电压驻波比
端口电压驻波比
端口电压驻波比端口电压驻波比是衡量电路中信号传输质量的重要指标之一。
在电信领域,特别是无线通信中,了解和控制端口电压驻波比对于确保信号传输的稳定性和可靠性至关重要。
端口电压驻波比(Voltage Standing Wave Ratio,简称VSWR)是指在电路中电压波的最大值与最小值之比。
它是衡量电路阻抗匹配程度的一个重要参数。
通常,理想情况下,我们希望电路中的阻抗能够完全匹配,使得信号能够完全传输而不会反射。
这时,端口电压驻波比为1,表示完美的匹配。
然而,在实际电路中,由于各种原因(如电缆长度、连接器质量、天线阻抗等),阻抗匹配可能无法达到完美。
这就导致了信号的一部分会反射回源端,形成驻波。
驻波会造成信号衰减、噪声增加以及信号传输质量下降。
端口电压驻波比的计算通常需要测量信号在电路中的最大值和最小值。
对于一条传输线,最大值和最小值对应于节点处的最大电压和最小电压。
测量这两个值可以通过使用特定的测试设备,如驻波仪或网络分析仪来完成。
端口电压驻波比的数值范围从1开始,通常没有上限。
当驻波比接近1时,表示电路中的信号反射很小,匹配程度很好。
当驻波比大于1时,表示信号反射较多,匹配程度较差。
当驻波比接近无穷大时,表示电路中存在严重的信号反射,严重影响了信号传输质量。
对于无线通信系统而言,端口电压驻波比的控制非常重要。
过高的驻波比会导致信号衰减、功率损失以及设备损坏。
因此,通常会采取一系列措施来减小端口电压驻波比,如优化天线设计、使用匹配网络、选择合适的传输线等。
了解端口电压驻波比还有助于故障排除和维护。
通过测量驻波比,可以快速判断出是否存在阻抗不匹配的问题,并确定问题所在。
在维护过程中,可以针对性地进行调整和修复,以保证信号传输的稳定和可靠。
端口电压驻波比是衡量电路中信号传输质量的重要指标。
通过了解和控制端口电压驻波比,可以提高信号传输的稳定性和可靠性,减少信号反射和衰减,保证通信系统的正常运行。
因此,在设计和维护电路时,我们应该重视端口电压驻波比的控制和优化。
驻波比 值
驻波比值驻波比(Standing Wave Ratio,简称SWR)是用来描述电传输线上电压或电流分布不均匀程度的一个参数。
在电信领域中,驻波比是一个非常重要的参量,其主要用于表示信号的传输质量以及电路的匹配程度。
驻波比是通过比较电传输线上的峰值电压和谷值电压来计算得出的。
在一个完全匹配的电传输线上,电压的分布是均匀的,同时峰值电压和谷值电压相等,驻波比也等于1。
而当电压分布不均匀,即出现反射现象时,驻波比将大于1。
而当电传输线出现短路或开路时,驻波比将为无穷大,意味着信号完全反射。
驻波比的计算公式为SWR=Vmax/Vmin,其中Vmax为电传输线上的峰值电压,Vmin为电传输线上的谷值电压。
通过测量和计算驻波比,我们可以了解到信号的反射程度以及电传输线的质量,从而判断信号的传输效果。
驻波比对于无线电通信非常重要。
在无线电天线的设计和安装过程中,我们常常需要通过调整天线的长度、位置和朝向等参数来使得驻波比尽量接近1,以提高信号的传输效果。
一个合适的驻波比可以最大限度地将能量传输到天线中,并且减少信号的反射。
反之,如果驻波比过高,将导致信号反射和衰减,降低信号质量,甚至可能引发天线过热等问题。
驻波比不仅在无线电通信中起着重要作用,在其他电子设备中也有广泛的应用。
比如,在射频电路设计中,利用驻波比可以判断信号传输线的匹配情况,从而优化电路的性能。
在电视、雷达、卫星通信等领域,驻波比也被广泛用于评估信号的传输质量。
驻波比的测量方法有许多种。
最常见的方法是使用驻波比表或网络分析仪来直接测量驻波比。
驻波比表是一种特殊的仪器,可以直接测量驻波比,并且通常带有峰值功率的指示。
而网络分析仪则是一种功能更强大的测试仪器,可以测量和分析电传输线的多种参数,如驻波比、反射系数、传输系数等。
总之,驻波比是描述电传输线上电压或电流分布不均匀程度的重要参量。
通过测量和计算驻波比,我们可以了解到信号的反射程度以及电传输线的质量,从而判断信号的传输效果。
驻波比
在无线电通信中,天线与馈线的阻抗不匹配或天线与发射机的阻抗不匹配,高频能量就会产生反射折回,并与前进的部分干扰汇合发生驻波。为了表征和测量天线系统中的驻波特性,也就是天线中正向波与反射波的情况,人们建立了“驻波比”这一概念, SWR=R/r=(1+K)/(1-K) 反射系数K=(R-r)/(R+r) (K为负值时表明相位相反) 式中R和r分别是输出阻抗和输入阻抗。当两个阻抗数值一样时,即达到完全匹配,反射系数K等于0,驻波比为1。这是一种理想的状况,实际上总存在反射,所以驻波比总是大于1的。 射频系统阻抗匹配。特别要注意使电压驻波比达到一定要求,因为在宽带运用时频率范围很广,驻波比会随着频率而变,应使阻抗在宽范围内尽量匹配。 驻波比的含义: 驻波比就是一个数值,用来表示天线和电波发射台是否匹配。如果 SWR 的值等于1, 则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况。如果SWR 值大于1, 则表示有一部分电波被反射回来,最终变成热量,使得馈线升温。被反射的电波在发射台输出口也可产生相当高的电压,有可能损坏发射台。
2 影响天线效果的最重要因素:谐振
天线系统和输出阻抗为50欧的发射机的匹配条件,是天线系统阻抗为50欧纯电阻。理论上,要使天线发射的电磁场最强必须满足两个条件:一是发射频率 必须和天线的固有频率相同,二是驱动点要选在天线的适当位置。如果驱动点不恰当而天线与信号频率谐振,发射效果会略受影响,但是如果天线与信号频率没有谐 振,则发射效率会大打折扣。所以,在这两个条件中,谐振是关键因素。
随着国民经济的发展,无线电通信应用越来越广泛,已经渗透到各行各业。但是某些单位为了达到一定的通信效果和更大的覆盖范围,一味地加大无线电电台功率,这不仅增加了设备故障率,而且将对操作者产生电磁辐射危害。
电压驻波比测量
实验九 电压驻波比测量一.实验目的1.掌握校准晶体检波特性的方法;2.掌握常用的大、中电压驻波比的测量方法:直接法、等指示度法、功率衰减法。
二.实验原理(一)、晶体定标由测量线的基本工作原理可知,指示器的读数I 是探针所在处|E |对应的检波电流。
任一位置处|E |与I 的对应关系应视检波晶体二极管的检波特性而定。
一般,这种关系可通过对二极管的定标来确定。
所谓定标,就是找出电场的归一化值|E ´|与I 的对应关系,其中:max'E E E =。
由实验的分析可知,当测量线终端短路时,有:z E E βsin 20= 而:0max 2E E =,显然,归一化电场z z E gλπβ2sin sin '==如果我们取任意一零点(波节点)作为坐标起始位置,且坐标用d 表示,则:d E gλπ2sin'=而晶体二极管上的检波电压u 正比于探针所在处的|E ´|,所以,上式可以用u 的归一化值u ´来表示。
即:d u u u gλπ2sinmax'==由于晶体二极管的检波电流I 与检波电压u 之间的关系为:n cu I =,式中,c 为比例常数,n 为检波律。
代入上式,则有:ngd c I λπ2sin'=式中,c ´为比例常数。
驻波比的测量是微波测量中最基本、最重要的内容之一。
电压驻波比(以下简称驻波比)的定义是:传输线中电场最大值和最小值之比,即:min 'max'minmax EE E E S ==式中,'E 为电场的归一化值(相对场强)。
(二)、电压驻波比的测量1.直接法直接测量传输线驻波的波腹点和波节点场强,由定义求得驻波比的方法称为直接法。
该方法适合于中、小驻波比(即S <6)。
如果测得驻波的波腹点与波节点的指示器读数分别为max I 和min I ,根据晶体定标曲线可读出相应的max'E和min'E,则驻波比S 为:min'max 'EE S =(2-1)在我们实验中所使用的功率电平范围内,一般可近似地认为是平方律检波,即:2max''max E C I =2min''min E C I =式中,C´为比例系数,则:'maxmax'C I E ='min min'C I E = 代入式(2-1)中,可得:min max min'max 'I I E E S ==(2-2)2.等指示度法等指示度法是在驻波节点附近测量数据,再根据驻波分布规律求出驻波比。
VSWR(驻波比)的意义
VSWR的意义小谈xx电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好。
当业余无线电爱好者进行联络时,当然首先会想到测量一下天线系统的驻波比是否接近1:1,如果接近1:1,当然好。
常常听到这样的问题:但如果不能达到1,会怎样呢?驻波比小到几,天线才算合格?为什么大小81这类老式的军用电台上没有驻波表?VSWR及标称阻抗发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗部分互相抵消。
如果发射机的阻抗不同,要求天线的阻抗也不同。
在电子管时代,一方面电子管本输出阻抗高,另一方面低阻抗的同轴电缆还没有得到推广,流行的是特性阻抗为几百欧的平行馈线,因此发射机的输出阻抗多为几百欧姆。
而现代商品固态无线电通信机的天线标称阻抗则多为50欧姆,因此商品VSWR表也是按50欧姆设计标度的。
如果你拥有一台输出阻抗为600欧姆的老电台,那就大可不必费心血用50欧姆的VSWR计来修理你的天线,因为那样反而帮倒忙。
只要设法调到你的天线电流最大就可以了。
VSWR不是1时,比较VSWR的值没有意义天线VSWR=1说明天线系统和发信机满足匹配条件,发信机的能量可以最有效地输送到天线上,匹配的情况只有这一种。
而如果VSWR不等于1,譬如说等于4,那么可能性会有很多:天线感性失谐,天线容性失谐,天线谐振但是馈电点不对,等等。
在阻抗园图上,每一个VSWR数值都是一个园,拥有无穷多个点。
也就是说,VSWR数值相同时,天线系统的状态有很多种可能性,因此两根天线之间仅用VSWR数值来做简单的互相比较没有太严格的意义。
正因为VSWR除了1以外的数值不值得那么精确地认定(除非有特殊需要),所以多数VSWR表并没有象电压表、电阻表那样认真标定,甚至很少有VSWR给出它的误差等级数据。
由于表内射频耦合元件的相频特性和二极管非线性的影响,多数VSWR表在不同频率、不同功率下的误差并不均匀。
VSWR都=1不等于都是好天线一些国外杂志文章在介绍天线时经常给出VSWR的曲线。
电压驻波比
计算公式是什麼啊? 回答:VSWR 电压驻波比(Voltage Standing Wave Ratio)VSWR=(1+|r|)/(1-|r|) r :为发射系数=ZL-Z0/ZL+Z0 ZL为输入阻抗,Z0为理想阻抗电压驻波比用来表述端口的匹配性能的。
其他回答共 1 条VSWR描述传输线上的工作状态。
把波腹点电压与波节点电压之比称为电压驻波比VSWR。
越接近于1越好,1表示载行波。
行波成分越高,传输的效率就越高。
无线通信系统中要求其尽量小。
窗体顶端驻波比全称为电压驻波比,又名VSWR和SWR,为英文Voltage Standing Wave Ratio的简写。
在无线电通信中,天线与馈线的阻抗不匹配或天线与发信机的阻抗不匹配,高频能量就会产生反射折回,并与前进的部分干扰汇合发生驻波。
为了表征和测量天线系统中的驻波特性,也就是天线中正向波与反射波的情况,人们建立了“驻波比”这一概念。
VSWR=R/r=(1+K)/(1-K)反射系数K=(R-r)/(R+r) (K为负值时表明相位相反)式中R和r分别是输出阻抗和输入阻抗。
当两个阻抗数值一样时,即达到完全匹配,反射系数K等于0,驻波比为1。
这是一种理想的状况,实际上总存在反射,所以驻波比总是大于1的。
一个比较形象的解释,一般在传输线上的电磁波由行波(向前传输的波)和反射波构成,驻波比就是反映波停留的状态,如驻波比越大,波就越停留在原地,如果驻波比无穷大,就代表波是停留在原地.相反地,驻波比的倒数可以定义为行波系数,它表示波行进的状态,行波系数越大,代表波越向前行进.补充一下:驻波比与回波损耗的关系:VSWR=20lg(1+RL)/(1-RL)RL (return loss)为回波损耗对光纤来说,反射损耗又称为回波损耗,它是指在光纤连接处,后向反射光——散射光有一部分沿光纤返回,向输入端传输,这种连续不断向输入端传输的散射光称为后向反射光——相对输入光的比率的分贝数。
驻波比
电压驻波比(VSWR):电压驻波比是行波系数的倒数,其值在1到无穷大之间。
驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。
在移动通信系统中,一般要求驻波比小于1.5。
只有阻抗完全匹配,才能达到最大功率传输。
这在高频更重要。
发射机、传输电缆(馈线)、天线阻抗都关系到功率的传输。
驻波比就是表示馈线与天线匹配情形。
不匹配时,发射机发射的电波将有一部分反射回来,在馈线中产生反射波,反射波到达发射机,最终产生为热量消耗掉。
接收时,也会因为不匹配,造成接收信号不好。
在RF中阻抗匹配是很重要的,一般用反射系数、行波系数、驻波比和回波损耗四个参数来衡量匹配状况,四个参数之间有固定的数值关系,使用那一个均出于习惯。
通常用的较多的是驻波比和回波损耗.1、驻波比:是行波系数的倒数,其值在1到无穷大之间。
驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。
在移动通信系统中,一般要求驻波比小于1.5。
2 、回波损耗:它是反射系数绝对值的倒数,以分贝值表示。
回波损耗的值在0dB到无穷大之间,回波损耗越大表示匹配越好。
0表示全反射,无穷大表示完全匹配。
在移动通信系统中,一般要求回波损耗大于14dB。
2相关公式1)驻波比: VSWR=电压最大值/电压最小值=Umax/Umin;2)行波系数: K=电压最小值/电压最大值=Umin/Umax=(入射波振幅-反射波振幅)/(反射波振幅+入射波振幅)3)反射系数: T=反射波振幅/入射波振幅=(Zl-Z0)/(Zl+Z0)Z0:传输线特性阻抗Zl:负载阻抗4) 回波损耗:IL=-20LOG(1/|T|)=20LOG(︱(ZL+Z0)/(ZL-Z0)︱)5)驻波比与反射系数:VSWR=(1+|T|)/(1-|T|)反射系数(reflection coefficient)反射系数可以用天线的负载阻抗Za与电路特性阻抗Zo来表示:Γ=(Za-Zo)/(Za+Zo); 反射系数的取值在-1(负载短路,Za=0)到+1(负载开路,Za=无穷)之间,为0时表示负载匹配。
什么是天线的驻波比
什么是天线的驻波比?
驻波比(SWR)全称为电压驻波比(VSWR)。
在无线电通信中,天线与馈线的阻抗不匹配或天线与发信机的阻抗不匹配,高频能量就会在天线产生反射波,反射波和入射波在天馈系统汇合产生驻波。
为了表征和测量天馈系统中的驻波特性,也就是天线中正向波与反射波的情况,建立了“驻波比”这一概念,住波比的计算公式为SWR=R/r=(1+K)/(1-K),其中反射系数K=(R-r)/(R+r) ,K为负值时表明相位相反,R和r分别是输出阻抗和输入阻抗。
当两个阻抗数值一样时,即达到完全匹配,反射系数K等于0,驻波比为1。
这是一种理想的状况,实际上总存在反射,所以驻
波比总是大于1的。
驻波比是检验馈线传输效率的依据,电压驻波比要小于1.5,在工作频点的电压驻波比最好小于1.2。
电压驻波比过大,将缩短通信距离,反射功率将返回发射机功放部分,容易烧坏功放管,影响通信系统正常工作。
电压驻波比与阻抗匹配计算公式
电压驻波比与阻抗匹配
主要是通过驻波比这个参数来变换的,驻波比符号位SWR,通过输入和输出阻抗可以计算出驻波比,公式如下:
K为负值时表明相位相反
式中R和r分别是输出阻抗和;当两个阻抗数值一样时,即达到完全匹配,反射系数K 等于0,驻波比为1;这是一种理想的状况,实际上总存在反射,所以驻波比总是大于1的;
还有一种测量驻波比的方法是通过正反向的功率来测量驻波比的,计算公式如下:通过这2个公式就可以在射频电源不接匹配器的时候,通过正反向功率来计算客户负载的大概阻抗了;
注意:这个阻抗是标量,不是矢量的阻抗,真正的阻抗是矢量,想要测量的话需要通过史密斯原图来测量,这个可以看下有关史密斯原图的书籍,里面都有计算方法的;。
电压驻波比的测量实验报告
电压驻波比的测量实验报告电压驻波比的测量实验报告引言:电压驻波比是无线通信领域中一个重要的参数,用于衡量信号传输中的反射程度。
本实验旨在通过测量电压驻波比的方法,探究信号传输中的驻波现象,并研究其对信号传输质量的影响。
一、实验目的:1. 理解电压驻波比的概念和意义;2. 掌握测量电压驻波比的实验方法;3. 研究驻波现象对信号传输质量的影响。
二、实验原理:1. 电压驻波比的定义:电压驻波比(VSWR)是指在信号传输过程中,由于阻抗不匹配或信号反射而导致的信号幅度的最大与最小值之比。
2. 驻波现象:当信号在传输线上发生反射时,会形成驻波。
驻波的产生是由于传输线的特性阻抗与信号源或负载的阻抗不匹配所引起的。
3. 测量电压驻波比的方法:常用的测量电压驻波比的方法有反射法和功率法。
本实验采用反射法进行测量。
三、实验器材:1. 信号发生器:产生待测信号;2. 驻波比仪:用于测量信号的最大和最小幅度;3. 反射器:用于引发信号的反射。
四、实验步骤:1. 将信号发生器连接到驻波比仪的输入端;2. 将驻波比仪的输出端与反射器相连;3. 设置信号发生器的频率和幅度;4. 在驻波比仪上观察信号的最大和最小幅度,并记录下对应的数值;5. 根据记录的数值计算电压驻波比。
五、实验结果和分析:通过实验测量得到的最大和最小幅度分别为A_max和A_min,电压驻波比(VSWR)可以通过以下公式计算得到:VSWR = (1 + √(A_max/A_min)) / (1 - √(A_max/A_min))根据实验数据计算得到的电压驻波比可以用于评估信号传输的质量。
当电压驻波比接近于1时,表示传输线的阻抗与信号源或负载的阻抗相匹配,信号传输质量较好。
当电压驻波比大于1时,表示存在反射,信号传输质量较差。
六、实验总结:本实验通过测量电压驻波比的方法,探究了信号传输中的驻波现象,并研究了其对信号传输质量的影响。
实验结果表明,电压驻波比能够有效评估信号传输的质量,为无线通信领域中的信号传输提供了重要的参考指标。
反射系数(电压驻波比)的测量
实验二 反射系数(电压驻波比)的测量驻波系数测量是微波测量中最基本的测量,通过驻波测量,不仅可以了解传输线上的场分布,而且可以测量阻抗、波长、相位移、衰减、Q 值等其它参量,传输线上存在驻波时,能量不能有效地传到负载,这就增加了损耗;大功率传输时,由于驻波的存在,驻波电场的最大点处可能产生击穿打火,因而驻波的测量以及调配是十分重要的。
根据驻波系数定义,可知ρ的取值范围为1≤ρ<∞,通常按ρ的大小可分三类:ρ<3为小驻波比;3≤ρ≤10为中驻波比;ρ>10为大驻波比。
驻波系数的测量方法很多,用测量线进行测量的主要方法及应用条件如下:表Ⅰ 用测量线测驻波系数的方法及应用条件(1)直接法:测试方框如图1。
将测量线探头沿线移动,测出相应各点的驻波场强分布,找到驻波电场的最大点与最小点,直接代入公式就可以得到驻波比,如测量线上的晶体检波律为n ,则:na a 1min max ⎪⎪⎭⎫⎝⎛=ρ a 为输出电表指示。
通常实验室条件下检波功率电平较小,可认为基本特性为平方律,即n =2。
为提高测量精度,必须尽量使电表指针偏在满刻度12以上。
当驻波系数在1.05<ρ<1.5时,由于驻波场的最大与最小值相差不大,且变化不尖锐,不易测准。
为提高测量准确度,可移动探针到几个波腹与波节点,记录数据,然后取其平均值。
直接法的测试范围受限于晶体的噪声电平及平方律检波范围。
(2)等指示度法(二倍最小法):当被测器件的驻波系数大于10时,由于驻波最大与最小处的电压相差很大,若在驻波最小点处使晶体输出的指示电表上得到明显的偏转,那么在驻波最大点时由于电压较大,往往使晶体的检波特性偏离平方律,这样用直接法测量就会引入较大的误差。
等指示度法是通过测量驻波图形在最小点附近场强的分布规律,从而计算出驻波系数,如图三所示。
若最小点处的电表指示为min a ,在最小电两边取等指示点1a ,两等指示度点之间的距离为W ,有min 1Ka a =,设晶体检波律为n ,由驻波场的分布公式可以推出:gW gW K n λπλπρsincos 2/2-= (1)通常取2K =(二倍最小法),且设2n =:⎪⎪⎭⎫ ⎝⎛+gW λπρ2sin 11= (2)当ρ>10时,上式可简化为 Wgπλρ≈只要测出波导波长及相应于两倍最小点读数的两点D 1、D 2之间的距离W ,代入(2)式,即可求出驻波比ρ。
电压驻波比(VSWR)知识介绍
电压驻波比(VSWR)知识介绍电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好。
当业余无线电爱好者进行联络时,当然首先会想到测量一下天线系统的驻波比是否接近1:1,如果接近1:1,当然好。
常常听到这样的问题:但如果不能达到1,会怎样呢?驻波比小到几,天线才算合格?为什么大小81这类老式的军用电台上没有驻波表?VSWR及标称阻抗发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗部分互相抵消。
如果发射机的阻抗不同,要求天线的阻抗也不同。
在电子管时代,一方面电子管本输出阻抗高,另一方面低阻抗的同轴电缆还没有得到推广,流行的是特性阻抗为几百欧的平行馈线,因此发射机的输出阻抗多为几百欧姆。
而现代商品固态无线电通信机的天线标称阻抗则多为50欧姆,因此商品VSWR表也是按50欧姆设计标度的。
如果你拥有一台输出阻抗为600欧姆的老电台,那就大可不必费心血用50欧姆的VSWR计来修理你的天线,因为那样反而帮倒忙。
只要设法调到你的天线电流最大就可以了。
VSWR不是1时,比较VSWR的值没有意义正因为VSWR除了1以外的数值不值得那么精确地认定(除非有特殊需要),所以多数VSWR表并没有象电压表、电阻表那样认真标定,甚至很少有VSWR给出它的误差等级数据。
由于表内射频耦合元件的相频特性和二极管非线性的影响,多数VSWR表在不同频率、不同功率下的误差并不均匀。
VSWR都=1不等于都是好天线影响天线效果的最重要因素:谐振让我们用弦乐器的弦来加以说明。
无论是提琴还是古筝,它的每一根弦在特定的长度和张力下,都会有自己的固有频率。
当弦以固有频率振动时,两端被固定不能移动,但振动方向的张力最大。
中间摆动最大,但振动张力最松弛。
这相当于自由谐振的总长度为1/2波长的天线,两端没有电流(电流波谷)而电压幅度最大(电压波腹),中间电流最大(电流波腹)而相邻两点的电压最小(电压波谷)。
我们要使这根弦发出最强的声音,一是所要的声音只能是弦的固有频率,二是驱动点的张力与摆幅之比要恰当,即驱动源要和弦上驱动点的阻抗相匹配。
电压驻波比与阻抗匹配计算公式
电压驻波比与阻抗匹配计算公式电压驻波比(Voltage Standing Wave Ratio,VSWR)是描述电信号在传输线上的反射程度的一个参数。
它的定义为传输线上最大电压与最小电压之比。
阻抗匹配是为了减小传输线上的反射损耗,使得信号能够更好地传输到目标设备上。
要计算电压驻波比,首先需要了解传输线的特性阻抗和负载的阻抗。
传输线的特性阻抗是指传播波的特性阻抗,常见的传输线有同轴电缆和微带线,它们都有特定的特性阻抗。
而负载的阻抗是接在传输线末端的设备的阻抗。
假设传输线的特性阻抗为Z0,传输线末端的负载阻抗为ZL,传输线上的最大电压为Vmax,最小电压为Vmin。
则电压驻波比的计算公式为:VSWR = (Vmax + Vmin) / (Vmax - Vmin)通过波的反射原理,我们知道传输线上的反射系数(Reflection Coefficient)ρ与电压驻波比存在如下关系:VSWR=(1+,ρ,)/(1-,ρ,)因此,我们可以通过计算反射系数来得到电压驻波比。
对于传输线上的反射系数,它与传输线特性阻抗和负载阻抗之间有一个关系。
当传输线特性阻抗和负载阻抗相等时,反射系数为0,此时电压驻波比为1,表示完全匹配。
而当传输线特性阻抗和负载阻抗差异较大时,反射系数会增大,电压驻波比也会增大,表示不完全匹配。
为了实现阻抗匹配,我们可以采取一些措施。
例如,在传输线末端引入匹配网络,通过调节匹配网络的参数来使得传输线特性阻抗和负载阻抗相等。
匹配网络可以采用传输线、衰减器、变压器等组件来实现。
另外,在设计传输线时,也可以采用特定的传输线结构和材料,使得传输线特性阻抗和负载阻抗接近。
阻抗匹配的目的是为了最大限度地减小反射损耗,提高信号传输效率。
当传输线上的反射系数接近零时,表示反射损耗很小,信号能够更好地传输到目标设备上。
反之,当反射系数较大时,反射损耗就会增大,信号传输效果不佳。
总结一下,电压驻波比是描述电信号在传输线上反射程度的参数,其计算公式为VSWR = (Vmax + Vmin) / (Vmax - Vmin)。
电压驻波比
电压驻波比(Voltage Standing Wave Ratio,VSWR)是用于描述电路阻抗失配程度的参数。
差的VSWR可能引起RF电路中的许多问题。
VSWR引起的最坏情况是RF/微波高功率放大器(HPA)的永久性损坏,这通常被称为VSWR故障什么是电压驻波比(VSWR)?传输在线的电压和电流由特定的比率联系在一起,该比率关系就是通常所说的特征阻抗(ZO)。
如果信号源加在阻抗大小为特征阻抗的负载上,那么所有资用功率均施加到该负载上。
传输在线的任何失配会使负载阻抗发生变化,从而引起传输在线的反射电流和电压,由此产生了驻波。
入射波和反射波发生相长干涉和相消干涉,导致了图1中示出的最大值(Vmax )和最小值(Vmin)。
电压驻波比即是描述该失配的参数,被定义为Vmax 和Vmin的比值Vmax/Vmin。
高VSWR的影响理想的阻抗匹配(VSWR=1:1)可以使功率无损传输,而严重的阻抗失配(高VSWR)将导致传输到负载的功率减少。
高VSWR可能引起多种系统问题,其中对VSWR最为敏感的组件是功率放大器,一般在天线之前。
高VSWR可能造成无线电装置的工作范围缩小、发射信号使接收部分饱和、或者使无线电装置过热。
更为严重的影响是损坏发射机并且击穿传输电介质。
由于天线上反射回的信号在功率放大器处再次反射,然后重新发射出去,导致了类似多径现象,因此高VSWR可能引起电视广播系统的遮蔽衰落。
使用定向耦合器和RF对数检波器检测VSWR定向耦合器如式(1)和图1所示,当已知反射系数时,可以计算VSWR。
因此接下来的问题是如何检测反射系数。
图2所示安置在电源和负载之间的定向耦合器,用于对负载的入射波和反射波进行隔离和采样,由于定向性,反射系数等于入射波与反射波的比值,如式(2)所示。
因此,通过定向耦合器和检波器,可以检测出反射波和入射波,以得到反射系数。
检波器的选择在对入射信号和反射信号进行采样和隔离之后,需要检测这两个信号的幅度,这需要两个检波器。
电压驻波比
驻波比(SWR)又称电压驻波比(VSWR)
波传递从甲介质传导到乙介质,会由于介质不同,波的能量会有一部分被反射,这种被反射的波称为驻波,这是基本的物理原理.
在电磁波有同样的特性,电波在甲组件传导到乙组件,由于阻抗特性的不同,一部分电磁波的能量被反射回来,我们常称此现象为阻抗不匹配.
驻波比,一般指的就是电压驻波比,是指驻波的电压峰值与电压谷值之比。
理想的比例为1:1 ,即输入阻抗相等于传输线的特性阻抗,但几乎不可能达到
VSWR 1.25:1 反射功率1.14 %
VSWR 1.5:1 反射功率4.06 %
VSWR 1.75:1 反射功率7.53 %
由上可知,驻波比越大,反射功率越高。
射频中的回波损耗反射系数电压驻波比以及S参数的含义和关系
射频中的回波损耗,反射系数,电压驻波比以及S参数的含义回波损耗,反射系数,电压驻波比, S11这几个参数在射频微波应用中经常会碰到, 他们各自的含义如下:回波损耗(Return Loss): 入射功率/反射功率, 为dB数值反射系数(Г):反射电压/入射电压, 为标量电压驻波比(Voltage Standing Wave Ration): 波腹电压/波节电压S参数: S12为反向传输系数,也就是隔离。
S21为正向传输系数,也就是增益。
S11为输入反射系数,也就是输入回波损耗,S22为输出反射系数,也就是输出回波损耗。
四者的关系:VSWR=(1+Г)/(1-Г)(1)S11=20lg(Г)(2)RL=-S11 (3)以上各参数的定义与测量都有一个前提,就是其它各端口都要匹配。
这些参数的共同点:他们都是描述阻抗匹配好坏程度的参数。
其中,S11实际上就是反射系数Г,只不过它特指一个网络1号端口的反射系数。
反射系数描述的是入射电压和反射电压之间的比值,而回波损耗是从功率的角度来看待问题。
而电压驻波的原始定义与传输线有关,将两个网络连接在一起,虽然我们能计算出连接之后的电压驻波比的值,但实际上如果这里没有传输线,根本不会存在驻波。
我们实际上可以认为电压驻波比实际上是反射系数的另一种表达方式,至于用哪一个参数来进行描述,取决于怎样方便,以及习惯如何。
回波损耗、反射系数、电压驻波比以及S参数的物理意义回波损耗反射系数电压驻波比s参数以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。
在高速电路设计中用到以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。
驻波比推导过程
驻波比驻波比全称为电压驻波比,又名VSWR 和SWR 。
波传递从甲介质传导到乙介质,会由于介质不同,波的能量会有一部分被反射这种被反射的波称为驻波,这是基本的物理原理。
在电磁波有同样的特性,电波在甲组件传导到乙组件,由于阻抗特性的不同,一部分电磁波的能量被反射回来,我们常称此现象为阻抗不匹配。
驻波比,指的就是入射电波功率跟反射电波功率的比值。
衡量功率反射大小的量为反射系数ρ,=ρ反射电压波入射电压波0=(L 0)0ZL Z Z Z ZL Z ρ-+为输出阻抗,为输入阻抗 驻波比:max SWR=min U U 其中Umax 馈线上波腹电压,Umin 馈线上波节电压。
+maxSWR=min-U U =入U 反U U 入U 反 又2=P R U ,U =+max SWR=min -U U ==入U 反U U 入U 反 此外,驻波比定义可表示为:1+=1-SWR ρρ 又0=(L 0)0ZL Z Z Z ZL Z ρ-+为输出阻抗,为输入阻抗22222222220=(L 0)00000(00)(0)j(XL X 0)=0(00)(0)j(XL X 0)(RL XL R 0X 0)j2(XL*R 0*0)=(0)(XL X 0)(RL XL R 0X 0)(ZL Z Z Z ZL Z ZL RL jXL Z R jX ZL Z RL jXL R jX RL R ZL Z RL jXL R jX RL R RL X RL R A RL R ρρρ-+=+=+-+-+-+-==++++++++--+-++++--=+为输出阻抗,为输入阻抗令222222222222222(XL*R 0*0),0)(XL X 0)(0)(XL X 0)1+=1-0=R=50()jXL =()jXL(RL XL R )j2(XL*R)=()XL (RL XL R )2,()XL RL X B RL R SWR Z ZL R RL jXL R RL R ZL R RL jXL R RL R RL R A B RL R ρρρρρ-=+++++=-+--+==++++++-++++-==++当欧时令22(XL*R)()XL 1+=1-RL R SWR ρρρ++=当SWR 越大,反射越大,则匹配越差。
驻波比和反射系数
驻波比和反射系数驻波比和反射系数是电磁波在传输过程中的两个重要参数。
利用这两个参数可以评估传输线上反射损耗以及传输效果的好坏。
本文将详细介绍驻波比和反射系数的概念、定义以及计算方法,并通过实例加以说明。
一、驻波比的定义和计算:驻波比是衡量波在传输线上反射效果的一个参数。
它定义为传输线上最大电压和最小电压之比,用符号VSWR表示。
计算驻波比的方法如下:1. 测量传输线上的最大电压和最小电压,记作Vmax和Vmin。
2. 利用上述测量结果,可以得到驻波比的表达式:VSWR = (Vmax + Vmin) / (Vmax - Vmin)。
例如,如果在传输线上测量到的最大电压是10V,最小电压是2V,则驻波比为:(10V + 2V) / (10V - 2V) = 1.4。
二、反射系数的定义和计算:反射系数是衡量波在传输线上反射能量的一个参数。
它定义为反射波电压和入射波电压之比,用符号Γ表示。
计算反射系数的方法如下:1. 测量传输线上的反射波电压,记作Vr。
2. 测量传输线上的入射波电压,记作Vi。
3. 利用上述测量结果,可以得到反射系数的表达式:Γ = Vr / Vi。
举例来说,如果在传输线上测量到的反射波电压是4V,入射波电压是8V,则反射系数为:Γ = 4V / 8V = 0.5。
三、驻波比与反射系数之间的关系:驻波比和反射系数是可以相互转换的。
它们之间的关系如下:1. 驻波比VSWR和反射系数Γ之间的关系为:VSWR = (1 + |Γ|) / (1 - |Γ|)。
2. 反之,可以通过反射系数求得驻波比的表达式为:|Γ| = (VSWR - 1) / (VSWR + 1)。
通过上述关系,我们可以在已知驻波比或反射系数的情况下,计算出另一个参数的数值。
驻波比和反射系数是评估传输线上波的反射情况的重要参数。
通过测量和计算,我们可以得到驻波比和反射系数的数值,以评估传输线的品质。
在实际应用中,我们可以根据所需的传输效果,设定合理的驻波比或反射系数的要求,以提供良好的信号传输质量。
vswr标准
vswr标准
VSWR,全称为电压驻波比,有时也称作垂直驻波比,是一种用来衡量无线信号通过功率源、传输线、最终进入负载(例如,功率放大器输出通过传输线,最终到达天线)的有效传输功率的参数。
VSWR用于度量电压的变化,是传输线上最高电压与最低电压之比。
理想系统中电压保持不变,所以对应的VSWR是1:1。
产生反射时,电压发生变化,VSWR增大,例如1.2:1或2:1。
VSWR的计算公式为:VSWR = |V(max)|/|V(min)|,其中V(max)是传输线上信号电压的最大值,V(min)是传输线上信号电压的最小值。
也可以利用阻抗计算:VSWR = (1+Γ)/(1-Γ),其中Γ是靠近负载端的电压反射系数,由负载阻抗(ZL)和源阻抗(Zo)确定:Γ = (ZL-Zo)/(ZL+Zo)。
如果负载与传输线完全匹配,Γ = 0,VSWR = 1:1。
此外,当测量到的VSWR应该是1:1,表示馈线和天线的阻抗完全匹配,此时高频能量全部被天线辐射出去,没有能量的反射损耗;当VSWR为无穷大时,表示全反射,能量完全没有辐射出去。
以上内容仅供参考,如需更准确全面的信息,建议查阅电磁场与微波技术相关书籍或咨询该领域专家。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好。
当业余无线电爱好者进行联络时,当然首先会想到测量一下天线系统的驻波比是否接近1:1,
如果接近1:1,当然好。
常常听到这样的问题:但如果不能达到1,会怎样呢?驻波比小到几,天线才算合格?为什么大小81这类老式的军用电台上没有驻波表?
VSWR及标称阻抗
发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗部分互相抵消。
如果发射机的阻抗不同,要求天线的阻抗也不同。
在电子管时代,一方面电子管本输出阻抗高,另一方面低阻抗的同轴电缆还没有得到推广,流行的是特性阻抗为几百欧的平行馈线,因此发射机的输出阻抗多为几百欧姆。
而现代商品固态无线电通信机的天线标称阻抗则多为50欧姆,因此商品VSWR表也是按50欧姆设计标度的。
如果你拥有一台输出阻抗为600欧姆的老电台,那就大可不必费心血用50欧姆的VSWR计来修理你的天线,因为那样反而帮倒忙。
只要设法调到你的天线电流最大就可以了。
VSWR不是1时,比较VSWR的值没有意义
正因为VSWR除了1以外的数值不值得那么精确地认定(除非有特殊需要),所以多数VSWR表并没有象电压表、电阻表那样认真标定,甚至很少有VSWR给出它的误差等级数据。
由于表内射频耦合元件的相频特性和二极管非线性的影响,多数VSWR表在不同频率、不同功率下的误差并不均匀。
VSWR都=1不等于都是好天线
影响天线效果的最重要因素:谐振
让我们用弦乐器的弦来加以说明。
无论是提琴还是古筝,它的每一根弦在特定的长度和张力下,都会有自己的固有频率。
当弦以固有频率振动时,两端被固定不能移动,但振动方向的张力最大。
中间摆动最大,但振动张力最松弛。
这相当于自由谐振的总长度为1/2波长的天线,两端没有电流(电流波谷)而电压幅度最大(电压波腹),中间电流最大(电流波腹)而相邻两点的电压最小(电压波谷)。
我们要使这根弦发出最强的声音,一是所要的声音只能是弦的固有频率,二是驱动点的张力与摆幅之比要恰当,即驱动源要和弦上驱动点的阻抗相匹配。
具体表现就是拉弦的琴弓或者弹拨的手指要选在弦的适当位置上。
我们在实际中不难发现,拉弓或者拨弦位置错误会影响弦的发声强度,但稍有不当还不至于影响太多,而要发出与琴弦固有频率不同的声响却是十分困难的,此时弦上各点的振动状态十分复杂、混乱,即使振动起来,各点对空气的推动不是齐心合力的,发声效率很低。
天线也是同样,要使天线发射的电磁场最强,一是发射频率必须和天线的固有频率相同,二是驱动点要选在天线的适当位置。
如果驱动点不恰当而天线与信号频率谐振,效果会略受影响,但是如果天线与信号频率不谐振,则发射效率会大打折扣。
所以,在天线匹配需要做到的两点中,谐振是最关键的因素。
在早期的发信机,例如本期介绍的71型报话机中,天线电路只用串联电感、电容的办法取得与工作频率的严格谐振,而进一步的阻抗配合是由线圈之间的固定耦合确定死的,在不同频率下未必真正达到阻抗的严格匹配,但是实际效果证明只要谐振就足以好好工作了。
因此在没有条件做到VSWR绝对为1时,业余电台天线最重要的调整是使整个天线电路与工作频率谐振。
天线的驻波比和天线系统的驻波比
天线的VSWR需要在天线的馈电端测量。
但天线馈电点常常高悬在空中,我们只能在天线电缆的下端测量VSWR,这样测量的是包括电缆的整个天线系统的VSWR。
当天线本身的阻抗确实为50欧姆纯电阻、电缆的特性阻抗也确实是50欧姆时,测出的结果是正确的。
当天线阻抗不是50欧姆时而电缆为50欧姆时,测出的VSWR值会严重受到天线长度的影响,只有当电缆的电器长度正好为波长的整倍数时、而且电缆损耗可以忽略不计时,电缆下端呈现的阻抗正好和天线的阻抗完全一样。
但即便电缆长度是整倍波长,但电缆有损耗,例如电缆较细、电缆的电气长度达到波长的几十倍以上,那么电缆下端测出的VSWR 还是会比天线的实际VSWR低。
所以,测量VSWR时,尤其在UHF以上频段,不要忽略电缆的影响。
不对称天线
我们知道偶极天线每臂电气长度应为1/4波长。
那么如果两臂长度不同,它的谐振波长如何计算?是否会出现两个谐振点?
如果想清了上述琴弦的例子,答案就清楚了。
系统总长度不足3/4波长的偶极天线(或者以地球、地网为镜象的单臂天线)只有一个谐振频率,取决于两臂的总长度。
两臂对称,相当于在阻抗最低点加以驱动,得到的是最低的阻抗。
两臂长度不等,相当于把弓子偏近琴马拉弦,费的力不同,驱动点的阻抗比较高一些,但是谐振频率仍旧是一个,由两臂的总长度决定。
如果偏到极端,一臂加长到1/2波长而另一臂缩短到0,驱动点阻抗增大到几乎
无穷大,则成为端馈天线,称为无线电发展早期用在汽艇上的齐柏林天线和现代的1/2波长R7000垂直天线,当然这时必须增加必要的匹配电路才能连接到50欧姆的低阻抗发射机上。
偶极天线两臂不对称,或者两臂周围导电物体的影响不对称,会使谐振时的阻抗变高。
但只要总电气长度保持1/2波长,不对称不是十分严重,那么虽然特性阻抗会变高,一定程度上影响VSWR,但是实际发射效果还不至于有十分明显的恶化。
QRPer不必苛求VSWR
当VSWR过高时,主要是天线系统不谐振时,因而阻抗存在很大电抗分量时,发射机末级器件可能需要承受较大的瞬间过电压。
早期技术不很成熟时,高VSWR容易造成射频末级功率器件的损坏。
因此,将VSWR控制在较低的数值,例如3以内,是必要的。
现在有些设备具有比较完备的高VSWR保护,当在线测量到的VSWR过高时,会自动降低驱动功率,所以烧末级的危险比20年以前降低了很多。
但是仍然不要大意。
不过对于QRP玩家讲来,末级功率有时小到几乎没有烧末级的可能性。
移动运用时要将便携的临时天线调到VSWR=1却因为环境的变幻而要绞尽脑汁。
这时不必太丧气。
1988-1989年笔者为BY1PK试验4W的CW/QRP,使用长度不足1.5米的三楼窗帘铁丝和长度为1.5米左右的塑料线做馈线,用串并电容的办法调到天线电流最大,测得VSWR为无穷大,却也联到了JA、VK、U9、OH等电台。
后来做了一个小天调,把VSWR调到1,但对比试验中远方友台报告说,VSWR的极大变化并没有给信号带来什么改进,好像信号还变弱了些,可能本来就微弱的信号被天调的损耗又吃掉了一些吧。
总之,VSWR道理多多。
既然有了业余电台,总是免不了和VSWR打交道,不妨多观察、积累、交流各自的心得吧。
天线系统和输出阻抗为50欧的发信机的匹配条件是天线系统阻抗为50欧纯电阻。
要满足这个条件,需要做到两点:第一,天线电路与工作频率谐振(否则天线阻抗就不是纯电阻);第二,选择适当的馈电点。
一些国外杂志文章在介绍天线时经常给出VSWR的曲线。
有时会因此产生一种错觉,只要VSWR=1,总会是好天线。
其实,VSWR=1只能说明发射机的能量可以有效地传输到天线系统。
但是这些能量是否能有效地辐射到空间,那是另一个问题。
一副按理论长度作制作的偶极天线,和一副长度只有1/20的缩短型天线,只要采取适当措施,它们都可能做到VSWR=1,但发射效果肯定大相径庭,不能同日而语。
做为极端例子,一个50欧姆的电阻,它的VSWR十分理想地等于1,但是它的发射效率是0。
而如果VSWR不等于1,譬如说等于4,那么可能性会有很多:天线感性失谐,天线容性失谐,天线谐振但是馈电点不对,等等。
在阻抗园图上,每一个VSWR数值都是一个
园,拥有无穷多个点。
也就是说,VSWR数值相同时,天线系统的状态有很多种可能性,因此两根天线之间仅用VSWR数值来做简单的互相比较没有太严格的意义。
天线VSWR=1说明天线系统和发信机满足匹配条件,发信机的能量可以最有效地输送到天线上,匹配的情况只有这一种。
本文不打算重复很多无线电技术书籍中关于电压驻波比的理论叙述,只是想从感性认识的层面谈几个实用问题。