(完整版)专升本数学公式大全

合集下载

专升本数学常用公式

专升本数学常用公式

专升本数学常用公式一、代数公式1.二次方程求根公式:对于一元二次方程ax^2 + bx + c = 0:若b^2-4ac > 0,方程有两个不相等的实根;若b^2-4ac = 0,方程有两个相等的实根;若b^2-4ac < 0,方程没有实根;方程的解公式为:x = (-b ± √(b^2-4ac))/(2a)。

2.幂函数的性质:a^m*a^n=a^(m+n)(a^m)^n = a^(mn)a^0=1(a≠0)a^-m=1/(a^m)(a≠0)a^m * b^m = (ab)^m(a/b)^m=a^m/b^m(b≠0)3.对数函数的性质:loga(xy) = logax + logayloga(x/y) = logax - logayloga(x^n) = nlogaxloga1 = 0logaa = 1loga(a^m) = m4.指数函数的性质:a^x*a^y=a^(x+y)(a^x)^y = a^(xy)(a/b)^x=a^x/b^x(ab)^x = a^x * b^xa^x/a^y=a^(x-y)二、几何公式1.三角函数的定义:在直角三角形中,设角A的对边、邻边、斜边分别为a,b,c,定义如下:sinA = a/ccosA = b/ctanA = a/bcotA = b/asecA = c/bcscA = c/a2.三角函数的基本关系:sin^2A + cos^2A = 1tanA = sinA / cosAcotA = 1 / tanAtanA * cotA = 13.勾股定理:直角三角形中,设边长分别为a,b,c,c是斜边,则有:c^2=a^2+b^24.三角形的面积公式:设三角形的底边为b,高为h,则有:三角形面积=(1/2)*b*h5.三角形的海伦公式:设三角形的三边长分别为a,b,c,半周长为s,则有:三角形面积=√(s(s-a)(s-b)(s-c))6.圆的面积和周长:设圆的半径为r,则有:圆的面积=πr^2圆的周长=2πr三、微积分公式1.导数的基本性质:f'(x) = lim(h→0) (f(x+h) - f(x))/hd/dx (c) = 0 (c为常数)d/dx (x^n) = nx^(n-1)d/dx (sinx) = cosxd/dx (cosx) = -sinxd/dx (tanx) = sec^2xd/dx (cotx) = -csc^2xd/dx (e^x) = e^xd/dx (logax) = 1/(xloga)d/dx (lnx) = 1/x2.积分的基本性质:∫ (c)dx = cx + C (c为常数)∫ (x^n)dx = (1/(n+1))x^(n+1) + C (n≠-1)∫ (sinx)dx = -cosx + C∫ (cosx)dx = sinx + C∫ (sec^2x)dx = tanx + C∫ (csc^2x)dx = -cotx + C∫ (e^x)dx = e^x + C∫ (1/x)dx = ln,x, + C四、概率与统计公式1.事件的概率计算公式:设A为事件,P(A)表示事件A发生的概率,则有:P(A)=n(A)/n(S)其中,n(A)为事件A的样本点数,n(S)为样本空间的样本点数。

成人高考专升本高等数学公式大全

成人高考专升本高等数学公式大全

成人高考专升本高等数学公式大全1.代数基本公式:-平方差公式:$a^2-b^2=(a+b)(a-b)$-三角恒等式:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab\cos C$- 正弦余弦定理:$\sin^2 A + \cos^2 A = 1$- 二项式定理:$(a + b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$2.函数与极限公式:-导数的四则运算:- $(u \pm v)' = u' \pm v'$- $(uv)' = u'v + uv'$- $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$- 泰勒公式:$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2!} + \cdots$-常用极限:- $\lim_{x \to 0}\frac{\sin x}{x} = 1$- $\lim_{x \to \infty}(1 + \frac{1}{x})^x = e$- $\lim_{x \to \infty}(1 + \frac{k}{x})^x = e^k$- $\lim_{n \to \infty}(1 + \frac{x}{n})^n = e^x$3.微分公式:-求导法则:-$(c)'=0$- $(x^n)' = nx^{n-1}$-$(e^x)'=e^x$- $(\ln x)' = \frac{1}{x}$-高阶导数:-$(f(x)g(x))''=f''(x)g(x)+2f'(x)g'(x)+f(x)g''(x)$-$(f(g(x)))''=f''(g(x))(g'(x))^2+f'(g(x))g''(x)$-微分运算法则:- $\frac{d(u \pm v)}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$ - $\frac{d(kv)}{dx} = k\frac{dv}{dx}$- $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$- $\frac{d(\frac{u}{v})}{dx} = \frac{v\frac{du}{dx} -u\frac{dv}{dx}}{v^2}$4.积分公式:-不定积分法则:- $\int k \,dx = kx + C$- $\int x^n \,dx = \frac{x^{n+1}}{n+1} + C, (n \neq -1)$- $\int e^x \,dx = e^x + C$- $\int \frac{1}{x} \,dx = \ln ,x, + C$-定积分法则:- $\int_a^b kf(x) \,dx = k\int_a^b f(x) \,dx$- $\int_a^b [f(x) + g(x)] \,dx = \int_a^b f(x) \,dx +\int_a^b g(x) \,dx$- $\int_a^b (f(x) - g(x)) \,dx = \int_a^b f(x) \,dx -\int_a^b g(x) \,dx$5.级数公式:-等比级数求和:$S_n = \frac{a(1-q^n)}{1-q}$,其中 $S_n$ 是前n 项和,a 是首项,q 是公比。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式(全)常数项级数:是发散的调和级数:等差数列:等比数列:nnn n qqq qq nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。

存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n nn n nn n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim2111lim1211 ρρρρρρρρ。

的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。

收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p np nnn u u u u u u u u pnn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x xx x x x x n n nn n nn n时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于 ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n nn x n fx f x f f x f x R x f x x n fR x x n x fx x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xxxx x x xn n m m m xm m mx x n n nm可降阶的高阶微分方程类型一:()()n y f x =解法(多次积分法):(1)()()n du u yf x f x dx-=⇒=⇒令多次积分求类型二:''(,')y f x y = 解法:'(,)dp p y f x p dx=⇒=⇒令一阶微分方程类型三:''(,')y f y y =解法:'(,)dp dp dy dp p y pf y p dxdy dxdy=⇒==⇒⇒令类型二类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y)((一阶齐次线性)。

专升本数学公式总结

专升本数学公式总结

专升本数学公式总结
数学是一门重要且广泛应用的学科,掌握数学公式对于专升本考试来说至关重要。

以下是我对于专升本数学公式的总结:
1. 代数公式:
- 二项式定理:(a+b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + ... + C(n, k)a^(n-k)b^k + ... + C(n, n)b^n
- 二次方程求根公式:x = [-b ± √(b^2-4ac)] / (2a)
- 一次方程组解法:通过消元法、代入法、等方法解得未知数的值
2. 几何公式:
- 圆的周长:C = 2πr
- 圆的面积:A = πr^2
- 三角形的面积:A = 1/2 * 底边长 * 高
3. 概率统计公式:
- 排列公式:P(n, m) = n! / (n-m)!
- 组合公式:C(n, m) = n! / (m!*(n-m)!)
4. 导数公式:
- 基本导数公式:常数函数导数为0,x^n的导数为nx^(n-1),e^x的导数为e^x,ln(x)的导数为1/x,sin(x)的导数为cos(x),cos(x)的导数为-sin(x) - 求复合函数的导数:根据链式法则求解
这些公式是专升本数学考试中经常使用的,掌握这些公式可以帮助我们在考试中更加高效地解题。

除了掌握公式外,还需要切实进行练习和理解,才能在考试中取得好成绩。

专升本数学公式大全及解析

专升本数学公式大全及解析

专升本数学公式大全及解析
很抱歉,由于文本输入长度限制,无法给出完整的专升本数学公式大全及解析。

以下是一些常见的数学公式及简要解析:
1. 一元二次方程公式:ax^2 + bx + c = 0
解析:可以使用求根公式或配方法等来求解一元二次方程的根。

2. 平方差公式:(a + b)^2 = a^2 + 2ab + b^2
解析:平方差公式可以帮助我们快速展开平方求和。

3. 三角函数的和差公式:
- sin(A ± B) = sin A cos B ± cos A sin B
- cos(A ± B) = cos A cos B ∓ sin A sin B
解析:和差公式可以帮助我们计算三角函数的和差。

4. 概率公式:
- 事件的概率 P(A) = 事件 A 的发生次数 / 总的试验次数
- 与事件 A 相反的事件的概率 P(A') = 1 - P(A)
- 事件 A 和 B 同时发生的概率P(A ∩ B) = P(A) * P(B|A)
- 事件 A 和 B 至少发生一个的概率 P(A ∪ B) = P(A) + P(B) - P(A ∩ B)
解析:概率公式可以帮助我们计算事件发生的可能性。

这些只是数学公式的一小部分,数学是个广阔的学科,公式也非常多。

希望这些简要的公式介绍对你有所帮助。

如果你对特
定的数学公式或解析有更具体的需求,请告诉我,我将尽力为你提供更准确和详细的信息。

专升本高等数学公式大全

专升本高等数学公式大全

专升本高等数学公式大全以下是一些高等数学常用的公式:1. 导数与微分公式:- 基本导数公式:(常数函数)' = 0,(x^n)' = nx^(n-1),(e^x)' = e^x,(a^x)' = a^xlna,(ln x)' = 1/x,(sin x)' = cos x,(cos x)' = -sin x,(tan x)' = sec^2 x,(cot x)' = -csc^2 x,(sec x)' = sec x tan x,(csc x)' = -csc x cot x- 乘积法则:(uv)' = u'v + uv'- 商法则:(u/v)' = (u'v - uv')/v^2- 链式法则:如果y = f(u)和u = g(x),则dy/dx = dy/du * du/dx2. 微分中值定理:- 拉格朗日中值定理:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在一个c∈(a, b),使得f'(c) = (f(b) - f(a))/(b - a)- 柯西中值定理:如果函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,且g'(x) ≠ 0,则存在一个c∈(a, b),使得[f'(c)/g'(c)] = [f(b) - f(a)]/[g(b) - g(a)]3. 积分公式:- 基本积分公式:∫k dx = kx + C,∫x^n dx = (x^(n+1))/(n+1) + C (n≠-1),∫(1/x) dx = ln|x| + C,∫e^x dx = e^x + C,∫a^x dx = (a^x)/lna + C,∫sin x dx = -cos x + C,∫cos x dx = sin x + C,∫t an x dx = -ln|cos x| + C,∫cot x dx = ln|sin x| + C,∫sec x dx = ln|sec x + tan x| + C,∫csc x dx = ln|csc x - cot x|+ C- 线性性质:∫[a*f(x) + b*g(x)] dx = a∫f(x) dx + b∫g(x) dx- 分部积分法:∫u dv = uv - ∫v du4. 泰勒公式:- 一阶泰勒公式:f(x)≈f(a) + f'(a)(x - a)- 麦克劳林公式:f(x)≈f(a) + f'(a)(x - a) + f''(a)(x - a)^2/2! + ... + f^n(a)(x - a)^n/n!以上仅是一些高等数学中的基本公式,实际应用中还有更多公式与定理。

专升本数学公式大全(完整版)

专升本数学公式大全(完整版)

第一部分初等数学第一节初等代数----------------------------------------------1第二节三角函数----------------------------------------------5第三节初等几何----------------------------------------------7第四节平面解析几何----------------------------------------8第二部分专接本数学知识考点大全第一节基本初等函数----------------------------------------10第二节函数、极限-------------------------------------------12第三节导数---------------------------------------------------13第四节积分---------------------------------------------------16第五节向量空间(数一)-----------------------------------20第六节多元微分----------------------------------------------23第七节二重积分、曲线积分(数一)---------------------25第八节级数---------------------------------------------------26第九节微分方程---------------------------------------------29第十节行列式------------------------------------------------31第十一节矩阵------------------------------------------------32第十二节向量组---------------------------------------------35第十三节方程组---------------------------------------------36严谨为师勤奋为学严谨为师勤奋为学1第一部分初等数学一、初等代数1、一元二次方程20ax bx c ++=(0a ≠),(1)根的判别式24b ac∆=-当0∆>时,方程有两个不相同的实根;当0∆=时,方程有两个相同的实根;当0∆<时,方程有共轭复根。

(完整版)专升本数学公式大全

(完整版)专升本数学公式大全

导数公式:专升本高等数学公式大全2(tgx) sec x (arcsin x)(ctgx) 2 csc x(secx) secx tgx (arccosx)(cscx) cscx ctgx(a x) a x I na(arctgx) (Iog a X) 1 (arcctgx)1 1a r 2 1 X2.1 X2 1 X2基本积分表:三角函数的有理式积分:tgxdx In cosx C ctgxdx In sin x C secxdx In secx tgx Ccscxdx In cscx ctgx Cdx 2 .2 sec xdx tgx C cos xdx 2・2 csc xdx ctgx C sin xsecx tgxdx secx Cdx ~2 2 a x 1 丄x arctg C a adx x2a2dx2 2a x 丄ln|x a2a |x a1 , a x In2a a xcscx ctgxdx cscx Cxa x dx CIn ashxdx chx Cchxdx shx C异—arcsin 仝C “ a2 x2 adx 2 2 ——2 2 "( x x a ) C.x a2 2nn sin xdx ncos xdx 0 0'、 2 a dx x 2 x 2 a2x2a2 dx x ..x2a22<a2 2x dx x ■ a2 2 xI n2a . / In(x2a2I ——In x2x2 a2)2a . x arcs in C2 2 a2usinx 2,cosx1 u 2一些初等函数: 双曲正弦:shx 双曲余弦:chx 双曲正切:thxtg2,dx2du V~u\两个重要极限:xxe e2 xxe e2 x x shx e e xxchx e esin x ’ lim 1 x 0x lim(1丄广 x xe 2.718281828459045…arshx ln(x x 2 1) archx In (x x 2 1)arthx 1|n1 x2 1 三角函数公式: •诱导公式:-和差化积公式:sin( )sin coscos sin cos( )cos cossin sin、tg tgtg()1 tg tgctg()ctgctg 1ctgctg-和差角公式: sin sin sinsincos cos cos cos2sin cos — 2 2 2 cossin —222 cos cos —2 2 2 sin ------- s in ------2 2sin 2 2si n cos2 2cos2ctg2 ctg2 2ctgtg2 2tg 2•倍角公式:cos1 -半角公式: 1 1 2si n2 2cos ・2sin sin3 3si ncos3 4cos3tg33tg4sin33cos-3tg~2sin —21 cos21 coscos—21 cos21 cos sinsin 1 cosct g-1 cos sin1 cos sin 1 cos-正弦定理:,一sin A sin B 亠2Rsin C -余弦定理:b22abcosC-反三角函数性质: arcs inxarccosx arctgx arcctgx高阶导数公式一一莱布尼兹( Leibniz公式:(uv)(n)nCnU(nk 0k)v(k)u(n)v nu(n 1)v n(n 1)u2!(n 2)vn(n 1) (n kk!1) (n k)v(k)uv(n)中值定理与导数应用: 拉格朗日中值定理:柯西中值定理: f(b)f(b)f (a)f (a)F ()f ( )(b a))当F(x) x时,曲率:F(b) F(a)柯西中值定理就是拉格朗日中值定理。

专升本数学公式汇总

专升本数学公式汇总
五、板书设计:
小数加减法(一)
6.45+4.29=10.74 6.45-4.29=2.16
6.45 6.45
+ 4.29- 4.29
10.742.16
六、习题精选
计算竞技场
1、口算:
3.4+0.57.5+2.18.5-2.5
9.9-7.78.6-2.55.9+3.6
5.6-2.43.8-1.6
2、计算下列各题并且验算
教学重点
1、小数加、减法的笔算方法以及小数加减混合运算。
2、能根据数据特点正确应用加法的运算定律进行小数的简便计算。
教学难点
1、理解小数点对齐,即数位对齐的道理。
2、灵活选用方法使混合运算简便。
3、感受解题策略的多样化和灵活性。
教学准备
课本、课件。
教学过程
教学内容
学生活动
补充、总结
一、复习旧知,引出新知。
成绩面前不炫耀,永远保持着踏踏实实,平平常常的生活态度和格调。以成熟,豁达,自信,睿智处世做事。就ᅳ定会拥有属于自己的一片广阔的天地。
6.456.45
+ 4.29- 4.29
10.742.16
(2)师:大家同意这样写竖式吗?
(3)比较整数加减法和小数加减法异同:计算方法上都是一位对着一位减是一样的,不同之处在于小数点,盖住小数点就是大家熟悉的整数减法了。
(4)小结:从这两个算式我们看出小数加减法和整数是相似的,只是要多小数点。
(5)计算:1.25+0.45 4.38-1.28
得数的小数部分末尾出现什么了?像这样的情况你知道还可以怎么写吗?根据是什么?
(6)小结:当小数加减法得数的小数部分末尾出现0的时候,我们要对结果进行化简,向横式汇报的时候就写最简结果就可以了,这也是我们数学简洁美的一种体现。

专升本数学公式大全

专升本数学公式大全

专升本数学公式大全
专升本数学公式大全
一、因式分解
注:对于公式里面的a和b可以填充任何一个代数式常用等价代换
当时
二、三角函数
特殊角度函数值
三、指数函数的运算
四、对数函数运算
五、数列相关公式
常见等价无穷小量:当时
一、基本初等函数求导公式
高阶导数:
二、导数的四则运算法则
三、微分基本公式
四、微分四则运算
五、不定积分公式
六、常用凑微分的等式
七、广义积分敛散性
1)
备注:积分区间为无穷
2)
备注:积分区间有限,被积分函数无界
3)
4)
八、定积分应用
一)面积公式
一、二元函数的极值
设函数在点的某一邻域内有定义,如果在该邻域内任何异于的点,总有,则称点为的极大值点(或极小值点),称为
的极大值(或极小值).
二、极值存在的必要条件
设在点处取得极值,且在该店的偏导数存在,则必有
.
注:二元函数可能的极值点是两个偏导数都等于零的点(驻点),或偏导数不存在的点.
三、极值存在的充分条件
设在点的某一邻域内有连续的一阶与二阶偏导数,且点为函数的驻点,即
.

,则
1、当,且(或)时,为
的极大值点,为的极大值;当,且(或)时,为的极小值.
2、当时,不为的极值.
3、当时,可能为的极值,也可能不为极值.。

专升本数学必考公式大全

专升本数学必考公式大全

专升本数学必考公式大全
以下是一些专升本数学考试中常用的公式:
1. 平方差公式:(a±b)² = a² ± 2ab + b²
2. 二次方程的根公式:对于 ax² + bx + c = 0,根的公式为 x = [-b ± √(b² - 4ac)] / 2a
3. 三角函数和三角恒等式:
- 正弦定理:a/sinA = b/sinB = c/sinC
- 余弦定理:c² = a² + b² - 2abcosC
- 正弦恒等式:sin(A ± B) = sinAcosB ± cosAsinB
- 余弦恒等式:cos(A ± B) = cosAcosB ∓ sinAsinB
4. 指数与对数运算:
- a^x = b,则x = log(a, b)。

其中,log(a, x)表示以a为底,x
的对数。

- 对数公式:log(a*b) = loga + logb;log(a/b) = loga - logb
5. 概率公式:
- 事件A的概率:P(A) = n(A) / n(S),其中n(A)表示事件A
的样本点个数,n(S)表示样本空间的样本点个数。

- 事件A和事件B同时发生的概率:P(A∩B) = P(A) * P(B|A),其中P(B|A)表示在事件A发生的条件下,事件B发生的概率。

- 事件A和事件B至少一个发生的概率:P(A∪B) = P(A) +
P(B) - P(A∩B)
这只是一些常用的数学公式,专升本数学考试还涵盖其他各个分支的知识,建议针对具体考试大纲进行深入学习和准备。

专接本数学公式大全

专接本数学公式大全

专接本数学公式大全在学习数学的过程中,掌握并熟练运用各种数学公式是非常重要的。

数学公式既是数学知识的精华,也是解题的利器。

为了帮助广大专接本学生更好地掌握数学公式,本文将为大家梳理一份全面、可靠的数学公式大全,供大家参考使用。

一、初等数学公式1. 代数运算公式:- 二项式定理:$ (a+b)^n = C_n^0a^n + C_n^1a^{n-1}b + C_n^2a^{n-2}b^2 + \ldots + C_n^na^0b^n $- 平方差公式:$ (a-b)^2 = a^2 - 2ab + b^2 $- 平方和公式:$ (a+b)^2 = a^2 + 2ab + b^2 $2. 特殊函数公式:- 正弦函数和余弦函数的和差化积:$ \sin(a \pm b) = \sin a \cos b \pm \cos a \sin b $- 正弦函数和余弦函数的二倍角公式:$ \sin(2a) = 2\sin a \cos a $- 正切函数的和差化积:$ \tan(a \pm b) = \frac{\tan a \pm \tan b}{1\mp \tan a \tan b} $3. 平面解析几何公式:- 点到直线的距离公式:$ d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} $- 两直线夹角的余弦公式:$ \cos \theta = \frac{A_1A_2 +B_1B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}} $- 两点间距离的公式:$ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $二、高等数学公式1. 导数和微分公式:- 反函数求导公式:$ (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} $- 乘积法则:$ (uv)' = u'v + uv' $- 链式法则:$ (f(g(x)))' = f'(g(x)) \cdot g'(x) $2. 积分公式:- 不定积分的线性性质:$ \int (af(x) + bg(x))dx = a\int f(x)dx + b\int g(x)dx $- 分部积分公式:$ \int u dv = uv - \int v du $- 牛顿-莱布尼茨公式:$ \int_a^b f(x)dx = F(b) - F(a) $3. 常微分方程公式:- 一阶线性齐次常微分方程的解法:$ \frac{dy}{dx} + P(x)y = 0, y = Ce^{- \int P(x)dx} $三、线性代数公式1. 矩阵公式:- 矩阵乘法的分配律:$ A(B+C) = AB + AC $- 矩阵的转置运算公式:$ (A^T)_{ij} = A_{ji} $2. 向量公式:- 向量内积的性质:$ \textbf{a} \cdot \textbf{b} = \|\textbf{a}\|\|\textbf{b}\| \cos \theta $3. 行列式公式:- 行列式交换行列性质:$ |A| = -|A^T| $- 行列式展开定理:$ |A| = \sum_{j=1}^n (-1)^{i+j}a_{ij}M_{ij} $四、概率论与数理统计公式1. 随机变量和概率公式:- 期望的线性性质:$ E(aX + bY) = aE(X) + bE(Y) $- 条件概率公式:$ P(A|B) = \frac{P(AB)}{P(B)} $- Bayes公式:$ P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^n P(B|A_i)P(A_i)} $2. 统计估计和假设检验公式:- 正态总体均值的置信区间:$ \bar{X} -z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} +z_{\alpha/2}\frac{\sigma}{\sqrt{n}} $- 卡方分布的性质:$ X^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} $以上仅是数学公式大全的一部分,希望能帮助到广大专接本学生更好地学习和掌握数学知识。

专升本高等数学公式大全

专升本高等数学公式大全

专升本高等数学公式大全1.极限公式:- $\lim\limits_{x\to a}(c)=c$,常数函数的极限等于常数c- $\lim\limits_{x\to a}(x)=a$,自变量x的极限等于自变量x的值a- $\lim\limits_{x\to a}(x^n)=a^n$,幂函数的极限等于它的自变量的值的n次幂- $\lim\limits_{x\to a}(c\cdot f(x))=c\cdot\lim\limits_{x\to a}(f(x))$,常数与函数的乘积的极限等于常数与函数极限的乘积- $\lim\limits_{x\to a}(f(x)+g(x))=\lim\limits_{x\toa}(f(x))+\lim\limits_{x\to a}(g(x))$,函数和的极限等于函数极限的和- $\lim\limits_{x\to a}(f(x)-g(x))=\lim\limits_{x\toa}(f(x))-\lim\limits_{x\to a}(g(x))$,函数差的极限等于函数极限的差- $\lim\limits_{x\to a}(f(x)\cdot g(x))=\lim\limits_{x\to a}(f(x))\cdot \lim\limits_{x\to a}(g(x))$,函数积的极限等于函数极限的积- $\lim\limits_{x\toa}(\frac{f(x)}{g(x)})=\frac{\lim\limits_{x\toa}(f(x))}{\lim\limits_{x\to a}(g(x))}$,函数商的极限等于函数极限的商(如果分母函数不等于0)2.微分和导数公式:- $y=f(x)$,则$dy=f'(x)\cdot dx$,微分形式为微分=导数乘以微小增量-$(c)'=0$,常数的导数等于0- $(x^n)'=nx^{n-1}$,幂函数的导数等于自变量的幂次减1再乘以原来的幂次-$(e^x)'=e^x$,指数函数的导数等于指数函数本身- $(\ln x)'=\frac{1}{x}$,自然对数函数的导数等于1除以自变量3.积分公式:- $\int c\,dx=cx$- $\int x^n\,dx=\frac{x^{n+1}}{n+1}+C$,幂函数的不定积分等于自变量的幂次加1再除以幂次加1再加上常数C- $\int e^x\,dx=e^x+C$,指数函数的不定积分等于自身再加上常数C- $\int \frac{1}{x}\,dx=\ln,x,+C$,自然对数函数的不定积分等于自然对数绝对值再加上常数C。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式(全)常数项级数:2)1(32111112nn n q q q q q nn +=++++--=++++- 等差数列:等比数列: 常见数列的前n 项和:)1(21321+=++++n n n2)12(531n n =-++++ )14(31)12(53122222-=-++++n n n)12)(1(613212222++=++++n n n n )2)(1(31)1(433221++=+++⋅+⋅+⋅n n n n n111)1(1431321211+-=+++⋅+⋅+⋅n n n'''0y py q ++=(二阶线性常系数齐次微分方程)解法(特征方程法):21,20p q λλλ++=⇒=(一)122121240x x p q y c e c e λλλλ∆=->⇒≠⇒=+(二)12120()x y c c x e λλλλ∆=⇒==⇒=+(三)12120,(cos sin )x i i y e c x c x αλαβλαβββ∆<⇒=+=-⇒=+1.导数公式:x x 2sec )(tan ='x x 2c s c )(c o t -=' x x x c o t c s c )(c s c -=' x x x t a n s e c )(s e c =' x x a a a ∙='ln )( x x e e =')( a x x a ln 1)(log ='211)(a r c s i n x x -=' 211)(a r c c o s x x --=' 211)(arctan x x +=' 211)c o t (x x a r c +-=' x x f x x f x f x ∆'-∆+'=''→)()(l i m)(0基本积分表:三角函数的有理式积分:两个重要极限:常用三角函数公式:x x 22sec tan 1=+x x 22c s c c o t 1=+x xx 2tan 1tan 22tan -=2cos 12sin 2x x -=2c o s 12c o s 2x x +=x x x s i n c o s 12t a n -=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ...590457182818284.2)11(lim 1sin lim==+=∞→→e xx xx x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ中值定理与导数应用:拉格朗日中值定理。

专升本数学公式汇总

专升本数学公式汇总

专升本数学公式汇总数学是一门理科学科,也是工科、经管类等专业的基础学科。

对于准备参加专升本考试的考生来说,掌握数学相关的公式和定理是非常重要的。

以下是专升本数学公式的汇总:1.代数1.1一次方程与二次方程一次方程:ax+b=0(a≠0)二次方程:ax²+bx+c=0(a≠0)解一次方程:x=-b/a求二次方程的解:x=(-b±√(b²-4ac))/(2a)1.2指数与对数指数:an指数与对数的运算性质:a^m*a^n=a^(m+n)a^m/a^n=a^(m-n)(a^m)^n = a^(mn)a^1/n=√a对数的性质:loga(mn) = loga(m) + loga(n)loga(m/n) = loga(m) - loga(n)loga(m^n) = n*loga(m)loga(am) = m1.3排列组合排列:从n个不同的元素中,取出m(m<=n)个元素,按照一定的顺序排列。

Anm = n! / (n-m)!组合:从n个不同的元素中,取出m(m<=n)个元素,只关心元素的种类。

Cnm = n! / (m!(n-m)!)1.4概率与统计概率:事件A发生的概率为P(A)=事件A发生的次数/试验的总次数独立事件的概率乘积定理:P(A∩B)=P(A)*P(B)统计:均值、方差、标准差2.几何2.1三角函数sinθ = 对边/斜边cosθ = 临边/斜边tanθ = 对边/临边2.2三角恒等式sin²θ + cos²θ = 11 + tan²θ = sec²θ1 + cot²θ = csc²θ2.3圆与圆锥圆面积:A=πr²圆周长:C=2πr圆锥体积:V=(1/3)πr²h2.4空间几何点到直线的距离:d=,Ax0+By0+C,/√(A²+B²)直线之间的夹角:cosθ = (A₁A₂ + B₁B₂ + C₁C₂) / (√(A₁²+B₁²+C₁²) * √(A₂²+B₂²+C₂²))平面与平面的夹角:cosθ = (A₁A₂ + B₁B₂ + C₁C₂) / (√(A₁²+B₁²+C₁²) * √(A₂²+B₂²+C₂²) * √(A₃²+B₃²+C₃²))3.微积分3.1极限与连续极限的定义:lim(x→a)f(x) = L极限的性质:lim(x→a)(f(x)±g(x)) = lim(x→a)f(x) ± lim(x→a)g(x) lim(x→a)f(x)g(x) = lim(x→a)f(x) * lim(x→a)g(x)lim(x→a)f(x)/g(x) = lim(x→a)f(x) / lim(x→a)g(x)连续函数:f(x)在x=a处连续的条件是:f(a)存在lim(x→a)f(x)存在lim(x→a)f(x) = f(a)3.2导数与微分导数的定义:f'(x) = lim(h→0)(f(x+h)-f(x))/h导数的性质:4.数学分析4.1一元函数极值极值点与最值:f'(x0)=0,x=x0为f(x)的极值点当f''(x0)<0时,x=x0为f(x)的最大值点当f''(x0)>0时,x=x0为f(x)的最小值点4.2一元函数曲线的凹凸性凹凸性:如果对于函数f(x)的任意两个点x1和x2有f''(x)>0,则称f(x)在区间(a,b)上是凹函数;如果对于函数f(x)的任意两个点x1和x2有f''(x)<0,则称f(x)在区间(a,b)上是凸函数。

专升本高等数学公式大全

专升本高等数学公式大全

专升本高等数学公式大全函数的导数公式:1.常数函数的导数为0:(k)'=0;2. 幂函数的导数公式:(x^n)' = nx^(n-1);3. 指数函数的导数公式:(a^x)' = a^x * ln(a);4. 对数函数的导数公式:(loga^x)' = 1/(x * ln(a));5.三角函数的导数公式:- (sinx)' = cosx;- (cosx)' = -sinx;- (tanx)' = sec^2(x);- (cotx)' = -csc^2(x);- (secx)' = secx * tanx;- (cscx)' = -cscx * cotx;极限公式:1. 常数的极限是它本身:lim (c) = c;2.极限的线性性质:- lim (f(x) ± g(x)) = lim (f(x)) ± lim (g(x));- lim (k * f(x)) = k * lim (f(x));3.极限的乘法法则:- lim (f(x) * g(x)) = lim (f(x)) * lim (g(x));4.极限的除法法则:- lim (f(x) / g(x)) = lim (f(x)) / lim (g(x));5.无穷的极限:- lim (x -> ±∞) (1/x) = 0;- lim (x -> ±∞) (a^x) = 0 (a > 1);- lim (x -> ±∞) (ln(x)) = ±∞;- lim (x -> ±∞) (e^x) = ±∞;一元函数的微分公式:1.常数函数的微分为0:d(c)=0;2. 幂函数的微分公式:d(x^n) = nx^(n-1)dx;3. 指数函数的微分公式:d(a^x) = a^xdx * ln(a);4. 对数函数的微分公式:d(loga^x) = (1/x)dx / ln(a);5.三角函数的微分公式:- d(sinx) = cosxdx;- d(cosx) = -sinxdx;- d(tanx) = sec^2(x)dx;- d(cotx) = -csc^2(x)dx;- d(secx) = secxtanxdx;- d(cscx) = -cscxcotxdx;不定积分的公式:1. 幂函数的不定积分:∫x^n dx = (x^(n+1))/(n+1) + C;2. 指数函数的不定积分:∫a^x dx = (a^x)/ln(a) + C;3. 对数函数的不定积分:∫(1/x) dx = ln,x, + C;4.三角函数的不定积分:- ∫sinx dx = -cosx + C;- ∫cosx dx = sinx + C;- ∫tanx dx = -ln,cosx, + C;- ∫cotx dx = ln,sinx, + C;- ∫secx dx = ln,secx + tanx, + C;- ∫cscx dx = ln,cscx - cotx, + C;以上仅是高等数学中的一部分公式,通过掌握和运用这些公式,可以更好地应对专升本考试中的数学相关题目。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式全集1.极限与连续- 极限的定义:对于函数f(x),当x趋于无穷大时,如果存在常数L,使得对于任意给定的正数ε,总存在正数δ,当,x-a,<δ时,有,f(x)-L,<ε,则称函数f(x)在点a处极限为L,记为lim(x→a)f(x)=L。

- 极限运算法则:设lim(x→a)f(x)=A,lim(x→a)g(x)=B,则lim(x→a)(f(x)±g(x))=A±B,lim(x→a)f(x)g(x)=A·B,lim(x→a)f(x)/g(x)=A/B(其中B≠0)。

- 无穷小量:若lim(x→∞)f(x)=0,则称函数f(x)为当x趋于无穷大时的无穷小量。

- 利用洛必达法则可以求解极限:“若lim(x→a)f(x)=0,lim(x→a)g(x)=0,且lim(x→a)f'(x)/g'(x)存在(或为∞),则lim(x→a)f(x)/g(x)=lim(x→a)f'(x)/g'(x)”。

2.微分学- 导数定义:函数f(x)在点x=a处的导数定义为:lim(h→0)(f(a+h)-f(a))/h,记为f'(a),也可表示为dy/dx或y'。

- 基本导数法则:(1)(c)'=0,其中c为常数;(2)(x^n)'=nx^(n-1),其中n为任意实数;(3)(e^x)'=e^x,(a^x)'=a^xlna,其中a>0且a≠1;(4)(lnx)'=1/x,(log_a(x))'=1/(xlna),其中a>0且a≠1-高阶导数:函数f(x)的n阶导数记作f^(n)(x),其中n为正整数,可从一阶导数f'(x)重复求导得到。

- 隐函数求导:对于方程F(x,y)=0,若能求出y',则有dy/dx=-F_x/F_y(其中F_x和F_y分别表示F关于x、y的偏导数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专升本高等数学公式大全导数公式:基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dx x f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。

代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

相关文档
最新文档