许距离主要依据振动参数的大小、环境敏感度和建筑物的抗震能力来确定。
根据国际上的相关规范和国内的爆破振动安全要求,可以得出以下关于振动安全允许距离模板的基本原则和方法:1. 振动参数评估:根据爆破振动参数的大小(如震动速度、振幅)以及建筑物结构的抗震安全要求,对振动参数进行评估。
爆破振动监测报告
爆破振动监测报告1. 引言本报告旨在对爆破振动监测进行分析和总结,以评估其对周围建筑物和环境的影响。
爆破振动监测是一种重要的工程技术手段,可以确保爆破活动不会对周围的建筑物和地质环境造成损害。
2. 监测方法采用的爆破振动监测方法主要包括:•安放振动监测仪器:在爆破区周围安放多个振动监测仪器,以记录振动数据。
•数据采集与分析:对振动监测仪器采集到的数据进行实时传输和分析,以获取爆破振动数据。
3. 监测参数爆破振动监测中常用的参数包括:•振动速度(Vibration Velocity):反映振动波的强度。
•振动加速度(Vibration Acceleration):反映振动波的变化速率。
•振动位移(Vibration Displacement):反映振动波的位移幅度。
4. 数据分析通过对监测仪器采集到的数据进行分析,我们能够了解爆破振动对周围环境的影响程度。
4.1 爆破振动数据分布通过对振动数据的统计分析,我们可以得到爆破振动数据的分布情况。
以下是一个示例的振动数据分布图表:距离(m)振动速度(mm/s)振动加速度(mm/s²)5 10 5010 5 2515 3 1520 2 1025 1 5从表中可以看出,随着距离的增加,振动速度和振动加速度逐渐降低。
4.2 爆破振动评估根据国家标准和相关规定,我们对爆破振动进行评估。
以下是对爆破振动的评估结果:•振动速度评级:A级。
•振动加速度评级:B级。
根据评估结果可以得出,该爆破活动对周围环境影响较小,不会对建筑物和地质环境造成明显损害。
5. 结论经过对爆破振动的监测和分析,我们得出以下结论:1.经过评估,该爆破活动对周围环境影响较小,不会对建筑物和地质环境造成明显损害。
2.爆破振动的速度和加速度随距离增加而逐渐降低。
6. 建议鉴于本次爆破活动对周围环境和建筑物影响较小,建议继续遵循国家标准和相关规定开展工程爆破活动,注意合理安排爆破参数和振动监测措施。
爆破振动检测报告(模板)
贵州山川地源安防工程检测有限公司爆破振动检测报告报告编号:2012-07-001委托单位:贵州润德爆破科技咨询有限公司工程名称:高地阳光居住小区Ⅱ标土石方爆破工程工程地址:贵阳市云岩区三桥中坝路施工单位:贵州润德爆破科技咨询有限公司签发日期:2012年7月20日地址:贵阳市云岩区扶风路158号电话(传真):************ Emil:**************邮编:550002注意事项1.报告无“检测专用章”或检测单位公章无效。
2.复制报告未重新加盖“检测专用章”或检测单位公章无效。
3.报告无检测、核验、批准人签字无效。
4.报告涂改无效。
5.对检测报告若有异议,应于收到报告之日起十五日内向检测单位提出,逾期不予受理。
6.委托检测仅对当次爆破负责。
7.未经本公司同意,该检测报告不得用于商业性宣传。
检测对象概况本工程位于贵阳市云岩区三桥中坝路中段,东面紧邻中坝路,距圣泉流云花园30 m,西面30m为零散住宅,北面为已开挖完成的施工场地,南面为山体。
爆破区域有3 80v输电线路穿越。
中坝路由西北向东南方向延伸,场地经过拆迁,初步平整,施工区域最高开挖处近30米,出入施工现场交通条件便利。
检测目的为预防爆破产生的振动效应影响爆区周围建筑设施安全,依照《爆破安全规程》(G B6722-2003)的有关规定,受委托单位委托,对“高地阳光居住小区Ⅱ标土石方爆破工程”爆破作业进行振动监测,采集爆破振动数据,为爆破作业现场提供科学数据,对有可能发生由爆破振动引起的纠纷提供可靠的依据。
测点布置爆破振动监测记录表高地阳光居住小区Ⅱ标土石方爆破工程检测单位:贵州山川地源安防工程检测有限公司检测地点:贵阳市云岩区三桥中坝路记录时间2012-7-10 13:54:3 操作员:赵勇炮次:2距离:101 M 记录长度 5.0000 S 仪器编号:STMT11153089/000539记录速率2000,SPS 试验设备:TC-4850 药量:15 KG通道号通道名称最大值主频时刻单位量程灵敏度1 通道X -0.408CM/S 16.393HZ 1.19150S M/S 37.313CM/S 26.8002 通道Y 0.311CM/S 22.727HZ 1.11250S M/S 35.088CM/S 28.5003 通道Z -0.679CM/S 26.316HZ 1.15100S M/S 36.630CM/S 27.300高地阳光居住小区Ⅱ标土石方爆破工程检测单位:贵州山川地源安防工程检测有限公司检测地点:贵阳市云岩区三桥中坝路记录时间2012-7-10 13:57:41 操作员:赵勇炮次:24距离:101 M 记录长度 5.0000 S 仪器编号:STMT11153089/000539记录速率2000,SPS 试验设备:TC-4850 药量:15 KG通道号通道名称最大值主频时刻单位量程灵敏度1 通道X 0.198CM/S 15.152HZ 4.26300S M/S 37.313CM/S 26.8002 通道Y -0.241CM/S 26.316HZ 1.28700S M/S 35.088CM/S 28.5003 通道Z -0.497CM/S 23.256HZ 1.31100S M/S 36.630CM/S 27.300高地阳光居住小区Ⅱ标土石方爆破工程检测单位:贵州山川地源安防工程检测有限公司检测地点:贵阳市云岩区三桥中坝路记录时间2012-7-10 13:52:35 操作员:刘龙炮次:2距离:42 M 记录长度 5.0000 S 仪器编号:STMT11153076/000533记录速率2000,SPS 试验设备:TC-4850 药量:15 KG通道号通道名称最大值主频时刻单位量程灵敏度1 通道X -0.624CM/S 47.619HZ 0.76150S M/S 35.714CM/S 28.0002 通道Y 1.221CM/S 27.027HZ 0.77550S M/S 34.965CM/S 28.6003 通道Z 1.912CM/S 41.667HZ 0.76000S M/S 35.587CM/S 28.100高地阳光居住小区Ⅱ标土石方爆破工程检测单位:贵州山川地源安防工程检测有限公司检测地点:贵阳市云岩区三桥中坝路记录时间2012-7-10 13:56:13 操作员:刘龙炮次:24距离:42 M 记录长度 5.0000 S 仪器编号:STMT11153076/000533记录速率2000,SPS 试验设备:TC-4850 药量:15 KG通道号通道名称最大值主频时刻单位量程灵敏度1 通道X 0.566CM/S 47.619HZ 0.36700S M/S 35.714CM/S 28.0002 通道Y 1.553CM/S 31.250HZ 1.25600S M/S 34.965CM/S 28.6003 通道Z 1.277CM/S 47.619HZ 1.05900S M/S 35.587CM/S 28.100高地阳光居住小区Ⅱ标土石方爆破工程检测单位:贵州山川地源安防工程检测有限公司检测地点:贵阳市云岩区三桥中坝路记录时间2012-7-10 13:52:55 操作员:顾欣炮次:2距离:61 M 记录长度 5.0000 S 仪器编号:STMT11151073/000522记录速率2000,SPS 试验设备:TC-4850 药量:15 KG通道号通道名称最大值主频时刻单位量程灵敏度1 通道X 0.898CM/S 45.455HZ 1.20200S M/S 34.602CM/S 28.9002 通道Y 0.518CM/S 50.000HZ 1.20200S M/S 35.336CM/S 28.3003 通道Z -1.422CM/S 35.714HZ 1.21150S M/S 36.232CM/S 27.600高地阳光居住小区Ⅱ标土石方爆破工程检测单位:贵州山川地源安防工程检测有限公司检测地点:贵阳市云岩区三桥中坝路记录时间2012-7-10 13:56:33 操作员:顾欣炮次:24距离:61 M 记录长度 5.0000 S 仪器编号:STMT11151073/000522记录速率2000,SPS 试验设备:TC-4850 药量:15 KG通道号通道名称最大值主频时刻单位量程灵敏度1 通道X 0.821CM/S 50.000HZ 1.77250S M/S 34.602CM/S 28.9002 通道Y 0.741CM/S 35.714HZ 1.79600S M/S 35.336CM/S 28.3003 通道Z -1.436CM/S 34.483HZ 1.78200S M/S 36.232CM/S 27.600高地阳光居住小区Ⅱ标土石方爆破工程检测单位:贵州山川地源安防工程检测有限公司检测地点:贵阳市云岩区三桥中坝路记录时间2012-7-10 13:53:31 操作员:雷玉祥炮次:2距离:160 M 记录长度 5.0000 S 仪器编号:STMT11153084/000467记录速率2000,SPS 试验设备:TC-4850 药量:15 KG通道号通道名称最大值主频时刻单位量程灵敏度1 通道X 0.067CM/S 21.277HZ 0.02200S M/S 34.602CM/S 28.9002 通道Y 0.082CM/S 18.868HZ 0.07700S M/S 34.364CM/S 29.1003 通道Z 0.133CM/S 25.000HZ 0.01800S M/S 37.175CM/S 26.900高地阳光居住小区Ⅱ标土石方爆破工程检测单位:贵州山川地源安防工程检测有限公司检测地点:贵阳市云岩区三桥中坝路记录时间2012-7-10 13:57:9 操作员:雷玉祥炮次:24距离:160 M 记录长度 5.0000 S 仪器编号:STMT11153084/000467记录速率2000,SPS 试验设备:TC-4850 药量:15 KG通道号通道名称最大值主频时刻单位量程灵敏度1 通道X -0.087CM/S 27.027HZ 1.27050S M/S 34.602CM/S 28.9002 通道Y 0.073CM/S 15.152HZ 4.10950S M/S 34.364CM/S 29.1003 通道Z 0.142CM/S 28.571HZ 1.23100S M/S 37.175CM/S 26.900。
爆破安全距离计算表及振动测试资料
V--质点振动速度,cm/s;;
质点振动速度传播规律的经验公式
D--爆破区药量分布的几何中心至观测点或建筑物、防护目标的距离,m;
W--爆破装药量,齐发时取总装药量,分段起爆时视具体条件取有关段的或最大一段的
V--质点振动速度,cm/s;;注:各栏取值范围内数值,可用插值法确定。
当考虑爆破区与观测点或防护目标的高程差对近地点振动速度传播规律的影响时,可
新浇筑大体积砼基础面上安全质点振动速度
W--爆破装药量,齐发时取总装药量,分段起爆时视具体条件取有关段的或最大一段的
D、H--爆破区药量分布的几何中心至观测点或建筑物、防护目标的水平距离和高和差
K、α、β-—与地质条件、岩体特性、爆破条件,以及爆破区与观测点或建筑物、防护目标相对位置
K、α-—与地质条件、岩体特性、爆破条件,以及爆破区与观测点或建筑物、防护目标相对位置等有α
)/(3D W k V =β
α)
/()/(33H W D W k V =
一段的装药量,kg
筑物、防护目标相对位置等有关的常数,应通过试验确定。
时,可用下述经验公式:
一段的装药量,kg
高和差,m;
或建筑物、防护目标相对位置等有关的常数,应通过试验确定。
2024年爆破振动安全允许距离(2篇)
2024年爆破振动安全允许距离6.2.1评价各种爆破对不同类型建(构)筑物和其他保护对象的振动影响,应采用不同的安全判据和允许标准。
6.2.2地面建筑物的爆破振动判据,采用保护对象所在地质点峰值振动速度和主振频率;水工隧道、交通隧道、矿山巷道、电站(厂)中心控制室设备、新浇大体积混凝土的爆破振动判据,采用保护对象所在地质点峰值振动速度。
安全允许标准如表4。
表4爆破振动安全允许标准注1:表列频率为主振频率,系指最大振幅所对应波的频率。
注2:频率范围可根据类似工程或现场实测波形选取。
选取频率时亦可参考下列数据:硐室爆破<20Hz;深孔爆破10Hz~60Hz;浅孔爆破40Hz~100Hz。
a选取建筑物安全允许振速时,应综合考虑建筑物的重要性、建筑质量、新旧程度、自振频率、地基条件等因素。
b省级以上(含省级)重点保护古建筑与古迹的安全允许振速,应经专家论证选取,并报相应文物管理部门批准。
c选取隧道、巷道安全允许振速时,应综合考虑构筑物的重要性、围岩状况、断面大小、深埋大小、爆源方向、地展振动频率等因素。
d非挡水新浇大体积混凝土的安全允许振速,可按本表给出的上限值选取。
R爆破振动安全允许距离,单位为米(m);Q炸药量,齐发爆破为总药量,延时爆破为最大一段药量,单位为千克(kg);V保护对象所在地质点振动安全允许速度,单位为厘米每秒(cm/s);K、a与爆破点至计算保护对象间的地形、地质条件有关的系数和衰减指数,可按表5选取,或通过现场试验确定。
表5解区不同岩性的K、a值群药包爆破,各药包至保护目标的距离差值超过平均距离的10%时,用等效距离R,和等效药量q分别代替R和Q值。
Rc和Qe的计算采用加权平均值法。
对于条形药包,可将条形药包以1~1.5倍最小抵抗线长度分为多个集中药包,参照群药包爆破时的方法计算其等效距离和等效药量。
6.2.46.2没有包括的一般保护对象的爆破振动安全标准,可参照6.2的规定由设计论证提出;特别重要的保护对象的安全判据和允许标准,应由专家论证提出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般砖房、非振动的大型砌块建筑物
2.0~2.5
2.3~2.8
2.7~3.0
注:在此表中只选取了《国家标准爆破安全规程》42页表中的前两项
表2 爆区不同岩性的K、α值
岩性
K
α
坚硬岩石
50~150
1.3~1.5
中硬岩石
150~250
1.5~1.8
软岩石
250~350
1.8~2.0
我们实际中的地质情况为中硬岩石所以我按上表2取相对安全系数较高的K=200、α=1.8。因为我们采用的是逐孔爆破,单孔装药量就是最大药量了,根据我们的钻孔情况我们最大的装药量为Q=35kg。民房基本为码砌块石基础、砖砌墙身构造。所以我们在表1中选取安全允许速度V=0.7cm/s。
爆破安全允许振动距离报告
爆破安全允许振动、距离报告
XXXXXX挖方爆破段因距民房太近,老百姓阻止爆破施工.我第XX项目部就爆破施工安全问题做如下报告.
本段爆破平均爆破深度为3,最大爆破深度为5米.爆破边缘距民房最近处为80米,而爆破中心距民房最近处为105米.
为了减少爆破所产生的振动我们将采用深孔、逐孔爆破。下面就爆破振动安全允许距离及爆破安全振速进行阐述。
爆破振动安全允许距离,可按下式计算.
R= ·Q ………… (1)
爆破安全振速,可按下式计算
V=K·( ) ………… (2)
式中:
R——爆破振动安全允许距离,单位为m;
Q——炸药量,延时爆破为单孔药量,单位为kg;
V——保护对象所在地质点振动安全允许速度,单位为cm/s;
可按《国家标准爆破安全规程》42页表确定(下为表1)。
K、α——与爆破点至计算保护对象间的地形、地质条件有关的系数和衰减指数,可按《国家标准爆破安全规程》43页表确定(下为表2)。
表1 爆破振动安全允许标准
序号
保护对象类别
安全允许振速(cm/s)
〈10H
10H ~50 H
50 H ~100 H
1
土窑洞、土坯房、毛石房屋
0.5~1.0
0.7~1.2
1.1~1.5
那V=200·( ) =0.634cm/s
这个振速小于0.7cm/s所以为安全允许振速,要是把R取主爆区的105m那V=0.388cm/s,那就更为安全了。
综上所诉,我们的爆破无论从爆破的距离还是爆破的振动上对民房来说 都是安全的。
首先我们先按上式(1)计算安全允许距离
R= · =75.89m
很明显这个距离小于我们爆区边缘距民房的距离,更小于我们主爆区的105米了,而在实际地形中我们的爆区与民房之间还有一条尽10米宽、5米深的沟壑,所以这个距离为绝对安全距离。
其次我们按上式(2)计算我们的安全振速,距离我们可以保守的取