高考数学常考题型的总结(必修五)

合集下载

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。

同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。

人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分内容:解三角形、数列、不等式。

高考具体要考查那些内容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R Cc B b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+ (变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

知识点分解:(1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。

(2)两角一边,求另外一角和两边,肯定是正弦定理。

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。

同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。

人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分内容:解三角形、数列、不等式。

高考具体要考查那些内容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R Cc B b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+ (变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

知识点分解:(1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。

(2)两角一边,求另外一角和两边,肯定是正弦定理。

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。

同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。

人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分内容:解三角形、数列、不等式。

高考具体要考查那些内容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R CcB b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+(变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

知识点分解:(1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。

(2)两角一边,求另外一角和两边,肯定是正弦定理。

高考数学常考题型的总结必修五

高考数学常考题型的总结必修五

高考数学常考题型的总结必修五Document number:PBGCG-0857-BTDO-0089-PTT1998高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。

同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。

人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分内容:解三角形、数列、不等式。

高考具体要考查那些内容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R Cc B b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+ (变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

知识点分解:(1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。

同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。

人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分内容:解三角形、数列、不等式。

高考具体要考查那些内容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R Cc B b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+ (变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

知识点分解:(1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。

(2)两角一边,求另外一角和两边,肯定是正弦定理。

高考数学常考题型的复习总结(必修五)

高考数学常考题型的复习总结(必修五)

高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。

同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。

人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分内容:解三角形、数列、不等式。

高考具体要考查那些内容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R CcB b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+(变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

知识点分解:(1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。

(2)两角一边,求另外一角和两边,肯定是正弦定理。

高考数学常考题型的汇总(必修五)

高考数学常考题型的汇总(必修五)

高考数学常考题型的汇总(必修五)————————————————————————————————作者:————————————————————————————————日期:高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。

同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。

人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分内容:解三角形、数列、不等式。

高考具体要考查那些内容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R Cc B b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+ (变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

高考数学常考题型的总结(必修五)doc资料

高考数学常考题型的总结(必修五)doc资料

高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。

同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。

人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分内容:解三角形、数列、不等式。

高考具体要考查那些内容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R Cc B b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+ (变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

知识点分解:(1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。

(2)两角一边,求另外一角和两边,肯定是正弦定理。

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。

同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。

人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分内容:解三角形、数列、不等式。

高考具体要考查那些内容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R CcB b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+(变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

知识点分解:(1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。

(2)两角一边,求另外一角和两边,肯定是正弦定理。

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)

高考数学常考题型的总结〔必修五〕对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。

同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。

人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分内容:解三角形、数列、不等式。

高考具体要考查那些内容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R CcB b A a 2sin sin sin ===〔R 为ABC ∆的外接圆半径〕 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+〔变形后〕C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

知识点分解:〔1〕两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。

〔2〕两角一边,求另外一角和两边,肯定是正弦定理。

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。

同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。

人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分内容:解三角形、数列、不等式。

高考具体要考查那些内容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R CcB b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+(变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

知识点分解:(1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。

(2)两角一边,求另外一角和两边,肯定是正弦定理。

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题.同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度.人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分内容:解三角形、数列、不等式.高考具体要考查那些内容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R CcB b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+(变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

知识点分解:(1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。

(2)两角一边,求另外一角和两边,肯定是正弦定理。

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。

同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。

人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分容:解三角形、数列、不等式。

高考具体要考查那些容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R Cc B b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+ (变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

知识点分解:(1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。

(2)两角一边,求另外一角和两边,肯定是正弦定理。

高考的数学常考题型地总结材料(必修五)

高考的数学常考题型地总结材料(必修五)

高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。

同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。

人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分内容:解三角形、数列、不等式。

高考具体要考查那些内容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R Cc B b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+ (变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

知识点分解:(1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。

(2)两角一边,求另外一角和两边,肯定是正弦定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。

同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。

对重难点要了如指掌,能做到有的放矢。

同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。

人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。

必修五主要包括三大部分内容:解三角形、数列、不等式。

高考具体要考查那些内容呢?这是我们师生共同研究的问题。

虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。

下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。

知识点:正弦定理、余弦定理和三角形的面积的公式。

正弦定理:R Cc B b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+ (变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。

知识点分解:(1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。

(2)两角一边,求另外一角和两边,肯定是正弦定理。

(3)等式两边都有边或通过转化等式两边都有边,用正弦定理。

(4)知道三边的关系用余弦定理。

(5)求三角形的面积,或和向量结合用向量的余弦公式。

(6)正余弦定理与其他知识的综合。

必须具备的知识点:三角函数的定义、同角三角函数、诱导公式和三角恒等变换。

可能综合的知识点:三角函数以及正余弦定理的模块内部综合;和与数列的综合、与平面向量的综合、以及与基本不等式的综合。

解三角形常考的题型有:考点一 正弦定理的应用例:在ABC ∆中,60,10,15===A b a ,则=B cos答案:3知识点:正弦定理和三角同角关系思路:(方法不唯一)利用正弦定理先求出B sin ,然后利用同角三角函数的关系可求出B cos 。

考点二 余弦定理的应用例:在∆ABC 中,已知32=a ,26+=c , 60=B ,求b 的值 答案:22=b知识点:余弦定理思路:直接利用余弦定理B ac b c a cos 2222=-+,即可求出b 的值。

考点三 正、余弦定理的混合应用例:设ABC ∆的内角,,A B C 所对边的长分别为,,a b c 。

若2b c a +=,则3sin 5sin ,A B =则角C =_____. 答案:π32 知识点:正余弦定理思路:(方法不唯一)先通过正弦定理求出三边的关系,然后再用余弦定理求角C 。

考点四 三角形的面积问题例:在ABC ∆中,角C B A 、、所对应的边分别为c b a 、、,若B C A 2=+,且,3,1==b a 求ABC S ∆的值答案:23知识点:三角形的面积思路:先求出B ,然后由三角形面积公式即可。

考点五 最值问题例:在ABC ∆中,60,B AC ==,则2AB BC +的最大值为 答案:72知识点:正弦定理和三角恒等变换思路:(方法不唯一)先利用正弦定理,然后利用恒等变换,转化为正弦函数,求正弦函数的值域问题。

考点六 三角形形状的判断例:已知ABC ∆中,B b A a cos cos =,判断三角形的形状答案:等腰三角形或直角三角形知识点:正弦定理和二倍角公式思路:先由正弦定理化解,然后利用二倍角公式讨论即可。

考点七 三角形个数的判断例:在ABC ∆中,角C B A 、、所对应的边分别为c b a 、、,若 30=A ,且,3,1==b a 求c 的值 答案:1或2知识点:正余弦定理思路:分类讨论 60=B 或120=B 两种情况。

考点八 基本不等式在解三角形上的应用例:在ABC ∆中,角C B A 、、所对应的边分别为c b a 、、,若2,4==b a π,求ABC ∆的面积的最大值。

答案:12+知识点:三角形面积公式、余弦定理和基本不等式思路:先利用三角形面积公式,然后用余弦定理,最后基本不等式求最值。

例:设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c -=,求tan()A B -的最大值。

答案:34知识点:正弦定理、正切差公式和基本不等式思路:先通过正弦定理,得到B A tan 4tan =,然后正切差公式,最后应用基本不等式。

考点九 平面向量在解三角形上的应用例:在ABC ∆中,6,AC AB ⋅=ABC ∆的面积33A 答案:3π 知识点:三角形面积公式和平面向量中的余弦公式思路:先利用三角形面积公式,然后平面向量中的余弦公式即可。

例:在ABC ∆中,边c 所对的角为C ,向量)2sin ,2(cos ),2sin ,2(cosC C n C C m -==,且向量m 与n 的夹角是3π。

求角C 的大小 答案:3π=C知识点:向量中的坐标运算和余弦公式思路:先利用向量的坐标运算和余弦公式转化,然后求解。

考点十 数列在解三角形上的应用例:设ABC △的内角A B C ,,所对的边长分别为a b c ,,,若a b c ,,依次成等比数列,角B 的取值范围. 答案:]3,0(π知识点:余弦定理、等比数列和基本不等式思路:先用等比数列,然后余弦定理,最后用基本不等式求最值。

考点十一 解三角形的实际应用例:如图,D C B A 、、、都在同一个与水平面垂直的平面内,D B 、为两岛上的两座灯塔的塔顶。

测量船于水面A 处测得B 点和D 点的仰角分别为75, 30,于水面C 处测得B 点和D 点的仰角均为 60,km AC 1.0=。

试探究图中D B 、间距离与另外哪两点间距离相等,然后求D B 、的距离(计算结果精确到km 01.0,414.12≈,449.26≈)答案:0.33km知识点:正弦定理和三角形的相关知识思路:先通过三角形的相关知识进行转化,然后利用正弦定理就可以求出长度。

考点十二 解三角形的综合题型例:已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c +--=(1)求A (2)若2a =,ABC ∆的面积为3;求,b c 。

答案:(1)60=A (2)2b c ==知识点:正余弦定理、三角形面积公式、三角恒等变换和诱导公式思路:(1)先通过正弦定理和诱导公式转化,转化完之后,利用三角恒等变换求出A 。

(2)利用角A ,再通过余弦定理,就可以求出,b c 的值。

数列数列是高考的必考知识点,每年都有考题,一般考查分数为10-17分。

考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与不等式,函数等知识点进行综合考查。

以前考题比较难一些,现在多数比较简单,但是常用的方法还是比较经典的。

知识点:数列的递推公式,数列的求通项公式,数列的求和,等差数列和等比数列知识点分解:(1)递推公式:建立前n 项和n S 和n a 的关系。

(2)等差数列的通项公式、公式、性质、等差中项以及前n 项和n S 等问题。

(3)等比数列的通项公式、公式、性质、等比中项以及前n 项和n S 等问题。

(4)数列求通项公式的几种方法。

(5)数列求和的几种方法。

(6)数列的综合问题必须具备的知识点:函数、导数、不等式,平面向量、三角函数等相关知识。

可能综合的知识点:数列的内部综合、与三角函数的综合、与导数的综合、以及与不等式的综合。

数列的常见题型:考点一 n S 和n a 的关系⎩⎨⎧=≥-=-1211n a n S S a n n n例:数列{}n a 的前n 项和为,n S 已知2n S n =,求8a 的值,以及数列{}n a 的表达式。

答案:158=a ,12-=n a n知识点:递推公式思路:已知项数n ,求具体值;未知项数n ,求表达式。

考点二 等差数列1等差数列的公差和通项公式d n a a n )1(1-+=,(等差数列的通项公式,知三求一;如果已知d a ,1,那么求的是数列}{n a 的通项公式) d m n a a m n )(-+=(等差数列通项公式的变形公式)例:已知等差数列}{n a 中,3,131-==a a ,求数列的公差d 以及数列}{n a 的通项公式;答案:2-=d ,n a n 23-=知识点:等差的公差和通项公式思路:利用数列的通项公式先求出公差d ,然后求数列}{n a 的通项公式。

2 等差数列的性质q p m n +=+(都是正整数),q p m n a a a a +=+,q p n +=2(都是正整数),q p n a a a +=2,n a 是p a 和q a 的等差中项。

例:已知等差数列}{n a 中,7,195-==a a ,求131a a +以及7a 的值答案:6131-=+a a ,37-=a知识点:等差数列的性质思路:等差数列的性质和等差中项可得到。

3 等差数列的求和2)1()(211d n n na a a n S n n -+=+=(知三求一,如果已知d a ,1,那么求的是n S 的表达式), 21+=n n na S (n 为奇数)或m m a m S )12()12(-=-。

例:设等差数列{}n a 的前n 项和为n S ,若36324S S ==,,则9S 的值答案:63知识点:等差数列的求和思路:(方法不唯一)通过等差数列前n 项和为n S ,先求出1a 和d ,然后再利用等差数列前n 项和,求9S 。

4 等差数列求和中的最值问题n d a n d d n n na S n )2(22)1(121-+=-+=类似于二次函数,当0>d 时,n S 有最小值;当0<d 时,n S 有最大值。

例:设等差数列{n a }的前n 项和为n S ,已知2,93-==d a ,求n S 中的最大值答案:49.知识点:等差数列的和或二次函数的知识思路:先利用等差数列的前n 项和n S 表达式,然后利用二次函数的知识求最大值。

相关文档
最新文档