高中数学各种题型的解题技巧
必修一数学必考题型及答题方法
必修一数学必考题型及答题方法全文共四篇示例,供读者参考第一篇示例:数学作为一门理科必修课程,对于学生来说是一个必考的科目。
必修一数学主要包括函数、导数、微分、积分等内容,其中考试题型也比较多样化。
在备考必修一数学考试时,掌握各种题型及答题方法是非常重要的。
本文将针对必修一数学的必考题型及相应的答题方法进行分析与总结。
1. 函数与极限函数与极限是必修一数学中一个非常重要的题型,通常考察的内容包括函数的性质、极限的计算以及极限存在性的判断。
在应对这类题型时,需要注意以下几点答题方法:- 对于函数的性质,需要掌握函数的定义域、值域、奇偶性等基本概念,并能够应用这些概念解决实际问题。
- 在计算极限时,需要掌握常见极限的计算方法,如利用洛必达法则、泰勒展开等方法,同时要注意极限存在性的判断。
- 针对极限存在性的判断,需要掌握夹逼定理、单调有界准则等方法,以判断函数在某点的极限是否存在。
2. 导数与微分导数与微分是必修一数学中另一个重点考察的内容,通常考察的内容包括导数的计算、导数的应用、微分的计算等。
在应对这类题型时,需要注意以下几点答题方法:- 计算导数时,要掌握基本函数的导数计算方法,如常数函数、幂函数、指数函数、对数函数、三角函数等的导数计算公式。
- 在导数的应用中,需要注意应用题的建模、解题过程,并掌握利用导数分析函数的单调性、凹凸性以及求取最值等问题。
- 对于微分的计算,要掌握微分的定义及微分运算规则,并能够熟练应用微分进行问题的求解。
3. 积分与定积分积分与定积分是必修一数学中另一个重要的考察内容,通常考察的内容包括积分的计算、定积分的应用、面积计算等。
在应对这类题型时,需要注意以下几点答题方法:- 对于积分的计算,要掌握不定积分的计算方法,如基本积分法、换元积分法、分部积分法等,同时要注意积分的性质和常见积分的计算结果。
- 在应用题中,要能够熟练应用定积分计算曲线下面积、旋转体的体积、物理问题中的积分应用等内容。
高中数学19种答题方法+6种解题思想
高中数学19种答题方法 6种解题思想1.函数函数题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用三合一定理。
2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接心心距创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀左加右减,上加下减只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高考数学6大题型答题技巧
⾼考数学6⼤题型答题技巧⾼考即将来临,你准备好了么?你是否已经攻克下数学这个困难呢?下⾯就是⼩编给⼤家带来的,希望⼤家喜欢!⾼考数学6⼤题型答题技巧1·三⾓函数题注意归⼀公式、诱导公式的正确性(转化成同名同⾓三⾓函数时,套⽤归⼀公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗⼼,导致错误!⼀着不慎,满盘皆输!)。
2·数列题1.证明⼀个数列是等差(等⽐)数列时,最后下结论时要写上以谁为⾸项,谁为公差(公⽐)的等差(等⽐)数列;2.最后⼀问证明不等式成⽴时,如果⼀端是常数,另⼀端是含有n的式⼦时,⼀般考虑⽤放缩法;如果两端都是含n的式⼦,⼀般考虑数学归纳法(⽤数学归纳法时,当n=k+1时,⼀定利⽤上n=k时的假设,否则不正确。
利⽤上假设后,如何把当前的式⼦转化到⽬标式⼦,⼀般进⾏适当的放缩,这⼀点是有难度的。
简洁的⽅法是,⽤当前的式⼦减去⽬标式⼦,看符号,得到⽬标式⼦,下结论时⼀定写上综上:由①②得证;3.证明不等式时,有时构造函数,利⽤函数单调性很简单(所以要有构造函数的意识)。
3·⽴体⼏何题1.证明线⾯位置关系,⼀般不需要去建系,更简单;2.求异⾯直线所成的⾓、线⾯⾓、⼆⾯⾓、存在性问题、⼏何体的⾼、表⾯积、体积等问题时,最好要建系;3.注意向量所成的⾓的余弦值(范围)与所求⾓的余弦值(范围)的关系(符号问题、钝⾓、锐⾓问题)。
4·概率问题1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套⽤哪个公式;3.记准均值、⽅差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利⽤列举、树图等基本⽅法;6.注意放回抽样,不放回抽样;7.注意“零散的”的知识点(茎叶图,频率分布直⽅图、分层抽样等)在⼤题中的渗透;8.注意条件概率公式;9.注意平均分组、不完全平均分组问题。
5·圆锥曲线问题1.注意求轨迹⽅程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,⽅法上有直接法、定义法、交轨法、参数法、待定系数法;2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往⽤点差法);注意判别式;注意韦达定理;注意弦长公式;注意⾃变量的取值范围等等;3.战术上整体思路要保7分,争9分,想12分。
高一数学题型分析及解题技巧
高一数学题型分析及解题技巧在高一数学学习过程中,学生们会接触到各种不同类型的数学题目。
针对这些题目,我们需要了解其特点和解题技巧,以便更好地应对。
本文将对高一数学题型进行分析,并分享一些解题技巧,帮助读者提高数学解题能力。
一、代数方程题代数方程题是高中数学中经常出现的一种题型。
通常要求利用代数运算法则,求解方程中的未知数。
解决这类题目的技巧有以下几点:1. 了解方程的基本概念:掌握方程、未知数、系数等概念的含义,明确方程的形式。
2. 熟悉各类方程的解法:例如一元一次方程、二次方程、分式方程等。
熟练掌握不同方程类型的解法,如整理和配方法、因式分解、二次根式解法等。
3. 规范解题过程:在解题过程中,应注意每一步的变换和计算是否规范准确,避免出现漏项或算错的情况。
4. 注意方程的特殊性质:在解题过程中,有时会出现方程无解、有唯一解或有无穷多解的情况。
我们需要根据方程的特殊性质来进行分类讨论。
二、几何问题几何问题也是高一数学中的重要内容之一。
解决几何问题需要结合几何定理和几何图形的性质,下面是一些解题技巧:1. 熟悉几何基本定理:例如勾股定理、相似三角形的性质、平行线的性质等。
掌握这些定理的应用场景和具体求解方法。
2. 观察几何图形特点:细致观察题目给出的几何图形,分析各线段、角度的关系。
通过观察推理,找到解题的关键。
3. 利用既定条件:题目中通常会给出一些已知条件,如等边、等角、垂直等。
利用这些条件,可以在推理的过程中简化计算或直接得出结论。
4. 构造辅助线:在解决难题时,可以适当构造一些辅助线来辅助解题。
巧妙的构造辅助线可以使问题更加简化。
三、概率与统计题在高一数学中,概率与统计题目也经常出现。
对于这类题目,我们需要了解概率和统计学的基本知识,并掌握解题方法。
1. 理解概率基本概念:熟悉事件、样本空间、概率等基本概念的含义,了解计算概率的方法。
2. 掌握统计学基本原理:了解数据的收集、整理和描述方法。
高考数学各题型答题方法技巧总结
高考数学各题型答题方法技巧总结数学选择题目还是比较多的,占的分值也挺大的,因此,对于不同的数学选择题,就需要掌握不同的解题技巧,数学选择题的解题方法也是多种多样的,下面是给大家带来的高考数学各题型答题方法技巧总结(大全),以供大家参考!数学各题型解题方法一、立体几何题1、证明线面位置关系,一般不需要去建系,更简单;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
二、导数、极值、最值、不等式恒成立(或逆用求参)问题1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);2、注意最后一问有应用前面结论的意识;3、注意分论讨论的思想;4、不等式问题有构造函数的意识;5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);6、整体思路上保6分,争10分,想14分。
三、概率问题1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2、搞清是什么概率模型,套用哪个公式;3、记准均值、方差、标准差公式;4、求概率时,正难则反(根据p1+p2+。
+pn=1);5、注意计数时利用列举、树图等基本方法;6、注意放回抽样,不放回抽样;7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8、注意条件概率公式;9、注意平均分组、不完全平均分组问题。
四、圆锥曲线问题1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3、战术上整体思路要保7分,争9分,想12分。
高中数学常考题型答题技巧与方法及顺口溜
高中数学常考题型答题技巧与方法及顺口溜高中数学常考题型答题技巧与方法及顺口溜高中数学作为高考的重要科目之一,一定程度上决定了学生的高考成绩,因此,掌握高中数学常考题型的答题技巧和方法非常重要。
在以下内容中,我将介绍数学中常考题型的解题技巧及顺口溜,希望对广大学生的学习有所帮助。
一、函数函数是高中数学中常考的重要内容,主要包括函数的概念、性质、图像等。
在考试中,遇到函数题,首先要明确函数的定义和公式,然后依次进行以下步骤:确定函数定义域、解析式、图像,求函数值、单调性、最值、定积分等。
注意,考试中单双调性的问题比较常见,因此要掌握好求导和求导数零点的方法。
顺口溜:函数图像,求导数,单调性,再求最。
二、三角函数三角函数也是高中数学中的一个重要考点,主要包括正弦函数、余弦函数、正切函数等。
在考试中,有很多的三角函数公式和定理需要掌握,例如三角函数的周期性质、和角公式、差角公式等。
在解三角函数的一些题型时,需要运用上述公式和定理,加强分析题意,灵活运用,深化答题思路。
顺口溜:正、余、正切,公式齐全强记在。
三、导数和微积分导数和微积分也是高中数学重要的知识点,针对这些题型,一定要先掌握导数的定义和基本公式,然后明确微积分的概念和计算方法。
在微积分的考试中,需要运用求导的方法求极值,或者运用积分的方法求概率、曲线长度、曲面积等,这些都需要我们熟练掌握基本的数学运算方法和技巧。
顺口溜:求导找极值,积分求曲线与面。
四、排列组合排列组合作为高考中重要的数学部分之一,也是常被考查的题型之一。
排列组合的题型涉及到多个知识点,如阶乘、组合、区分与不区分等,因此,在解这些题型时,一定要综合运用多种数学知识,深化答题思路,为答题作出准确的判断。
顺口溜:排列乘阶乘,组合除阶乘。
五、数列与数学归纳法数学归纳法是高中数学考试中的一个重要考点,同时也是数列题型的重要基础。
在掌握了数学归纳法的基本概念和方法后,需要理解数列的基本概念和性质,并运用数学归纳法来证明某些特殊数列的结论。
高中数学常考题型答题技巧与方法超全整合版
高中数学常考题型答题技巧与方法超全整合版高中数学常考题型答题技巧与方法1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:4、换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。
即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
高中数学解题方法与技巧 必背公式总结
高中数学解题方法与技巧必背公式总结高中数学解题方法与技巧1、不等式、方程或函数的题型,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.在学习带参数的初等函数时,要抓住无论参数如何变化,有些性质不变的特点。
如函数的不动点,二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4.在常数建立问题中,利用二次函数的图像性质,灵活运用函数闭区间上的最大值和分类讨论的思想(分类讨论中要注意不要重复或遗漏),可以转化为极大值问题或二次函数的常数建立问题。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
7.求参数的值域,要建立关于参数的不等式或方程,利用函数的值域或定义或求解不等式。
在转换公式的过程中,应优先考虑分离参数的方法。
8、在解三角形的题目中,已知三个条件一定能求出其他未知的条件,简称“知三求一“。
9、求双曲线或者椭圆的离心率时,建立关于a、b、c之间的关系等式即可。
10、解三角形时,首先确认所求边角所在的三角形及已知边角所在的三角形,从而选择合适的三角形及定理。
11、在数列的五个量中:中,只要知道三个量就可以求出另外两个量,简称“知三求二”。
12.圆锥曲线的题目应优先考虑它们的定义。
如果直线与圆锥曲线相交的问题与弦的中点有关,则选择设定而不是求点差的方法,维耶塔定理公式的方法与弦的中点无关。
(使用维耶塔定理时,首先要考虑二次函数方程是否有根,即二次函数的判别式。
).13.解曲线方程的问题,如果知道曲线的形状,可以选择待定系数法。
如果不知道曲线的形状,采用的步骤是建立系统,设置点,列表化简。
14、在求离心率时关键是从题目条件中找到关于a、b、c的两个方程或由题目得到的图形中找到a、b、c的关系式,从而求离心率或离心率的取值范围。
高中数学考试中的常见题型及解题思路
高中数学考试中的常见题型及解题思路在高中数学考试中,常见的题型涵盖了各种数学概念和解题方法。
每一种题型都有其独特的解题思路和策略,有助于学生在考试中取得好成绩。
首先,我们来看看代数题型。
代数题目经常要求学生利用方程式和不等式来解决问题。
这些题目好像是在挑战学生的逻辑思维能力和数学推理能力。
例如,当一个问题给出了几个未知数和几个等式,学生需要通过逐步的运算和代换,找到所有未知数的值。
这些题目常常要求学生善于运用变量代数来表示问题中的各种关系,从而逐步推导出答案。
其次,几何题型也是考试中的常见题目之一。
几何题目可能涉及到图形的性质、角度的计算、面积和体积的计算等等。
有时候,这些题目会给出一个图形,要求学生计算其面积或者某个角度的度数。
学生需要善于利用几何图形的性质和几何公式,进行逻辑推理和计算,以便得出正确的答案。
另外,数列与级数也是高中数学考试中常见的题型之一。
数列与级数的题目通常要求学生根据给定的数列或者级数的规律,求出某一项的值或者总和。
这类题目考查学生对数列、级数性质的理解和应用能力,需要学生掌握数列的通项公式、级数的求和公式等基本概念,从而解决问题。
最后,概率与统计也是数学考试中的一大板块。
这些题目通常涉及到随机事件的概率计算、样本调查的数据分析等。
学生需要根据题目的要求,运用概率计算公式、统计方法,分析和解释给定数据或者情境下的概率与统计问题,得出合理的结论。
总之,高中数学考试中的常见题型涵盖了代数、几何、数列与级数、概率与统计等多个领域。
每一种题型都要求学生掌握相应的数学知识和解题技巧,善于运用数学方法解决实际问题。
通过反复练习和理解题目的解题思路,学生可以在考试中取得良好的成绩,展现出优秀的数学能力和解决问题的能力。
高中数学题型解题技巧与答题要领总结
高中数学题型解题技巧与答题要领总结一、选择题解题技巧与答题要领在高中数学选择题中,正确的解题技巧和答题要领能够帮助我们更高效地解答问题。
1. 仔细阅读题目和选项在解答选择题时,我们首先要认真阅读题目和选项,理解题目的含义。
切记不要草率地做出选择,以避免因为粗心而导致错误。
2. 排除法当我们不确定选项的正确与否时,可以运用排除法。
将每个选项与题目进行比较,分析其逻辑关系,将明显错误的选项先排除,然后再从剩余的选项中进行选择。
3. 适当估算对于某些选择题,我们可以采用适当的估算方法。
通过对题目进行粗略的计算或估算,找到一个接近答案的选项,从而快速确定正确答案。
二、填空题解题技巧与答题要领填空题在高中数学中占据很大的比重,正确的解题技巧和答题要领能够帮助我们更准确地填写答案。
1. 看清题目要求在解答填空题时,我们要仔细阅读题目要求,确定需要填入的内容是什么类型的数字、代数式、方程等。
2. 提取关键信息从题目中提取关键信息,理清思路,确定解题的方法和步骤。
有时我们可以通过画图、列式等方式来帮助我们更好地理解和解答问题。
3. 注意符号填空题中常常涉及到符号的运用,我们要特别注意符号的使用。
比如加减号、乘除号、括号等,在填写答案时要正确使用,避免因为符号错误而导致答案错误。
三、解答题解题技巧与答题要领解答题在高中数学中要求我们有较强的分析和解决问题的能力,正确的解题技巧和答题要领能够帮助我们更有条理地解答问题。
1. 给出合理的假设在解答题目时,有时需要给出合理的假设,以便于问题的解答。
同时,在解答的过程中要注意陈述清晰,逻辑严密,以便阅卷老师理解和评分。
2. 清晰的步骤和推理解答题中的步骤和推理要清晰明了,一步一步地进行推导和计算。
在解答过程中,可以使用文字、符号、图表等方式来帮助展示思路和步骤。
3. 审题准确在解答题目之前,我们要认真审题,理解问题的要求和条件。
有时候,题目中可能给出了一些提示或者已知条件,我们可以根据这些信息来确定解题的思路和方法。
高中数学各类题型解题技巧
一、选择填空题选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
二、解答题专题一:三角变换与三角函数的性质问题1.解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2.构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二:解三角形问题1.解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2.构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
《教材帮》帮你全面总结知识点,再也不用担心公式知识点记不住了!专题三:数列的通项、求和问题1.解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2.构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
超全整合高中数学的各类题型的解题技巧归纳
超全整合高中数学的各类题型的解题技巧归纳有时仅仅靠个人的苦学死学是远远不够的,还要掌握一定的解题和应试技巧,只要合理运用,一定会成功迎战未来的高考。
下面是为大家整理的有关高中数学的各类题型的解题技巧,希望对你们有帮助!高中数学的计算题的解题技巧先易后难就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
先熟后生高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。
这样,在拿下数学熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
先同后异先做高考数学同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。
高考数学计算题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,高考数学解题过程要规范高考数学计算题要保证既对且全,全而规范。
应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。
解决高考数学计算题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。
当然,高考数学计算题解题过程和结果都不能离开实际背景。
高中数学的选择题的做题方法代入法高考数学的选择题中大部分是数值类型的,为了节省时间,可以逆向去推算,把答案去带入到题中去,逐一验证总会找到答案的,这就是代入法,是快速且有效的一种高考数学选择题解题技巧。
高中数学题型解题技巧与答题要领实例分析
高中数学题型解题技巧与答题要领实例分析数学是一门重要的学科,对于高中生来说,掌握数学解题技巧和答题要领是至关重要的。
本文将通过实例分析的方式,向读者介绍高中数学常见题型的解题技巧和答题要领,帮助读者提高数学解题水平。
一、代数方程题在高中数学中,代数方程题是常见且重要的题型之一。
解代数方程题的关键是找到合适的解题方法和步骤。
以下是一道实例题:例题:求解方程$\frac{1}{2^x}+\frac{1}{4^x}=\frac{10}{9}$解题思路:首先要观察方程中的指数是否存在相同的底数,发现2和4都可以表示为2的幂次方,因此可以将4表示为2的平方。
将方程中的4^x替换为(2^2)^x=2^(2x),利用指数运算法则将方程化简为:$\frac{1}{2^x}+\frac{1}{2^{2x}}=\frac{10}{9}$进一步整理得到:$\frac{2^{2x}+2^x}{2^{2x}}=\frac{10}{9}$化简等式,得到:$2^{2x}+2^x=\frac{20}{9}$将等式转化为关于2^x的二次方程,并解得x=1。
通过这个实例,我们可以总结出解代数方程题的要点:1.观察方程中的指数是否存在相同的底数,利用指数运算法则化简方程;2.将方程转化为关于未知数的二次方程或多项式方程;3.利用解方程的方法求解。
二、几何题几何题是高中数学中的重要考点,需要掌握几何图形的性质和几何定理,结合解题技巧进行分析解答。
以下是一道实例题:例题:在直角三角形ABC中,BC为直角边,BD为AC的高,D 是BC上的一点,且BD=DC,求证:AB=AD。
解题思路:根据题意,我们可以发现BD=DC,即以D为圆心,BD 为半径作圆,此圆与AC交于点E。
利用圆的性质,我们可以得出以下结论:1. BD=DC,即BDC是一个等腰三角形;2. 由于直角三角形ABC中的角ABC为90度,因此角BCD也为90度;3. BD垂直于AB,即角ABD为90度。
高中数学常考题型答题技巧与方法及顺口溜
高中数学常考题型答题技巧与方法及顺口溜高中的数学学习主要目的是训练学生的思维能力!对于很多数学成绩差的学生来说,学习数学就是一种折磨。
其实,数学在高中的科目中并不是最难的,只要找到正确的学习方法,学习起来就会比较轻松。
今天,小编给大家分享一位数学名师总结的基础知识顺口溜分享给大家,包含了整个高中数学的知识点,运用口诀的方法帮助学生进行记忆。
高中数学重点知识全在这个顺口溜里,轻松掌握!数学思想方法总结中学数学一线牵,代数几何两珠连;三个基本记心间,四种能力非等闲。
常规五法天天练,策略六项时时变,精研数学七思想,诱思导学乐无边。
一线:函数一条主线(贯穿教材始终)二珠:代数、几何珠联璧合(注重知识交汇)三基:方法(熟)知识(牢) 技能(巧)四能力:概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)五法:换元法、配方法、待定系数法、分析法、归纳法。
六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动。
七思想:函数方程最重要,分类整合常用到,数形结合千般好,化归转化离不了;有限自将无限描,或然终被必然表,特殊一般多辨证,知识交汇步步高。
数学知识方法口诀集合与函数内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数; 图象第一象限内,函数增减看正负。
三角函数三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
高一数学应试技巧掌握常见题型的解题技巧
高一数学应试技巧掌握常见题型的解题技巧高一数学应试技巧:掌握常见题型的解题技巧对于刚刚踏入高中阶段的同学们来说,高一数学可能会带来一些挑战。
但别担心,只要我们掌握了正确的应试技巧和常见题型的解题方法,就能在数学考试中取得更好的成绩。
一、函数题型函数是高一数学中的重点和难点,包括一次函数、二次函数、幂函数、指数函数、对数函数等。
1、一次函数一次函数的表达式为 y = kx + b(k ≠ 0)。
在解题时,关键要明确斜率 k 和截距 b 的意义。
例如,给定两个点的坐标,要求出函数表达式,就可以利用两点式来确定 k 和 b 的值。
2、二次函数二次函数的一般式为 y = ax²+ bx + c(a ≠ 0)。
对于二次函数,要熟练掌握其图像的对称轴、顶点坐标、开口方向等性质。
在求解最值问题时,通常需要将函数配方化为顶点式。
3、幂函数幂函数的一般形式为 y =x^α。
要理解幂函数的单调性和奇偶性与指数α的关系。
4、指数函数与对数函数指数函数 y = a^x(a > 0 且a ≠ 1)和对数函数 y =logₐ x(a > 0且a ≠ 1)是相互反函数。
在解题时,要注意底数 a 的取值范围对函数性质的影响。
二、三角函数题型三角函数包括正弦函数、余弦函数、正切函数等。
1、特殊角的三角函数值一定要牢记 0°、30°、45°、60°、90°等特殊角的正弦、余弦、正切值,这是解题的基础。
2、三角函数的图像和性质了解正弦函数、余弦函数的周期性、单调性、奇偶性和值域等性质,通过图像来辅助理解和记忆。
3、三角函数的诱导公式熟练运用诱导公式将不同角度的三角函数进行转化。
三、数列题型数列有等差数列和等比数列两种常见类型。
1、等差数列通项公式为 aₙ = a₁+(n 1)d,前 n 项和公式为 Sₙ = n(a₁+aₙ) / 2 。
要注意公差 d 的计算和运用。
2、等比数列通项公式为 aₙ = a₁q^(n 1),前 n 项和公式为 Sₙ = a₁(1 q^n) /(1 q)(q ≠ 1)。
高中数学解题技巧归纳总结大全
高中数学解题技巧归纳总结大全1高中数学解题技巧特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2高一数学解题技巧学会画图画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。
有些题目,只要分析图一画出来,其中的关系就变得一目了然。
尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。
因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
先易后难,逐步增加习题的难度人们认识事物的过程都是从简单到复杂。
简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。
我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。
随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。
限时答题,先提速后纠正错误很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。
所以,提高解题速度就要先解决“拖延症”。
比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。
这个过程对提高书写速度和思考效率都有较好的作用。
你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。
高考数学基础题型答题技巧及解题步骤
高考数学基础题型答题技巧及解题步骤高中数学是大多数学生考研、考大学、考科研、考出国等各种考试的重要内容之一,尤其是高考数学考试对于高中数学的基础知识掌握更是严格要求。
对于高考数学的基础题型,掌握好答题技巧及解题步骤会事半功倍。
本文将介绍高考数学基础题型的答题技巧及解题步骤。
一、单项选择题1、审题分析数学题是做题的必备知识,正确且仔细地审题可以防止走入歧途,节省时间。
读完题也要注意到题目中所给的数据单位,以及操作符号及其优先级。
2、排除法在选择题中,假设题目中每个选项有正确的选项,使用排除法可以缩小答案范围。
找到那些显然不正确的答案,先把它的选项排除掉。
3、可供选择的方法比较方法:对所给事件进行比较,找出异处。
反过来考虑:将所给选项依次代入题目中,优势显现。
画图处理:将所给选项绘成图形,方便比对。
二、填空题1、溢出处理按照小数点位数及精度规定,确定答案的前后位数。
如果运算得出的结果超过了设定的位数,那么使用溢出处理,对多余位数进行删减。
2、零和负数的处理需要注意负数的表示方法,并且零应该正确地答出。
3、公式计算填空题中要求进行公式运算的,在计算过程中需标注具体的计算公式,准确表示出各个计算步骤。
三、解答题1、题目分类解答题是高中数学考试中分值相对较高的一种题型。
解答题分为习题练习型题目和竞赛型题目。
习题练习型题目主要是考查学生对所学数学知识的应用能力,而竞赛型题目则主要考查学生对各种数学方法和思维模式的掌握能力。
2、解题思路在解答题中,掌握解题思路及解题策略是最重要的,需要熟练掌握做题的命题风格和出题者出题特征。
在解答题中,首先保证解答过程是合规的,然后是解答结果的准确性。
三步走:考虑题意,分析题目,解决问题。
四、是否正确需要验证在考试时,完整的解题过程和答案都应该意识到自己需要对其进行验证(以确保答案的正确性),而不是单纯的答案的给出。
五、适当抄题高考数学解答题不允许抄袭题目,但是在解题的过程中可以抄题,简化一些步骤和细节,避免自身的思路和答案产生偏离。
高中数学专题题型及解题技巧
高中数学专题题型及解题技巧1高中数学专题题型及解题技巧选择题选择题是高中数学考试中的较根底题型之一,分为多项选择和单项选择,一般是放在考查的第一局部,是考试重心,在习题练习中也占有较大比例.目前的高中数学选择题倾向于单项选择,外表看来降低了不少难度,但是选项中的相近答案极易给学生以误导.通常来说,选择题的知识覆盖面较广,思维具有跳跃性,题目由浅到深,是检测学生观察、分析以及推理判断能力的有效手段.如何提高解答选择题正确率,这就要求学生在练习中要充分利用题干中提供的各种信息,排除相似选项的干扰,一方面从题干出发,探求结果,另一方面结合选项,排除矛盾.我们可以采取排除法,概念分析法、图形分析法和逆向思维法相结合,灵活运用各种定理概念,做到发散思维,提高解题时效率.如题:设定义在R上的函数f(某)满足f(某)?f(某+2)=13,假设f(1)=2,那么f(99)等于().该题共有四个答案,分别是13、2、132、213.我们可以通过这样的步骤计算:(1)(某+2)=13f(某),f(某+4)=13f(某+2)=1313f(某)=f(某).(2)函数f(某)为周期函数,且T=4,f(99)=f(4某24+3)=f(3)=13f(1)=132.在这里,我们利用题干中的相关条件,运用函数的周期性这一概念,得到f(某)是周期为4的函数.周期性是解答此题的关键,我们可以利用直接法算出.填空题选择题在考试中放在选择题后,题量不大,难度相对较低,但是分值也不高,主要是为了考查学生的根本技能和学生的根底能力.学生能够利用根底知识解决和分析问题,在填空题中就不会失去太多分数.填空题与选择题的差异在于:首先,填空题没有选项,在解答问题时缺乏提示,但是同时也排除了相似项的干扰;其次,填空题是在题干中抽出一局部内容由学生填补,结构简单、概念性强;此外,填空题不要求写出运算过程,是将结论直接填入空位中的求解题.一般来说,填空题的运算量都不算大,学生可以根本采用数形结合法、等价转换法、构造法等,小题小做,提高正确率.如:在△ABC中,角A、B、C所对的边分别为a、b、c,如果a、b、c成等差数列,那么cosA+cosC1+cosAcosC=.解这道题有两种方法,首先:我们可以通过取特殊值来计算,例如a=3,b=4,c=5,那么cosA=45,cosC=0,cosA+cosC;1+cosAcosC=45;其次:利用角的特殊性,取特殊角A=B=C=π3,cosA=cosC=12,cosA+cosC1+cosAcosC=45.这就要求我们要熟练掌握三角形的概念以及特殊三角形直接的关系,才能在习题练习中节省时间,顺利解答.2高中数学解题技巧灵活数学解题技巧的运用目标所谓灵活的数学解题技巧就是在有效的学习时间内让学生的数学学习效果到达最大化.具体目标是形成与数学课本内容紧密镶嵌的解题模式,改变学生惯有的学习方式,对待不同类型的题目要注意灵活运用.熟练地运用数学解题技巧不是一味地为了技巧而运用技巧,而是在熟练掌握根本的课本知识的同时,在逐渐的积累与实践中掌握不同类型题目的学习规律,让数学解题技巧成为学生的一种辅助工具比方有的题目可以套用公式,但是同样也可以按照规律进行简便运算,数学解题技巧的运用旨在培养学生独立思考的逻辑思维能力和分析能力.不单单要让学生学会应对应试教育模式,还要更加注重技巧对学生解题的帮助以及运用数学思维去解决实际问题的能力.审题技巧审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三局部。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学各种题型的解题技巧
高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。
也就是在转化过程中,没有注意转化的等价性,会经常出现错误。
数学大题表面上是很难,但是通过多年的教学积累和经验总结,我们发现数学整个学科的解题思维基本上趋于一致,能够形成通解,使我们在数学教学上大幅的简化,甚至不需要刻意的思考。
掌握数学解题思想是解答数学题时不可缺少的一步,建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题目加以划分,以便在高考前一个月集中复习。
六种题型解题技巧
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方差、标准差公式;
4、求概率时,正难则反(根据p1+p2+…+pn=1);
5、注意计数时利用列举、树图等基本方法;
6、注意放回抽样,不放回抽样;
7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8、注意条件概率公式;
9、注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3、战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2、注意最后一问有应用前面结论的意识;
3、注意分论讨论的思想;
4、不等式问题有构造函数的意识;
5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6、整体思路上保6分,争10分,想14分。
五种数学答题思路
在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解
题思路,节约思考时间。
以下总结高考数学五大解题思想,帮助同学们更好地提分
一、函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进行函数与方程间的相互转化。
二、数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有的,这个称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
三、特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用
四、极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果
五、分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
高考数学大题难题通解
暑假到来,这个时期,是属于我们潜心修炼“理科思维”的最佳时机。
近日得知,许多家长会将本博内容打印下来供孩子学习,考虑到春节学生有点属于自己的时间,又赶上高三第二轮复习,本人特意为广大读者整理了一遍大题难题的“题型通解”思维。
主要是如何借助题目所给信息,利用知识点进行推导。
在下文中,详细介绍大题解题思维的步骤,同时结合高考真题,目的为让大家学会思考。
走进数学的世界。
对于那些数学成绩不好的同学,这篇文章恰好是传授你怎样运用你的数学思维的最佳途径。
好好的读一读吧,会让你有所感悟的。
我们说,一旦一个人会动
脑了,那么创造力是无穷无尽的,希望你的数学早日开悟。
纵观近几年高考数学试题,可以看出试题加强了对知识点灵活应用的考察。
这就对考生的思维能力要求大大加强。
如何才能提升思维能力,很多考生便依靠题海战术,寄希望多做题来应对多变的考题,然而凭借题海战术的功底仍然难以获得科学的思维方式,以至收效甚微。
最主要的原因就是解题思路随意造成的,并非所谓“不够用功”等原因。
由于思维能力的原因,考生在解答高考题时形成一定的障碍。
主要表现在两个方面,一是无法找到解题的切入点,二是虽然找到解题的突破口,但做这做着就走不下去了。
如何解决这两大障碍呢?本章将介绍行之有效的方法,使考生获得有益的启示。
寻找解题途径的基本方法——从求解(证)入手
遇到有一定难度的考题我们会发现出题者设置了种种障碍。
从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,前提是什么?也就是必须要做什么,需要知道什么?找到“需知”后,将“需知”作为新的问题,直到与“已知“所能获得的“可知”相沟通,将问题解决。
事实上,在不等式证明中采用的“分析法”就是这种思维的充分体现,我们将这种思维称为“逆向思维”——目标前提性思维。
以下结合几例说明目标前提性思维的运用。
二。
完成解题过程的关键——数学式子变形
解答高考数学试题遇到的第二障碍就是数学式子变形。
一
道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢?
通过这三个例子可以看出数学式子变形在解题中的重要性。
其实数学解题的每一步推理和运算,实质都是转换(变形)。
但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化。
还必须注意的是,一切转换必须是等价的,否则解答将出现错误。
解决数学问题实际上就是在题目的已知条件和待求结论中架起的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。
寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。
在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。
在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子
变形的思维方式:时刻关注所求与已知的差异。
怎样在这个原则指导变形,列举两例高考试题说明。