概率论与数理统计第15讲
《概率论与数理统计》高教版PPT
P(A) = A中样本点的个数 / 样本点总数
30 July 2013
华东师范大学
第一章 随机事件与概率
第35页
注 意
• 抛一枚硬币三次 抛三枚硬币一次
• Ω1={(正正正), (反正正), (正反正), (正正反),
(正反反), (反正反), (反反正), (反反反)}
此样本空间中的样本点等可能. • Ω2={(三正), (二正一反), (二反一正), (三反)} 此样本空间中的样本点不等可能.
第一章 随机事件与概率
第30页
注 意
求排列、组合时,要掌握和注意: 加法原则、乘法原则.
30 July 2013
华东师范大学
第一章 随机事件与概率
第31页
加法原理
完成某件事情有 n 类途径, 在第一类途径中有m1种方 法,在第二类途径中有m2种方法,依次类推,在第 n 类 途径中有mn种方法,则完成这件事共有 m1+m2+…+mn种 不同的方法.
事件运算的图示
AB
AB
AB
30 July 2013
华东师范大学
第一章 随机事件与概率
第16页
德莫根公式
A B A B;
A B A B
A A;
i 1 i i 1 i
n
n
A A
i 1 i i 1
n
n
i
30 July 2013
华东师范大学
第一章 随机事件与概率
六根草,头两两相接、 尾两两相接。求成环的概率.
解:用乘法原则直接计算
所求概率为
6 4 4 2 2 1 8 6 5 4 3 2 1 15
15讲方差
图示, 图示, 方差大和方差小的情况 f1(x) 方差大
f2(x)
方差小
x
方差越大,随机变量的取值越分散;反之, 方差越大,随机变量的取值越分散;反之,越 集中在期望的附近. 集中在期望的附近.方差有非常重要和直观的 实际意义,如某些地区年温差较大, 实际意义,如某些地区年温差较大,即气温方 差较大,而有些地区四季如春,气温方差较小. 差较大,而有些地区四季如春,气温方差较小. 2010-7-6
2010-7-6 12
∞
方差实际上就是随机变量的函数 g(X)=(X-E(X))2的数学期望,如果 是离散 的数学期望,如果X是离散 型随机变量, 并且P{X=xk}=pk (k=1,2,...), 则 型随机变量 并且 ∞
D( X ) = ∑[xk E( X )] pk
2 k =1 +∞
如果X是连续型随机变量 有概率密度f (x), 则 , D( X ) = ∫[x E( X )] f (x)dx
概率论与数理统计 15讲 第15讲
2010-7-6
1
方差
2010-7-6
2
两封信随机投向1,2,3,4四个信箱 四个信箱, 例1 两封信随机投向 四个信箱 X1,X2代表头两个信箱里的信数目 求在第 代表头两个信箱里的信数目, 求在第2 个邮箱里有1封信条件下第一个邮箱内信数 个邮箱里有 封信条件下第一个邮箱内信数 平均数 的平均数. 解 因已经计算出 2×2 2×3 2 P{X1 = 0 | X2 =1 = } / = 16 16 3 2 2×3 1 } P{X1 =1| X2 =1 = / = 16 16 3 因此 在X2 =1条 下 X1的平 , 件 , 均值 为 应 2 1 1 E{X1 | X2 =1 = 0× +1× = } 3 3 3
概率论与数理统计教程-第五版-课件
会出现.
2021/3/10
讲解:XX
6
三、样本空间 样本点
定义 随机试验的每一个可能的结果,称 为基本事件,随机试验的所有可能的结果的 全体称为样本空间,用或S表示。则中的 点就是基本事件,也称作样本点,常用w表 示。
2021/3/10
则称 A 与B 为互逆(或对立)事件. A 的逆记
作 A.
2021/3/10
讲解:XX
16
事件间的运算规律
设 A, B, C 为事件, 则有
(1) 交换律 A B B A, AB BA. ( AB)C A(BC).
(2) 结合律 ( A B) C A (B C),
(3) 分配律
讲解:XX
2
第一章 事件与概率
2021/3/10
讲解:XX
3
1.1 随机事件和样本空间
一、随机现象 二、随机试验 三、样本空间 样本点 四、随机事件的概念 五、随机事件的关系
2021/3/10
讲解:XX
4
一、随机试验
1.必然现象(确定) 2.偶然现象(不确定)随机
说明:
1.随机现象揭示了条件和结果之间的非确定性联系 , 其数量关系无法用函数加以描述.
2.随机现象在一次观察中出现什么结果具有偶然性, 但在大量重复试验或观察中, 这种结果的出现具有 一定的统计规律性 , 概率论就是研究随机现象这 种本质规律的一门数学学科.
2021/3/10
讲解:XX
5
二、随机试验
在概率论中,把具有以下三个特征的试验称 为随机试验.
1. 可以在相同的条件下重复地进行; 2. 每次试验的可能结果不止一个,并且能事
概率论与数理统计
A
3)在应用上,那些不便直接求某一事件的概 B2
率时,先找到一个合适的划分,再用全概率公式计算
ቤተ መጻሕፍቲ ባይዱ
7/21
§1.5 条件概率
2.贝叶斯(Bayes)公式 (计算后验概率问题)
事件A的发生,iff构成S划分的事件B1,B2,…,Bn中的一个发生时才发 生,一般在实验之前仅知道Bi的先验概率,那么如果试验后事件A已经发 生了,Bi发生的概率又是多少呢?这种问题我们称他为后验概率问题,有 利于我们查找事件发生的原因。解决此类问题可采用贝叶斯(Bayes)公式
在实际应用 中,对于事 件的独立性 常常根据事 件的实际意 义来判断,
注意:仅满足前三个等式的三个事件称为两两相互独立 见习题33 如果两个事
当然,如果事件A,B,C相互独立
件关联很弱 也可以看作
则 A, B,C; A, B,C; ... ; A, B,C 也相互独立
是独立的。
推广到多个事件
由定义可以得到以下两点推论: 1.若事件A1, A2, … , An相互独立,n2,则其中任意k(2kn)个事件也是相互独立 的。 2.若n个事件A1, A2, … , An(n2)相互独立,则将A1, A2, … , An中任意多个事件换13/成21 他们的对立事件,所得的n个事件仍相互独立
§1.6 独立性
对样本空间适当分解的思想,有利于解决稍微复杂一点的概率问题
首先看一下关于划分的概念
定义:设S为试验E的样本空间,B1,B2,…,Bn为E的一组事件。若
(i) BiBj=Φ,i≠j,i,j=1,2,…,n; (ii) B1∪B2∪…∪Bn=S 则称B1,B2,…,Bn为S的一个划分。
※每次试验,事件B1,B2,…,Bn中有且仅有一个发生
概率论与数理统计总复习-
一. 二维离散型r.v.
概率统计-总复习-13
1. 联合分布律(2个性质)
P(Xxi,Yyj)pij,
2.联合分布函数(5个性质)
F ( x , y ) P X x , Y y
3.联合分布律与联合分布函数关系
F(x,y)pij, xixyjy
4. 边缘分布律与边缘分布函数
n
Xi
n
E( Xi )
i1 i1
D
n
Xi
n
D( Xi )
i1 i1
X1,,Xn 相互独立
常见离散r.v.的期望与方差
概率统计-总复习-27
分布 概率分布
期望 方差
参数p的 0-1分布
P (X 1 )p ,P (X 0) q
2. 联合分布函数(5个性质)
xy
F(x,y) p(u,v)dvdu
3.联合密度与联合分布函数关系 2F( x,y) p( x,y)
xy
4.边缘密度与边缘分布函数
p (x) p( x,y)dy p ( y) p( x,y)dx
X
Y
FX( x) F(x, ) FY ( y ) F(, y)
5.全概率公式:分解 P(B) P(Ai)P(B|Ai),B
i1
6.贝叶斯公式
P(Aj |B)
P(Aj )P(B| Aj )
,j
P(Ai )P(B|Ai )
i1
四. 概率模型
概率统计-总复习-6
1.古典概型: 摸球、放球、随机取数、配对
2. n重伯努利概型:
概率论与数理统计_15_均匀分布
这时,可以认为随机变量 X 在区间a, b上取值是等可能的.
P{c X c l}
c l c
c l
c
f ( x)dx
X a l 0 l X b x
1 l dx . ba ba
均匀分布的累积分布函数(CDF)
若随机变量 X 服从区间
a , b 上的均匀分布,
1 y2 x 1 y2 其它
即当 1 y 1 时,X 在 Y y下的条件分布是区间
1 y2 ,
1 y 2 上的均匀分布.
均匀分布的期望与方差
1 /( b a ), a x b f ( x) 。 0, 其它
EX
1 ab xf ( x )dx x dx ba 2
上的均匀分布,试求条件密度函数 f X Y x y .
练习3解答
2 2 X Y 设二维随机变量 , 服从圆域:x y 1
上的均匀分布,试求条件密度函数 f X Y x y .
解:
二维随机变量 X , Y 的联合密度函数为 1 f x, y p 0 x y 1
2
则
P A P 4 4 4 2 0
2
P 1或 2 1 6 1 1 dx dx 9 9 3 2 2 4 2 9 9 3
P 1 2 0
练习3
2 2 X Y 设二维随机变量 , 服从圆域:x y 1
1 y 1 其它
y
x2 y2 1
x
由此得,当 1 y 1时,fY y > 0
练习3解答(续2)
同济大学《概率论与数理统计》PPT课件
同济大学数学系 & 人民邮电出版社
四、随机事件之间的关系与运算
第1章 随机事件与概率 10
(1)事件的包含
若事件 A 的发生必然导致事件 B 的发生, 则称事件A 包含在事件 B 中. 记作 A B .
BA
A B
同济大学数学系 & 人民邮电出版社
3
某快餐店一天内接到的订单量;
4
航班起飞延误的时间;
5
一支正常交易的A股股票每天的涨跌幅。
二、样本空间
第1章 随机事件与概率 6
一个随机试验,每一个可能出现的结果称为一个样本点,记为
全体样本点的集合称为样本空间, 记为 , 也即样本空间是随机试验的一切可能结果组成
的集合, 集合中的元素就是样本点. 样本空间可以是有限集, 可数集, 一个区间(或若干区间的并集).
01 在相同的条件下试验可以重复进行;
OPTION
02 每次试验的结果不止一个, 但是试验之前可以明确;
OPTION
03 每次试验将要发生什么样的结果是事先无法预知的.
OPTION
一、随机试验
例1
随机试验的例子
第1章 随机事件与概率 5
1 抛掷一枚均匀的硬币,有可能正面朝上,也有可能反面朝上;
2
抛掷一枚均匀的骰子,出现的点数;
(互斥).
同济大学数学系 & 人民邮电出版社
2、随机事件之间的运算
第1章 随机事件与概率 12
(1)事件的并
事件 A 或 B至少有一个发生时, 称事件 A 与事件B 的并事件发生, 记为 A U B .
(2)事件的交(积)
概率论与数理统计课件完整版.ppt
3
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的 结果; (3) 一次试验前不能确定会出现哪个结果.
4
§2. 样本空间与随机事件
不可能事件:空集φ不包含任何样本点, 它在每次试验中 都不发生,称为不可能事件。
6
例1. 试确定试验E2中样本空间, 样本点的个数, 并给出如
下事件的元素: 事件A1=“第一次出现正面”、事件A2=“ 恰好出现一次正面”、事件A3=“至少出现一次正面”.
7
(三)事件间的关系与事件的运算
1.包含关系和相等关系:
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) A B
8
2.和事件:
A B { x | x A或x B}称为A与B的和事件.
即A, B中至少有一个发生, 称为A与B的和, 记A B.
可列个事件A1, A2 , 的和事件记为 Ak .
概率的古典定义:
对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包
含S的 k 个样本点,则事件A的概率定义为
A中的基本事件数 k
P( A) S中的基本事件总数 n
15
古典概型概率的计算步骤:
(1) 选取适当的样本空间S, 使它满足有限等可能的要求, 且把事件A表示成S的某个子集.
k 1
3.积事件: 事件A B={x|x A 且 x B}称A与B的
积,即事件A与BA同时发生. A B 可简记为AB.
概率论与数理统计ppt课件
注:P( A) 0不能 A ; P( B) 1不能 B S .
2。 A1 , A2 ,...,An , Ai Aj , i j, P( P(
n n i 1
Ai ) P( Ai )
i 1
n
证:令 Ank (k 1, 2,...), Ai Aj , i j, i, j 1, 2,....
•
5.1 大数定律 5.2 中心极限定理
•
第六章 数理统计的基本概念
• • 6.1 总体和样本 6.2 常用的分布
4
第七章 参数估计
• • • 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章 假设检验
• • • • • • • 8.1 8.2 8.3 8.4 8.5 8.6 8.7 假设检验 正态总体均值的假设检验 正态总体方差的假设检验 置信区间与假设检验之间的关系 样本容量的选取 分布拟合检验 秩和检验
A B 2 A=B B A
B A
S
例: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B
A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13
事件的运算
A与B的和事件,记为 A B
8
§1 随机试验
确定性现象
自然界与社会Βιβλιοθήκη 活中的两类现象不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定
例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖
概率论与数理统计15讲
例如 一个人的身高和体重是非常有关系的, 但 是又并不完全是严格的函数关系, 那么关 系程度究竟有多大呢? 一个人的吸烟量和他的平均寿命是有关系 的, 这个关系量又有多大呢?
6
一种化肥的施用量和农作物的产量是有关 系的, 这个关系的大小又是如何呢? 这样一些问题都希望能够用一个数字就表 示出来, 这就是人们想到要用协方差和相 关系数的原因.
...
...
k0-2 k0-1 k0 k0+1 k0+2 由上图可知P(X=k0)P(X=k0+1)
且P(X=k0)P(X=k0-1)
46
Cnk C k -1
n
n! k!(n -
k)!
(k
-1)!(n n!
k
1)!
n
-k k
1
由
C p q k0 k0 n-k0 n
C p q k0 -1 k0 -1 n-k0 1 n
(n - k0 1) p k0q
1
(n 1) p k0, 得np p k0
47
k0 1 k0 1 n-k0 -1
再由C p q n C p q k0 k0 n-k0
n
(n - k0) p (k0 1)q
1
np p -1 k0,
即np p -1 k0 np p
48
分析np+p-1k0np+p 知道np+p比np+p-1大了1, 因此挤在这两 个数中间的整数有1个还是2个取决于 np+p是否正好是整数.
yi ,
cov( X ,Y )
1 n
n i1
( xi
-
x )( yi
-
y)
1 n
概率论与数理统计(第2版微课版)教学大纲、授课计划
《概率论与数理统计》课程教学大纲课程中英文名称:概率论与数理统计(Probability and Statistics)课程代码:课程类别:必修课;一年级;二年级;公共类数学基础课学分/学时:3学分/51学时开课学期:适用专业:先修/后修课程:高等数学(或微积分)开课单位:课程负责人:1、课程性质与教学目标概率论与数理统计是研究随机现象客观规律并付诸应用的数学类学科,是工科本科各专业的一门重要基础理论课,通过本课程的学习,要求学生熟练掌握随机事件概率的常用计算方法,熟悉并掌握随机变量的分布及其计算,掌握离散型随机变量及其分布律的概念及其计算、掌握连续型随机变量及其密度函数的概念及其计算。
掌握随机变量的常用数字特征的概念及其计算。
理解并掌握依概率收敛的概念,理解大数定律、理解并掌握用中心极限定理解决应用问题。
理解和掌握数理统计的基本概念和理论、熟悉常用的统计量和抽样分布,熟悉并掌握常用的参数点估计和置信区间的求解。
掌握假设检验的基本概念、理解检验中的两类风险,理解并掌握显著性检验的基本步骤,掌握正态总体下未知参数的假设检验方法并会用于解决实际问题,了解拟合优度检验和独立性检验等非参数检验方法。
通过本课程的学习,使学生具备以下能力:课程教学目标1:有科学的世界观、人生观和价值观,有责任心和社会责任感。
树立远大的理想以及刻苦学习的信念。
课程教学目标2:使学生掌握概率统计的基本概念、基本思想和基本理论,培养学生用所学知识去分析问题和解决问题的综合能力和高级思维能力。
课程教学目标3:促进学生全面发展;打破习惯性认知模式,培养学生深度分析、大胆质疑、勇于创新的能力;引导学生养成自主学习、终身学习的自我管理素养。
2、教学内容及基本要求本课程教学内容与具体教学要求及学时分配等信息如下表所示。
3、教学方法课堂教学以板书为主,辅助PPT。
4、考核、成绩评定方式及重修要求考核方式主要由上课出勤、平时作业、课堂练习、阶段测验、期末考试等环节组成,综合各部分的成绩给出该门课程的总评成绩。
概率论与数理统计(最新完整版)ppt课件
.
(2) 试验的所有可能结果:
正面,反面; (3) 进行一次试验之前不能
确定哪一个结果会出现.
故为随机试验.
同理可知下列试验都为随机试验
1.“抛掷一枚骰子,观察出现的点数”.
2.“从一批产品中,依次任选三件, 记 录出现正品与次品的件数”.
.
3. 记录某公共汽车站 某日上午某时刻的等 车人 数.
(3)分 配 律
A(BC)(A B)(AC)AB AC ,
A (BC)AB AC
( A B ) C ( A C ) ( B C ) ( A C ) B C ( )
(对 4律 ):偶 A B A B ,A B A B .
n
n
Ai Ai,
i1
i1
.
n
n
Ai Ai
i1
i1
三 完备事件组
4. 考察某地区 10 月 份的平均气温.
5. 从一批灯泡中任取 一只,测试其寿命.
.
四、概率的统计定义
1、随机事件:在试验的结果中,可能发生、也可能不发 生的事件。比如,抛硬币试验中,”徽花向上”是随机事 件;掷一枚骰子中,”出现奇数点”是一个随机事件等。
2、频率:设A为实验E中的一个随机事件,将E重复n次, A发生m次,称f(A)=m/n为事件A的频率. 随着实验次数n的增加,频率将处于稳定状态.比如投 硬币实验,频率将稳定在1/2附近.
B A
.
6. 事件的互逆(对立)
若事件 A 、B 满足 A B 且 A B .
则称 A 与B 为互逆(或对立)事件. A 的逆记作 A .
实例 “骰子出现1点”对立 “骰子不出现1点”
《概率论与数理统计》(韩旭里)课后习题答案
《概率论与数理统计》(韩旭里)课后习题答案概率论与数理统计习题及答案习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)ABC (2)ABC (3)ABC(4)A∪B∪C=ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC=ABC (5) ABC=A B C (6) ABC1(7) ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=ABC∪ABC∪ABC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A B)=0.3,求P(AB).【解】P(AB)=1P(AB)=1[P(A)P(A B)]=1[0.70.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC) =11114+4+312=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p=C533213C13C13C13/C13528.对一个五人学习小组考虑生日问题:(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率;2(3)求五个人的生日不都在星期日的概率.【解】(1)设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P(A1)=115 =()(亦可用独立性求解,下同)757(2)设A2={五个人生日都不在星期日},有利事件数为65,故6565P(A2)=5=() 77(3) 设A3={五个人的生日不都在星期日}P(A3)=1P(A1)=1(15) 79.略.见教材习题参考答案.10.一批产品共N件,其中M件正品.从中随机地取出n件(n<N).试求其中恰有m件(m≤M)正品(记为A)的概率.如果:(1)n件是同时取出的;(2)n件是无放回逐件取出的;(3)n件是有放回逐件取出的.n mn【解】(1)P(A)=CmMCN M/CNn(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有PN种,n次抽取中有m次为正品的组合数为Cmn种.对于固定的一种正品与次品的抽取mn m次序,从M件正品中取m件的排列数有PM种,从N M件次品中取n m件的排列数为PN M种,故mn mCmnPMPN MP(A)= nPN由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成3n mCmMCN MP(A)= nCN可以看出,用第二种方法简便得多.(3)由于是有放回的抽取,每次都有N种取法,故所有可能的取法总数为Nn种,n次抽取中有m次为正品的组合数为Cmn种,对于固定的一种正、次品的抽取次序,m次取得正品,都有M种取法,共有Mm种取法,n m次取得次品,每次都有N M种取法,共有(N M)n m种取法,故mn mn P(A)CmM(N M)/Nn此题也可用贝努里概型,共做了n重贝努里试验,每次取得正品的概率为M,则取得m件正品的概率为Nmn m M M P(A)C1N N mn11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A={发生一个部件强度太弱}10C3/C50 1 196013.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.【解】设Ai={恰有i个白球}(i=2,3),显然A2与A3互斥.1C2184C3P(A2)3,C735C344P(A3)3 C7354故P(A2A3)P(A2)P(A3)223514.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.【解】设Ai={第i批种子中的一粒发芽},(i=1,2)(1) P(A1A2)P(A1)P(A2)0.70.80.56(2) P(A1A2)0.70.80.70.80.94 (3) P(A1A2A1A2)0.80.30.20.70.38 15.掷一枚均匀硬币直到出现3次正面才停止.(1)问正好在第6次停止的概率;(2)问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1)p2121315C111314()()1C5(2)(2)232 (2) p25/32 2516.甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】设Ai={甲进i球},i=0,1,2,3,Bi={乙进i球},i=0,1,2,3,则P(3i0A212iBi3)(0.3)3(0.4)3C130.7(0.3)C30.6(0.4)C2223(0.7)0.3C3(0.6)20.4+(0.7)3(0.6)3=0.32076517.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】p1C411115C2CC2C2213C4102118.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.【解】设A={下雨},B={下雪}.(1)p(BA)P(AB)0.50.2(2)p(A B)P(A)P(B)P(AB)0.30.50.10.719.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】设A={其中一个为女孩},B={至少有一个男孩},样本点总数为23=8,故P(BA)P(AB)6/8P(A)7/8 67或在缩减样本空间中求,此时样本点总数为7.P(BA) 6720.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】设A={此人是男人},B={此人是色盲},则由贝叶斯公式P(AB)P(AB)P(A)P(BA)P(B)P(A)P(BA)P(A)P(BA)60.50.050.50.050.50.0025202121.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x y|>30.如图阴影部分所示.302P 1602 422.从(0,1)中随机地取两个数,求:76的概率;51(2)两个数之积小于的概率. 4(1)两个数之和小于【解】设两数为x,y,则0<x,y<1.(1)x+y<6. 514417 p110.68 1251(2) xy=<. 4p21111dxdy11ln2 4x442123.设P(A)=0.3,P(B)=0.4,P(AB)=0.5,求P(B|A∪B)【解】P(BA B)P(AB)PA()PAB() P(A B)P(A)P(B)P(AB)0.70.51 0.70.60.5424.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】设Ai={第一次取出的3个球中有i个新球},i=0,1,2,3.B={第二次取出的3球均为新球}由全概率公式,有8P(B)P(BAi)P(Ai)i032321C3C3C1C8C9C6C3C3C3699C67960.08933333333C15C15C15C15C15C15C15C1525. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A={被调查学生是努力学习的},则A={被调查学生是不努力学习的}.由题意知P (A)=0.8,P(A)=0.2,又设B={被调查学生考试及格}.由题意知P(B|A)=0.9,P(B|A)=0.9,故由贝叶斯公式知P(A)P(BA)P(AB)(1)P(AB)P(B)P(A)P(BA)P(A)P(BA)0.20.110.02702 0.80.90.20.137即考试及格的学生中不努力学习的学生仅占2.702%P(A)P(BA)P(AB)(2) P(AB)P(B)P(A)P(BA)P(A)P(BA)0.80.140.3077 0.80.10.20.913即考试不及格的学生中努力学习的学生占30.77%.926. 将两信息分别编码为A和B传递出来,接收站收到时,A被误收作B的概率为0.02,而B被误收作A的概率为0.01.信息A与B传递的频繁程度为2∶1.若接收站收到的信息是A,试问原发信息是A的概率是多少?【解】设A={原发信息是A},则={原发信息是B}C={收到信息是A},则={收到信息是B}由贝叶斯公式,得P(AC)P(A)P(CA)P(A)P(CA)P(A)P(CA) 2/30.980.99492 2/30.981/30.0127.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设Ai={箱中原有i个白球}(i=0,1,2),由题设条件知P(Ai)=1,i=0,1,2.又设B={抽出一球为白球}.由贝叶斯公式知3P(A1B)P(BA1)P(A1)P(A1B) 2P(B)P(BAi)P(Ai)i02/31/31 1/31/32/31/311/3328.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】设A={产品确为合格品},B={产品被认为是合格品}由贝叶斯公式得10P(AB)P(A)P(BA)P(AB) P(B)P(A)P(BA)P(A)P(BA)0.960.980.998 0.960.980.040.05 29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年设A={该客户是“谨慎的”},B={该客户是“一般的”},C={该客户是“冒失的”},D={该客户在一年内出了事故}则由贝叶斯公式得P(A|D)P(AD)P(A)P(D|A)P(D)P(A)P(D|A)P(B)P(D|B)P(C)P(D|C)0.20.050.057 0.20.050.50.150.30.330.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设Ai={第i道工序出次品}(i=1,2,3,4).P(Ai)1P(A1A2A3A4) i141P(A1)P(A2)P(A3)P(A4)10.980.970.950.970.12431.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n次独立射击.1(0.8)n0.911即为(0.8)n0.1故n≥11至少必须进行11次独立射击.32.证明:若P(A|B)=P(A|B),则A,B相互独立.【证】P(A|B)即P(A|B)P(AB)P(AB) P(B)P(B)亦即P(AB)P(B)P(AB)P(B)P(AB)[1P(B)][P(A)P(AB)]P(B)因此P(AB)P(A)P(B)故A与B相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为【解】设Ai={第i人能破译}(i=1,2,3),则111,,,求将此密码破译出的概率. 534P(Ai)1P(A1A2A3)1P(A1)P(A2)P(A3) i1314230.6 53434.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A={飞机被击落},Bi={恰有i人击中飞机},i=0,1,2,312由全概率公式,得P(A)P(A|Bi)P(Bi)i03=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1)虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2)新药完全无效,但通过试验被认为有效的概率.【解】(1)p1 Ck0k103k10(0.35)k(0.65)10k0.5138 (2) p2 Ck410(0.25)k(0.75)10k0.224136.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1)A=“某指定的一层有两位乘客离开”;(2)B=“没有两位及两位以上的乘客在同一层离开”;(3)C=“恰有两位乘客在同一层离开”;(4)D=“至少有两位乘客在同一层离开”.【解】由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.24C69(1)P(A),也可由6重贝努里模型:6101321294P(A)C6()() 1010(2)6个人在十层中任意六层离开,故6P10P(B) 6 102(3)由于没有规定在哪一层离开,故可在十层中的任一层离开,有C110种可能结果,再从六人中选二人在该层离开,有C6种离开方式.其余4人中不能31再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有C19C4C8种可4能结果;②4人同时离开,有C19种可能结果;③4个人都不在同一层离开,有P9种可能结果,故2131146P(C)C110C6(C9C4C8C9P9)/10(4)D=B.故6P10P(D)1P(B)1 6 1037. n个朋友随机地围绕圆桌而坐,求下列事件的概率:(1)甲、乙两人坐在一起,且乙坐在甲的左边的概率;(2)甲、乙、丙三人坐在一起的概率;(3)如果n个人并排坐在长桌的一边,求上述事件的概率.【解】(1)p1 1 n 114(2) p3!(n3)!2(n1)!,n 3 (3) p(n1)!11n!n;p3!(n2)!2n!,n 338.将线段[0,a]任意折成三折,试求这三折线段能构成三角形的概率【解】设这三段长分别为x,y,a x y.则基本事件集为由0<x<a,0<y<a,0<a x y<a所构成的图形,有利事件集为由x y a x yx(a x y)yy(a x y)x构成的图形,即0x a20y a 2a2x y a如图阴影部分所示,故所求概率为p 14.39. 某人有n把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k次(k=1,2,…,n)才能把门打开的概率与k无关.【证】p Pk 1n11Pk,k1,2,n ,nn1540.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i面涂有颜色的概率P(Ai)(i=0,1,2,3).【解】设Ai={小立方体有i面涂有颜色},i=0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000(8+96+384)=512个P(A)P[A(B C)]P(AB AC)P(AB)P(AC)P(ABC)P(AB)P(AC)P(BC)42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】设Ai={杯中球的最大个数为i},i=1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故P(AC33!31)4438而杯中球的最大个数为3,即三个球全放入一个杯中,故16C114P(A3)3 416因此P(A2)1P(A1)P(A3)131981616或P(AC1214C3C32)4391643.将一枚均匀硬币掷2n次,求出现正面次数多于反面次数的概率.【解】掷2n次硬币,可能出现:A={正面次数多于反面次数},B={正面次数少于反面次数},C={正面次数等于反面次数},A,B,C两两互斥.可用对称性来解决.由于硬币是均匀的,故P(A)=P(B).所以P(A)1P(C)2由2n重贝努里试验中正面出现n次的概率为P(C)Cn1n1n2n(2)(2)故P(A) 12[1Cn12n22n]44.掷n次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A={出现正面次数多于反面次数},B={出现反面次数多于正面次数},由对称性知P(A)=P(B)(1)当n为奇数时,正、反面次数不会相等.由P(A)+P(B)=1得P(A)=P(B)=0.5 (2) 当n为偶数时,由上题知P(A)1n212[1Cn(2)n]45.设甲掷均匀硬币n+1次,乙掷n次,求甲掷出正面次数多于乙掷出正面次数的概率.17【解】令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数.显然有(甲正>乙正)=(甲正≤乙正)=(n+1甲反≤n乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P(甲正>乙正)=P(甲反>乙反)因此P(甲1正>乙正)=246.证明“确定的原则”(Sure thing):若P(A|C)≥P(B|C),P(A|C)≥P(B|C),则P(A)≥P(B).【证】由P(A|C)≥P(B|C),得P(AC)PP(C)(BC)P(C),即有P(AC)P(BC)同理由P(A|C)P(B|C),得P(AC)P(BC),故P(A)P(AC)P(AC)P(BC)P(BC)P(B)47.一列火车共有n节车厢,有k(k≥n)个旅客上火车并随意地选择车厢.求每一节车厢设Ai={第i节车厢是空的},(i=1,…,n),则18(n1)k1kP(Ai)(1)nkn2P(AiAj)(1)knP(AAn1ki1Ai2in1)(1n)其中i1,i2,…,in1是1,2,…,n中的任n1个. 显然n节车厢全空的概率是零,于是nS P(A)n(111k1ii1n)k C1n(1n)S P(AC222iAj)n(1)k1i j nnSn11i P(An1i1Aii1i2in1n2An1)Cn(1n1kn)Sn0P(ni1Ai)S1S2S3(1)n1SnC11k22knn1n 1n(1n)Cn(1n)(1)Cn(1n)k故所求概率为191k2in1k2n1n11P(Ai)1C1Cn(1) n(1)Cn(1)(1)i1nnnn48.设随机试验中,某一事件A出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A迟早会出现的概率为1.【证】在前n次试验中,A至少出现一次的概率为1(1)n1(n)49.袋中装有m只正品硬币,n只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A={投掷硬币r次都得到国徽}B={这只硬币为正品}由题知P(B)mn,P(B) m nm nP(A|B)1,P(A|B) 1 r2则由贝叶斯公式知P(B|A)P(AB)P(B)P(A|B) P(A)P(B)P(A|B)P(B)P(A|B)m1rm rm1nr1m2nm n2m n50.巴拿赫(Banach)火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r根的概率又有多少?20【解】以B1、B2记火柴取自不同两盒的事件,则有P(B1)P(B2) 1.(1)发现一盒已空,另一盒恰剩r根,说明已取了2n r次,设n次取自B1盒(已2空),n r次取自B2盒,第2n r+1次拿起B1,发现已空。
《概率论与数理统计》课件
条件概率与独立性
条件概率
在某个事件B已经发生的条件下,另 一事件A发生的概率,记为P(A|B)。
独立性
两个事件A和B如果满足 P(A∩B)=P(A)P(B),则称事件A和B是 独立的。
随机变量及其分布
01
随机变量
随机变量是定义在样本空间上的 一个实值函数,表示随机试验的 结果。
02
离散型随机变量
03
连续型随机变量
离散型随机变量的取值可以一一 列举出来,其概率分布可以用概 率质量函数或概率函数表示。
连续型随机变量的取值范围是一 个区间或半开区间,其概率分布 可以用概率密度函数表示。
数理统计初步
02
统计数据的描述
01
统计数据的收集
描述如何通过调查、试验或观测 等方法,获取用于统计分析的数
据。
03
夫链
随机过程的基本概念
随机过程
随机过程是一组随机变量,每个随机 变量对应于时间或空间的一个点。
有限维分布
描述随机过程在有限个时间点上的联 合分布。
独立性
如果随机过程在不相交的时间区间上 的随机变量是独立的,则该随机过程
是独立的。
马尔科夫链及其性质
马尔科夫性
在已知现在状态下,未来与过去独立,即“未来 只取决于现在”。
03
数据的可视化
介绍如何使用图表(如直方图、 散点图等)将数据可视化,以便 更直观地理解数据分布和关系。
02
数据的整理
介绍如何对数据进行分类、排序 和分组,以便更好地理解和分析
。
04
数据的数字特征
介绍如何使用均值、中位数、众 数、方差等统计量来描述数据的
中心趋势和离散程度。
参数估计与置信区间
概率论与数理统计第15讲PPT学习教案
n
所以
E( X )
E( X ) =np i
i 1
可见,服从参数为n和p的二项分布的随 机变量 X的数 学期望 是np.
第20页/共37页
y
X~B(n, p), 则X表示n重贝努里试验中的“成功” 次数
.
若设
Xi
1 0
如第i次试验成功 i=1,2,…,n 如第i次试验失败
则 X= X1+X2+…+Xn
y
e
k 1
k
1
1
k1
k 1
!
e
k 1
k
1
k 1
k 1!
k 1
k1
k 1!
e
k2
k2
k2
! k1
k1
k 1
!
e e e 2
所以 D( X ) E( X 2 ) [E( X )]2 2 2 .
泊松分布的期望和方差都等于参数 .
D( X ) D(Y ) 2E{[X E( X )][Y E(Y )]} D( X ) D(Y ).
第10页/共37页
D( X Y ) D( X ) D(Y ).
证明
D(X Y ) E{[(X Y ) E(X Y )]2} D( X ) D(Y ) 2E{[X E( X )][Y E(Y )]} D( X ) D(Y ).
P{ X k} k e , k 0,1,2,, 0.
k!
则有
E( X ) k k e e k1 e e .
k0 k!
k1 (k 1)!
E X 2 k2 k e k k e
k0
k!
k1 k 1 !
e
k 1
概率论与数理统计第15讲
dx 1 dx z
27
k1k2 z
r1 r2 -1
e
-l z
x 0 z
r1 -1
1
x z
27
f Z ( z ) k1k2 x
0 r1 r2 -1
z
r1 -1
( z - x)
z
r2 -1
e
- l x -l ( z - x ) r2 -1
dx
x x 1 k1k2 z e 1 - dx 0 z z z 在上式中的右端的积分中做一个变元替换 x u z 则积分变成
k2 ( z - x)
r2 -1
e
-l ( z- x)
因为函数in(z-x;0,+∞)在z-x>0时才为1,其他 情况为0,即x<z时才为1其他情况为0, 因此 及 ,代入前面fZ(z)的表示式可得
f Z ( z ) k1k2 x
0 z r1 -1
( z - x)
z
r2 -1
e
- l x -l ( z - x ) r2 -1
11
f(x)=kxr-1e-lx (5.24) 它有两个参数r 和l,在数学上可以证明 r -1 - l x x e d x 当r>0且l>0时,积分 是 0 收敛的,因为它是求式中k的关键,因此 进一步将这个积分化简,令t=lx则
0
x
r -1
e
-l x
dxl
-r
0
(l x )
17
17
定理 5.3假设X~G(l,r), 则 r r E ( X ) , D( X ) 2 l l 证 根据式(5.27)有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22
象这种现代商业社会中的服务流如电工服务 维修服务等等都是常见的。它们都是由 一个参数l代表一段时间里的平均服务数, 从而导致指数分布,爱尔朗分布和泊松 分布,都以这个l为参数,这样的服务过 程也是一个随机过程,被称为泊松流, 属于随机过程理论的研究分支,已经超 出了本书的范围。
23
23
当
6
6
指数分布常用来作为各种“寿命”分布的近 似。如随机服务中的服务时间、某些消 耗性产品(电子元件等)的寿命等等。
7
7
例 5.8某元件寿命X服从参数为l(l-1=1000小 时)的指数分布。3个这样的元件使用 1000小时后,都没有损坏的概率是多少? (假设各元件的寿命相互独立) 解 一个元件使用1000小时后没有损坏的 概率为 x x
xf ( x)d x
l
r
x e
r
-l x
dx
18
18
E( X )
2
l
r
G(r ) G(r 2) (r 1)r 2 2 l G(r ) l
0
x
r 1
e
-l x
dx
因此
D( X ) E ( X ) - [ E ( X )]
2 2
(r 1)r
l
2
-
r
f Z ( z ) k1 x
-
r1 -1
e
-l x
in( x;0, ) in( z - x;0, )d x
26
k2 ( z - x)
r2 -1
e
-l ( z- x)
26
f Z ( z ) k1 x
-
r1 -1
e
-l x
in( x;0, ) in( z - x;0, )d x
2 2
l
r
l
2
19
19
伽玛分布在概率论、数理统计和随机过程中 都有不少应用。 当r=1时,f(x)=le-lxin(x;0,+∞),这就是 前面讲过的指数分布。 当r为正整数时, r l r -1 - l x x e , x0 f ( x) (r - 1)! (5.29) 0, x„ 0
17
17
定理 5.3假设X~G(l,r), 则 r r E ( X ) , D( X ) 2 l l 证 根据式(5.27)有
(5.28)
E( X )
G(r ) 1 G(r 1) r r -t t e d t lG(r ) 0 lG ( r ) l
- 0
21
21
E( X ) 6
可反推出
r
l
10
l
10 l 1.667 6
而这时l也恰好就是他平均一个小时接待的病 人数,因此他一个小时接诊的病人数是另一 个离散型随机变量Y,Y恰好服从参数为l的泊 松分布。当然,他每处理一个病人所需要的 时间Z当然就是服从一阶爱尔朗分布,也就是 指数分布。
fZ ( z)
-
f X ( x) fY ( z - x)d x
(5.31)
25
25
fZ ( z)
-
f X ( x) fY ( z - x)d x
(5.31)
而从准概率密度函数的考虑,我们只需要证 r1 r2 -1 - l z f Z ( z ) kz e in( z;0, ) 明fZ(z)具有 的形式就已经证明了所要的结论,将 r1 -1 - l x f X ( x) k1 x e in( x;0, ) r2 -1 - l y fY ( y ) k2 y e in( y;0, ) 代入式(5.31)得:
1 -1000 -1 1000 P{ X 1000} e d x -e e 1000 1000 1000
因各元件寿命相互独立,因此三个元件 使用1000小时后都没有损坏的概率就是 三个e-1相乘即为e-3≈0.05。
8
8
5.5 伽玛分布
9
9
前面已经讲到,与概率密度函数成正比的函 数称之为准概率密度函数,而从函数曲 线的形状来说,准概率密度函数与概率 密度函数的是一样的,只不过差一个比 例常数。因此准概率密度函数已经完全 包含了分布的信息。 本节介绍伽玛分布,也叫G分布,希腊 大写字母G念伽玛,所以中文叫伽玛分 布。
15
f(x)=kxr-1e-lx (5.24) 因此我们现在可以得到式(5.24)中的常数 r l k为 k G(r ) 因此可以正式定义伽玛分布如量X具有概率密度 r l r -1 - l x x e , x0 f ( x) G(r ) (5.26) 0, x„ 0 其中l>0, r>0,则称X服从伽玛分布或G 分布,简记作X~G(l,r)。 上面的概率密度函数也可以用in函数表 示为 l r r -1 - l x f ( x) x e in( x;0, ) (5.27) G(r )
10
10
服从伽玛分布的随机变量是只取正值的,因 此在x 0时概率密度函数为0。而在x>0 的区间准概率密度的形式是xae-lx, 即当 看到概率密度的形式是x的某次方乘上e 的负指数函数的时候,相应的分布就叫 G分布或者伽玛分布了。但是对于概率 论经常把参数写成以后表示数字特征方 便的形式,因此通常将xa写成xr-1,其中 r=a+1,因此服从G分布的概率密度函数 具有形式 f(x)=kxr-1e-lx (5.24) 11
0 0
2
2
图5-3给出了当l=1时的指数分布的概率密度 形状。
f(x)
1
0.5
x O 5 图5-3
10
3
3
定理 5.2如果随机变量X服从参数为l的指数 分布,则有 1 1 1 E ( X ) , D( X ) 2 , X (5.22) l l l
4
4
证 在计算E(X)和E(X2)时要用到定积分的分部 积分公式 b b b (5.23) u d v uv a - v d u
0
x d e
2
-l x
2
-x e
2
- l x 0
e
2
-l x
2x d x
2
l
E( X )
2
l
2
1 1 D( X ) E ( X ) - [ E ( X )] 2 - 2 l l l 当然就有 1 X D( X ) l
2
所以
2
r -1
e
-(l x)
d(l x)
l
-r
0
t
r -1
e dt
-t
12
12
积分
e d t 中有一个参数为r,每给 0 定一个r值就可以计算出一个积分值,而 且这个积分值还不容易给出解析的表达 式,正因为如此,所以数学家们就将它 视为r的函数,称这个函数为G函数或者 伽玛函数,记为G(r)以后就用数值积分 的办法来计算这个函数值。即自变量为r 的伽玛函数定义为 r -1 - t G(r ) t e d t (5.25)
0
t
r -1
-t
13
13
大家应当习惯这一点,就是数学家发现某个 函数不好算就专门定义一个,例如各三 角函数也是需要数值算法的,但是现在 计算器都支持。在应用数学家园网站的 表达式计算,函数绘制曲线及积分中, 将伽玛函数表示为gam(x)。
14
14
伽玛函数有许多性质,网上都可以搜得到, 但是有两个重要性质为(1)G(r+1)=rG(r), (2)对于正整数n,G(n+1)=n!。 r t r -t 证 G(r 1) t e dt - t d e
29
推论 如果随机变量X1,X2,⋯,Xn相互独立且都 服从参数l一样的伽玛分布,X1~G(l,r1), X2~G(l,r2), ⋯, Xn~G(l,rn), 则 X1+X2+⋯+Xn~G(l,r1+r2+⋯+rn)。
0
0
-t e
r
- t 0
-t
rt
0
r -1
e d t rG(r )
-t
G(1) e d t 1,
0
G(2) 1 G(1) 1, G(3) 2 G(2) 2, G(n) ( n - 1)G( n - 1) ( n - 1)!
15
a a
将指数分布的概率密度代入到数学期望 的计算公式有
E( X ) -x e
0
xl e
-l x
d x -
-l x
0
x d e
-l x
-l x
- l x 0
e
0
dx
l
1
0
le
dx
1
l
5
5
而
E( X )
2
0
x le
2 0
-l x
d x -
这就是排队论中常用到的r阶爱尔朗分布。
20
20
r阶爱尔朗分布的一个例子:假设一个门诊医 生一天看10个病人就可以下班,当然, 处理每一个病人的时间有长有短,有的 病人可能五分钟就可以打发,而有的病 人可能需要仔细检查和处理两个小时, 因此他一天的工作时间X就是一个随机 变量,X服从10阶爱尔朗分布,如果他 平均一天要工作六个小时,即 r 10 E( X ) 6 l l
r1 -1