高中数学21种解题方法
高中数学解题的典型方法与技巧
高中数学解题的典型方法与技巧高中数学解题的典型方法与技巧在解数学题目时,不是运算错误确实是时刻不够,总之,确实是最后得不到全分!这是为啥呢?三个字:不熟练。
那如何才能熟练呢?除了大量刷题之外,你需要的更多的是总结,小数老师总结了21个解题方法和技巧,需要的就用起来吧!第一章高中数学解题差不多方法一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。
何时配方,需要我们适当推测,同时合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。
有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子显现完全平方。
它要紧适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最差不多的配方依据是二项完全平方公式(a+b)2=a2+2ab +b2,将那个公式灵活运用,可得到各种差不多配方形式,如:二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。
通过引进新的变量,能够把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的运算和推证简化。
它能够化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元的方法有:局部换元、三角换元、均值换元等。
局部换元又称整体换元,是在已知或者未知中,某个代数式几次显现,而用一个字母来代替它从而简化问题,因此有时候要通过变形才能发觉。
三角换元,应用于去根号,或者变换为三角形式易求时,要紧利用已知代数式中与三角知识中有某点联系进行换元。
高中数学轻松搞定排列组合难题21种方法_3514
练习题:一个班有 6 名战士,其中正副班长各 1 人现从中选 4 人完成四种不 同的任务,每人完成一种任务,且正副班长有且只有 1 人参加,则不同 的选法有 192 种 九.小集团问题先整体后局部策略 例 9.用 1,2,3,4,5 组成没有重复数字的五位数其中恰有两个偶数夹 1,5在 两个奇数之间,这样的五位数有多少个? 解:把1,5,2,4当作一个小集团与3排队共有 A 2 2 种排法,再排小集团 2 2 2 2 内部共有 A 2 2 A 2 种排法,由分步计数原理共有 A 2 A 2 A 2 种排法.
1524
小集团排列问题中,先整体后局部,再结合其它策略进行处理。
练习题: 1.计划展出 10 幅不同的画,其中 1 幅水彩画,4幅油画,5幅国画, 排成一 行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有 5 4 陈列方式的种数为 A 2 2 A5 A4 5 5 2. 5 男生和5女生站成一排照像,男生相邻,女生也相邻的排法有 A 2 2 A5 A5 种 十.元素相同问题隔板策略 例 10.有 10 个运动员名额, 分给 7 个班, 每班至少一个,有多少种分配方案? 解:因为 10 个名额没有差别,把它们排成一排。相邻名额之间形成9个 空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对 应地分给7个班级,每一种插板方法对应一种分法共有 C96 种分法。
甲 乙 丙 丁
要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并 为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.
练习题:某人射击 8 枪, 命中 4 枪, 4 枪命中恰好有 3 枪连在一起的情形的不 同种数为 20 三.不相邻问题插空策略 例 3.一个晚会的节目有 4 个舞蹈,2 个相声,3 个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种? 解:分两步进行第一步排 2 个相声和 3 个独唱共有 A 5 5 种,第二步将 4 舞蹈插 4 入第一步排好的 6 个元素中间包含首尾两个空位共有种 A 6 不同的方法, 由 4 分步计数原理,节目的不同顺序共有 A 5 种 5 A6
高中数学52种快速做题方法
高中数学52种快速做题方法1、适用条件[直线过焦点],必有ecosA=(x-1)/(x 1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x 1)/(x-1),其他不变。
2、函数的周期性问题(记忆三个)(1)若f(x)=-f(x k),则T=2k;(2)若f(x)=m/(x k)(m不为0),则T=2k;(3)若f(x)=f(x k) f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3、关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a x)=f(b-x)恒成立,对称轴为x=(a b)/2(2)函数y=f(a x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a x) f(a-x)=2b,则f(x)图像关于(a,b)中心对称4、函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5、数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n m)=S(m) q mS(n)可以迅速求q6、数列的终极利器,特征根方程首先介绍公式:对于an 1=pan q(n 1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p (n-1) x,这是一阶特征根方程的运用。
排列组合常见21种解题方法
排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。
在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。
1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。
2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。
3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。
4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。
5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。
6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。
7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。
8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。
9. 对称性法,利用排列组合的对称性质,简化计算过程。
10. 逆向思维法,从问题的逆向思考,求解排列组合问题。
11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。
12. 构造法,通过构造合适的排列组合模型,求解问题。
13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。
14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。
15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。
16. 模拟法,通过模拟排列组合过程,求解问题。
17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。
18. 穷举法,通过穷举所有可能的情况,求解问题。
19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。
高中数学21种解题方法与技巧全汇总
01解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
02因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法03配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:04换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元05待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写06复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型07数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组08化简二次根式基本思路是:把√m化成完全平方式。
即:09观察法10代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
高中数学21种解题方法及例题
高中数学21种解题方法及例题高中数学是一门很重要的学科,也是很多学生觉得困难的学科之一。
在解题的过程中,学生通常需要掌握一些解题方法和技巧。
下面我将介绍高中数学中常用的21种解题方法,并给出相应的例题。
1.立体几何解题方法:首先根据题目要求,画出几何图形;然后根据图形的特点,运用相应的几何定理和计算公式,推导出求解所需的等式或关系式;最后代入数据进行计算。
例题:已知正方体的体积是64立方厘米,求正方体的边长。
2.二次函数解题方法:首先确定二次函数的类型,如抛物线开口方向等;然后根据题目要求,列出方程或不等式;最后解方程或不等式,求解出未知数。
例题:已知二次函数y=ax²+bx+c的图像经过点(-1, 2)和(2, 5),且在x=1处取得最小值2,求a、b、c的值。
3.反证法解题方法:假设所要证明的结论不成立,推导出与已知条件矛盾的结论,从而证明假设不成立,即所要证明的结论成立。
例题:证明根号2是无理数。
4.分析法解题方法:根据题目所给的条件,逐步分析问题,提取并利用条件之间的关系,推导出所要求的结论。
例题:在等腰梯形ABCD中,AB∥CD,AC和BD交于点O,设∠ACD=m,求∠BOD的度数。
5.数字特征解题法:根据题目要求,进行分析,找出问题中的数字特征,并利用特征进行计算或推导。
例题:设a,b,c均为正数,且满足等式a+b+c=1,求最大值3a²+6b+9c²。
6.整体与部分解题方法:把题目所给的整体看成若干个部分,通过对部分的分析和计算,得到整体的结论。
例题:某数的20%是30,求这个数。
7.函数与方程解题方法:根据题目要求,根据函数或方程的性质和变化规律,列出方程或不等式,最后求解未知数。
例题:已知函数f(x)=ax²+bx+c与y轴交于点A,与曲线y=x²交于点B和C,且B(1, 1),求方程f(x)=0的两个根的和的倒数。
8.逐次逼近法解题方法:通过逐步逼近,不断缩小求解范围,最终得到所要求解的值。
21种数学解题方法与技巧全汇总
高考很多同学总是特别头疼数学成绩,要知道数学题只要掌握了方法,就能够迅速提升。
距离高考还有99天,小编特地为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦!解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组化简二次根式基本思路是:把√m化成完全平方式。
即:观察法代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
高中数学解题的21个典型方法与技巧
中学数学解题的21个典型方法与技巧1、解决肯定值问题(化简、求值、方程、不等式、函数)的基本思路是:把肯定值的问题转化为不含肯定值的问题。
详细转化方法有:①分类探讨法:依据肯定值符号中的数或表达式的正、零、负分状况去掉肯定值。
①零点分段探讨法:适用于含一个字母的多个肯定值的状况。
①两边平方法:适用于两边非负的方程或不等式。
①几何意义法:适用于有明显几何意义的状况。
2、依据项数选择方法和依据一般步骤是顺当进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。
3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要依据有:①()2222a ab b a b ±+=± ①()2222222a b c ab bc ca a b c +++++=++ ①()()()22222212a b c ab bc ca a b b c c a ⎡⎤+++++=+++++⎣⎦ ①222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ⎛⎫-⎛⎫⎛⎫++=++=+⋅⋅++-=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4、解某些困难的特型方程要用到换元法。
换元法解题的一般步骤是:设元→换元→解元→还元。
5、待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。
其步骤是:①设①列①解①写6、困难代数等式条件的运用技巧:右边化为零,左边变形。
①因式分解型:()()0---⋅---=,两种状况为或型。
①配成平方型:()()220---+---=,两种状况为且型。
7、数学中两个最宏大的解题思路:①求值的思路−−−−−→方程思想与方法列欲求值字母的方程或方程组 ①求取值范围的思路−−−−−−→不等式思想与方法欲求范围字母的不等式或不等式组8的基本思路:把m 化成完全平方式。
高中数学21种解题方法
高中数学21种解题方法1.解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2.因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3.配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:4.换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5.待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是: ①设②列③解 ④写6.复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型: (-----)(----)=0 两种情况为或型②配成平方型: (----)2+(----)2=0 两种情况为且型7.数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组 (2)求取值范围的思路列欲求范围字母的不等式或不等式组8.化简二次根式基本思路是:把√m化成完全平方式。
即:9.观察法10.代数式求值方法有:(1)直接代入法 (2)化简代入法 (3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11.解含参方程方程中除过未知数以外,含有的其他字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论 (3)分类写出结论12.恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
高中数学专题复习:排列组合难题21种方法
高考数学专题复习系列排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高中数学21种解题方法及例题
高中数学21种解题方法及例题在高中数学学习中,解题方法的灵活运用是学生们提高解题能力的关键。
掌握不同的解题思路和方法,能够使学生更加深入地理解数学知识,提高问题解决的效率。
本文将介绍21种高中数学解题方法,并通过例题进行详细说明,以帮助学生更好地应用这些方法。
【一、代数运算类解题方法】1. 一元一次方程求解法例题:已知方程2x + 3 = 7,求解x的值。
2. 一次函数的图像法例题:给定函数y = 3x + 2,绘制出其图像,并解析求解函数的相关特征。
3. 因式分解法例题:将方程x² - 4x + 4 = 0进行因式分解,并求解方程。
【二、几何推理类解题方法】4. 同位角性质运用法例题:已知两条平行线被一条截线所交,求解各个角的度数。
5. 对称性运用法例题:已知某几何图形具有对称性,利用对称性进行证明或求解问题。
6. 三角函数运用法例题:利用正弦定理求解三角形的未知边长或角度。
【三、数列与数数法】7. 等差数列求和法例题:已知等差数列的首项为2,公差为3,求解前10项的和。
8. 递推数列求通项法例题:已知数列的前两项为1和2,公差为3,求解数列的通项公式。
9. 迭代运算法例题:已知数列递推式为an+1 = 2an - 1, a1 = 1,求解前10项的数值。
【四、概率统计类解题方法】10. 样本空间与事件法例题:已知一枚骰子,求解投掷两次,求得的点数和为9的概率。
11. 求解总数法例题:已知有5个红球和3个蓝球,从中随机抽取2个球,求解两球不同色的概率。
12. 排列组合法例题:有8个人参加篮球比赛,其中3人为前锋,4人为后卫,求解一种排列和组合的方式。
【五、解析几何类解题方法】13. 直线与圆的位置关系法例题:已知直线方程为y = 2x + 1,圆的标准方程为(x-2)² + (y-3)² = 4,求解两者的位置关系。
14. 曲线与切线法例题:已知曲线方程为y = x²,求曲线上某一点的切线斜率。
高中数学解题技巧方法总结
高中数学解题技巧方法总结高中数学解题技巧方法总结总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它能够给人努力工作的动力,快快来写一份总结吧。
总结怎么写才不会千篇一律呢?下面是小编整理的高中数学解题技巧方法总结,仅供参考,大家一起来看看吧。
高中数学常考题型答题技巧与方法1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式;选择用公式;十字相乘法;分组分解法;拆项添项法;3、配方法。
利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:4、换元法。
解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法。
待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6、复杂代数等式。
复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式。
基本思路是:把√m化成完全平方式。
即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
高中数学解题思维一点通:解排列组合应用题的21种策略
解排列组合应用题的21种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有( )A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例 2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是( )A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种 答案:B .7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个, 1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种? 解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种. 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案? 解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
高中数学-排列组合21种模型
高中数学-排列组合21种模型1.排列的定义:从n 个不同元素中,任取m 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.)1()2)(1(+---=m n n n n A m n )!(!m n n -=2.组合的定义:从n 个不同元素中,任取m 个元素,并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.!)1()2)(1(m m n n n n A A C m m m nm n +---== )!(!!m n m n -=1、特殊元素和特殊位置优先策略:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。
(转化思想,转特殊选排为任意,便能用排列数,减少分步次数)例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =2.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.(同样是转化思想)例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高中数学轻松搞定排列组合难题二十一种方法(学生版)
⾼中数学轻松搞定排列组合难题⼆⼗⼀种⽅法(学⽣版)⾼考数学轻松搞定排列组合难题⼆⼗⼀种⽅法 (学⽣版) 排列组合问题联系实际⽣动有趣,但题型多样,思路灵活,因此解决排列组合问题,⾸先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采⽤合理恰当的⽅法来处理。
教学⽬标1.进⼀步理解和应⽤分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常⽤策略;能运⽤解题策略解决简单的综合应⽤题。
提⾼学⽣解决问题分析问题的能⼒3.学会应⽤数学思想和⽅法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成⼀件事,有n 类办法,在第1类办法中有1m 种不同的⽅法,在第2类办法中有2m 种不同的⽅法,…,在第n 类办法中有n m 种不同的⽅法,那么完成这件事共有:12n N m m m =+++种不同的⽅法.2.分步计数原理(乘法原理)完成⼀件事,需要分成n 个步骤,做第1步有1m 种不同的⽅法,做第2步有2m 种不同的⽅法,…,做第n 步有n m 种不同的⽅法,那么完成这件事共有:12n N m m m =种不同的⽅法.3.分类计数原理分步计数原理区别分类计数原理⽅法相互独⽴,任何⼀种⽅法都可以独⽴地完成这件事。
分步计数原理各步相互依存,每步中的⽅法完成事件的⼀个阶段,不能完成整个事件.解决排列组合综合性问题的⼀般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进⾏,确定分多少步及多少类。
3.确定每⼀步或每⼀类是排列问题(有序)还是组合(⽆序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握⼀些常⽤的解题策略⼀.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习题:7种不同的花种在排成⼀列的花盆⾥,若两种葵花不种在中间,也不种在两端的花盆⾥,问有多少不同的种法?⼆.相邻元素捆绑策略例2. 7⼈站成⼀排 ,其中甲⼄相邻且丙丁相邻, 共有多少种不同的排法.练习题:某⼈射击8枪,命中4枪,4枪命中恰好有3枪连在⼀起的情形的不同种数为三.不相邻问题插空策略例3.⼀个晚会的节⽬有4个舞蹈,2个相声,3个独唱,舞蹈节⽬不能连续出场,则节⽬的出场顺序有多少种?练习题:某班新年联欢会原定的5个节⽬已排成节⽬单,开演前⼜增加了两个新节⽬.如果将这两个新节⽬插⼊原节⽬单中,且两个新节⽬不相邻,那么不同插法的种数为四.定序问题倍缩空位插⼊策略例4.7⼈排队,其中甲⼄丙3⼈顺序⼀定共有多少不同的排法练习题:10⼈⾝⾼各不相等,排成前后排,每排5⼈,要求从左⾄右⾝⾼逐渐增加,共有多少排法?五.重排问题求幂策略例5.把6名实习⽣分配到7个车间实习,共有多少种不同的分法练习题:1.某班新年联欢会原定的5个节⽬已排成节⽬单,开演前⼜增加了两个新节⽬.如果将这两个节⽬插⼊原节⽬单中,那么不同插法的种数为2. 某8层⼤楼⼀楼电梯上来8名乘客⼈,他们到各⾃的⼀层下电梯,下电梯的⽅法六.环排问题线排策略例6. 8⼈围桌⽽坐,共有多少种坐法?练习题:6颗颜⾊不同的钻⽯,可穿成⼏种钻⽯圈 ?七.多排问题直排策略例7.8⼈排成前后两排,每排4⼈,其中甲⼄在前排,丙在后排,共有多少排法练习题:有两排座位,前排11个座位,后排12个座位,现安排2⼈就座规定前排中间的3个座位不能坐,并且这2⼈不左右相邻,那么不同排法的种数是⼋.排列组合混合问题先选后排策略例8.有5个不同的⼩球,装⼊4个不同的盒内,每盒⾄少装⼀个球,共有多少不同的装法. 练习题:⼀个班有6名战⼠,其中正副班长各1⼈现从中选4⼈完成四种不同的任务,每⼈完成⼀种任务,且正副班长有且只有1⼈参加,则不同的选法有种.九.⼩集团问题先整体后局部策略例9.⽤1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?练习题:1.计划展出10幅不同的画,其中1幅⽔彩画,4幅油画,5幅国画, 排成⼀⾏陈列,要求同⼀品种的必须连在⼀起,并且⽔彩画不在两端,那么共有陈列⽅式的种数为2. 5男⽣和5⼥⽣站成⼀排照像,男⽣相邻,⼥⽣也相邻的排法有种⼗.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班⾄少⼀个,有多少种分配⽅案?练习题:1.10个相同的球装5个盒中,每盒⾄少⼀有多少装法?2 .100x y z w+++=求这个⽅程组的⾃然数解的组数⼗⼀.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这⼗个数字中取出三个数,使其和为不⼩于10的偶数,不同的取法有多少种?练习题:我们班⾥有43位同学,从中任抽5⼈,正、副班长、团⽀部书记⾄少有⼀⼈在内的抽法有多少种?⼗⼆.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?练习题:1 将13个球队分成3组,⼀组5个队,其它两组4个队, 有多少分法?2.10名学⽣分成3组,其中⼀组4⼈, 另两组3⼈但正副班长不能分在同⼀组,有多少种不同的分组⽅法 ?3.某校⾼⼆年级共有六个班级,现从外地转⼊4名学⽣,要安排到该年级的两个班级且每班安排2名,则不同的安排⽅案种数为______⼗三. 合理分类与分步策略例13.在⼀次演唱会上共10名演员,其中8⼈能能唱歌,5⼈会跳舞,现要演出⼀个2⼈唱歌2⼈伴舞的节⽬,有多少选派⽅法练习题:1.从4名男⽣和3名⼥⽣中选出4⼈参加某个座谈会,若这4⼈中必须既有男⽣⼜有⼥⽣,则不同的选法共有2. 3成⼈2⼩孩乘船游玩,1号船最多乘3⼈, 2号船最多乘2⼈,3号船只能乘1⼈,他们任选2只船或3只船,但⼩孩不能单独乘⼀只船,这3⼈共有多少乘船⽅法.⼗四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满⾜条件的关灯⽅法有多少种?练习题:某排共有10个座位,若4⼈就坐,每⼈左右两边都有空位,那么不同的坐法有多少种?⼗五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒⼦,现将5个球投⼊这五个盒⼦内,要求每个盒⼦放⼀个球,并且恰好有两个球的编号与盒⼦的编号相同,有多少投法练习题:1.同⼀寝室4⼈,每⼈写⼀张贺年卡集中起来,然后每⼈各拿⼀张别⼈的贺年卡,则四张贺年卡不同的分配⽅式有多少种?543212.给图中区域涂⾊,要求相邻区域不同⾊,现有4种可选颜⾊,则不同的着⾊⽅法有种⼗六. 分解与合成策略例16. 30030能被多少个不同的偶数整除练习:正⽅体的8个顶点可连成多少对异⾯直线⼗七.化归策略例17. 25⼈排成5×5⽅阵,现从中选3⼈,要求3⼈不在同⼀⾏也不在同⼀列,不同的选法有多少种?练习题:某城市的街区由12个全等的矩形区组成其中实线表⽰马路,从A ⾛到B 的最短路径有多少种?BA⼗⼋.数字排序问题查字典策略例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的⽐324105⼤的数?练习:⽤0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从⼩到⼤排列起来,第71个数是⼗九.树图策略例19.3⼈相互传球,由甲开始发球,并作为第⼀次传球,经过5次传求后,球仍回到甲的⼿中,则不同的传球⽅式有______练习: 分别编有1,2,3,4,5号码的⼈与椅,其中i 号⼈不坐i 号椅(54321,,,,i)的不同坐法有多少种?⼆⼗.复杂分类问题表格策略例20.有红、黄、兰⾊的球各5只,分别标有A 、B 、C 、D 、E五个字母,现从中取5只,要求各字母均有且三⾊齐备,则共有多少种不同的取法⼆⼗⼀:住店法策略解决“允许重复排列问题”要注意区分两类元素:⼀类元素可以重复,另⼀类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利⽤乘法原理直接求解.例21.七名学⽣争夺五项冠军,每项冠军只能由⼀⼈获得,获得冠军的可能的种数有 .⼩结:本节课,我们对有关排列组合的⼏种常见的解题策略加以复习巩固。
高中数学52种快速破题方法
高中数学52种快速破题方法在高中数学学习中,有时我们会遇到一些难题需要快速破解。
这篇文章将介绍52种快速破题方法,帮助你提高数学解题的效率和准确性。
1. 简化分式:利用分子分母的公因式进行约分,简化计算过程。
2. 因式分解:将多项式进行因式分解,以简化复杂的运算。
3. 公式代入:当遇到已知条件和需要求解的变量可以通过一个已知公式联系时,直接代入计算。
4. 利用图形:如果问题涉及到几何形状,将其绘制成图形有助于解题。
5. 引入辅助线:在几何题中,通过引入辅助线能够推导出更多关系,简化解题过程。
6. 使用二次函数图像:对于最值问题,可以利用二次函数图像的开口方向来确定最值的位置。
7. 数列求和:对于数列的求和问题,可以利用数列求和公式或巧妙的变形来简化计算。
8. 分类讨论法:对于某些问题,可以将不同情况进行分类讨论来解决。
9. 倒推法:从已知结果倒推出有关条件,以确定解题的方法和步骤。
10. 利用对称性:在一些几何问题中,利用对称性可以简化证明或者找出另一方面的答案。
11. 分情况讨论:对于某些复杂问题,将其分解成几个简单情况分别讨论,最后合并结果。
12. 利用相似三角形:在几何问题中,利用相似三角形的性质可以快速求解各种长度和角度。
13. 数字根法:对于整数运算,可以利用数字根法来判断整除性质和进行简单计算。
14. 观察法:对于一些规律性问题,可以通过观察规律和找出特殊性质来解决。
15. 合并同类项:在多项式计算中,将具有相同变量幂次的项进行合并,简化运算过程。
16. 借位法:在计算过程中,若存在进位或借位,可以通过借位法进行加减运算。
17. 利用轴对称性:通过利用轴对称性,可以简化一些图形问题的证明或计算。
18. 利用余角关系:对于三角函数中的角度关系,可以利用余角关系进行简化运算。
19. 勾股定理:在解决直角三角形问题中,可以利用勾股定理确定未知边长。
20. 合理估算:对于某些题目,可以通过合理估算来获得近似的结果,以缩小解题范围。
高中数学50个解题小技巧
高中数学50个解题小技巧.适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
.函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
.关于对称问题(无数人搞不懂的问题)如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称.函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空.数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求q.数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p?(n-1)+x,这是一阶特征根方程的运用。
轻松搞定高中数学排列组合-21种常用方法
解决排列组合的常见方法一、预备知识:1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略二、常用方法1.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A 由分步计数原理得113434288C C A =C 14A 34C 13练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?2.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.恒相等成立的有用条件 (1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。 (2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。
5.待定系数法 待定系数法是在已知对象形式的条件下求对象的一种Байду номын сангаас法。适用于求点的坐标、函数解析式、曲线 方程等重要问题的解决。其解题步骤是: ①设 ②列 ③解 ④写
6.复杂代数等式 复杂代数等式型条件的使用技巧:左边化零,右边变形。 ①因式分解型: (-----)(----)=0 两种情况为或型 ②配成平方型: (----)2+(----)2=0 两种情况为且型
2.因式分解 根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:
提取公因式
选择用公式
十字相乘法
分组分解法
拆项添项法
3.配方法 利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。 配方法的主要根据有:
4.换元法 解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是: 设元→换元→解元→还元
13.恒不等成立的条件 由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:
14.平移规律 图像的平移规律是研究复杂函数的重要方法。平移规律是:
15.图像法 讨论函数性质的重要方法是图像法——看图像、得性质。 定义域 图像在X轴上对应的部分 值 域 图像在Y轴上对应的部分 单调性 从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上 对应的区间是减区间。 最 值 图像最高点处有最大值,图像最低点处有最小值 奇偶性 关于Y轴对称是偶函数,关于原点对称是奇函数
求根标根
右上起穿
奇穿偶回 注意: ①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。 ②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化 为“商零式”,用穿线法解。
7.数学中两个最伟大的解题思路 (1)求值的思路列欲求值字母的方程或方程组 (2)求取值范围的思路列欲求范围字母的不等式或不等式组
8.化简二次根式 基本思路是:把√m化成完全平方式。即:
9.观察法
10.代数式求值 方法有: (1)直接代入法 (2)化简代入法 (3)适当变形法(和积代入法) 注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和 积代入法”求值。
16.函数、方程、不等式间的重要关系
方程的根
函数图像与x轴交点横坐标
不等式解集端点 17.一元二次不等式的解法 一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法 是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:
二次化为正
判别且求根
画出示意图
解集横轴中 18.一元二次方程根的讨论 一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般 问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像 法”解决一元二次方程根的问题的一般思路是:
题意
二次函数图像
不等式组 不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。
19.基本函数在区间上的值域 我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值 有两种情况: (1)定义域没有特别限制时---记忆法或结论法; (2)定义域有特别限制时---图像截断法,一般思路是:
画出图像
截出一断
得出结论 20.最值型应用题的解法 应用题中,涉及“一个变量取什么值时另一个变量取得最大值或最小值”的问题是最值型应用题。 解决最值型应用题的基本思路是函数思想法,其解题步骤是:
设变量
列函数
求最值
写结论 21.穿线法 穿线法是解高次不等式和分式不等式的最好方法。其一般思路是:
首项化正
1.解决绝对值问题 主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对 值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。