西工大《经济数学(下)》19年10月作业考核参考答案

合集下载

经济数学试题及答案大全

经济数学试题及答案大全

经济数学试题及答案大全一、单项选择题(每题2分,共20分)1. 函数f(x)=x^2-4x+3的零点个数为()。

A. 0B. 1C. 2D. 3答案:C2. 极限lim(x→0) (sin x)/x的值为()。

A. 1B. 0C. -1D. 2答案:A3. 以下哪个函数是奇函数()。

A. y = x^2B. y = x^3C. y = x^4D. y = ln(x)答案:B4. 以下哪个选项是二阶导数()。

A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B5. 以下哪个选项是定积分的基本性质()。

A. ∫[a,b] f(x)dx = ∫[a,c] f(x)dx + ∫[c,b] f(x)dxB. ∫[a,b] f(x)dx = ∫[b,a] f(x)dxC. ∫[a,b] f(x)dx = -∫[b,a] f(x)dxD. ∫[a,b] f(x)dx = ∫[a,b] f(-x)dx答案:A6. 以下哪个选项是多元函数的偏导数()。

A. ∂f/∂xB. ∂f/∂yC. ∂f/∂zD. ∂f/∂t答案:A7. 以下哪个选项是线性代数中的矩阵运算()。

A. 矩阵加法B. 矩阵乘法C. 矩阵转置D. 矩阵求逆答案:B8. 以下哪个选项是概率论中的随机变量()。

A. X = 5B. X = {1, 2, 3}C. X = [0, 1]D. X = {x | x ∈ R}答案:B9. 以下哪个选项是统计学中的参数估计()。

A. 点估计B. 区间估计C. 假设检验D. 方差分析答案:A10. 以下哪个选项是计量经济学中的回归分析()。

A. 简单线性回归B. 多元线性回归C. 时间序列分析D. 面板数据分析答案:A二、填空题(每题2分,共20分)11. 函数f(x)=x^3-3x的导数为_________。

答案:f'(x) = 3x^2 - 312. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 4x + 3)的值为_________。

西工大noj答案解析(完整版)

西工大noj答案解析(完整版)

西北工业大学POJ答案绝对是史上最全版(不止100题哦……按首字母排序)1.“1“的传奇2.A+B3.A+BⅡ4.AB5.ACKERMAN6.Arithmetic Progressions7.Bee8.Checksum algorithm9.Coin Test10.Dexter need help11.Double12.Easy problem13.Favorite number14.Graveyard15.Hailstone16.Hanoi Ⅱ17.Houseboat18.Music Composer19.Redistribute wealth20.Road trip21.Scoring22.Specialized Numbers23.Sticks24.Sum of Consecutive25.Symmetric Sort26.The Clock27.The Ratio of gainers to losers28.VOL大学乒乓球比赛29.毕业设计论文打印30.边沿与内芯的差31.不会吧,又是A+B32.不屈的小蜗33.操场训练34.插入链表节点35.插入排序36.插入字符37.成绩表计算38.成绩转换39.出租车费40.除法41.创建与遍历职工链表42.大数乘法43.大数除法44.大数加法45.单词频次46.迭代求根47.多项式的猜想48.二分查找49.二分求根50.发工资的日子51.方差52.分离单词53.分数拆分54.分数化小数55.分数加减法56.复数57.高低交换58.公园喷水器59.韩信点兵60.行程编码压缩算法61.合并字符串62.猴子分桃63.火车站64.获取指定二进制位65.积分计算66.级数和67.计算A+B68.计算PI69.计算π70.计算成绩71.计算完全数72.检测位图长宽73.检查图像文件格式74.奖金发放75.阶乘合计76.解不等式77.精确幂乘78.恐怖水母79.快速排序80.粒子裂变81.链表动态增长或缩短82.链表节点删除83.两个整数之间所有的素数84.路痴85.冒泡排序86.你会存钱吗87.逆序整数88.排列89.排列分析90.平均值函数91.奇特的分数数列92.求建筑高度93.区间内素数94.三点顺序95.山迪的麻烦96.删除字符97.是该年的第几天98.是该年的第几天?99.数据加密100.搜索字符101.所有素数102.探索合数世纪103.特殊要求的字符串104.特殊整数105.完全数106.王的对抗107.危险的组合108.文件比较109.文章统计110.五猴分桃111.小型数据库112.幸运儿113.幸运数字”7“114.选择排序115.寻找规律116.循环移位117.延伸的卡片118.羊羊聚会119.一维数组”赋值“120.一维数组”加法“121.勇闯天涯122.右上角123.右下角124.圆及圆球等的相关计算125.圆及圆球等相关计算126.程序员添加行号127.找出数字128.找幸运数129.找最大数130.整数位数131.重组字符串132.子序列的和133.子字符串替换134.自然数立方的乐趣135.字符串比较136.字符串复制137.字符串加密编码138.字符串逆序139.字符串排序140.字符串替换141.字符串左中右142.组合数143.最次方数144.最大乘积145.最大整数146.最小整数147.最长回文子串148.左上角149.左下角1.“1“的传奇#include <stdio.h>#include <stdlib.h>#include <math.h>int main(){int n,i,j,k=0,x=1,y,z,m,p,q,a,s=0; scanf("%d",&n);m=n;for(i=1;i<12;i++){m=m/10;k++;if(m==0)break;}q=n;k=k-1;for(a=1;a<=k;a++){x=x*10;}y=q%x;z=q/x;p=q-y;if(z>=2)s=s+x+z*k*(x/10);elses=s+z*k*(x/10);for(j=p;j<=n;j++){m=j;for(i=1;i<12;i++) {x=m%10;if(x==1)s++;m=m/10;if(m==0)break;}}printf("%d",s);return 0;}2.A+B#include <stdio.h>int doubi(int n,int m) {n=n+m;n=n%100;return n;}int main(){int t,i,a[100],n,m;scanf("%d",&t);for (i=0;i<=(t-1);i++){ scanf("%d%d",&n,&m); a[i]=doubi(n,m);}for (i=0;i<=(t-1);i++)printf("%d\n",a[i]); return 0;}3.A+BⅡ#include <stdio.h>int main(){int A,B,sum;scanf("%d%d",&A,&B);sum=A+B;printf("%d\n",sum); return 0;}4.AB#include <stdio.h>#include <stdlib.h>#include <string.h>int main(){char s[100],q[100];double a,b,c;int n=0,i;scanf("%lf%lf",&a,&b);c=a*b;sprintf(s,"%.0lf",c);for(i=0;i<strlen(s);i++){n=n+s[i]-48;}while(n>=10){sprintf(q,"%d",n);n=0;for(i=0;i<strlen(q);i++) n=n+q[i]-48;}printf("%d",n);return 0;}5.ACKERMAN#include <stdio.h>#include <stdlib.h>#include <math.h>int ack(int x,int y){int n;if (x==0) {n=y+1;return n;}else if (y==0) n=ack(x-1,1);else n=ack(x-1,ack(x,y-1)); return n;}int main(){int m,b;scanf("%d%d",&m,&b);m=ack(m,b);printf("%d",m);return 0;}6.Arithmetic Progressions#include <stdio.h>#include <stdlib.h>#include <math.h>int g(int n){int i;if(n==1) return 0;if(n==2) return 1;if(n==3) return 1;for(i=2;i<=sqrt(n);i++) if(n%i==0) return 0; return 1;}int f(int a,int b,int c){int i=0,s=a-b;if(c==1&&g(a)==1) return a;if(b==0&&g(a)!=1) return -1;while(1){s=s+b;if(g(s)) i++;if(i>=c) break;}return s;int main(){int a,b,c,d[100],i=0,n;while(1){scanf("%d%d%d",&a,&b,&c); if(a==0&&b==0&&c==0) break; d[i]=f(a,b,c);i++;}n=i;for(i=0;i<n;i++)printf("%d\n",d[i]);return 0;}7.Bee#include <stdio.h>#include <stdlib.h>int main()int A[100],i=0,j,k,female=0,male=1,x; for(;;i++){scanf("%d",&A[i]);if(A[i]==-1)break;}for(j=0;j<i;j++){female=0,male=1;for(k=1;k<A[j];k++){x=female;female=male;male=x+male+1;}printf("%d %d\n",male,female+male+1);}return 0;}8.Checksum algorithm#include <stdio.h>#include <stdlib.h>#include <string.h>int main(){int i,n,t,j;char s[100][100];for(i=0;;i++){gets(s[i]);if(s[i][0]=='#') break;}n=i;for(i=0;i<n;i++){t=0;for(j=0;j<strlen(s[i]);j++)if(s[i][j]==32) t=t;else t=t+(j+1)*(s[i][j]-64);printf("%d\n",t);}return 0;}9.Coin Test#include <stdio.h>#include <stdlib.h>int main(){char A[100000];int n,i=0,a=0,b=0,j; double x;while(1){scanf("%c",&A[i]);if(A[i]=='\n')break;i++;}for(j=0;j<i;j++){if(A[j]=='S'){printf("WA");goto OH;}if(A[j]=='U')a++;if(A[j]=='D')b++;}x=a*1.0/(a+b)*1.0;if(x-0.5>0.003||x-0.5<-0.003) printf("Fail");elseprintf("%d/%d",a,a+b);OH:return 0;}10.Dexter need help#include <stdio.h>int fun(int a){if(a==1) return 1;elsereturn fun(a/2)+1;}int main(){int a,b[100],i=0,j; while(1){scanf("%d",&a);if(a==0)break;b[i]=fun(a);i++;}for(j=0;j<i;j++){printf("%d\n",b[j]); }return 0;}11.Double#include <stdio.h>#include <stdlib.h>#include <math.h>int main(){int a[100],b[100],i,j,n,t=0; for(i=0;;i++){scanf("%d",&a[i]);if(a[i]==0) break;}n=i;for(i=0;i<n;i++)b[i]=2*a[i];for(i=0;i<n;i++)for(j=0;j<n;j++)if(a[i]==b[j]) t++;printf("%d",t);return 0;}12.Easy problem#include <stdio.h>#include <stdlib.h>#include <math.h>int main(){int N,i,n,j=0;scanf("%d",&N);for(i=2;i<N+1;i++){if((N+1)%i==0)j++; }printf("%d",j/2);return 0;}13.Favorite number#include <stdio.h>#include <string.h>#define MAXNUM 100000int prime_number = 0;int prime_list[MAXNUM]; bool is_prime[MAXNUM];int ans[MAXNUM + 2];int dp[MAXNUM + 2];void set_prime() {int i, j;memset(is_prime, 0, sizeof(is_prime));for (i = 2; i < MAXNUM; i++) {if (is_prime[i] == 0) {prime_list[prime_number++] = i;if (i >= MAXNUM / i) continue;for (j = i * i; j < MAXNUM; j+=i) { is_prime[j] = 1;}}}}int main() {int i, j, k,o=0,d[100];memset(dp, -1, sizeof(dp));set_prime();ans[0] = 0;dp[1] = 0;for (i = 1; i <= MAXNUM; i++) {ans[i] = ans[i - 1] + dp[i];if (dp[i + 1] == -1 || dp[i + 1] > dp[i] + 1) {dp[i + 1] = dp[i] + 1;}for (j = 0; j < prime_number; j++) {if (i > MAXNUM / prime_list[j]) break; k = i * prime_list[j];if (dp[k] == -1 || dp[k] > dp[i] + 1) { dp[k] = dp[i] + 1;}}}while (scanf("%d%d", &i, &j) == 2 && (i || j)) { d[o]=ans[j] - ans[i - 1];o++;}for(i=0;i<o;i++)printf("%d\n",d[i]);}14.Graveyard#include <stdio.h>#include <stdlib.h>#include <math.h>int main(){int a[100],b[100],n,i,j;double s,p,l,t;for(i=0;;i++){scanf("%d%d",&a[i],&b[i]);if(a[i]==0&&b[i]==0) break;}n=i;for(i=0;i<n;i++){p=10000;if(b[i]%a[i]==0){printf("0.0000\n");continue;}; t=10000/((double)a[i]);for(j=1;j<a[i]+b[i];j++){l=10000/((double)(a[i]+b[i]));l=t-j*l;l=fabs(l);if(l<p) p=l;}s=(a[i]-1)*p;printf("%.4lf\n",s); }return 0;}15.Hailstone#include <stdio.h>#include <stdlib.h>#include <string.h>int f(int n){int s=1;while(1){if(n==1) return s;else if(n%2==0) n=n/2,s++; else n=3*n+1,s++;}}int main(){int n,m,i,j=0,t;scanf("%d%d",&m,&n);printf("%d %d",m,n);if(m>n) t=m,m=n,n=t;for(i=m;i<=n;i++)if(f(i)>j) j=f(i);printf(" %d",j);return 0;}16.Hanoi Ⅱ#include <stdio.h>#include <stdlib.h>#define M 70int start[M], targe[M];long long f(int *p, int k, int fina) {if(k==0) return 0;if(p[k]==fina) return f(p,k-1,fina);return f(p,k-1,6-fina-p[k])+(1LL<<(k-1));}int main (){long long ans;int n;while(scanf("%d",&n),n){int i;for(i=1;i<=n;i++) scanf("%d",&start[i]);for(i=1;i<=n;i++) scanf("%d",&targe[i]);int c=n;for(;c>=1&&start[c]==targe[c];c--);if(c==0){printf("0\n"); continue;}int other=6-start[c]-targe[c];ans=f(start,c-1,other)+f(targe,c-1,other)+1; printf("%lld\n",ans);}return 0;}17.Houseboat#include <stdio.h>#include <stdlib.h>#include <math.h>#define pi 3.1415926int f(float x,float y){int i;for(i=0;;i++)if(50*i>sqrt(x*x+y*y)*sqrt(x*x+y*y)*pi/2) break;return i;}int main(){int n,i,a[100];float x,y;scanf("%d",&n);for(i=0;i<n;i++){scanf("%f%f",&x,&y);a[i]=f(x,y);}for(i=0;i<n;i++)printf("%d %d\n",i+1,a[i]);return 0;}18.Music Composer19.Redistribute wealth#include <stdio.h>#include <stdlib.h>#include <math.h>int main(){inta[1000],b[1000],n,i,j,s,sum,t,m,mid,c[100],k=0; while(1){scanf("%d",&n);if(n==0) break;{s=0;for(i=1;i<=n;i++){scanf("%d",&a[i]);s=s+a[i];}m=s/n;b[1]=a[1]-m;b[0]=0;for(i=2;i<n;++i)b[i]=b[i-1]+a[i]-m;for(i=0;i<n;i++)for(j=0;j<n-1-i;j++)if(b[j]>b[j+1])t=b[j],b[j]=b[j+1],b[j+1]=t;mid=b[n/2];sum=0;for(i=0;i<=n-1;++i) sum=sum+fabs(mid-b[i]); c[k]=sum;k++;}}for(i=0;i<k;i++) printf("%d\n",c[i]);return 0;}20.Road trip#include <stdio.h>#include <stdlib.h>#include <math.h>int f(int n){int a[100],b[100],i,s;for(i=0;i<n;i++)scanf("%d%d",&a[i],&b[i]); s=a[0]*b[0];for(i=1;i<n;i++)s=s+a[i]*(b[i]-b[i-1]);return s;}int main(){int n,c[100],i=0;while(1){scanf("%d",&n);if(n==-1) break;c[i]=f(n);i++;}n=i;for(i=0;i<n;i++)printf("%d\n",c[i]);return 0;}21.Scoring#include <stdio.h>#include <stdlib.h>#include <string.h>int main(){int i,j,sum,min,c,count,n,a,b; char s1[50],s2[50];scanf("%d",&n);for(i=0;i<n;i++){count=sum=0;scanf("%s",s2);for(j=0;j<4;j++){scanf("%d%d",&a,&b);if(b!=0){sum+=(a-1)*20+b;count++;}}if(i==0){c=count,min=sum;strcpy(s1,s2);}else if(count>c||(count==c&&sum<min)) {min=sum;c=count;strcpy(s1,s2);}}printf("%s %d %d\n",s1,c,min); return 0;}22.Specialized Numbers#include <stdio.h>#include <stdlib.h>int main(){int i,n,sum10,sum12,sum16;for(i=2992;i<3000;i++){n=i;sum10=0;while(n){sum10+=n%10;n/=10;}n=i;sum12=0;while(n){sum12+=n%12;n/=12;}n=i;sum16=0;while(n){sum16+=n%16;n/=16;}if(sum10==sum12&&sum12==sum16) printf("%d\n",i);}return 0;}23.Sticks#include <stdio.h>#include <string.h>#include <stdlib.h>int len[64], n, minlen, get;bool b[64];int cmp(const void *a, const void *b){return *(int *)a < *(int *)b ? 1 : -1;}bool dfs(int nowlen, int nowget, int cnt){if(cnt >= n) return false;if(get == nowget) return true;int i;bool f = false;if(nowlen == 0) f = true;for(i = cnt; i < n; i++){if(!b[i]){if(len[i] + nowlen == minlen) {b[i] = true;if(dfs(0, nowget+1, nowget)) return true;b[i] = false;return false;}else if(len[i] + nowlen < minlen){b[i] = true;if(dfs(nowlen+len[i], nowget, i+1)) return true;b[i] = false;if(f) return false;while(i + 1 < n && len[i] == len[i+1]) i++;}}}return false;}int main(){int i, tollen;while(scanf("%d", &n), n){tollen = 0;int j = 0, p;for(i = 0; i < n; i++){scanf("%d", &p);if(p <= 50){len[j] = p;tollen += len[j];j++;}}n = j;if(n == 0){printf("0\n");continue;}qsort(len, n, sizeof(int), cmp); for(minlen = len[0]; ; minlen++) {if(tollen % minlen) continue; memset(b, 0, sizeof(b));get = tollen / minlen;if(dfs(0, 0, 0)){printf("%d\n", minlen);break;}}}return 0;}24.Sum of Consecutive#include <stdio.h>#include <stdlib.h>#include <string.h>int len[64],n,minlen,get;int b[64];int cmp(const void *a,const void *b){return *(int *)a<*(int *)b?1:-1;}int dfs(int nowlen,int nowget,int cnt){if(cnt>=n) return 0;if(get==nowget) return 1;int i,f=0;if(nowlen==0) f=1;for(i=cnt;i<n;i++){if(len[i]+nowlen==minlen){b[i]=1;if(dfs(0,nowget+1,nowget)) return 1;b[i]=0;return 0;}else if(len[i]+nowlen<minlen){b[i]=1;if(dfs(nowlen+len[i],nowget,i+1)) return 1;b[i]=0;if(f) return 0;while(i+1<n&&len[i]==len[i+1]) i++;}}return 0;}int main(){int i,tollen,q=0,c[100];while(scanf("%d",&n),n){tollen=0;int j=0,p;for(i=0;i<n;i++){scanf("%d",&p);if(p<=50){len[j]=p;tollen+=len[j];j++;}}n=j;if(n==0){printf("0\n");continue;}qsort(len,n,sizeof(int),cmp); for(minlen=len[0];;minlen++){if(tollen%minlen) continue; memset(b,0,sizeof(b));get=tollen/minlen;if(dfs(0,0,0)){c[q]=minlen;q++;break;}}}for(i=0;i<q;i++)printf("%d\n",c[i]);return 0;}25.Symmetric Sort#include <stdio.h>#include <stdlib.h>#include <math.h>int main(){double A[100];int i=0,j=0,k=0,l=0,sum=0; while(1){scanf("%lf",&A[i]);if(A[i]==0)break;i++;}for(j=0;j<i;j++){if(A[j]==2)printf("1\n");else{int B[10000],m=1,number=0;double n;B[0]=2;for(k=3;k<=A[j];k+=2){n=(double)k;for(l=2;l<=sqrt(n);l++){if(k%l==0)goto ai;}B[m]=k;m++;ai:;}for(k=0;k<m;k++){sum=0;for(l=k;l<m;l++){sum+=B[l];if(sum==A[j]){number++;break;}}}printf("%d\n",number);}}return 0;}26.The Clock#include <stdio.h>#include <stdlib.h>#include <string.h>int main(){char s[100][100],a[100];int i,j,n;scanf("%d",&n);for(i=0;i<n;i++) scanf("%s",s[i]);for(i=0;i<n-1;i++)for(j=0;j<n-1-i;j++)if(strlen(s[i])>strlen(s[i+1]))strcpy(a,s[i]),strcpy(s[i],s[i+1]),strcpy(s[i+1],a) ;if(n%2==0){for(i=0;i<n-1;i=i+2) printf("%s ",s[i]);printf("%s ",s[n-1]);for(i=i-3;i>0;i=i-2) printf("%s ",s[i]);}else{for(i=0;i<n-1;i=i+2) printf("%s ",s[i]); printf("%s ",s[n-1]);for(i=i-1;i>0;i=i-2) printf("%s ",s[i]); }return 0;}27.The Ratio of gainers to losers#include<stdio.h>int main(){char s[5];int i,sum=0;gets(s);for(i=0;s[i]!='\0';i++){switch(s[i]){case'I': sum+=1;break;case'V': sum=5-sum;break; case'X':sum=10-sum;break; }}printf("%d\n",sum);return 0;}28.VOL大学乒乓球比赛#include <stdio.h>#include <stdlib.h>int main(){printf("A=Z\nB=X\nC=Y\n"); return 0;}29.毕业设计论文打印#include <stdio.h>#include <stdlib.h>int main(){int a[100],j=1,i,n,m;scanf("%d%d",&n,&m);for(i=0;i<n;i++)scanf("%d",&a[i]);for(i=0;i<n;i++)if(a[i]>a[m]) j++;printf("%d",j++);return 0;}30.边沿与内芯的差#include <stdio.h>#include <stdlib.h>int main(){int A[100][100],i,j,m,n,s=0,t=0; scanf("%d%d",&n,&m);for(i=1;i<=n;i++){for(j=1;j<=m;j++){scanf("%d",&A[i][j]);。

西工大《经济数学(下)》15秋作业考核

西工大《经济数学(下)》15秋作业考核

4.设连续型随机变量 X 的密度函数为 f (x) ,则 f (x)dx _______ 。
三、解答下列各题(每小题 7 分,共 21 分)
1.
设2阶方阵 X 满足矩阵方程AX 2X
B,其中A
3 0
1 2 3 , B 0
1 1,
求矩阵 X。
2. 求向量组 α1 1,0 ,1 , 0,α2 2 ,0 ,2 , 0,α3 0 ,1,0, 2, α4 1 ,1 ,1 , 2 的一个
学习中心: 考试时间 120 分钟
学 号
西北工业大学网络教育学院 2016 年 4 月大作业Hale Waihona Puke 课程名称: 经济数学(下)
考试形式:大作业

考试

日期
一、单项选择题(每小题 4 分,共 16 分)
1.如果一个行列式为零,则此行列式( )。
A 卷√ B 卷□ 年月日
A . 必有两行(或两列)元素对应相等
B. 必有两行(或两列)元素对应成比例
C. 必有一行(或一列)元素全为零
D. 以上说法都不一定成立
2. 设 r
(2
,
1,
7)
,
r
(1 ,
0
,
5) ,则 r
r 2

)。
A. (0 , 1 , 3) C. (4 , 2 , 14)
B. (3 , 0 , 15) D. (1 , 4 , 4)
3. 设事件A 与事件B 相互独立,P(A) 0.5, P(B) 0.4, 则 P(AB) ( )。
1. 设 A 与 B 相互独立, P( A) 0.5 , P(B) 0.2 ,求 P(A U B) 。
2. 设随机变量 X 具有分布密度

经济数学形成考核全部答案

经济数学形成考核全部答案

题目1:设矩阵,则的元素().答案:3题目1:设矩阵,则的元素a32=().答案:1题目1:设矩阵,则的元素a24=().答案:2题目2:设,,则().答案:题目2:设,,则()答案:题目2:设,,则BA =().答案:题目3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目4:设,为单位矩阵,则()答案:题目4:设,为单位矩阵,则(A - I )T =().答案:题目4:,为单位矩阵,则A T–I =().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目6:下列关于矩阵的结论正确的是().答案:对角矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题目7:设,,则().答案:0题目7:设,,则().答案:0题目7:设,,则().答案:-2, 4题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目12:矩阵的秩是().答案:2题目12:矩阵的秩是().答案:3题目12:矩阵的秩是().答案:3题目13:设矩阵,则当()时,最小.答案:2题目13:设矩阵,则当()时,最小.答案:-2题目13:设矩阵,则当()时,最小.答案:-12题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.选择一项:A.B.C.D.答案:题目15:设线性方程组有非0解,则().答案:-1题目15:设线性方程组有非0解,则().答案:1题目15:设线性方程组有非0解,则().答案:-1题目16:设线性方程组,且,则当且仅当()时,方程组有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组没有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组有无穷多解.答案:题目17:线性方程组有无穷多解的充分必要条件是().答案:题目17线性方程组有唯一解的充分必要条件是().:答案:题目17:线性方程组无解,则().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是()答案:题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组无解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有无穷多解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有唯一解.答案:题目20:若线性方程组只有零解,则线性方程组()答案:解不能确定题目20:若线性方程组有唯一解,则线性方程组().答案:只有零解题目20:若线性方程组有无穷多解,则线性方程组().答案:有无穷多解题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调减少的是().答案:题目3:设,则().答案:题目3:设,则().答案:题目3:设,则=().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目6:().答案:0题目6:().答案:-1题目6:().答案:1题目7:().答案:题目7:().答案:().题目7:().答案:-1题目8:().答案:题目8:().答案:题目8:().答案:().题目9:().答案:4题目9:().答案:-4题目9:().答案:2题目10:设在处连续,则().答案:1题目10:设在处连续,则().答案:1题目10:设在处连续,则().答案:2题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目13:若函数在点处可导,则()是错误的.答案:,但题目13:若函数在点处可微,则()是错误的.答案:,但题目13:若函数在点处连续,则()是正确的.答案:函数在点处有定义题目14:若,则().答案:题目14:若,则().答案:1题目14:若,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目23:设,则().答案:题目23:设,则().答案:题目23:设,则().答案:-2题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:1.设,求.2.已知,求.3.计算不定积分⎰+x x x d 22答案:c x ++232)2(314.计算不定积分⎰x xx d 2sin答案:c xx x ++-2sin 42cos 25.计算定积分x xxd e2121⎰ 答案:e e -6.计算定积分⎰e1d ln x x x .解:⎰⎰-=e 12e12e1)d(ln 21ln 2d ln x x x x x x x414e d 212e 2e 12+=-=⎰x x 答案:)1e (412+7.设A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121511311,计算 1)(-+A I . 解:因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+021501310A I 且 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-110520001310010501100021010501001310 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→112100001310010501⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1121003350105610001 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-1123355610)(1A I。

《经济数学基础》习题答案及试卷(附答案)

《经济数学基础》习题答案及试卷(附答案)

习题解答第一章 经济活动中的函数关系分析实训一(A )1.填空题:(1)(,2][2,)-∞-+∞ ; (2)()3,5; (3)1x; (4)2x e ;2x e ; (5)473x -,提示:由()()47433433g f x x x =+=+-⎡⎤⎣⎦,所以()473x g x -=.2.(1)tan(2)y x =;(2)(3)y=;(4)y=lg(sin 2)x .3.(1)cos y u =,1xu e =-; (2)ln y u =,222u x x =-+;(3)y =1u x =+;(4)y lg u v =,v =实训一(B )1.由已知可知2110x -<-<,得到201x <<,即定义域为()()1,00,1- .2.由()21f x x -=,可得()()2111f x x -=-+,所以()()21f x x =+.也可令1x t -=.3.(1)u y e =,sin u v =,2v x =;(2)log uv ay =,21u x =+,sin v w =,2w x =. 4. ()()()log log log a a a f x f y x y xy f xy +=+==;()()log log log a a axx f x f y x y f y y ⎛⎫-=-== ⎪⎝⎭. 实训二 (A )1.填空题:(1)y =(2)[]1,3-; (3)2π-,4π; (4)12,π. 2.(1)⨯;(2)⨯;(3)⨯;(4)√.3.(1)由()cos 21y x =+,解得21arccos x y +=,()1arccos 12x y =-, 所以,()()11arccos 12fx x -=-.定义域:[]1,1x ∈-;值域:11,22y π-⎡⎤∈-⎢⎥⎣⎦(2)由()1ln 2y x =++,解得12y x e -+=,12y x e -=-,所以,()112x fx e --=-定义域:(),x ∈-∞+∞;值域:()2,y ∈-+∞ 4.【水面波纹的面积】设面积为S (2cm ),时间为t (s ),则()22502500S t t ππ==【仪器初值】()0.04200.800208986.58Q Q e Q e -⨯-===解得0.808986.582000Q e =≈.实训二(B )1.由()x a f x x b +=+,解得反函数为()11a bx f x x --=-. 由已知()1x a f x x b -+=+,可得1a bx x a x x b-+=-+,相比较,可得a 为任意实数,1b =-.2.由()ln x x ϕ=,()21ln 3g x x ϕ=++⎡⎤⎣⎦,可得()221ln 3ln 3x x g x e e e ϕ+=⋅⋅=⎡⎤⎣⎦所以,()213x g x e+=.实训三【商品进货费用】 设批次为x ,由题意: 库存费:11250030000242C x x=⋅⋅=; 订货费:2100C x =. 【原料采购费用】设批量为x ,库存费用为1C ,进货费用为2C ,进货总费用为12C C C =+.1122C x x=⋅⋅= 23200640000200C xx=⋅=所以进货总费用为:12640000C C C x x=+=+. 【商品销售问题】设需求函数关系式为:d Q ap b =+,其中p 为定价. 由已知可得:1000070700073a ba b=+⎧⎨=+⎩,解得1000a =-,80000b =,所以100080000d Q p =-+; 供给函数为:1003000s Q p =+平衡状态下:价格70p =;需求量10000d Q =. 【商品盈亏问题】设()()()()2015200052000L x R x C x x x x =-=-+=-.()6001000L =; 无盈亏产量:()0L x =,解得400x =. 【供给函数】答案:1052PQ =+⋅. 【总成本与平均成本】总成本()1306C Q Q =+,[]0,100Q ∈. 平均成本()13061306Q C Q Q Q+==+,[]0,100Q ∈.第一章自测题一、填空题1、[2,1)(1,1)(1,)---+∞2、(,)-∞+∞3、(,1)a a --4、23x x -5、2ln(1)x -6、arcsin 2x7、cos(ln )x8、2142R Q Q =-+9、22()2505;()6248100R x x x L x x x =-=-+- 10、6P = 二、选择题1、C2、B3、B4、D5、C三、计算解答题1、(1)22log , 1y u u x ==+(2)1x y u e ==+ 2、1()1 , ()1f x x f x x -=+=- 四、应用题1、(1) 6 , 8P Q == (2) 3.5 , 3P Q == (3) 6.5 , 7P Q ==2、(1)()10200C x x =+,()200()10C x C x x x==+ (2)()15R x x =(3)()()()5200L x R x C x x =-=-,无盈亏点:40x =五、证明题(略)第二章 极限与变化趋势分析实训一(A )1.(1)×;(2)√;(3)×;(4)×;(5)√. 2.(1)收敛,且lim 0n n x →∞=;(2)发散,lim n n x →∞=∞;(3)收敛,且lim 2n n x →∞=;(4)发散.3.(1)收敛,且lim 2x y →∞=;(2)收敛,且0lim 1x y →=;(3)收敛,且lim 1x y →+∞=;(4)发散.【产品需求量的变化趋势】lim lim 0t t t Q e -→+∞→+∞==.实训一(B )(1)无穷大;(2)无穷大;(3)无穷大;(4)无穷大. 【人影长度】越靠近路灯,影子长度越短,越趋向于0.实训二 (A )1.填空题(1)5;(2)2;(3)1;(4)13;(5)∞;(6)∞;(7)2. 2.(1)()()()()2211111112lim lim lim 21121213x x x x x x x x x x x x →→→-+-+===---++; (2)(222211lim2x x x x x x →→→===--;(3)()()2322000222lim lim lim 211x x x x x x x x x x x x x →→→---===---; (4)()()211121111lim lim lim 111112x x x x x x x x x →→→--⎛⎫-===-⎪---++⎝⎭. 3.(1)222112lim lim 2111x x x x x x x →+∞→+∞-⎛⎫-==- ⎪+--⎝⎭; (2)()()()1121lim lim lim 22222222n n n n n n n n n n n n →∞→∞→∞⎛⎫++++-⎛⎫-=-==- ⎪⎪ ⎪+++⎝⎭⎝⎭. 【污染治理问题】由题意可知,该问题为等比级数问题,首项为a ,公比为45,则设n 周后所剩污染物为n a ,则45nn a a ⎛⎫= ⎪⎝⎭,因为4lim 05nn a →∞⎛⎫= ⎪⎝⎭,所以,可以确定随着时间的推移能将污染物排除干净.【谣言传播】 (1)1lim (t)lim11ktt t P ae -→∞→∞==+;(2)121(t)0.8110t P e-==+,可解得2ln 407.38t =≈.实训二(B )1.填空题(1)32π-; (2)0;0.(无穷小与有界函数的乘积为无穷小)(3)0a =,2b =-.2.(1)()3320lim3h x h x x h→+-=;(2)442x x x →→→===.3.由()3lim 30x x →-=,且232lim 43x x x kx →-+=-,可得()23lim 20x x x k →-+=,解得3k =-.4.由题意可知()()21116lim lim 511x x x x x ax bx x→→--++==--,可得7a =-,6b =.实训三 (A )1.填空题(1)1e -;(2)3e -;(3)e ;(4)e ;(5)3k =;(6)5050.1230⨯⨯=万元,()55010.125038.1⨯+-=万元,50.125041.1e ⨯=万元. 2.(1)6e -;(2)1e -;(3)2e -;(4)01e =. 3.(1)0.042003 6.68rtPe e ⨯==万元; 2.25o P =万元.(2)24.38t p =万元;24.43t p =万元.实训三(B )1.(1)(()0111lim 1lim 1lim 11x x x x x x e x x x --→∞→∞→∞⎡⎤⎛⎛⎫⎛⎫-=-=-==⎢⎥⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦;(2)()15lim 15xx x x e →→∞=+=;(3)()1111111lim lim 11xxx x xx e ---→→=+-=;(4)()()()1000ln 121limlim ln 12limln 12x x x x x x x xx →→→+=+=+ ()()112limln 12lnlim 12ln 2x xx x x x e →→=+=+==.2.322lim lim 122x xc x x x c c e e x c x c →∞→∞+⎛⎫⎛⎫=+== ⎪ ⎪--⎝⎭⎝⎭,所以3c =. 实训四 (A )1.填空题 (1)(]0,3;(2)()243,110,1x x x f x x ⎧-+≤-=⎨>⎩;(3)()0lim 1x f x -→=-,()0lim 0x f x +→=,()0lim x f x →不存在; (4)()(),22,-∞--+∞ ; (5)1x =,2x =;(6)1k =.2.图略,()0lim 1x f x -→=,()0lim 0x f x +→=,()0lim x f x →不存在. 3.()()1lim 11x f x f -→==,()1lim 2x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在1x =处不连续.【个人所得税计算】个人所得税的起征点为月收入3500元.850035005000-=,50000.2555455⨯-=;1200035008500-=,85000.25551145⨯-=.【出租车费用】图略,()8, 322, 3836, 8x f x x x x x ≤⎧⎪=+<≤⎨⎪->⎩.实训四 (B )1.图略,()()0lim 10x f x f -→=-=,()0lim 0x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在0x =处不连续.2.由连续的定义可知:()()220lim 1xx k f x e →==+=.3.因为()01f =,()01lim sin00x x f x→=≠(无穷小与有界函数的乘积), 所以0x =为第一类的可去间断点.第二章自测题一、填空题 1、1- 2、1 3、12- 4、345、221,02,0x x x x ⎧+=⎪⎨≠⎪⎩6、1-7、100 ; 0 8、0.035; 5.15e(万)(万)二、选择题1、C2、A3、C4、A5、B 三、计算解答题1、(1)原式=211(1)1 lim lim0(1)(1)1x xx xx x x→→--==+-+(2)原式=lim lim x x=1lim2x==-(3)设1xe t-=,则ln(1)x t=+,0x→时,0t→,原式=10011lim lim1ln(1)ln(1)limln(1)t ttttt ttt→→→==+⋅++1111lnln[lim(1)]ttet→===+(4)原式=sin[lim sin[limx x→+∞=s i n[l]s i n00x===2、(0)2f=00l i m()l) x x xf x---→→→==00lim lim(12x x--→→==+=00lim()lim(2)2x xf x x++→→=+=lim()2(0)xf x f→∴==()f x∴在0x=点连续,从而()f x在(,)-∞+∞内连续.四、应用题第三章经济最优化问题分析实训一(A )1.填空题(1)45x ; (2)2313x -; (3)23x ; (4)5232x --;(5)2ln 2x ; (6)1ln10x ; (7)0; (8)0.2.2log y x =,1ln 2y x '=.212ln 2x y ='=,122ln 2x y ='=.3.(1)()141y x -=-,即43y x =-; (2)()222y x +=--,即22y x =-+; (3)cos y x '=,312x k y π='==,切线方程为123y x π⎛⎫=- ⎪⎝⎭,即126y x π=-. 实训一(B )1.()()()20001sin010limlim lim sin 00x x x x f x f x f x x x x→→→-'====-.2.()()()()000002lim h f x h f x f x h f x h →+-+--()()()()0000022lim2h f x h f x hh f x h f x h →+-=+--()()()()00000022limlim 12h h f x h f x hh f x h f x h →→+-=⋅=+--. 其中()()()00002lim2h f x h f x f x h→+-'=,()()()()()00000021limh h f x f x h f x f x h f x →='+----⎡⎤⎡⎤⎣⎦⎣⎦. 3.因为3,02⎛⎫⎪⎝⎭不在21y x =上,不是切点.设过点3,02⎛⎫⎪⎝⎭与21y x =相切的切线的切点坐标为21,a a ⎛⎫ ⎪⎝⎭,则切点为21,a a ⎛⎫ ⎪⎝⎭的切线方程为:()2312Y X a a a -=--,有已知3,02⎛⎫ ⎪⎝⎭在切线上,带入可得1a =,所以切线方程为:()121y x -=--,即23y x =-+.实训二 (A )1.(1)223146y x x x '=+-; (2)11'ln n n y nx x x --=+; (3)21'41y x x =++; (4)2cosx cosx sinx'(x 1)x y +-=+. 2.(1)22'1xy x =+; (2)22'2sin3x 3cos3x x x y e e =+; (3)'y = (4)22sec cos122'csc sinx 2tan 2cos sin222x x y x x x x ====.3.(1)''2y =; (2)''2x x y e xe --=-+(3)222222(1x )2(2x)''224(1x )x y x x --+-==-+--; (4)2322222(1x)2''2arctanx 1(1x )x x x y x +-=++++. 4.(1)2212dy x xdx y y --+==;(2)x y x y dy y e y xy dx e x xy x++--==--. 【水箱注水】由24r h =,12r h =,22311133212h v r h h h πππ⎛⎫=== ⎪⎝⎭,两边求导得214v h h π''=,由已知2v '=,3h =,带入可得: 1294h π'=,89h π'=所以水位上升的速度为89π米/分.【梯子的滑动速度】由题意可得22100x y +=,两边求导可得:220dx dy xy dt dt +=,即dx y dy dt x dt=-, 将8y =,6x =,0.5dy dt =带入可得:820.563dy dt =-⨯=-.所以梯子的另一端华东的速度为23米/秒.负号表示运动方向. 实训二 (B )1.(1)11(1ln )e x e x y x x x e -=+++; (2)()()1112121y x x x ⎫'=--⎪⎪-+⎭. 2.()()cos sin x x y e x f e x ''=++. 3.将1y y xe -=两边对x 求导可得:0y y dy dy e xe dx dx --=,即1y ydy e dx xe =-.…………(1) 将0,1x y ==带入(1)可得:y e '=. 对(1)继续求导,()()()22121y y y y y y y e xe e e xy e y e xe ''----''==-.4.(1)22x z z xy x ∂'==∂, 22y zz yx y ∂'==∂; (2)2xy x z z ye xy x ∂'==+∂,2xy y z z xe x y∂'==+∂. 实训三 (A )1.填空题(1)单调递增区间,(),0-∞;单调递减区间()0,+∞. (2)6a =-.(3)驻点. (4)()00f x ''<.2.()()3444110y x x x x x '=-=-+=,得驻点1230,1,1x x x ==-=,单调递增区间:()()1.0 1.-+∞ ,单调递减区间:()().10.1-∞- .3.()()23693310y x x x x '=--=-+=,得驻点121,3x x =-=.又由于:66y x ''=-,()1120y ''-=-<,所以11x =-为极大点,极大值为0; ()360y ''=>,所以23x =为极小点,极小值为32-.【定价问题】21200080R PQ P P ==-,25000502500050(1200080)6250004000C Q P P =+=+-=-, 224000160T Q P ==-,21200080625000400024000160L R C T P P P P =--=--+-+28016160649000P P =-+-160161600L P '=-+=,解得:101P =, 167080L =.【售价与最大利润】1100200Q p =-,21100200R PQ P P ==-;220019004400L R C P P =-=+-,40019000L P '=-+=,解得 4.75P =此时:150Q =,112.5L =. 【最小平均成本】210000501000050x x c x x x ++==++;21000010c x '=-+=,解得100x =.【最大收入】315x R px xe -==,33155x x R exe--'=-3(155)0x x e-=-=,解得:3x =,此时115p e -=,145R e -=.实训三 (B )1.(1)设()1xf x e x =--,()10xf x e '=->(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. (2)设()()ln 1f x x x =-+,()1101f x x'=->+(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. 2.()cos cos3f x a x x '=+,没有不可导点,所以cos cos 033f a πππ⎛⎫'=+=⎪⎝⎭,得2a =.又()2sin 3sin3f x x x ''=--,03f π⎛⎫''=<⎪⎝⎭,所以3x π=为极大值点,极大值为3f π⎛⎫= ⎪⎝⎭【采购计划】 设批量为x ,采购费:132********200C x x =⨯=; 库存费:222xC x =⨯=;总费用:12640000C C C x x=+=+; 264000010C x'=-+=,解得800x =唯一驻点, 所以采购分4次,每次800吨,总费用最小.第三章自测题一、填空题 1. 2 2. 12-3. 21x -4. 1-5. 212c o s x xx+ 6. 17. 2l n3x + 8. 2 ; 09. 11ln ; ln y x y x yxy y x x xy --+⋅⋅+10. 12x =二、选择题1、C2、A3、A4、D5、A 三、计算解答题1、(1)([1]y x '''=+=+[12]()1x =⋅⋅⋅==(2)222()()2x x x x y e x e x xe e --'''=⋅+⋅-=- 2、方程221x y xy +-=两边对x 求导,得22()0x y y y x y ''+⋅-+= 解得:22y xy y x-'=-,将0,1x y ==代入,得切线斜率12k =,所以,切线方程为:11(0)2y x -=-,即:220x y -+=. 3、定义域(,)-∞+∞2363(2)y x x x x '=-=- 令0y '=,得驻点120,2x x ==递增区间:(,0)-∞、(2,)+∞ 递减区间:(0,2)极大值:(0)7f = 极小值:(2)3f = 四、应用题1、50S t ==(50)50dSt dt'== 所以,两船间的距离增加的速度为50千米/小时. 2、第四章 边际与弹性分析实训一(A )1.填空题(1)0.2x ∆=, 2.448y ∆=, 2.2dy =. (2)1x dy edx ==. (3)12dy x dx x ⎛⎫=+⎪⎝⎭. (4)cos(21)x +,2cos(21)x +. (5)[]()f g x ',[]()()f g x g x ''.2.(1)(12)dy x dx =+; (2)221dy dx x =+; (3)222(22)x x dy xe x e dx --=-; (4)322(1)dy x x dx -=-+; (5)23(1)1dy dx x =-+; (6)1dx dy x nx=. 3.()ln 11x y x x '=+++,11ln 22x y ='=+,所以11ln 22x dy dx =⎛⎫=+ ⎪⎝⎭. 【金属圆管截面积】2s r π=,2200.05ds r r πππ=∆=⨯=.实训一(B )1.(1)2sec x ;(2)1sin 5x 5;(3)2x ;(4)232x ;(5)21x +;(6)arctan x . 2.将x yxy e+=两边对x 求导,()1x yy xy ey +''+=+,解得:x y x ye yy x e ++-'=-,所以x y x ye ydy dx x e++-=-.3.(1110.001 1.00052≈+⨯=;(20.02221 2.001783⎛⎫==≈+= ⎪⨯⎝⎭; (3)()ln 1.01ln(10.01)0.01=+≈; (4)0.0510.05 1.05e ≈+=. 【圆盘面积的相对误差】2s r π=,0.2r ∆≤()'2s ds s r r r r π∆≈=∆=∆(1)()()22482240.29.65s ds cm cm πππ∆≈=⨯⨯==; (2)2220.22 1.67%24r r r s ds s s r r ππ∆∆∆≈===⨯≈. 实训二 (A )1.(1)()2'2x f x xe =;(2)[]1'()(1)a bf x x e a x ac --=++.2.(1)()21900110090017751200C =+⨯=;17757190036C ==. (2)()39002C '=,表示第901件产品的成本为32个单位;()51000 1.673C '=≈,表示第1001件产品的成本为53个单位. 3.(1)(50)9975R =;9975199.550R ==. (2)()502000.0250199R '=-⨯=,表示第51件产品的收入为199个单位. 4.22()()100.01520050.01200L R x C x x x x x x =-=---=--,50.020L x '=-=,解得唯一驻点250x =,所以当每批生产250个单位产品时,利润达到最大.实训二(B )1.()()()()()242,04282, 4x x x x L x R x C x x x ⎧--+≤≤⎪=-=⎨⎪-+>⎩, 即()232,0426, 4x x x L x x x ⎧-+-≤≤⎪=⎨⎪->⎩,求导()3,041, 4x x L x x -+≤<⎧'=⎨->⎩,令()0L x '=解得3x =百台(唯一驻点) 所以每年生产300台时,利润达到最大.()()430.5L L -=-万元,在最大利润的基础上再生产1百台,利润将减少0.5万元.2.()0.50.25C a a =+(万元)()2152R a aa =- ()22150.50.25 4.750.522a L a a a a a =---=-+-令() 4.750L a a '=-+=,解得 4.75a =(百台)又()10L a ''=-<,有极值的第二充分条件,可知当 4.75a =为最大值(唯一驻点) 所以该产品每年生产475台时,利润最大.实训三 (A )1.填空题 (1)1axy=;(2)21x Ey Ex ==;(3)1ln()4p η=-;(4)()334η=,()41η=,()554η=. 2.(1)15x η=; (2)3(3)5η=,价格为3时,价格上涨1%,需求下降0.6%,缺乏弹性;(5)1η=,价格为5时,价格上涨1%,需求下降1%,单位灵敏性; 6(6)5η=,价格为6时,价格上涨1%,需求下降1.2%. 3.(1)500P =元时,100000Q =张. (2)18002ppη=-.(3)1η=时,18002600p p p =-⇒=所以:当0600p ≤<时,1η<;当600900p <≤时,1η>.实训三 (B )1.(1)224202EQ x x Q Ex Q x '==--,243x EQ Ex ==-,所以价格增长5%,需求量减少6.7%;(2)()()3220R x xQ x x x ==--,x =403Q =.2.(1)2Q P '=-,48P Q ='=-,经济意义:在价格4P =的基础上,增加一个单位,需求量减少8个单位.(2)22275P P Q Q P η'=-=-,4320.542359P η===,经济意义,在4P =的基础上涨1%,需求减少0.54%.(3)375R PQ p p ==-,3375375p p p pη-=-,(4)0.46η=,经济意义,在4P =的基础上,若价格上涨1%,收入上涨0.46%.(4)198(6)0.46234η-=≈-,经济意义,在6P =的基础上,若价格上涨1%,收入减少0.46%. (5)375R p p =-,275305R p p '=-=⇒=,又6R p ''=-,()5300R ''=-<,所以由极值的第二充分条件,可知5P =时,总收入最大.第四章自测题一、填空题 1. 22 ; 2xxe e2.212x 3. arctan x4. 0.1 ; 0.63 ; 0.6 5. 45 ; 11 ; 456.10 ; 10% ; 变动富有弹性 7. 15%20% 8. 10% 二、选择题1、C2、B3、D4、A5、C 三、计算解答题1、(1)2222222()()2(2)x x x x y x e x e xe x e x ''''=⋅+⋅=+⋅2222222(1)x x x x e x e x e x =+=+ 22(1)xd y y d x xe x d x'∴==+ (2)222sin(12)[sin(12)]y x x ''=+⋅+2222s i n (12)c o s (12)(12)x x x '=+⋅+⋅+ 24s i n (24)x x =+ 24s i n (24)d y y d x x x d x'∴==+ 2、方程242ln y y x -=两边对x 求导,得31224dy dyy x dx y dx⋅-⋅⋅= 解得,3221dy x y dx y =-,3221x y dy dx y ∴=-3、四、应用题1、(1)()60.04C Q Q '=+ ()300()60.02C Q C Q Q Q Q==++(2)2300()0.02C Q Q'=-+令()0C Q '=,得Q = (3)2()()(204)204R Q P Q Q Q Q Q Q =⋅=-⋅=-2()()() 4.0214300L Q R Q C Q Q Q =-=-+- ()8.0414L Q Q '=-+ 令()0L Q =,得Q =2、 4Q P '=-(1)(6)24Q '=-,6P =时,价格上升1个单位,需求量减少24个单位.(2)22224(1502)15021502P P P Q P Q P P η''=-⋅=-⋅-=-- 24(6)13η=6P =时,价格变动1%,需求量变动2413% (3)23()()(1502)1502R P Q P P P P P P =⋅=-⋅=-33(1502)1502E R P PR P P E P R P P''=⋅=⋅--2215061502P P -=-61113P EREP==-6P =时,若价格下降2%,总收入将增加2213%第五章 经济总量问题分析实训一(A )1.填空题(1)3x ,3x C +; (2)3x ,3x C +; (3)cos x -,cos x C -+;(4C ; (5)arctan x ,arctan x C +.2.(1)B ; (2)C ; (3)D ; (4)A .3.(1)5322225x x C -+;(2)31cos 3xx e x C --+;(3)21x x C x-++; (4)(2)ln 2xe C e+. 4.(1)1arctan x C x--+;(2)sin cos x x C ++. 【曲线方程】由题意()21f x x '=+,所以()()()23113f x f x dx x dx x x C '==+=++⎰⎰,又过点()0,1带入,得到1C =,所以曲线方程为:()3113f x x x =++. 【总成本函数】由题意可得()220.01C x x x a =++,又固定成本为2000元,所以 ()220.012000C x x x =++. 【总收入函数】()()278 1.2780.6R x x dx x x C =-=-+⎰,由()000R C =⇒=,所以总收入函数为()2780.6R x x x =-.实训一(B )1.填空题(1)sin 2ln x x x +;(2)223cos3x e x +;(3)ln x x C +. 2.(1)D ; (2)B .3.(1)322233331u u u I du u du u u u -+-⎛⎫==-+- ⎪⎝⎭⎰⎰ 2133ln 2u u u C u=-+++; (2))32332333I dx x x C ===-+⎰;(3)()222222121212arctan 11x x I dx dx x C x x x x x ++⎛⎫==+=-++ ⎪++⎝⎭⎰⎰; (4)()()()1111tttt te e I dt edt e t C e +-==-=-++⎰⎰.实训二 (A )1.填空题 (1)212x ; (2)x e --; (3)ln x ; (4)arctan x ; (5)23x x +; (6)arcsin x . 2.(1)B ; (2)B .3.(1)()()()11cos 2121sin 2122I x d x x C =++=++⎰; (2)()()3212313139I x x C =+=++;(3)()()231ln ln ln 3I x d x x C ==+⎰;(4)111xx I e d e C x ⎛⎫=-=-+ ⎪⎝⎭⎰.4.(1)sin sin sin x xI e d x eC ==+⎰; (2)()()11ln 11x xx I d e e C e =+=+++⎰;(3)()()2222ln 22d x x I x x C x x -+==-++-+⎰;(4)22221111111x x x I dx dx x x x ++-⎛⎫==+- ⎪+++⎝⎭⎰⎰ 21l n (1)a r c t a n 2x x x C=++-+. 5.(1)()x x x x x I xd e xe e dx xe e C -----=-=-+=--+⎰⎰;(2)()()()ln 1ln 1ln 1I x dx x x xd x =+=+-+⎰⎰()()11ln 1ln 111x x x x dx x x dx x x +-=+-=+-++⎰⎰()()l n 1l n 1x x x x C =+-+++. 【需求函数】由已知,()111000ln3100033p pQ p dp C ⎛⎫⎛⎫=-⨯=+ ⎪ ⎪⎝⎭⎝⎭⎰ 又因为0p =时,1000Q =,代入上式,得到0C =.所以,()110003pQ p ⎛⎫= ⎪⎝⎭.【资本存量】由已知,32()2(1)y I t dt t C ===++⎰⎰因为0t =时,2500498y C C =+=⇒= 所以,322(1)498y t =++.实训二 (B )1.填空题(1)ln ()f x C +;(2)arctan(())f x C +;(3)'()()xf x f x C -+. 2.(1)()()2arctan 1x x x d e I e C e ==++⎰;(2)()()11131431dx I dx x x x x ⎛⎫==-⎪-+-+⎝⎭⎰⎰113l n 3l n 1l n 441x I x x C C x -=⎡--+⎤+=+⎣⎦+;(3)()()2arctan 111dxI x C x ==++++⎰;(4)()22222x x x x x I x d e x e e dx x e xe dx -----=-=-+=--⎰⎰⎰()22222x x x x x x I x e xe e C x e xe e C ------=----+=-+++. 【物体冷却模型】设()T t 为t 时刻物体的温度,由冷却定律可得:0()dTk T T dt=-, 分离变量0dT kdt T T =-,两边积分0dTkdt T T =-⎰⎰,可得:()0ln ln T T kt c -=+,0()kt T t T ce =+.由已知()0100T =,()160T =,020T =,带入得到:80c =,ln 2k =-, 所以ln2()2080t T t e -⋅=+, 当ln 23020803te t -⋅=+⇒=.实训三 (A )1.填空题 (1)122lim(1)nn i i n n→∞=+∑;(2)2)x dx -;(3)2π;(4)0. 2.(1)12010(3)3S x dx =+=⎰; (2)12218(2)3S x x dx -=--=⎰;(3)1303(1)4S x dx =-=⎰或034S ==⎰.实训三 (B )1.(1)分割:将[]0,4n 等分,每份长度为4n ;(2)近似代替:2412823i i n iA n n n⎡⎤+⎛⎫∆=⋅+= ⎪⎢⎥⎝⎭⎣⎦;(3)求和:()2212221111281281282nnni ii i n n n in n iA A n nn===++++≈∆===∑∑∑; (4)取极限:()2211282lim16n n n n A n→∞++==. 2.1sin xdx π⎰.3.22211113ln ln 222x dx x x x ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭⎰.实训四 (A )1.填空题(1)64;(2)1;(3)2π;(4)3;(5)1. 2.(1)()()()44341118111144I x d x x =--=-=⎰; (2)()()44223328I x dx xx =+=+=⎰;(几何上为直角三角形的面积)(3)22242200111222x x e I e dx e -===⎰; (4)2112111xx I e d e e x =-=-=⎰(5)01cos sin 222x x x I dx πππ++===⎰; (6)0;(利用当积分区间为对称区间,被积函数为奇函数时定积分的性质) (7)121211122222235I xdx xdx xdx xdx -=+=+=+=⎰⎰⎰⎰;(8)02sin 4I xdx π==⎰.(利用定积分的周期性)【资本存量问题】 (1)434211214I t ===⎰(万元);(4)33224422820 6.87x xtx x ⎛⎫==-=⇒=≈ ⎪⎝⎭⎰.【投资问题】01000P =,200A = 0.05()200T t tdP e dt-= 0.05()0.05020040004000TT t T t P edt e -==-+⎰ 10t =,0.5400040002595t P e=-+= 因为0.515741600T P e-≈<,所以,此项投资不恰当.实训四 (B )1.因为()1229214x dx --+=-⎰,()1129214x dx -+=⎰,()20216x dx +=⎰,()21214x dx +=⎰, ()3222213x dx +=⎰, 所以应该分两种情况: (1)因为()3403kf x dx =⎰,()()332240221816333k f x dx x dx -+=-==⎰⎰ 所以,0k =; (2)因为()()102112f x dx f x dx ---=⎰⎰,由对称性可知1k =-.2.对()21f x dx -⎰作代换令1x t -=(切记:定积分的换元要换限,积分值不变),则有:()()21011f x dx f t dt --=⎰⎰,所以,()()21101101112tte f x dx f t dt dt dt e t ---==+++⎰⎰⎰⎰ ()()()()001101011132ln 1ln 2ln 121t t td e ed te t e t e --+=++=+++=+++⎰⎰. 3.()()()()11111111I xf x dx xdf x x f x f x dx ----'===-⎰⎰⎰()()()()21111110x f f e f f --=+--=+-=.因为()()222x x f x e xe --'==-,()f x 为奇函数,所以()()110f f +-=.【储存费用问题】第五章自测题一、填空题 1.sin x x e c ++2.5314453x x x c -++ 3.ln xdx4.21ln 2x c +5.196.327.94π8.21200 ;200Q Q - 9.二、选择题1、D2、B3、A4、B5、C 三、计算解答题 1、(1)原式=1111()(3)(2)532dx dx x x x x =--+-+⎰⎰ 113[l n 3l n 2]l n 552x x x c cx -=--++=++ (2)原式=22111112sin ()cos cos cos1d x x x πππ-==-⎰2、(1)222222212(1)()()(1)(1)x x x F x G x dx dx x x x x ++++==++⎰⎰22111()arctan 1dx x c x x x=+=-+++⎰(2)222222212(1)3()()(1)(1)x x x F x G x dx dx x x x x -+--==++⎰⎰ 22131()3arctan 1dx x c x x x=-=--++⎰3、原式=31222(1)(1)1)33x x =+=+=⎰⎰四、应用题 1、(1)32412)2(24S x x dx x x =-=-=(2)1100()()1x x S e e dx ex e =-=-=⎰2、(1)2()()(100020)C Q C Q dQ Q Q dQ '==-+⎰⎰2311000103Q Q Q c =-++(0)9000C = ,9000c ∴=, 321()10100090003C Q Q Q Q ∴=-++ ()3400R Q Q = 321()()()10240090003L Q R Q C Q Q Q Q =-=-++- (2)令()()R Q C Q ''=,得60Q = 最大利润(60)99000L =(元) 3、.期末考试(90分钟)一、选择题(每题3分,共9分)1、设()0, 0x f x k x ≠=⎪=⎩在0x =处连续,问k =( )。

自考经济数学试题及答案

自考经济数学试题及答案

自考经济数学试题及答案一、选择题(每题2分,共20分)1. 函数f(x)=2x^2-3x+1在x=1处的导数是:A. 1B. 4B. 3D. 22. 微分方程dy/dx + y = x的通解是:A. y = x - 1 + Ce^(-x)B. y = x + Ce^xC. y = x - 1 + Ce^(-x)D. y = e^x + Ce^(-x)3. 若随机变量X服从参数为λ的泊松分布,其概率质量函数为:A. P(X=k) = λ^k / k!B. P(X=k) = e^(-λ) * λ^k / k!C. P(X=k) = k * λ^k / e^λD. P(X=k) = λ^k / (k! * e^λ)4. 以下哪项不是线性规划问题的特点?A. 目标函数是线性的B. 约束条件是线性的C. 可行域是凸集D. 目标函数是非线性的5. 以下哪个选项不是经济数学中常用的优化方法?A. 拉格朗日乘数法B. 单纯形法C. 动态规划法D. 蒙特卡洛模拟6. 边际成本与平均成本的关系是:A. 边际成本总是大于平均成本B. 边际成本总是小于平均成本C. 当边际成本等于平均成本时,平均成本达到最小D. 边际成本与平均成本没有固定关系7. 以下哪个选项不是经济数学中的风险度量方法?A. 方差B. 标准差C. 期望值D. 风险价值(VaR)8. 以下哪个选项是二阶常系数线性微分方程?A. dy/dx + y = 0B. d^2y/dx^2 - 2dy/dx + y = 0C. d^2y/dx^2 + dy/dx + 2y = 0D. d^3y/dx^3 + 3dy/dx = 09. 以下哪个选项是边际效用递减原理的表述?A. 随着消费量的增加,消费者对商品的边际效用逐渐增加B. 随着消费量的增加,消费者对商品的边际效用保持不变C. 随着消费量的增加,消费者对商品的边际效用逐渐减少D. 消费者对商品的边际效用与消费量无关10. 以下哪个选项是消费者剩余的计算公式?A. 消费者剩余 = 最高支付意愿 - 实际支付价格B. 消费者剩余 = 实际支付价格 - 最低支付意愿C. 消费者剩余 = 最高支付意愿 + 实际支付价格D. 消费者剩余 = 最低支付意愿 - 实际支付价格二、简答题(每题10分,共20分)1. 简述边际成本与平均成本的关系,并说明在何种情况下平均成本达到最小。

《-经济数学》应用题及参考答案

《-经济数学》应用题及参考答案

《-经济数学》应用题及参考答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《经济数学》一、判断题1. 已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( ) A. 1 B. 2 C. 3 D. 42. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A. )2()1()23(f f f <-<-B. )2()23()1(f f f <-<-C. )23()1()2(-<-<f f fD. )1()23()2(-<-<f f f 4. 设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A. 奇函数 B. 偶函数 C. 既是奇函数又是偶函数 D. 非奇非偶函数5. 下列函数中,在区间()0,1上是增函数的是( ) A.x y = B. x y -=3 C. x y 1= D. 42+-=x y二、填空题1.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为. 2.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) =.三、应用题1.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)(2++=(万元),求:(1)当10=x 时的总成本、平均成本和边际成本; (2)当产量x 为多少时,平均成本最小2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,问价格为多少时利润最大?并求最大利润.4.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),问产量为多少时可使利润达到最大?最大利润是多少.5.某厂每天生产某种产品q 件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少此时,每件产品平均成本为多少6.已知某厂生产q 件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品参考答案一、选择题1. B 奇次项系数为0,20,2m m -==2. D 3(2)(2),212f f =--<-<-4. A ()()()()F x f x f x F x -=--=-5. A 3y x =-在R 上递减,1y x =在(0,)+∞上递减,24y x =-+在(0,)+∞上递减,二、填空题1. 3.62. 45q – 0.25q 2三、简答题1.解(1)因为总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++=625.0100)(++=x x x C ,65.0)(+='x x C所以,1851061025.0100)10(2=⨯+⨯+=C 5.1861025.010100)10(=+⨯+=C ,116105.0)10(=+⨯='C(2)令 025.0100)(2=+-='x x C ,得20=x (20-=x 舍去) 因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x20时,平均成本最小.2.解 (1)成本函数C q ()= 60q +2000.因为 q p =-100010,即p q =-100110, 所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -. (2)因为利润函数L q ()=R q ()-C q () =1001102q q --(60q +2000) = 40q -1102q -2000 且 'L q ()=(40q -1102q -2000')=40- 0.2q 令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点. 所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大. 3.解 C (p ) = 50000+100q = 50000+100(2000-4p )=250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令)(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大. 最大利润 1100025000030043002400)300(2=-⨯-⨯=L (元). 4.解 由已知201.014)01.014(q q q q qp R-=-== 利润函数22202.0201001.042001.014q q q q q q C R L --=----=-= 则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q . 因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,且最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)5. 解 因为 C q ()=C q q ()=05369800.q q ++ (q >0) 'C q ()=(.)05369800q q ++'=0598002.-q 令'C q ()=0,即0598002.-q =0,得q 1=140,q 2= -140(舍去). q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值.所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为C ()140=05140369800140.⨯++=176 (元/件) 6.解 (1) 因为 C q ()=C q q ()=2502010q q ++ 'C q ()=()2502010q q ++'=-+2501102q令'C q ()=0,即-+=25011002q ,得q 1=50,q 2=-50(舍去), q 1=50是C q ()在其定义域内的唯一驻点. 所以,q 1=50是C q ()的最小值点,即要使平均成本最少,应生产50件产品.。

经济数学基础综合练习及参考答案----第一部分微积分

经济数学基础综合练习及参考答案----第一部分微积分

1经济数学基础综合练习及参考答案第一部分 微分学一、单项选择题 1.函数()1lg +=x xy 的定义域是(1->x 且0≠x). .2.若函数)(x f 的定义域是[0,1],则函数)2(xf 的定义域是(]0,(-∞ ).3.下列各函数对中,( x x x f 22cos sin )(+=,1)(=x g )中的两个函数相等.4.设11)(+=xx f ,则))((x f f =(11++xx).5.下列函数中为奇函数的是( 11ln+-=x x y).6.下列函数中,()1ln(-=x y )不是基本初等函数.7.下列结论中,( 奇函数的图形关于坐标原点对 )是正确的. 8. 当x →0时,下列变量中(xx 21+ )是无穷大量. 9. 已知1tan )(-=xxx f ,当( x →0 )时,)(x f 为无穷小量.10.函数sin ,0(),0xx f x xk x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ( 1).11. 函数⎩⎨⎧<-≥=0,10,1)(x x x f 在x = 0处(右连续 ).12.曲线11+=x y 在点(0, 1)处的切线斜率为( 21- ).13. 曲线x y sin =在点(0, 0)处的切线方程为(y =x ).14.若函数x x f =)1(,则)(x f '=(-21x ).15.若xx x f c o s )(=,则='')(x f ( x x x cos s i n 2-- ).16.下列函数在指定区间(,)-∞+∞上单调增加的是(e x).17.下列结论正确的有( x 0是f (x )的极值点,且f '(x 0)存在,则必有f '(x 0) = 0 ).18. 设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =(--pp32 ).二、填空题1.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域是[-5,2]2.函数xx x f --+=21)5ln()(的定义域是(-5, 2 )3.若函数52)1(2-+=+x x x f ,则=)(x f 62-x .4.设函数1)(2-=u u f ,xx u 1)(=,则=))2((u f 43-.5.设21010)(x x x f -+=,则函数的图形关于 y 轴对称.6.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为3.6 .7.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = 45q – 0.25q 2 . 8. =+∞→xx x x sin lim1 .9.已知x x x f sin 1)(-=,当0→x 时,)(x f 为无穷小量.10. 已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞内连续,则=a 2 .11. 函数1()1e xf x =-的间断点是0x =.12.函数)2)(1(1)(-+=x x x f 的连续区间是)1,(--∞),2(∞+.)1处的切线斜率是(1)0.5y '=14.函数y = x 2 + 1的单调增加区间为(0, +∞)15.已知x x f 2ln )(=,则[f =0 .16.函数y x =-312()的驻点是x =1.17.需求量q 对价格p 的函数为2e 100)(pp q -⨯=,则需求弹性为E p =2p-.18.已知需求函数为pq 32320-=,其中p 为价格,则需求弹性E p =10-p p.三、计算题(答案在后面)1.423lim222-+-→x x x x 2.231lim21+--→x x x x 3.x → 4.2343limsin(3)x x x x →-+- 52)1tan(lim 21-+-→x x x x 6.))32)(1()23()21(lim 625--++-∞→x x x x x x 7.已知y xxx cos 2-=,求)(x y ' . 8.已知)(x f x x x ln sin 2+=,求)(x f ' . 9.已知x y cos 25=,求)2π(y ';10.已知y =32ln x ,求y d . 11.设x y x5sin cos e +=,求y d .12.设xx y -+=2tan 3,求y d .13.已知2sin 2cos x y x -=,求)(x y ' .14.已知xx y 53e ln -+=,求)(x y ' . 15.由方程2e e )1ln(=++xy x y 确定y 是x 的隐函数,求)(x y '.16.由方程0e sin =+yx y 确定y 是x 的隐函数,求)(x y '.17.设函数)(x y y =由方程y x y e 1+=确定,求0d d =x xy.18.由方程x y x y =++e )cos(确定y是x 的隐函数,求y d .四、应用题(答案在后面) 1.设生产某种产品x个单位时的成本函数为:x x x C 625.0100)(2++=(万元),求:(1)当10=x 时的总成本、平均成本和边际成本;(2)当产量x为多少时,平均成本最小?2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,试求:(1)价格为多少时利润最大?(2)最大利润是多少? 4.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),试求:(1)产量为多少时可使利润达到最大?(2)最大利润是多少?5.某厂每天生产某种产品q件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少? 6.已知某厂生产q件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品? 三、极限与微分计算题(答案) 1.解423lim222-+-→x x x x =)2)(2()1)(2(lim2+---→x x x x x =)2(1lim2+-→x x x = 412.解:231lim21+--→x x x x =)1)(2)(1(1lim 1+---→x x x x x=21)1)(2(1lim1-=+-→x x x3.解l ix →0x → =xx x x x 2sin lim)11(lim 00→→++=2⨯2 = 44.解 2343lim sin(3)x x x x →-+-=3(3)(1)lim sin(3)x x x x →---=333limlim(1)sin(3)x x x x x →→-⨯--= 25.解)1)(2()1tan(lim2)1tan(lim121-+-=-+-→→x x x x x x x x1)1tan(lim21lim11--⋅+=→→x x x x x 31131=⨯= 6.解))32)(1()23()21(lim 625--++-∞→x x x x x x =))32)(11()213()21(lim 625xx x x xx --++-∞→=2323)2(65-=⨯-7.解:2y '(x )=)cos 2('-xx x =2cos sin 2ln 2x xx x x --- =2cos sin 2ln 2x xx x x ++8.解xx x x f x x 1cos 2s i n 2ln 2)(++⋅=' 9.解 因为5ln 5sin 2)cos 2(5ln 5)5(cos 2cos 2cos 2x x x x x y -='='='所以5ln 25ln 52πsin 2)2π(2πcos2-=⋅-='y10.解 因为 )(ln )(ln 3231'='-x x y331ln 32)(ln 32xx x x ==- 所以x xx y d ln 32d 3=11.解 因为)(cos cos 5)(sin e4sin '+'='x x x y xx x x xsin cos 5cos e4sin -=所以x x x x y xd )sin cos 5cos e(d 4sin -=12.解 因为)(2ln 2)(cos 1332'-+'='-x x xy x2ln 2cos 3322x xx--=所以 x xx y x d )2ln 2cos 3(d 322--=13.解 )(cos )2(2sin )(22'-'-='x x x y x x2cos 22ln 2sin 2x x x x --=14.解:)5(e )(ln ln 3)(52'-+'='-x x x x y xx xx525e ln 3--=15.解 在方程等号两边对x 求导,得 )e ()e (])1ln([2'='+'+xy x y0)(e 1)1ln(='+++++'y x y xyx y xyxy xyy xyy x x e 1]e )1[ln(-+-='++故]e )1)[ln(1(e )1(xyxyx x x y x y y +++++-='16.解 对方程两边同时求导,得0e e cos ='++'y x y y yyyyy x y e)e (cos -='+)(x y '=yyx y e cos e +-.17.解:方程两边对x 求导,得 y x y yy '+='e eyy x y e1e-='当0=x 时,1=y所以,d d =x xye e 01e 11=⨯-=18.解 在方程等号两边对x 求导,得)()e (])[cos('='+'+x y x y1e ]1)[sin(='+'++-y y y x y)sin (1)]sin(e [y x y y x y++='+-)sin(e )sin(1y x y x y y +-++='故x y x y x y yd )sin(e )sin(1d +-++=四、应用题(答案)1.解(1)因为总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++=625.0100)(++=x xx C ,65.0)(+='x x C所以,1851061025.0100)10(2=⨯+⨯+=C5.1861025.010100)10(=+⨯+=, 116105.0)10(=+⨯='C(2)令25.0100)(2=+-='xx ,得20=x (20-=x 舍去)因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.2.解 (1)成本函数C q ()= 60q +2000.因为 qp =-100010,即p q =-100110, 所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -. (2)因为利润函数L q ()=R q ()-C q ()=1001102qq --(60q +2000)= 40q -1102q -2000 且'L q ()=(40q -1102q -2000')=40-0.2q令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点. 所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大.3.解 (1)C (p ) = 50000+100q = 50000+100(2000-4p ) =250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令)(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大.(2)最大利润1100025000030043002400)300(2=-⨯-⨯=L (元).4.解 (1)由已知201.014)01.014(q q q q qp R -=-==利润函数22202.0201001.042001.014q q q q q q C R L --=----=-=则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q .因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,(2)最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)5. 解 因为 C q ()=C q q ()=05369800.q q++(q >0)'C q ()=(.)05369800q q++'=0598002.-q令'C q ()=0,即0598002.-q =0,得q 1=140,q 2=-140(舍去).q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值. 所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为C ()140=05140369800140.⨯++=176 (元/件) 6.解 (1) 因为 C q ()=C q q ()=2502010q q ++'C q ()=()2502010qq ++'=-+2501102q令'C q ()=0,即-+=2501100q ,得q 1=50,q 2=-50(舍去),q 1=50是C q ()在其定义域内的唯一驻点.所以,q 1=50是q ()的最小值点,即要使平均成本最少,应生产50件产品.。

3-作业:《经济数学》作业题(题目+解答)

3-作业:《经济数学》作业题(题目+解答)

17.一批产品由 8 件正品和 2 件次品组成,从中任取 3 件,这三件产品中恰有一 件次品的概率为( ) 3 A. 5 B. 8 C.
15
7 15 2 D. 5 【答案:C】
18.袋中装有 4 个黑球和 1 个白球,每次从袋中随机的摸出一个球,并换入一个 黑球,继续进行,求第三次摸到黑球的概率是( ) 16 A. 125 17 B. 125 108 C. 125 109 D. 125 【答案:D】
【答案:D】
16.向指定的目标连续射击四枪,用 Ai 表示“第 i 次射中目标” ,试用 Ai 表示前 两枪都射中目标,后两枪都没有射中目标。 ( ) A. A1 A2 A3 A4
5
B. 1 − A1 A2 A3 A4 C. A1 +A2 A3 A4 【答案:A】
x2 x (3 − ) 25 12 ( 0 ≤ x ≤ 36 ) ,求生产条件不变的情况下,每班多少人时产煤量最高? 1. 某煤矿每班产煤量 y(千吨) 与每班的作业人数 x 的函数关系是 y = 解:每班 24 人产煤量最高, 即 y x = 24 24 2 24 . = (3 − ) = 23.04(千吨) 25 12
Ax 2 , 0 ≤ x ≤ 1 ,则 A 的值为: 20.设连续型随机变量 X 的密度函数为 p ( x ) = 0, else A.1 B. 2 C. 3 D. 1
【答案:C】
7
第二部分
计算题
1 .某厂生产某产品,每批生产 x 台得费用为 C ( x = ) 5 x + 200 ,得到的收入为 R (= x) 10 x − 0.01x 2 ,求利润. 解:利润 L = ( x ) R ( x ) − C ( x ) = 5 x − 0.01x 2 − 200 (元).

全国2019年10月高等教育(工本)自学考试试题、详细答案及考点分析

全国2019年10月高等教育(工本)自学考试试题、详细答案及考点分析

全国2019年10月高等教育自学考试高等数学(工本)试题、详细答案及考点分析课程代码:00023请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分注意事项:1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

一、单项选择题:本大题共5小题,每小题3分,共15分。

在每小题列出的四个备选项中只有一个是最符合题目要求的,请将其选出。

1.在空间直角坐标系中,点()2,0,0-在A .x 轴上B .y 轴上C .z 轴上D .oxy 平面上解:使用空间直角坐标系坐标轴、坐标面特征进行讨论。

x 轴上点的坐标为()0,0,a ,y 轴上点的坐标为()0,,0b ,z 轴上点的坐标为()c ,0,0,oxy 平面上点的坐标为()0,,b a ,oyz 平面上点的坐标为()c b ,,0,oxz 平面上点的坐标为()c a ,0,,故选C.考核知识点:空间直角坐标系(识记);考核要求:知道空间直角坐标系的定义及相关的概念.2.函数()y x y x f +=,在点()0,0处A .连续B .间断C .偏导数存在D .可微解:使用多元函数连续性方法进行求解。

由于()0,00lim 00f y x y x ==+→→因此函数()y x y x f +=,在点()0,0处连续,选A.考核知识点:二元函数的极限与连续(识记);考核要求:知道二元函数连续的概念.3.已知ydy x ydx x sin sin cos cos -是某个函数()y x u ,的全微分,则()=y x u ,A .xy cos sin B .yx sin sin C .yx cos sin -D .yx cos sin 解:对各项使用全微分法进行求解。

对A ,B ,C ,D 选项进行全微分,可得A :()()xdy y ydx x x y d y x du cos cos sin sin cos sin ,+-==B :()()xdy y ydx x y x d y x du sin cos sin cos sin sin ,+==C :()()ydy x ydx x y x d y x du sin sin cos cos cos sin ,+-=-=D :()()ydy x ydx x y x d y x du sin sin cos cos cos sin ,-==故选D.考核知识点:全微分(领会);考核要求:会求函数的全微分.4.下列微分方程中,属于一阶线性非齐次微分方程的是A .()dx y x ydy +=3B .()dx y x xdy 32+=C .19sin =-y x dx dyD .92=+xy dxdy解:使用微分方程的基本概念进行选择。

经济数学答案(完整)

经济数学答案(完整)

经济数学基础作业1及解答(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)2,1(的切线方程是 .答案:2321+=x y4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题1. 当+∞→x 时,下列变量是无穷小量的是( ).答案:DA .()x +1lnB .12+x xC .21x e- D .xxsin 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =lg2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.若x x f =⎪⎭⎫ ⎝⎛1,则()()='x f .A.21x B.21x- C.x 1 D.x 1- 答案:B(三)解答题 1.计算极限(1)123lim 221-+-→x x x x 解:2112lim )1()1()2()1(lim 123lim 11221-=+-=+⋅--⋅-=-+-→→→x x x x x x x x x x x x (2)8665lim 222+-+-→x x x x x解:2143lim )4()2()3()2(lim 8665lim 22222=--=-⋅--⋅-=+-+-→→→x x x x x x x x x x x x x(3)xx x 11lim--→ 解:)11(11lim)11()11)(11(lim 11lim000+---=+-+---=--→→→x x x x x x x x x x x x 21111l i m-=+--=→x x(4)423532lim 22+++-∞→x x x x x解:32423532lim 423532lim 2222=+++-=+++-∞→∞→xx x x x x x x x x(5)xxx 5sin 3sin lim 0→解: 535355sin 33sin lim 5sin 3sin lim00=⋅=→→xx x xx x x x (6))2sin(4lim 22--→x x x解:41222)2sin(2lim )2sin()2()2(lim )2sin(4lim2222=+=--+=-+⋅---→→→x x x x x x x x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续. 解: b b xx x f x x =+⋅=--→→)1sin (lim )(lim 01sin lim )(lim 0==++→→xxx f x x ∴(1)当1=b 时,1)(lim )(lim 00==+-→→x f x f x x )(x f 在0=x 处有极限存在,此时a 可取任何值。

经济数学《线性代数》习题参考答案[终稿]

经济数学《线性代数》习题参考答案[终稿]

经管类《微积分(下)与线性代数》习题参考答案第六章 多元函数微积分学习题一 一、1、y x 32-;2、},0,0|),{(2y x y x y x ≥≥≥;3、1,2;4、⎪⎪⎭⎫ ⎝⎛++++xy xy xy xy x 1)1ln()1(,12)1(-+x xy x ; 5、22812y x -,22812x y -,xy 16-.二、1.D ; 2.D ;3.A ;4.B三、1.(1)y x x z ln 1+=∂∂,)ln (1y x y y z +=∂∂;(2)xy e y x y x y x x z 22232)(2++-=∂∂, xye y x y xy x y z 22223)(2+-+=∂∂2.12222222222222222223.z xy z xyx x y y x y z y x x y x y ∂∂==-∂+∂+∂-=∂∂+()()()4.(1)dy xy x xy dx xy y y x dz )]cos(2[)]cos(2[2++++=(2))(1zdz ydy xdx udu ++=(3)xdzyx xdy zx dx yzx du yz yz yz ln ln 1++=-5.dydx 3231+习题二一、1、)()(y x f xy y x yf +'++,)()()()(y x f xy y x f y x y x f +''++'+++;2、211f y f '+',22f y x '-;3、dy f f dx f f ⎪⎪⎭⎫ ⎝⎛+''-''-12121; 4、y x yx -+;5、x y z z z -ln ln ,yyz xy z ln 2-二、 1、C ; 2、A ; 3、C ; 4、C ; 5、A三、1、⎪⎪⎭⎫ ⎝⎛+-+=∂∂)ln(112222222y x x y x x y x z ,⎪⎪⎭⎫ ⎝⎛+++=∂∂)ln(222222y x y x y x y y z2、321f yz f y f x u '+'+'=∂∂,32f xz f x yu'+'=∂∂,3f xy z u '=∂∂4、dy dx dz --=5、(1)极小值:2)1,1(=f ;(2)0>a 时,有极大值:273,33a a a f =⎪⎭⎫ ⎝⎛;0<a 时,有极小值:273,33aa a f =⎪⎭⎫ ⎝⎛6、极大值:1)1,1(=f7、(1)25.1,75.0==y x ; (2)5.1,0==y x习题三一、1.()2ab a b +; 2.⎰⎰x x dy y x f dx 2),(10; 3.)1(214--e ; 4.⎰⎰θππθsec 2034)(rdr r f d ;5.π3二、1、D ;2、B ;3、D ;4、C三、1、556; 2、121+e ; 3、21532; 4、49; 5、2643π; 6、31; 7、π3第八章 无穷级数 习题一 一、判断题1、√;2、×;3、√;4、×;5、√;6、×二、填空题1、0;2、1>p 且p 为常数;3、1>p ,10≤<p ,0≤p ;4、 ,2,1,1=≥+n u u n n 且0lim =∞→n n u三、选择题 1、(C ); 2、(A ); 3、(C ); 4、(A ); 5、(C )四、1、收敛; 2、发散;、收敛; 、收敛;、收敛; 、收敛五、1、发散; 2、条件收敛 3、绝对收敛; 4、条件收敛六、当10≤<a 时,发散;当1>a 时,收敛. 习题二 一、判断题1、×;2、√;3、√;4、×;5、√ 二、填空题1、0=R ;2、),(,+∞-∞+∞=R ;3、)1,1(-,)1ln(x --;4、22,2)1(1)1(2ln 011≤<-⋅+-+∑∞=++x x n n n n n;5、60,)3(31)1(01<<-⎪⎭⎫ ⎝⎛-∑∞=+x x n nn n三、选择题1、(D );2、(B );3、(B );4、(A );5、(B );6、(C )四、1、)3,3[-;2、)3,1[;3、]1,1[-五、1、)1,1(,)1(1)(2-∈-=x x x s ;2、)1,1(,)]1ln()1[ln(21)(-∈--+=x x x x s ;3ln 21六、)1,1(,)1(2131)(01-∈⎪⎭⎫⎝⎛-+=∑∞=+x x x f nn n n第九章 微分方程初步习题一 一、判断题1、×;2、√;3、√;4、×;5、×二、填空题1、2)(ln 21)(x x f =; 2、x cxe y -=; 3、x y 2=; 4、x x x y 91ln 31-=;5、Ct x +=)(ln ϕ三、1、C y x =⋅tan tan ; 2、C e e y x =-⋅+)1()1(四、22sec )1(=⋅+y e x五、1、)ln(2122Cx xy =⋅; 2、15325=-y x y六、1、)(sin C x ey x+=-; 2、)cos 1(1x y --=ππ; 3、322Cy y x +=七、xx e e x f 2323)(-=八、)1,1[,)1ln()(1-∈--=∑∞=x x e x f x n n习题二一、选择题 1、(C ); 2、(B ); 3、(D ); 4、(C ); 5、(A ); 6、(C )二、1、x x e C e C y 221-+=;2、x C x C y sin cos 21+=;3、xx e e y -+-=4三、x e x x L 273)(-+-=四、(1)20005.0-=W dt dW;(2)t e W 05.010004000+=五、)sin (cos 21)(x e x x x ++=ϕ六、1)(21)(++=-x x e e x s七、uu f ln )(=八、)14()(242+=t e t f t ππ《线性代数》习题参考答案习题一一、填空题1. 8k ; 2.8; 3.12 ; 4.)1)(1(++cd ab .二、计算题1. 55b a +; 2.1211)1(-+-n n a a na 3.1)]()1([---+n a x a n x ;4.1)2]()2([---+n a x a n x ; 5.6习题二一、填空题1.21; 2.E ; 3.)(21E A -,)3(41E A --; 4.⎪⎪⎭⎫⎝⎛--0011A B ;5.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----8500320000520021; 6.⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛n a a a 11121; 7.4.二、选择题1.③;2.③;3.②;4.③;5.②;6.①;7.③;8.②.三、计算题1.⎪⎪⎪⎭⎫ ⎝⎛201030102; 2.-16; 3.3)(=A R ; 4.⎪⎪⎪⎭⎫⎝⎛---011101110;5.(1)1=k ;(2)2-=k ;(3)1≠k 且2-≠k .习题三一.填空题1.)()(.b A R A R =; 2.0=A ; 3.1.≠λ且2-≠λ; 4.0.4321=+++a a a a .二、选择题 1.④; 2.①; 3.④;4.④三、1-=k 时,有非零解;c c x x x ,111321⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛不为零的任意实数.四、(1)2,1-≠λ ; (2)2-=λ; (3)1=λ.五、当1≠a 且0≠b 时,有唯一解;当1=a 且2/1≠b 或0=b 时,无解;当1=a 且21=b 时,有无穷多解,其解为:⎪⎩⎪⎨⎧==-=c x x cx 32122 (c 为任意常数)习题四一、填空题1.5=t ; 2.至少有一个向量; 3321,,.ααα ;42.≤r ;5ts r -=.二、选择题1.④; 2.③; 3.③; 4.③; 5.②三、321,,ααα为极大无关组,323214,3ααααααα+-=-+=四、(1)3-=λ;(2)0≠λ且3-≠λ;(3)0=λ,3221121)(αααβc c c c +++-=五、⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54326543c x ;(c 为任意常数)六、⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛608301214321c x x x x (c 为任意常数)习题五一、填空题1.1或-1 ;2.E ;3.18 ;4.121==λλ,213-=λ;5.125 ; 6.4=λ二、选择题1.②; 2.③; 3.④; 4.②; 5.②三、6||=A四、0,3,1=-=-=b a λ五、2,0-==y x ;⎪⎪⎪⎭⎫⎝⎛--=111012100P六、⎪⎪⎪⎭⎫⎝⎛----=412212111A七、当3=x 时,A 可对角化.。

经济数学考试卷答案(全)

经济数学考试卷答案(全)
F u f u f u du F u C
1 1 dx d ( ) x2 x

19、设F ( x )=f ( x ), 则 f (cos x )sin xdx B ) ( A. f (cos x ) C C. F (cos x ) C ; ; B. F (cos x ) C D. f (cos x ) C ;
一、单项选择题
1、下列函数中( A )不是偶函数。 A. x 2 cos( x 1) C. x cos x
2
;
B. sin x 2 1 D. e
x2
;
;
奇偶函数四则运算性质: 奇×奇=偶 奇×偶=奇 奇+奇=奇 偶×偶=偶 奇÷偶=奇 偶+偶=偶
奇+偶=通常为非奇非偶
奇偶函数复合性质: 奇(奇)=奇; 偶(奇)=偶;奇(偶)=偶;偶(偶)=偶
e
px
0
p 0, 发散; dx p 0, 收敛.
p 0, 发散; 3. e dx p 0, 收敛.
0 px
1 1 18、设函数f ( x )的原函数为F ( x ), 则 2 f ( )dx A ) ( x x 1 A. F ( ) C ; B. F ( x ) C ; x 1 1 C. F ( ) C ; D. f ( ) C x x
Amn,则ATm n
;
C. BA可行
Ams Bsn ( AB)mn
23、设A、B均为n阶方阵,则下列结论正确的是( A ) A. ( AB )T BT AT C. ; ; B. ( A+B )2 A2 +2 AB B 2 D. 若A O , B O , 则AB O ;

《经济数学》期未考试试卷及答案

《经济数学》期未考试试卷及答案

《经济数学》考试试卷(A 卷、闭卷)一、单项选择题 (每小题2分,共20分) 1.下列各函数对中,( )中的两个函数是相等的.A .11)(2--=x x x f ,1)(+=x x g B .2)(x x f =,x x g =)(C .2ln )(x x f =,x x g ln 2)(=D .x x x f 22cos sin )(+=,1)(=x g2.设函数⎪⎩⎪⎨⎧=≠+=0,10,2sin )(x x k xx x f 在x = 0处连续,则k = ( ). A .-2B .-1C .1D .23. 函数x x f ln )(=在1=x 处的切线方程是( ).A.1=-y xB. 1-=-y xC. 1=+y xD. 1-=+y x 4.下列函数在区间(,)-∞+∞上单调减少的是( ). A .x sin B .2 x C .x 2 D .3 - x 5.若c x F x x f +=⎰)(d )(,则x x xf d )1(2⎰-=( ).A. c x F +-)1(212B. c x F +--)1(212C. c x F +-)1(22D. c x F +--)1(22 6.下列等式中正确的是( ).A . )cos d(d sin x x x = B. )1d(d ln xx x =C. )d(ln 1d x x a a x a =D.)d(d 1x x x=7.设23,25,22,35,20,24是一组数据,则这组数据的中位数是 ( ).A. 5.23B. 23C. 5.22D. 228.设随机变量X 的期望1)(-=X E ,方差D (X ) = 3,则=-)]2(3[2X E = ( ) .A. 36B. 30C. 6D. 9 9.设B A ,为同阶可逆矩阵,则下列等式成立的是( ) A. 111)(---+=+B A B A B. 111)(---=A B ABC. 1T 11T )()(---=B A ABD. 11)(--=kA kA (其中k 为非零常数)10.线性方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡93321121x x 满足结论( ). A .无解 B .有无穷多解 C .只有0解 D .有唯一解二、填空题 (每小题3分,共15分) 1.若函数54)2(2++=+x x x f ,则=)(x f .2.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性为E p =.3.=⎰x x c d os d.4.设C B A ,,是三个事件,则A 发生,但C B ,至少有一个不发生的事件 表示为 .5.设B A ,为两个n 阶矩阵,且B I -可逆,则矩阵方程X BX A =+的解 =X .三、极限与微分计算题 (每小题8分,共16分)1.)3sin(32lim 23+-+-→x x x x2.设函数)(x y y =由方程222e e =++xy y x 确定,求)(x y '.四、积分计算题 (每小题8分,共16分)1.x x x d 2cos 20⎰π2.求微分方程12+=+'x xyy 的通解.五、概率计算题 (每小题10分,共20分)1.设A , B 是两个相互独立的随机事件,已知P (A ) = 0.6,P (B ) = 0.7, 求A 与B 恰有一个发生的概率.2.设),3,2(~2N X 求)54(<<-X P 。

西工大20年10月《经济数学(下)》作业(参考)-电大经济数学在线作业1

西工大20年10月《经济数学(下)》作业(参考)-电大经济数学在线作业1

西工大20年10月《经济数学(下)》作业(参考)|电大经济数学在线作业1
拿答案20219.10207 西北工业大学网络教育学院 2021年10月大作业课程名称:经济数学(下)
一、(4分共16分)
1. ()。

A. -3
B. 5
C. 1
D. 0 2. 在下列四个向量组中线性无关的向量组有()。

A. 一个
B. 两个
C. 三个
D. 四个 3. 设事件与事件互斥则()。

A. B. C. D. 4. 设总体和未知… 是来自总体的样本则如下所示为统计量的是()。

A. B. C. D. 二、填空题(5分共20分)
1. 。

2. 当k =______时齐次线性方程组有非零解。

3. 若随机变量在[1,6]上服从均匀分布求方程有实根的概率为。

4. 已知矩阵且矩阵A的秩为2则a 满足______。

三、解答下列各题(7分共21分)
1. 计算行列式。

2.。

3. 。

四、(11分)
五、计算应用题(第1、3、4小题各7分第2小题11分共32分)
1. 设为随机事件求。

2. 设随机变量具有分布密度 (1) 试确定常数; (2)
求。

3. 设总体密度为是来自总体的一个样本求参数的矩估计和最大似然估计。

4. 从一批灯泡抽取50个算得的样本平均值小时标准差小时试检验该批灯泡的平均寿命是否为2000小时。

拿答案20219.10207。

2019年10月全国自考高等数学工本00023真题试题(含详解)

2019年10月全国自考高等数学工本00023真题试题(含详解)

2019年10月全国自考高等数学工本00023真题试题(含详解)2019年10月全国自考高等数学(工本)00023试题及其详解一、单项选择题:本大题共5小题。

每小题3分。

共l5分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.在空间直角坐标系中,点(0,0,2)-在A.x 轴上B.y 轴上C.z 轴上D.Oxy 平面上解:答案是C2.函数(,)f x y =(0,0)处A.连续B.间断C.偏导数存在D.可微解:答案是B.3.已知cos cos sin sin x ydx x ydy -是某个函数(,)u x y 的全微分,则(,)u x y =A. sin cos y xB. sin sin x yC. sin cos x y -D. sin cos x y 解:D 选项,d(sinxcosy)=cosxcosydx-sinxsinydy.答案是D.4.下列微分方程中,属于一阶线性非齐次微分方程的是A.3()ydy x y dx =+B.2(2)xdy x y dx =+C.sin 19dy x y dx -=D.29dy xy dx += 解:B 选项,对2(2)xdy x y dx =+变形,得2dy y x dx x-=.答案是B. 5.下列无穷级数中,绝对收敛的无穷级数是 A. 11(1)3n n n -∞=-∑ B. 1(1)2n n n ∞=-∑ C. 1(1)n n n ∞=-∑ D. 1(1)21n n n n ∞=-+∑ 解:答案是A.二、填空题:本大题共5空,每空2分,共10分。

6.与向量{2,0,α=同方向的单位向量是 .解:{1=,0,222αα=.答案是22. 7.设函数22(,)f x y x y x y +-=+,则(,)f x y = .解:令u=x+y,v=x-y,则2222(,).222u v u v u v f u v +-+=+= ? ? 所以(,)f x y =222x y +.答案是222x y +.8.设积分区域22:9D x y +≤,则二重积分22()D f x y dxdy +??在极坐标下的二次积分为 .解:答案是23200()d f r rdr πθ??. 9.微分方程(1)612y x y y '''+-+=的特解*y = .解:简化微分方程,令0y ''=,则(1)612x y y '-+=,解得y=6611121dx dx x x e e C x ---+??-???=6661161212(1)1(1)dx dx x x e e C x C x x ---+=-+????--???=62(1)C x +-. 因为0y ''=,所以C=0.故取特解*y =2.答案是2. 10.设函数()f x 是周期为2π的周期函数,傅里叶级数为11(1)sin 2n n nx n π-∞=-+∑,,则()f x 的傅里叶系数0a = .解:0a =π.答案是π.三、计算题:本大题共l2小题,每小题5分,共60分。

自考经济数学试题及答案

自考经济数学试题及答案

自考经济数学试题及答案一、单项选择题(每题2分,共10分)1. 函数f(x)=x^2+3x+2的导数是:A. 2x+3B. x^2+3C. 2x+6D. x+1答案:A2. 以下哪个选项是线性方程的解?A. x+y=1B. x^2+y^2=1C. xy=1D. x+y^2=1答案:A3. 以下哪个选项是二阶导数?A. f'(x)B. f''(x)C. f(x)D. f'''(x)答案:B4. 积分∫(2x+1)dx的结果是:A. x^2+x+CB. 2x^2+x+CC. x^2+CD. 2x^2+C答案:B5. 以下哪个选项是复合函数?A. f(x) = x^2B. f(x) = sin(x)C. f(g(x)) = (x+1)^2D. f(x) = e^x答案:C二、填空题(每题3分,共15分)6. 函数f(x)=x^3的一阶导数是________。

答案:3x^27. 函数f(x)=e^x的二阶导数是________。

答案:e^x8. 函数f(x)=ln(x)的不定积分是________。

答案:xln(x)-x+C9. 函数f(x)=cos(x)的三阶导数是________。

答案:sin(x)10. 函数f(x)=x^2+2x+1的极值点是________。

答案:x=-1三、计算题(每题10分,共20分)11. 计算积分∫(3x^2-2x+1)dx。

答案:x^3-x^2+x+C12. 计算极限lim(x→0) (sin(x)/x)。

答案:1四、解答题(每题15分,共30分)13. 求函数f(x)=x^4-4x^3+6x^2-4x+1的极值点。

答案:极值点为x=1。

14. 证明函数f(x)=x^3在(-∞,+∞)上是增函数。

答案:由于f'(x)=3x^2≥0,所以函数f(x)=x^3在(-∞,+∞)上是增函数。

结束语:以上是自考经济数学试题及答案,希望对您的学习有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组。
3. 设向量组 α1 ,α2 ,α3 线性无关,证明向量组 α1 2α2 ,α2 2α2 ,α3 2α1 线性无关。
注:学生必须在答题纸上答题,否则没有成绩。
第2页共6页
118
经济数学(下)
四、(11 分)求非齐次线性方程组
的通解。
x1 x2 x3 x4 1

x1

x2

x3
x4a Nhomakorabeax1

x2

x3

x4
1
注:学生必须在答题纸上答题,否则没有成绩。
第3页共6页
118
经济数学(下)
五、计算应用题(第 1、3、4 小题各 7 分,第 2 小题 11 分,共 32 分)
1. 设 A 与 B 相互独立, P( A) 0.5 , P(B) 0.2 ,求 P(A B) 。
118
经济数学(下)
学习中心: 考试时间 120 分钟
学 号
西北工业大学网络教育学院 2019 年 10 月大作业
课程名称: 经济数学(下)
考试形式:大作业
姓名
考试日 期
一、单项选择题(每小题 4 分,共 16 分)
1.如果一个行列式为零,则此行列式(C )。
A 卷□ B 卷√ 年月日
A . 必有两行(或两列)元素对应相等
( =0.05, u0.025 1.96 )
注:学生必须在答题纸上答题,否则没有成绩。
第5页共6页
118
经济数学(下)
注:学生必须在答题纸上答题,否则没有成绩。
第6页共6页
0,1, 2,..... ,( X1, X 2 ,, X n ) 是来自总体的一个样本,
求参数 的矩估计和最大似然估计。
4. 某区进行数学统考,初二年级平均成绩为 75.6 分,标准差为 7.4 分,从该区某中学中抽取 50 位初二 学生,测得平均数学统考成绩为 78 分,试问该中学初二的数学成绩与全区数学成绩有无显著差异?
三、解答下列各题(每小题 7 分,共 21 分)
1. 设2阶方阵 X 满足矩阵方程AX 2X B,其中A 03
13
,
B


2 0
11, 求矩阵 X。
2. 求向量组 α1 1,0 ,1 , 0,α2 2 ,0 ,2 , 0,α3 0 ,1,0, 2, α4 1 ,1 ,1 , 2 的一个极大无关
2.n 元齐次线性方程组 AX=O 只有零解的充分必要条件是__A 的列向量组线性无关______。 3.设随机变量 X 只取 0 和1,且 P(X 0) 0.6,则 P(X 1) _______ 。0.4
4.设连续型随机变量 X 的密度函数为 f (x) ,则 f (x)dx _______ 。E(x)=∫(-∞,+∞)xf(x)dx
3. 设事件A 与事件B 相互独立,P(A) 0.5, P(B) 0.4, 则 P(AB) ( C )。
A. 无法计算
B. 0.6
C. 0.2
D. 0.9
4. 在下列命题中正确的是( D )。
A. X ~ P , E X 2 22
B. X ~ exp , E X 2 1/
C. X ~ N0,1, EX 2 1
D. X ~ B1, p, EX 2 p
注:学生必须在答题纸上答题,否则没有成绩。
第1页共6页
118
经济数学(下)
二、填空题(每小题 5 分,共 20 分)
1.向量组 (1, 0 , 0) ,(0 , 2 , 0) ,(2 , 1, 1) 的秩是 __3______。
B. 必有两行(或两列)元素对应成比例
C. 必有一行(或一列)元素全为零 D. 以上说法都不一定成立
2.设 (2 , 1 , 7) , (1 , 0 , 5) ,则 2 ( C )。
A. (0 , 1 , 3) C. (4 , 2 , 14)
B. (3 , 0 , 15) D. (1 , 4 , 4)
注:学生必须在答题纸上答题,否则没有成绩。
第4页共6页
118
2. 设随机变量 X 具有分布密度
Kex , f (x)
x0
0,
x0
(1) 试确定常数 K ; (2) 求 P X 0.2 。
经济数学(下)
3.
设总体分布率为 P{X
k}
k e , k!
0, k
相关文档
最新文档