七年级下数学试题含答案
人教版数学七年级下册期末考试试卷及答案
人教版数学七年级下册期末考试试题一、单选题(共10小题,每题3分,共30分).1.在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1 B.2 C.3 D.42.第七次全国人口普查结果显示,全国人口共141178万人,与2010年第六次全国人口普查数据相比,增加7206万人.将数据7206万用科学记数法表示为()A.7206×104B.72.06×106C.7.206×107D.0.7206×108 3.已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3的度数为()A.90°B.180°C.270°D.360°4.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.已知点A(4,﹣3)到y轴的距离为()A.4 B.﹣4 C.3 D.﹣36.长沙市今年有8万名学生参加初中毕业会考,要想了解这8万名学生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.1000名考生是样本容量C.8万名考生是总体D.每位学生的数学成绩是个体7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性8.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.9.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需()A.20天B.21天C.22天D.23天10.如图,△ABC中,∠1=∠2,点G为AD中点,延长BG交AC于点E,F为AB上一点,且CF⊥AD于点H,下列判断中,①线段BG是△ABD边AD上的中线;②线段CH 是△ACH中AH边上的高;③△ABG与△BDG面积相等;④AB﹣AC=BF;⑤∠2+∠FBC+∠FCB=90°,其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系内,把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是.12.不等式组的解集为.13.已知:如图,在△ABC中,∠BAC=50°,∠ABC=60°,则∠ACE=.14.如果一个多边形的每个外角都等于60°,则这个多边形的边数是.15.一个正数x的平方根是2a﹣3与5﹣a,则a=.16.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每随9分,第24、25题每题10分,共72分)17.计算:+|﹣4|+(﹣1)2021﹣.18.先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣1.19.求满足不等式:+2>的所有正整数解.20.人教版八年级上册第36﹣37页如何作一个角等于已知角的方法.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.请你根据以上材料完成下面问题.(1)这种作一个角等于已知角的方法的依据是.(填序号)①SSS ②SAS ③AAS ④ASA(2)请你证明:∠A′O′B′=∠AOB.21.湖南广益实验中学在暑假期间开展“心怀感恩,孝敬父母”的实践活动,倡导学生在假期中帮助父母干家务,开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分.根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数是人,m=,n =;(2)补全数分布直方图;(3)如果该校共有学生4000人,请你估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有多少人?22.在国家精准扶贫政策下,某乡村大力发展乡村旅游,为了满足游客的需求,某商户决定购进A,B两种特产来进行销售.(1)若购进A种特产8件,B种特产3件,需要950元;购进A种特产5件,B种特产6件,需要800元.求购进A,B两种特产每件分别需要多少元?(2)若该商户决定购进A,B两种特产共100件,虑市场需求和资金周转,A种特产至少需购进50件,用于购买这100件特产的总资金不能超过7650元,请问该商户最多可购进A种特产多少件?23.已知:如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,4),点C在第四象限,AC⊥AB,AC=AB.(1)求点C的坐标及∠COA的度数;(2)若直线BC与x轴的交点为M,点P在经过点C与x轴平行的直线上,求出S△POM+S△BOM的值.24.对于实数x,y我们定义一种新运算L(x,y)=ax+by(其中a,b均为非零常数),由这种运算得到的数我们称之为广益数,记为L(x,y),其中(x,y)叫做广益数对.若实数x,y都取正整数,此时的(x,y)叫做广益正格数对.(1)若L(x,y)=x+3y,则L(,)=,L(﹣2,m)=;(用含m 的式子表示)(2)已知L(x,y)=ax+by(其中a,b互为相反数)L(2,3)=n﹣3,L(1,﹣2)=2n+1,求n的值.(3)已知L(x,y)=3x+cy,其中L(,)=2.若L(x,kx)=18(其中k为整数),问是否存在满足这样条件的广益正格数对?若存在,请求出这样的广益正格数对;若不存在,请说明理由.25.如图①,AB=9,AC⊥AB,BD⊥AB,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t秒.(1)若点Q运动的速度与点P运动的速度相等,当t=1时,求证:△ACP≌△BPQ;(2)在(1)的条件下,求∠PCQ的度数;(3)如图②,若∠CAB=∠DBA=70°,AB=9,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上以每秒x个单位的速度由点B向点D运动,若存在△ACP与△BPQ全等,请求出相应的x和t的值.参考答案一、单选题(共10小题,每题3分,共30分).1.在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1 B.2 C.3 D.4解:0.21,0.20202有限小数,属于有理数;是分数,属于有理数;无理数有﹣,,,共3个.故选:C.2.2021年5月11日,第七次全国人口普查结果显示,全国人口共141178万人,与2010年第六次全国人口普查数据相比,增加7206万人.将数据7206万用科学记数法表示为()A.7206×104B.72.06×106C.7.206×107D.0.7206×108解:7206万=72060000=7.206×107,故选:C.3.已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3的度数为()A.90°B.180°C.270°D.360°解:∵∠1与∠2是对顶角,∴∠1=∠2,∵∠1与∠3是邻补角,∴∠1+∠3=180°,∴∠2+∠3=180°.故选:B.4.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间解:∵16<21<25,∴4<<5,则的值在4和5之间,故选:C.5.已知点A(4,﹣3)到y轴的距离为()A.4 B.﹣4 C.3 D.﹣3解:点A(4,﹣3)到y轴的距离为|4|=4.故选:A.6.长沙市今年有8万名学生参加初中毕业会考,要想了解这8万名学生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.1000名考生是样本容量C.8万名考生是总体D.每位学生的数学成绩是个体解:A.这1000名考生的数学成绩是总体的一个样本,故本选项不合题意;B.1000是样本容量,故本选项不合题意;C.8万名考生的数学成绩是总体,故本选项不合题意;D.每位学生的数学成绩是个体,故本选项符合题意.故选:D.7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性解:一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是三角形的稳定性,故选:D.8.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.解:A、∵AB∥CD,∴∠1+∠2=180°,∠1与∠2不一定相等,故A错误,不符合题意;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确,符合题意;C、若梯形ABCD是等腰梯形,可得∠1=∠2,故C错误,不符合题意;D、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2,故D错误,不符合题意;故选:B.9.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需()A.20天B.21天C.22天D.23天解:设快马x天可以追上慢马,由题意,得240x﹣150x=150×12,解得:x=20.答:快马20天可以追上慢马.故选:A.10.如图,△ABC中,∠1=∠2,点G为AD中点,延长BG交AC于点E,F为AB上一点,且CF⊥AD于点H,下列判断中,①线段BG是△ABD边AD上的中线;②线段CH 是△ACH中AH边上的高;③△ABG与△BDG面积相等;④AB﹣AC=BF;⑤∠2+∠FBC+∠FCB=90°,其中正确的结论有()A.5个B.4个C.3个D.2个解:①因为G为AD中点,所以BG是△ABD边AD上的中线,故正确;②因为CF⊥AD于H,所以CH是△ACH中AH边上的高,故正确;③因为G为AD中点,根据等底等高的三角形面积相等,故正确;④因为∠1=∠2,CF⊥AD,可知∠AFC=∠ACF,根据等角对等边得AF=AC,故AB﹣AC=BF正确,⑤因为∠1=∠2,CF⊥AD于H,根据直角三角形的两锐角互余及三角形外角的性质得到,∠1+∠AFH=∠1+∠FBC+∠FCB=90°,所以∠2+∠FBC+∠FCB=90°,故正确.所以正确的个数是5个.故选:A.二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系内,把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是(﹣3,﹣2).解:把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是(﹣3,﹣2).故答案为:(﹣3,﹣2).12.不等式组的解集为x>3.解:根据同大取大,即可得到不等式组的解集为:x>3,故答案为:x>3.13.已知:如图,在△ABC中,∠BAC=50°,∠ABC=60°,则∠ACE=110°.解:∵∠ACE是△ABC的一个外角,∴∠ACE=∠BAC+∠ABC,∵∠BAC=50°,∠ABC=60°,∴∠ACE=50°+60°=110°.14.如果一个多边形的每个外角都等于60°,则这个多边形的边数是6.解:360°÷60°=6.故这个多边形是六边形.故答案为:6.15.一个正数x的平方根是2a﹣3与5﹣a,则a=﹣2.解:∵正数x的平方根是2a﹣3与5﹣a,∴2a﹣3+5﹣a=0,解得a=﹣2.故答案为:﹣2.16.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是108°.解:∵被调查的总户数为9÷15%=60(户),∴B类别户数为60﹣(9+21+12)=18(户),则扇形统计图B部分所对应的圆心角的度数是360°×=108°,故答案为:108°.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每随9分,第24、25题每题10分,共72分)17.计算:+|﹣4|+(﹣1)2021﹣.解:原式=3+4﹣1﹣3=3.18.先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣1.解:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b)=﹣3a2b+4ab2﹣a2b﹣4ab2+2a2b=﹣2a2b,当a=1,b=﹣1时,原式=﹣2×1×(﹣1)=2.19.求满足不等式:+2>的所有正整数解.解:去分母得:2(x﹣4)+12>3x,去括号得:2x﹣8+12>3x,解得:x<4,则不等式的正整数解为1,2,3.20.人教版八年级上册第36﹣37页如何作一个角等于已知角的方法.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.请你根据以上材料完成下面问题.(1)这种作一个角等于已知角的方法的依据是①.(填序号)①SSS②SAS③AAS④ASA(2)请你证明:∠A′O′B′=∠AOB.解:(1)根据作图过程可知:这种作一个角等于已知角的方法的依据是①;①SSS②SAS③AAS④ASA故答案为:①;(2)证明:在△C′O′D′和△COD中,,∴△C′O′D′≌△COD(SSS),∴∠A′O′B′=∠AOB.21.湖南广益实验中学在暑假期间开展“心怀感恩,孝敬父母”的实践活动,倡导学生在假期中帮助父母干家务,开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分.根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数是200人,m=20,n=25;(2)补全数分布直方图;(3)如果该校共有学生4000人,请你估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有多少人?解:(1)在本次随机抽取的样本中,调查的学生人数是:60÷30%=200(人),m%=(200﹣60﹣40﹣50﹣10)÷200×100%=20%,n%=50÷200×100%=25%,即m=20,n=25,故答案为:200,20,25;(2)20~30分钟的频数为:200﹣60﹣40﹣50﹣10=40,补全的频数分布直方图如图所示;(3)4000×=1200(人),答:估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有1200人.22.在国家精准扶贫政策下,某乡村大力发展乡村旅游,为了满足游客的需求,某商户决定购进A,B两种特产来进行销售.(1)若购进A种特产8件,B种特产3件,需要950元;购进A种特产5件,B种特产6件,需要800元.求购进A,B两种特产每件分别需要多少元?(2)若该商户决定购进A,B两种特产共100件,虑市场需求和资金周转,A种特产至少需购进50件,用于购买这100件特产的总资金不能超过7650元,请问该商户最多可购进A种特产多少件?解:(1)设购进A种特产每件需要x元,购进B种特产每件需要y元,依题意得:,解得:.答:购进A种特产每件需要100元,购进B种特产每件需要50元.(2)设该商户购进A种特产m件,则购进B种特产(100﹣m)件,依题意得:,解得:50≤m≤53.答:该商户最多可购进A种特产53件.23.已知:如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,4),点C在第四象限,AC⊥AB,AC=AB.(1)求点C的坐标及∠COA的度数;(2)若直线BC与x轴的交点为M,点P在经过点C与x轴平行的直线上,求出S△POM+S△BOM的值.解:(1)作CD⊥x轴于点D,∴∠CDA=90°.∵∠AOB=90°,∴∠AOB=∠CDA.∴∠DAC+∠DCA=90°.∵AC⊥AB,∴∠BAC=∠BAD+∠CAD=90°,∴∠BAD=∠ACD.在△AOB和△CDA中,∴△AOB≌△CDA(AAS),∴AO=CD,OB=DA.∵A(﹣2,0),B(0,4),∴OA=2,OB=4,∴CD=2,DA=4,∴OD=2,∴OD=CD.∵点C在第四象限,∴C(2,﹣2).∵∠CDO=90°,∴∠COD=45°.∴∠COA=180°﹣45°=135°.(2)∵PC∥x轴,∴点P到x轴的距离相等,∴S△POM=S△COM.∴S△POM+S△BOM=S△COM+S△BOM=S△BOC.∴S△POM+S△BOM=S△BOC==4.24.对于实数x,y我们定义一种新运算L(x,y)=ax+by(其中a,b均为非零常数),由这种运算得到的数我们称之为广益数,记为L(x,y),其中(x,y)叫做广益数对.若实数x,y都取正整数,此时的(x,y)叫做广益正格数对.(1)若L(x,y)=x+3y,则L(,)=3,L(﹣2,m)=﹣2+3m;(用含m的式子表示)(2)已知L(x,y)=ax+by(其中a,b互为相反数)L(2,3)=n﹣3,L(1,﹣2)=2n+1,求n的值.(3)已知L(x,y)=3x+cy,其中L(,)=2.若L(x,kx)=18(其中k为整数),问是否存在满足这样条件的广益正格数对?若存在,请求出这样的广益正格数对;若不存在,请说明理由.解:(1)根据题中的新定义得:L(,)=+3×=3;L(﹣2,m)=﹣2+3m,故答案为:3,﹣2+3m;(2)根据题中的新定义得:L(2,3)=2a+3b=n﹣3;L(1,﹣2)=a﹣2b=2n+1;∵a,b互为相反数,∴a=﹣b,∴,解得:n=;(3)存在,(2,6),理由如下:根据题中的新定义化简L(,)=2,得:3×+c=2,解得:c=2,化简L(x,kx)=18,得:3x+2kx=18,依题意,x,y都为正整数,k是整数,∴3+2k是奇数,∴3+2k=1,3,9,解得:k=−1,0,3,当k=−1时,x=18,kx=−18,舍去;当k=0时,x=6,kx=0,舍去;当k=3时,x=2,kx=6,综上,k=3时,存在正格数对x=2,y=6满足条件.25.如图①,AB=9,AC⊥AB,BD⊥AB,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t秒.(1)若点Q运动的速度与点P运动的速度相等,当t=1时,求证:△ACP≌△BPQ;(2)在(1)的条件下,求∠PCQ的度数;(3)如图②,若∠CAB=∠DBA=70°,AB=9,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上以每秒x个单位的速度由点B向点D运动,若存在△ACP与△BPQ全等,请求出相应的x和t的值.【解答】(1)证明:当t=1时,AP=BQ=2,则BP=9﹣2=7,∴BP=AC,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)解:如图①中,连接CQ.∵△ACP≌△BPQ,∴∠ACP=∠BPQ,PC=PQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,∴∠PCQ=45°.(3)解:①若△ACP≌△BPQ,则AC=BP,AP=BQ,∴9﹣2t=7,解得,t=1(s),则x=2(cm/s);②若△ACP≌△BQP,则AC=BQ,AP=BP,则2t=×9,解得,t=(s),则x=7÷=(cm/s),故当t=1s,x=2cm/s或t=s,x=cm/s时,△ACP与△BPQ全等.。
人教版七年级下册数学第六章实数 测试题及答案
人教版七年级下册数学第六章实数测试题及答案人教版七年级数学下册第六章实数一、单选题1.下列说法正确的是()A。
真命题的逆命题都是真命题B。
无限小数都是无理数C。
0.720精确到了百分位D。
16的算术平方根是22.(-9)²的平方根是x,6根是y,则x+y的值为()A。
3B。
7C。
3或7D。
1或73.3(-1)²的立方根是()A。
-1B。
1C。
-4D。
44.若在数轴上画出表示下列各数的点,则与原点距离最近的点是()A。
-1B。
-1/2C。
3/2D。
25.若a=2,则a的值为()A。
2B。
±2C。
4D。
±46.下列计算中,错误的是()A。
30.125=0.5B。
3-273=-644C。
33/31=1/82D。
-3/8²=-125/577.下列说法正确的是()A。
实数分为正实数和负实数B。
3/2是有理数C。
0.9是有理数D。
30.01是无理数8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a²的算术平方根是a;④(π-4)²的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有() A。
2个B。
3个C。
4个D。
5个9.一个正方体的水晶砖,体积为100 cm³,它的棱长大约在()A。
4 cm~5 cm之间B。
5 cm~6 cm之间C。
6 cm~7 cm之间D。
7 cm~8 cm之间10.计算-4-|-3|的结果是()A。
-1B。
-5C。
1D。
5二、填空题11.已知(x-1)³=64,则x的值为4.12.若式子1/(x-1)有意义,则化简|1-x|+|x+2|=3.13.若a与b互为相反数,则它们的立方根的和是0.14.若3x+3y=0,则x与y关系是x=-y。
15.平方等于1/64的数是1/8.16.-27的立方根是-3.三、解答题17.1) 33+53=36;2) |1-2|+|3-2|=2.18.1) (x+1)²=16,解得x=3或x=-5;2) 3(x+2)²=27,解得x=1或x=-5.19.1) 16+3-27-1=-9;2) (-2)²+|2-1|-(2-1)=1.20.a²-b²-(a-b)²=2ab,所以a=3,b=2,代入得9/16.21.1) x=±11/3;2) x=2.22.对于实数a,规定用符号$\lfloor a \rfloor$表示不大于a 的最大整数,称$\lfloor a \rfloor$为a的根整数,例如:$\lfloor 9 \rfloor = 3$,$\lfloor 10 \rfloor = 3$。
七年级数学下册期末测试题及答案(共五套)
七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。
学号。
班级:一、选择题(共10小题,每小题3分,共30分)1.若m。
-1,则下列各式中错误的是()A。
6m。
-6B。
-5m < -5C。
m+1.0D。
1-m < 22.下列各式中,正确的是()A。
16=±4B。
±16=4C。
3-27=-3D。
(-4)^2=163.已知a。
b。
0,那么下列不等式组中无解的是()A。
{x-a。
x>-b}B。
{x>a。
x<-a。
x<-b}C。
{x>a。
xb}D。
{x-a。
x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40°B。
先右转50°,后左转40°C。
先右转50°,后左转130°D。
先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。
{x-y=1.x-y=-1}B。
{x-y=1.3x+y=5}C。
{x-y=3.3x+y=-5}D。
{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。
100°B。
110°C。
115°D。
120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。
4B。
3C。
2D。
18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。
5B。
6C。
7D。
89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。
人教版七年级下册数学测试题及答案
人教版七年级下册数学测试题及答案七年级数学下册第五章测试题姓名:________ 成绩:_______一、单项选择题(每小题3分,共30分)1、如图所示,∠1和∠2是对顶角的是()A、12.B、1 2.C、1 2.D、1 22、如图AB∥CD可以得到()A、4.B、3.C、2.D、C3、直线AB、CD、EF相交于O,则∠1+∠2+∠3()。
A、90°。
B、120°。
C、180°。
D、140°4、如图所示,直线a、b被直线c所截,现给出下列四种条件:①∠2=∠6②∠2=∠8③∠1+∠4=180°④∠3=∠8,其中能判断是a∥b的条件的序号是()A、6 7 2 3 5 1.B、3 2 4 15、某人在广场上练驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A、第一次左拐30°,第二次右拐30°。
B、第一次右拐50°,第二次左拐130°。
C、第一次右拐50°,第二次右拐130°。
D、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的()A、ABCD。
B、DCBA。
C、AEDF。
D、FEAB7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的比是()A、3:4.B、5:8.C、9:16.D、1:28、下列现象属于平移的是()A、③。
B、②③。
C、①②④。
D、①②⑤9、下列说法正确的是()A、有且只有一条直线与已知直线平行。
B、垂直于同一条直线的两条直线互相垂直。
C、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
二、填空题(本大题共6小题,每小题3分,共18分)11、直线AB、CD相交于点O,若∠AOC=100°,则∠AOD=8012、若AB∥CD,AB∥EF,则CDEF,其理由是同一条直线上的两个点到另一条直线的距离相等13、如图,在正方体中,与线段AB平行的线段有CD和EF。
【必考题】七年级数学下期末试题及答案(1)
【必考题】七年级数学下期末试题及答案(1)一、选择题1.点M (2,-3)关于原点对称的点N 的坐标是: ( ) A .(-2,-3) B .(-2, 3) C .(2, 3) D .(-3, 2) 2.116的平方根是( ) A .±12B .±14C .14D .123.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩4.2-的相反数是( )A .2-B .2C .12D .12-5.如图,在平面直角坐标系xOy 中,点P(1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位至点P 3,第4次向右跳动3个单位至点P 4,第5次又向上跳动1个单位至点P 5,第6次向左跳动4个单位至点P 6,….照此规律,点P 第100次跳动至点P 100的坐标是( )A .(﹣26,50)B .(﹣25,50)C .(26,50)D .(25,50)6.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b=⎧⎨=⎩,则a 、b 分别为( )A .a=8,b=﹣2B .a=8,b=2C .a=12,b=2D .a=18,b=87.若不等式组20{210x a x b +---><的解集为0<x <1,则a ,b 的值分别为( ) A .a =2,b =1 B .a =2,b =3C .a =-2,b =3D .a =-2,b =18.16的平方根为( )A .±4B .±2C .+4D .29.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( )A .1个B .2个C .3个D .4个 10.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°11.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②二、填空题13.如果不等式组213(1)x x x m ->-⎧⎨⎩<的解集是x <2,那么m 的取值范围是_____14.如图5-Z -11是一块长方形ABCD 的场地,长AB =102 m ,宽AD =51 m ,从A ,B 两处入口的中路宽都为1 m ,两小路汇合处路宽为2 m ,其余部分种植草坪,则草坪的面积为________m 2.15.已知点P (3﹣m ,m )在第二象限,则m 的取值范围是____________________. 16.为了了解某商品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是______.17.如果方程组23759x y x y +=⎧⎨-=⎩,的解是方程716x my +=的一个解,则m 的值为____________.18.如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA=6cm ,PB=5cm ,PC=7cm ,则点P 到直线l 的距离是_____cm.19.在平面直角坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是________.20.比较大小:23________13.三、解答题21.某运输公司现将一批152吨的货物运往A ,B 两地,若用大小货车15辆,则恰好能一次性运完这批货.已知这两种大小货车的载货能力分别为12吨/辆和8吨/辆,其运往A ,B 两地的运费如下表所示: 目的地(车型) A 地(元/辆) B 地(元/辆) 大货车 800 900 小货车400600(1)求这15辆车中大小货车各多少辆.(用二元一次方程组解答)(2)现安排其中的10辆货车前往A 地,其余货车前往B 地,设前往A 地的大货车为x 辆,前往A ,B 两地总费用为w 元,试求w 与x 的函数解析式.22.如图,在平面直角坐标系xOy 中,点A (a ,0),B (c ,c ),C (0,c ),且满足2(8)c 40a +++=,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动. (1)直接写出点B 的坐标,AO 和BC 位置关系是;(2)当P 、Q 分别是线段AO ,OC 上时,连接PB ,QB ,使2PAB QBC S S ∆∆=,求出点P 的坐标;(3)在P 、Q 的运动过程中,当∠CBQ =30°时,请探究∠OPQ 和∠PQB 的数量关系,并说明理由.23.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=o ,60B ∠=o ,45D E ∠=∠=o .(1)若150BCD =o ∠,求ACE ∠的度数;(2)试猜想BCD ∠与ACE ∠的数量关系,请说明理由;(3)若按住三角板ABC 不动,绕顶点C 转动三角板DCE ,试探究BCD ∠等于多少度时,CD AB P ,并简要说明理由.24.如图①,已知AB ∥CD ,点E 、F 分别是AB 、CD 上的点,点P 是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图①中,过点E 作射线EH 交CD 于点N ,作射线FI ,延长PF 到G ,使得PE 、FG 分别平分∠AEH 、∠DFl ,得到图②.(1)在图①中,过点P 作PM ∥AB ,当α=20°,β=50°时,∠EPM= 度,∠EPF= 度;(2)在(1)的条件下,求图②中∠END 与∠CFI 的度数; (3)在图②中,当FI ∥EH 时,请直接写出α与β的数量关系.25.把一堆书分给几名学生,如果每人分到 4 本,那么多 4 本;如果每人分到 5 本,那么最 后 1 名学生只分到 3 本.问:一共有多少名学生?多少本书?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.2.A解析:A【解析】【分析】根据平方根的性质:一个正数的平方根有两个,它们互为相反数计算即可.【详解】14,14的平方根是12±,12±,故选A.【点睛】本题考查平方根的性质,一个正数的平方根有两个,它们互为相反数,0的平方根还是0,熟练掌握相关知识是解题关键.3.C解析:C【解析】【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.【详解】解:∵实数x,y满足254()0x y x y+-+-=,∴40x y+-=且2()0x y-=,即40x yx y+-=⎧⎨-=⎩,解得:22xy=⎧⎨=⎩,故选C.【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.4.B解析:B 【解析】 【分析】根据相反数的性质可得结果. 【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B . 【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .5.C解析:C 【解析】 【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数).故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50. 故选:C . 【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.6.C解析:C 【解析】试题解析:将x=5,y=b 代入方程组得:10{53b ab +=-=, 解得:a=12,b=2, 故选C .考点:二元一次方程组的解.7.A解析:A【解析】试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.解:20210x ax b+->⎧⎨--<⎩①②,由①得,x>2﹣a,由②得,x<12b+,故不等式组的解集为;2﹣a<x<12b +,∵原不等式组的解集为0<x<1,∴2﹣a=0,12b+=1,解得a=2,b=1.故选A.8.A解析:A【解析】【分析】根据平方根的概念即可求出答案.【详解】∵(±4)2=16,∴16的平方根是±4.故选A.【点睛】本题考查了平方根的概念,属于基础题型.9.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.10.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.12.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.m≥2【解析】【分析】先解第一个不等式再根据不等式组的解集是x<2从而得出关于m的不等式解不等式即可【详解】解:解第一个不等式得x<2∵不等式组的解集是x<2∴m≥2故答案为m≥2【点睛】本题是已知解析:m≥2.【解析】【分析】先解第一个不等式,再根据不等式组()2131x xx m⎧->-⎨<⎩的解集是x<2,从而得出关于m的不等式,解不等式即可.【详解】解:解第一个不等式得,x<2,∵不等式组()2131x x x m⎧->-⎨<⎩的解集是x <2,∴m ≥2, 故答案为m ≥2. 【点睛】本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.14.5000【解析】试题解析:由图片可看出剩余部分的草坪正好可以拼成一个长方形且这个长方形的长为102−2=100m 这个长方形的宽为:51−1=50m 因此草坪的面积故答案为:5000解析:5000 【解析】试题解析:由图片可看出,剩余部分的草坪正好可以拼成一个长方形, 且这个长方形的长为102−2=100m , 这个长方形的宽为:51−1=50m , 因此,草坪的面积2501005000m .=⨯= 故答案为:5000.15.m>3【解析】试题分析:因为点P 在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组解析:m>3. 【解析】试题分析:因为点P 在第二象限,所以,30{0m m -<>,解得:考点:(1)平面直角坐标;(2)解不等式组16.抽样调查【解析】【分析】根据抽样调查的定义可直接得到答案【详解】为了了解某商品促销广告中所称中奖的真实性某人买了100件该商品调查其中奖率那么他采用的调查方式是抽样调查故答案为抽样调查【点睛】本题主解析:抽样调查 【解析】 【分析】根据抽样调查的定义可直接得到答案. 【详解】为了了解某商品促销广告中所称中奖的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是抽样调查, 故答案为抽样调查. 【点睛】本题主要考查了抽样调查的定义,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,这种调查方式叫抽样调查.17.2【解析】分析:求出方程组的解得到x与y的值代入方程计算即可求出m 的值详解:①+②×3得:17x=34即x=2把x=2代入①得:y=1把x=2y=1代入方程7x+my=16得:14+m=16解得:m解析:2【解析】分析:求出方程组的解得到x与y的值,代入方程计算即可求出m的值.详解:23759x yx y+=⎧⎨-=⎩①②,①+②×3得:17x=34,即x=2,把x=2代入①得:y=1,把x=2,y=1代入方程7x+my=16得:14+m=16,解得:m=2,故答案为:2.点睛:此题考查了解二元一次方程组和二元一次方程解的概念,解出二元一次方程组的解代入另一个方程是解决此题的关键.18.【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度可得答案【详解】解:∵PB⊥lPB=5cm∴P到l的距离是垂线段PB的长度5cm故答案为:5【点睛】本题考查了点到直线的距离的定解析:【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【详解】解:∵PB⊥l,PB=5cm,∴P到l的距离是垂线段PB的长度5cm,故答案为:5.【点睛】本题考查了点到直线的距离的定义,熟练掌握是解题的关键.19.(±30)【解析】解:若x轴上的点P到y轴的距离为3则∴x=±3故P的坐标为(±30)故答案为:(±30)解析:(±3,0)【解析】解:若x轴上的点P到y轴的距离为3,则3x=,∴x=±3.故P的坐标为(±3,0).故答案为:(±3,0).20.<【解析】试题解析:∵∴∴解析:<【解析】试题解析:∵∴三、解答题21.(1)中大货车用8辆,小货车用7辆;(2)w =100x +9400(3≤x ≤8,且x 为整数).【解析】【分析】(1)根据表格列出二元一次方程,再根据二元一次方程的解法计算即可.(2)根据费用的计算,列出费用和大货车x 的关系即可.【详解】(1)设大货车用x 辆,小货车用y 辆,根据题意得:15128152x y x y +=⎧⎨+=⎩, 解得:87x y =⎧⎨=⎩. 故这15辆车中大货车用8辆,小货车用7辆.(2)设前往A 地的大货车为x 辆,前往A ,B 两地总费用为w 元,则w 与x 的函数解析式:w =800x +900(8﹣x )+400(10﹣x )+600[7﹣(10﹣x )]=100x +9400(3≤x ≤8,且x 为整数).【点睛】本题主要考查二元一次方程组的应用,关键在于设出合适的未知数,再根据条件列出方程.22.(1)(-4,-4) ,BC ∥AO ;(2)P (−4,0);(3)∠PQB =∠OPQ +30°或∠BQP +∠OPQ =150°【解析】【分析】(1)由2(8)0a +=解出c ,得到B 点,易知BC ∥AO ;(2)过B 点作BE ⊥AO 于E ,设时间经过t 秒,AP =2t ,OQ =t ,CQ =4-t ;用t 表示出PAB S ∆与QBC S ∆,根据2PAB QBC S S ∆∆=列出方程解出t 即可;(3)要分情况进行讨论,①当点Q 在点C 的上方时;过Q 点作QH ∥AO 如图1所示,利用平行线的性质可得到∠PQB =∠OPQ +30°;②当点Q 在点C 的下方时;过Q 点作HJ ∥AO 如图2所示,同样利用平行线的性质可得到,∠BQP +∠OPQ =150°【详解】(1)由2(8)0a ++=得到c+4=0,得到c=-4(-4,-4) ,BC ∥AO(2)过B 点作BE ⊥AO 于E设时间经过t 秒,则AP =2t ,OQ =t ,CQ =4-t∵BE =4,BC =4, ∴APB 1AP 2S V =·1BE 2442t t =⨯⨯= ()BCQ 11 S CQ?BC 448222t t ==⨯-⨯=-V ∵APB BCQ 2S S =V V∴()4282t t =-解得t =2∴AP =2t =4∴P (−4,0)(3) ①当点Q 在点C 的上方时;过Q 点作QH ∥AO 如图一所示,∴∠OPQ=∠PQH .又∵BC ∥AO ,QH ∥AO∴QH ∥BC∴∠HQB =∠BCQ=30°. ∴∠OPQ +∠BCQ =∠PQH +∠BQH .∴即∠PQB =∠OPQ +∠CBQ.即∠PQB =∠OPQ +30°②当点Q 在点C 的下方时;过Q 点作HJ ∥AO 如图二所示,∴∠OPQ =∠PQJ.又∵BC ∥AO ,QH ∥AO∴QH ∥BC∴∠HQB =∠BCQ =30°. ∴∠HQB +∠BQP +∠PQJ =180°,∴30°+∠BQP +∠OPQ =180°即∠BQP +∠OPQ =150°综上所述∠PQB =∠OPQ +30°或∠BQP +∠OPQ =150°【点睛】本题重点考察非负项的性质、三角形面积的计算、平行线的性质等知识点,综合程度比较高,第三问对Q 点进行分情况讨论,作出辅助线是解题关键23.(1)30°; (2)答案见解析;(3)答案见解析.【解析】【分析】(1)由∠BCD =150°,∠ACB =90°,可得出∠DCA 的度数,进而得出∠ACE 的度数;(2)根据(1)中的结论可提出猜想,再由∠BCD =∠ACB +∠ACD ,∠ACE =∠DCE−∠ACD 可得出结论;(3)根据平行线的判定定理,画出图形即可求解.【详解】解:(1)∵90BCA ECD ∠=∠=︒,150BCD ∠=︒,∴1509060DCA BCD BCA ∠=∠-∠=︒-︒=︒,∴906030ACE ECD DCA ∠=∠-∠=︒-︒=︒;(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒;(3)当120BCD ∠=︒或60︒时,CD AB P .如图②,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,CD AB P ,此时180********BCD B ∠=︒-∠=︒-︒=︒;如图③,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,CD AB P .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.24.(1)20,70;(2)80°;(3)90°;【解析】【分析】(1)由PM ∥AB 根据两直线平行,内错角相等可得∠EPM=∠AEP=20°,根据平行公理的推论可得PM ∥CD ,继而可得∠MPF=∠CFP=50°,从而即可求得∠EPF ;(2)由角平分线的定义可得∠AEH=2α=40°,再根据AD ∥BC ,由两直线平行,内错角相等可得∠END=∠AEH=40°,由对顶角相等以及角平分线定义可得∠IFG=∠DFG=β=50°,再根据平角定义即可求得∠CFI 的度数;(3)由(2)可得,∠CFI=180°-2β,由AB ∥CD ,可得∠END=2α,当FI ∥EH 时,∠END=∠CFI ,据此即可得α+β=90°.【详解】(1)∵PM ∥AB ,α=20°,∴∠EPM=∠AEP=20°,∵AB ∥CD ,PM ∥AB ,∴PM ∥CD ,∴∠MPF=∠CFP=50°,∴∠EPF=20°+50°=70°,故答案为20,70;(2)∵PE 平分∠AEH ,∴∠AEH=2α=40°,∵AD ∥BC ,∴∠END=∠AEH=40°,又∵FG 平分∠DFI ,∴∠IFG=∠DFG=β=50°,∴∠CFI=180°-2β=80°; (3)由(2)可得,∠CFI=180°-2β, ∵AB ∥CD ,∴∠END=∠AEN=2α,∴当FI ∥EH 时,∠END=∠CFI ,即2α=180°-2β,∴α+β=90°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键.25.一共有6名学生,28本书【解析】【分析】可设有 x 名学生,y 本书.根据总本数相等,每人分到4本,那么多4 本;如果每人分到5 本,那么最 后 1 名学生只分到3本,可列出方程组,求解即可.【详解】解:设一共有x 名学生,y 本书,依题意得:445(1)3x y x y +=⎧⎨-+=⎩解得628x y =⎧⎨=⎩ 答:一共有6名学生,28本书【点睛】本题考查了二元一次方程组的应用,根据该班人数表示出图书数量得出方程组是解题关键.。
新人教版七年级数学(下册)期末试题及答案
新人教版七年级数学(下册)期末试题及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .645.已知x 是整数,当30x 取最小值时,x 的值是( )A .5B .6C .7D .86.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A.70°B.180°C.110°D.80°7.把1aa-根号外的因式移入根号内的结果是()A.a-B.a--C.a D.a-8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.如图,在菱形ABCD中,2,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣a|+|b﹣c|的结果是________.2.绝对值不大于4.5的所有整数的和为________.3.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是________(填序号)6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组:25 342 x yx y-=⎧⎨+=⎩2.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求a bm cdm+++的值.3.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;∆≅∆求证:(1)DBC ECB=(2)OB OC5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.请根据图中提供的信息,回答下列问题.(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、D5、A6、C7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、03、70.4、205、①③④⑤.6、5三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、(1)a+b=0,cd=1,m=±2;(2)3或-13、4.4、(1)略;(2)略.5、(1)50;72;(2)详见解析;(3)330.6、(1)一个暖瓶30元,一个水杯8元;(2)到乙家商场购买更合算.。
(完整版)人教版七年级数学下册实数试题(带答案) (一)
一、选择题1.按如图所示的程序计算,若开始输入的值为25,则最后输出的y 值是( )A .5B .5±C .5D .5±2.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( ) A .132 B .146C .161D .6663.数轴上表示1,2的对应点分別为A ,B ,点B 关于点A 的对称点为C ,则点C 所表示的数是( )A 21B .12C .22D 224.设实数a ,b ,c ,满足()<0a b c ac >>,且c b a <<,则x a x b x c -+++-的最小值为( ) A .3a b c ++B .bC .+a bD .c a --5.以下11个命题:①负数没有平方根;②内错角相等;③同旁内角互补,两直线平行;④一个正数有两个立方根,它们互为相反数;⑤无限不循环小数是无理数;⑥数轴上的点与实数有一一对应关系;⑦过一点有且只有一条直线和已知直线垂直;⑧不相交的两条直线叫做平行线;⑨从直线外一点到这条直线的垂线段,叫做这点到直线的距离.⑩开方开不尽的数是无理数;⑪相等的两个角是对顶角;其中真命题的个数为( ) A .5B .6C .7D .86.下列说法中,错误的有( ) ①符号相反的数与为相反数; ②当0a ≠时,0a >; ③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远; ⑤数轴上的点不都表示有理数. A .0个B .1个C .2个D .3个7.15a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158-8.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( ) A .1 B .2C .3D .49.现定义一种新运算“*”,规定a *b =ab +a -b ,如1*3=1×3+1-3,则(-2*5)*6等于( ) A .120 B .125C .-120D .-12510.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .6二、填空题11.对于正数x 规定1()1f x x=+,例如:11115(3),()11345615f f ====++,则f (2020)+f(2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 12.新定义一种运算,其法则为32a ca d bcb d =÷,则223x x xx--=__________ 13.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.14.对于有理数a ,b ,规定一种新运算:a ※b=ab+b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 15.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是_____.16.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.17.若[x ]表示不超过x 的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论: ①[﹣x ]=﹣[x ];②若[x ]=n ,则x 的取值范围是n ≤x <n +1; ③x =﹣2.75是方程4x ﹣[x ]+5=0的一个解; ④当﹣1<x <1时,[1+x ]+[1﹣x ]的值为1或2. 其中正确的结论有 ___(写出所有正确结论的序号).18.将1,2,3,6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,如(5,4)表示的数是2(即第5排从左向右第4个数),那么(2021,1011)所表示的数是 ___.19.若()2210a b -++=.则a b =______.20.将1,2,3,6按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.三、解答题21.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=. (1)计算: 1.87<>= ;π= ; (2)①求满足12x <->=的实数x 的取值范围, ②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围. 22.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法:设22019202012222s =+++++ ①则22020202122222s =++++ ②②-①得,2021221s s s -==- 请仿照小明的方法解决以下问题: (1)291222++++=________;(2)220333+++=_________;(3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).23.观察下列各式:21131222-=⨯;21241333-=⨯;21351444-=⨯;……根据上面的等式所反映的规律, (1)填空:21150-=______;2112019-=______; (2)计算:2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭24.阅读材料:求值:2342017122222+++++⋯+, 解答:设2342017122222S =+++++⋯+,①将等式两边同时乘2得:2342018222222S =++++⋯+,②将-②①得:201821S =-,即2342017201812222221S =+++++⋯+=-. 请你类比此方法计算:()234201122222+++++⋯+.()2342133333(n +++++⋯+其中n 为正整数)25.阅读下面的文字,解答问题.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数;用{a }表示a 减去[a ]所得的差.例如:=1,[2.2]=2,1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法计算:]= {5= ;(2)若]=1,写出所有满足题意的整数x 的值: .(3)已知y 0是一个不大于280的非负数,且满足}=0.我们规定:y 1=],y 2=,y 3=],…,以此类推,直到y n 第一次等于1时停止计算.当y 0是符合条件的所有数中的最大数时,此时y 0= ,n = . 26.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:第一步:∵10=100,1000593191000000<<,∴10100<<.∴能确定59319的立方根是个两位数. 第二步:∵59319的个位数是9,39729= ∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,34<<,可得3040<<, 由此能确定59319的立方根的十位数是3,因此59319的立方根是39. (解答问题)根据上面材料,解答下面的问题(1)求110592的立方根,写出步骤.(2=__________. 27.先阅读然后解答提出的问题:设a 、b 是有理数,且满足3=-a b a 的值.解:由题意得(3)(0-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,a-3=0,b+2=0, 所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足2210x y -=+x+y 的值.28.我们知道,任意一个正整数n 都可以进行这样的分解:n p q =⨯(p ,q 是正整数,且p q ≤),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的完美分解.并规定:()p F n q=. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F (18)=3162=. (1)F (13)= ,F (24)= ;(2)如果一个两位正整数t ,其个位数字是a ,十位数字为1b -,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F (t )的最大值.29.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,的小数部分我们不可能全部写出来,而121.请解答下列问题:_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y -的平方根. 30.观察下列各式,并用所得出的规律解决问题:(11.414≈14.14141.4,……0.1732 1.732≈17.32,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2 3.873 1.225≈≈_____≈______.(31=10=100=,…… 小数点的变化规律是_______________________.(4 2.154≈0.2154≈-,则y =______.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据已知进行计算,并判断每一步输出结果即可得到答案.【详解】解:∵25的算术平方根是5,5不是无理数,∴再取5的平方根,而5的平方根为∴输出值y=故选:B.【点睛】本题考查实数分类及计算,判断每步计算结果是否为无理数是解题的关键.2.B解析:B【详解】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案.详解:1.52=2.25,可得出有2个1;}2.52=6.25,可得出有4个2;3.52=12.25,可得出有6个3;4.52=20.25,可得出有8个4;5.52=30.25,可得出有10个5;则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146.故选B.点睛本题考查了估算无理数的大小.3.C解析:C【分析】根据数轴上两点之间的距离计算、对称的性质即可解决.【详解】根据对称的性质得:AC=AB设点C表示的数为a,则11-a解得:2a=【点睛】本题考查了数轴上两点之间的距离,图形对称的性质,关键是由对称的性质得到AC=AB.4.C解析:C【分析】<<,即可确定a,−b,c在数根据ac<0可知,a,c异号,再根据a>b>c,以及c b a轴上的位置,而|x−a|+|x+b|+|x−c|表示x到a,−b,c三点的距离的和,根据数轴即可确定.【详解】解:∵ac<0,∴a,c异号,∵a>b>c,∴a>0,c<0,<<,又∵c b a∴b>0,∴ a>b>0>c>-b又∵|x−a|+|x+b|+|x−c|表示x到a,−b,c三点的距离的和,当x在c时,|x−a|+|x+b|+|x−c|最小,最小值是a与−b之间的距离,即a+b故选:C.【点睛】本题考查了绝对值函数的最值问题,解决的关键是根据条件确定a,−b,c之间的大小关系,把求式子的最值的问题转化为距离的问题,有一定难度.5.A解析:A【分析】根据相关知识逐项判断即可求解.【详解】解:①“负数没有平方根”,是真命题②“内错角相等”,缺少两直线平行这一条件,是假命题;③“同旁内角互补,两直线平行”,是真命题;④“一个正数有两个立方根,它们互为相反数”,一个正数有一个立方根,是假命题;⑤“无限不循环小数是无理数”,是真命题;⑥“数轴上的点与实数有一一对应关系”,是真命题;⑦“过一点有且只有一条直线和已知直线垂直”,缺少在同一平面内条件,是假命题;⑧“不相交的两条直线叫做平行线”,缺少在同一平面内条件,是假命题;⑨“从直线外一点到这条直线的垂线段,叫做这点到直线的距离”,应为“从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离”,是假命题.⑩“开方开不尽的数是无理数”,是真命题;⑪“相等的两个角是对顶角”,相等的角有可能是对顶角,但不一定是对顶角,是假命题.所以真命题有5个.【点睛】本题考查判断真假命题、平方根、立方根、平行线的判定、无理数、实数与数轴关系、直线外一点到直线的距离、对顶角等知识,综合性较强,熟知相关知识点是解题关键.6.D解析:D【分析】根据相反数、绝对值、数轴表示数以及有理数的乘法运算等知识综合进行判断即可.【详解】解:符号相反,但绝对值不等的两个数就不是相反数,例如5和-3,因此①不正确;a≠0,即a>0或a<0,也就是a是正数或负数,因此|a|>0,所以②正确;例如-1>-3,而(-1)2<(-3)2,因此③不正确;例如-5表示的点到原点的距离比1表示的点到原点的距离远,但-5<1,因此④不正确;数轴上的点与实数一一对应,而实数包括有理数和无理数,因此⑤正确;综上所述,错误的结论有:①③④,故选:D.【点睛】本题考查相反数、绝对值、数轴表示数,对每个选项进行判断是得出正确答案的前提.7.A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】91516<<,<34<<,∴==,3,3a b)∴-=-=a b336故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.8.A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误; −64的立方根为-4,所以④错误;⑤正错误.故选:A . 【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.9.D解析:D 【详解】根据题目中的运算方法a *b =ab +a -b ,可得(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.故选D .点睛:本题主要考查了新定义运算,根据题目所给的规律(或运算方法),利用有理数的混合法则计算正确是解题关键.10.C解析:C 【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8. 【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,… ∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8. 故答案是:8. 【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….二、填空题 11.5 【分析】由已知可求,则可求. 【详解】 解:, , ,,故答案为:2019.5 【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键.解析:5 【分析】由已知可求1()()1f x f x+=,则可求111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=.【详解】 解:1()1f x x=+, 111()1111x f x x x x x ∴===+++,11()()111xf x f x x x∴+=+=++,∴111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=, 1111(2020)(2019)(2)(1)()()()(1)201920192019.523202011++⋯+++++⋯+=+=+=+f f f f f f f f 故答案为:2019.5 【点睛】本题考查代数值求值,根据所给条件,探索出1()()1f x f x+=是解题的关键.12.【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得. 【详解】故答案为: 【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解 解析:3x【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得. 【详解】222322333()()x x x x x x x x x--=-⋅÷-⋅=故答案为:3x【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.13.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 14.①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若解析:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.15.﹣2b【详解】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【详解】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.16.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.17.②④【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]解析:②④【分析】根据若[]x表示不超过x的最大整数,①取 2.5x验证;②根据定义分析;③直接将 2.75-代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]=﹣2,∴此时[﹣x]与﹣[x]两者不相等,故①不符合题意;②若[x]=n,∵[x]表示不超过x的最大整数,∴x的取值范围是n≤x<n+1,故②符合题意;③将x=﹣2.75代入4x﹣[x]+5,得:4×(﹣2.75)﹣(﹣3)+5=﹣3≠0,故③不符合题意;④当﹣1<x<1时,若﹣1<x<0,[1+x]+[1﹣x]=0+1=1,若x=0,[1+x]+[1﹣x]=1+1=2,若0<x<1,[1+x]+[1﹣x]=1+0=1;故④符合题意;故答案为:②④.【点睛】本题主要考查取整函数的定义,是一个新定义类型的题,解题关键是准确理解定义求解.18.1【分析】所给一系列数是4个数一循环,看是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:,表示的数是第个数,,第2021排的第1011个数为1.解析:1【分析】所给一系列数是4个数一循环,看(2021,1011)是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:(20201)2020 1234202020412102+⨯++++⋯⋯+==,(2021,1011)∴表示的数是第204121010112042221+=个数,204222151055541=⨯+,∴第2021排的第1011个数为1.故答案为:1.【点睛】本题考查算术平方根与规律型:数字的变化类,根据规律判断出是第几个数是解本题的关键.19.1【分析】根据平方数和算术平方根的非负性即可求得a、b的值,再带入求值即可.【详解】∵,∴,∴a-2=0, b+1=0,∴a=2,b=-1,∴=,故答案为:1【点睛】本题主要考解析:1【分析】根据平方数和算术平方根的非负性即可求得a、b的值,再带入a b求值即可.【详解】∵()2a-,20∴()2a-==,20∴a-2=0, b+1=0,∴a=2,b=-1,∴a b=2-=,(1)1故答案为:1【点睛】本题主要考查非负数的性质,解题的关键是掌握偶次乘方的非负性和算数平方根的非负性. 20.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1, 1+2+3+4+5+6+3=24,24÷4=6,则(7,3,.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.三、解答题21.(1)2,3 (2)①5722x ≤<②330,,42 (3)00.5a ≤< 【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x 的取值范围;②根据新定义的运算规则和43x 为整数,即可求出所有非负实数x 的值; (3)先解方程求得22x a =-<>,再根据方程的解是正整数解,即可求出非负实数a 的取值范围.【详解】 (1) 1.87<>=2;π=3;(2)①∵12x <->= ∴1121222x --<+≤ 解得5722x ≤<; ②∵43x x <>=∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数 ∴333,0,,442x =-故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.22.(1)1021-;(2)21332-;(3)111n a a +-- 【分析】(1)设式子等于s ,将方程两边都乘以2后进行计算即可;(2)设式子等于s ,将方程两边都乘以3,再将两个方程相减化简后得到答案; (3)设式子等于s ,将方程两边都乘以a 后进行计算即可.【详解】(1)设s=291222++++①, ∴2s=29102222++++②, ②-①得:s=1021-,故答案为:1021-;(2)设s=220333+++①, ∴3s=22021333+++②,②-①得:2s=2133-, ∴21332s -=, 故答案为: 21332-; (3)设s=231n a a a a ++++①, ∴as=231n n a a a a a +++++②, ②-①得:(a-1)s=11n a +-,∴s=111n a a +--. 【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.23.(1)49515050⨯;2018202020192019⨯;(2)10102019. 【分析】 (1)根据已知数据得出规律,2111111n n n ⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,进而求出即可; (2)利用规律拆分,再进一步交错约分得出答案即可.【详解】解:(1)21150-=49515050⨯; 2112019-=2018202020192019⨯; (2)2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1324352018202022334420192019⨯⨯⨯⨯⨯⨯⨯⨯…… =1202022019⨯ =10102019. 【点睛】此题主要考查了实数运算中的规律探索,根据已知运算得出数字之间的变化规律是解决问题的关键.24.(1)2121-;(2)()n 11312+-. 【解析】【分析】 ()1设23420S 122222=+++++⋯+,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;()2同理即可得到所求式子的值.【详解】解:()1设23420S 122222=+++++⋯+,将等式两边同时乘2得:2345212S 222222=++++⋯+,将下式减去上式得:212S S 21-=-,即21S 21=-,则234202112222221+++++⋯+=-;()2设234n S 133333=+++++⋯+①,两边同时乘3得:234n n 13S 333333+=++++⋯++②,-②①得:n 13S S 31+-=-,即()n 11S 312+=-, 则()234n n 11133333312++++++⋯+=-.【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,解题的关键是明确题意,运用题目中的解题方法,运用类比的数学思想解答问题.25.(1)2;32)1、2、3;(3)256,4【分析】(1)依照定义进行计算即可;(2)由题可知,04x <<,则可得满足题意的整数的x 的值为1、2、3;(3)由0=,可知,0y 是某个整数的平方,又0y 是符合条件的所有数中最大的数,则0256y =,再依次进行计算.【详解】解:(1)由定义可得,2=,[52=,{53∴=故答案为:2;3.(2)[]1x =,2∴<,即04x <<,∴整数x 的值为1、2、3.故答案为:1、2、3.(3)0{}0y =,即0==,∴2t =,且t 是自然数,0y 是符合条件的所有数中的最大数,0256y ∴=,1[16]16y ∴===,2[4]4y ===,3[2]2y ===,41y ===,即4n =.故答案为:256,4.【点睛】本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键.26.(1)48;(2)28【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.【详解】解:(1)第一步:10100=,11059210100000000<<,10100∴, ∴能确定110592的立方根是个两位数.第二步:110592的个位数是2,38512=,∴能确定110592的立方根的个位数是8.第三步:如果划去110592后面的三位592得到数110,45,可得4050,由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:10=100=,1000219521000000<<,10100∴<,∴能确定21952的立方根是个两位数.第二步:21952的个位数是2,38512=,∴能确定21952的立方根的个位数是8.第三步:如果划去21952后面的三位952得到数21,23<,可得2030,由此能确定21952的立方根的十位数是2,因此21952的立方根是28.28,故答案为:28.【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.27.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x 、y 的值,进而可求x+y 的值.【详解】解:∵2210x y -=+∴()22100x y --+-=, ∴2210x y --=0-=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y 的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.28.(1)113,23(2)所以和谐数为15,26,37,48,59;(3)F (t )的最大值是34. 【分析】(1)根据题意,按照新定义的法则计算即可.(2)根据新定义的”和谐数”定义,将数用a,b 表示列出式子解出即可.(3)根据(2)中计算的结果求出最大即可.【详解】解:(1)F (13)=113,F (24)=23; (2)原两位数可表示为10(1)b a -+新两位数可表示为101a b +-∴10110(1)36a b b a +----=∴101101036a b b a +--+-=∴9927a b -=∴3a b -=∴3a b =+ (16b <≤且b 为正整数 )∴b=2,a=5; b=3,a=6, b=4,a=7,b=5,a=8 b=6,a=9所以和谐数为15,26,37,48,59(3)所有“和谐数”中,F (t )的最大值是34. 【点睛】本题为新定义的题型,关键在于读懂题意,按照规定解题.29.(1) 4;(2)1;(2) ±12.【分析】(1(2a 、b 的值,再代入求出即可;(3的范围,求出x 、y 的值,再代入求出即可.【详解】解:(1)∵45, ∴4,故答案为4;(2)∵2<3,∴-2,∵34,∴b=3,∴;(3)∵100<110<121,∴1011,∴110<111,∵,其中x 是整数,且0<y <1,∴x=110,,∴+10=144,的平方根是±12.【点睛】键.30.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(11.41414.14≈141.4≈,……0.1732 1.732≈17.32,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位. 故答案为:两;右;一;(2 3.873 1.225≈12.25≈0.3873;故答案为:12.25;0.3873;(31=10=100=,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵2.154≈0.2154≈-, ∴0.2154≈, ∴0.2154≈-,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
人教版七年级下册数学期末考试试题及答案
人教版七年级下册数学期末考试试题及答案七年级下册数学期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1、下列各点中,位于第二象限的是()A、(2,3)B、(2,-3)C、(-2,3)D、(-2,-3)2、对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A、条形统计图能清楚地反映事物的变化情况B、折线统计图能清楚地表示出每个项目的具体数目C、扇形统计图能清楚地表示出各部分在总体中所占的百分比D、三种统计图可以互相转换3、下列方程组是二元一次方程组的是()A、x y5z x 5B、x y3xy 2C、x y32x y 4D、x y11x y 44、下列判断不正确的是()A、若a b,则4a4bB、若2a3b,则a bC、若a b,则ac bcD、若ac bc,则a b5、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)6、下列调查适合作抽样调查的是()A、了解XXX“天天向上”栏目的收视率B、了解初三年级全体学生的体育达标情况C、了解某班每个学生家庭电脑的数量D、“辽宁号”航母下海前对重要零部件的检查7、已知点A(m,n)在第三象限,则点B(m,-n)在()A、第一象限B、第二象限C、第三象限D、第四象限8、关于x,y的方程组y2x mx2y 5x2y5m的解满足x y6,则m的值为()A、1B、2C、3D、49、为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法正确的有()A、这6000名学生的数学会考成绩的全体是总体;B、每个考生的数学会考成绩是个体;C、抽取的200名考生的数学会考成绩是总体的一个样本;D、样本容量是200.10、已知:正方形ABCD的面积为64,被分成四个相同的长方形和一个面积为4的小正方形,则a,b的长分别是()A、a=5,b=3B、a=3,b=5C、a=6.5,b=1.5D、a=1.5,b=6.5一、改错题1.今天我们研究了一道非常有意思的数学题目,它是这样的:有一只猴子摘了若干个桃子,第一天它吃了其中的一半,然后再多吃了一个;第二天它又吃了其中的一半,再多吃了一个;以后每天都是这样吃,请问这只猴子摘了多少个桃子?改为:今天我们研究了一道非常有趣的数学题目:一只猴子摘了一些桃子,第一天它吃了其中的一半,再多吃了一个;第二天它又吃了其中的一半,再多吃了一个;以后每天都是这样吃。
人教版七年级数学下册期末测试题+答案解析(共四套)
⼈教版七年级数学下册期末测试题+答案解析(共四套)⼈教版七年级第⼆学期综合测试题(⼆)、填空题:(每题3分,共15分)i.8i 的算术平⽅根是 ________ ,旷64= __________ . 2. 如果 13. 在⼛ABC 中,已知两条边a=3,b=4,则第三边c 的取值范围是 _____________4. 若三⾓形三个内⾓度数的⽐为 2:3:4,则相应的外⾓⽐是 ___________ .5.已知两边相等的三⾓形⼀边等于 ___________ 5cm,另⼀边等于11cm,则周长是.⼆、选择题:(每题3分,共15分)6?点P (a,b )在第四象限,则点P 到x 轴的距离是() A.a B.b C.| a | D. | b |7. 已知aa b A.a+5>b+5B.3a>3b;C.-5a>-5bD.>3 38. 如图,不能作为判断AB// CD 的条件是()A. / FEB=/ ECDB./ AEC ⽞ ECD; C. / BEC+Z ECD=180D. / AEG=Z DCH三、解答题:(每题6分,共18分) 11.解下列⽅程组:12.2x 5y 25,4x 3y 15.9.以下说法正确的是()A. 有公共顶点,并且相等的两个⾓是对顶⾓B. 两条直线相交,任意两个⾓都是对顶⾓C. 两⾓的两边互为反向延长线的两个⾓是对顶⾓D. 两⾓的两边分别在同⼀直线上,这两个⾓互为对顶⾓ 10.下列各式中,正确的是()13.若A(2x-5,6-2x)在第四象限,求a解不等式组,并在数轴表⽰2x 3 6 x,1 4x 5x 2.的取值范围作图题:(6分)作BC 边上的⾼作AC 边上的中线。
五.有两块试验⽥,原来可产花⽣470千克,改⽤良种后共产花⽣ 532千克,已知第⼀块⽥的产量⽐原来增加 16%,第⼆块⽥的产量⽐原来增加10%,问这两块试验⽥改⽤良种后各增产花⽣多少千克?( 8分)六,已知a 、b 、c 是⼆⾓形的⼆边长,化简:|a — b +c|+ |a — b — c| (6分)⼋,填空、如图1,已知/1 =/2, Z B =Z C ,可推得AB //CD 。
【必考题】七年级数学下期末试题(附答案)(1)
【必考题】七年级数学下期末试题(附答案)(1) 一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A.1个B.2个C.3个D.4个2.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD 的周长为()A.20cm B.22cmC.24cm D.26cm3.下列方程中,是二元一次方程的是( )A.x﹣y2=1B.2x﹣y=1C.11yx+=D.xy﹣1=04.2-的相反数是()A.2-B.2C.12D.12-5.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多6.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2B.2C.3D.﹣37.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-38.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)9.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4 D .()8,410.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .11.在平面直角坐标系中,点P(1,-2)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①② 二、填空题13.某小区地下停车场入口门栏杆的平面示意图如图所示, 垂直地面于点 ,平行于地面,若,则________.14.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________. 15.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____).16.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 种购买方案. 17.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________. 18.如图所示第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么(1)第4个图案中有白色六边形地面砖________块,第n 个图案中有白色地面砖________ 块.19.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______. 20. 5-的绝对值是______.三、解答题21.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽样调查的学生有______人,并补全条形统计图; (2)每天户外活动时间的中位数是______(小时);(3)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人? 22.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行了调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=___________,n=_____________;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生种,大约有多少人最认可“微信”这一新生事物?23.(1)同题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC的度数.小明想到一种方法,但是没有解答完:如图2,过P作PE∥AB,∴∠APE+∠P AB=180°.∴∠APE=180°-∠P AB=180°-130°=50°.∵AB∥C D.∴PE∥C D.…………请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的思路,解答下面的问题:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.①当点P在A、B两点之间时,∠CPD,∠α,∠β之间有何数量关系?请说明理由.②当点P在A、B两点外侧时(点P与点O不重合),请直接写出∠CPD,∠α,∠β之间的数量关系.24.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为______ ;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为______ .25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个13,共三个,故选C.【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.3.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.4.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .5.C解析:C【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.6.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.7.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A8.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A . 【点睛】考查坐标问题,关键是根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系解答.9.C解析:C 【解析】 【分析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标. 【详解】解:∵点A (0,1)的对应点C 的坐标为(4,2), 即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1), 即D (7,4); 故选:C. 【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.10.D解析:D 【解析】 【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答. 【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1; 解不等式②得,x ≤1; ∴不等式组的解集是﹣1<x ≤1. 不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.11.D解析:D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.12.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得CD∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过解析:【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=120°,求得答案.【详解】如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o.【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.14.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a≤<.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x<3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7,∴78 33a≤<.故答案为:78 33a≤<.【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a 的代数式的取值范围.15.0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P 的坐标【详解】∵点在x 轴上∴m -2=0即m=2∴P(50)故答案为:50【点睛】本题考查了x 轴上的点的坐标的特点熟解析:0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0,即可求得m=2,由此求得点P 的坐标.【详解】∵点p(3,2)m m +-在x 轴上, ∴m-2=0,即m=2, ∴P (5,0).故答案为:5,0.【点睛】本题考查了x 轴上的点的坐标的特点,熟知x 轴上的点的纵坐标为0是解决问题的关键. 16.2【解析】设甲种运动服买了x 套乙种买了y 套根据准备用365元购买两种运动服其中甲种运动服20元/套乙种运动服35元/套在钱都用尽的条件下可列出方程且根据xy 必需为整数可求出解解:设甲种运动服买了x 套解析:2【解析】设甲种运动服买了x 套,乙种买了y 套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x ,y 必需为整数可求出解.解:设甲种运动服买了x 套,乙种买了y 套,20x+35y=365 x=,∵x ,y 必须为正整数, ∴>0,即0<y <,∴当y=3时,x=13当y=7时,x=6.所以有两种方案.故答案为2.本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.17.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12xy=⎧⎨=⎩代入方程,得a-2=3解得a=5,故答案为5.18.18;4n+2【解析】【分析】根据所给的图案发现:第一个图案中有6块白色地砖后边依次多4块由此规律解决问题【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=1解析:18;4n+2【解析】【分析】根据所给的图案,发现:第一个图案中,有6块白色地砖,后边依次多4块,由此规律解决问题.【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=10(块);第3个图案中有白色六边形地面砖有6+2×4=14(块);第4个图案中有白色六边形地面砖有6+3×4=18(块);第n个图案中有白色地面砖6+4(n-1)=4n+2(块).故答案为18,4n+2.【点睛】此题考查图形的变化规律,结合图案发现白色地砖的规律是解题的关键.19.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m-2=±6∴m=8或m=-4故答案为8或-4解析:8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式,∴x2+(m-2)x+9=(x±3)2.而(x±3)2=x2±6x+9,∴m-2=±6,∴m=8或m=-4.故答案为8或-4.20.【解析】【分析】根据负数的绝对值是它的相反数可得答案【详解】解:-的绝对值是故答案为【点睛】本题考查了实数的性质负数的绝对值是它的相反数非负数的绝对值是它本身【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.三、解答题21.(1)500;(2)1;(3)该校每天户外活动时间超过1小时的学生有800人.【解析】【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.【详解】(1)0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:10020%500÷=,22.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,支付宝的人数所占百分比n%=35100100%⨯=35%,所以n=35,故答案为:100,35;(2)网购人数为:100×15%=15人,微信对应的百分比为:40100%40% 100⨯=,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.23.(1)110°;(2) 详见解析 【解析】分析:(1)根据平行线的判定与性质补充即可;(2)①过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;②画出图形(分两种情况(i )点P 在BA 的延长线上,(ii )点P 在AB 的延长线上),根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案.详解:(1)剩余过程:∴∠CPE +∠PCD =1800,∴∠CPE =1800—1200=600,∴∠APC =500+600=1100.(2)①∠CPD =∠α+∠β.理由如下:过P 作PQ ∥AD .∵AD ∥BC ,∴PQ ∥BC ,∴1α∠=∠,同理,2β∠=∠,∴12CPD αβ∠=∠+∠=∠+∠;②(i )当P 在BA 延长线时,如图4,过P 作PE ∥AD 交CD 于E ,同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠β﹣∠α;(ii )当P 在AB 延长线时,如图5, 同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠α﹣∠β.点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,难度适中.24.(1)(﹣3,2)(2)见解析(3)(a ﹣3,b+2)【解析】试题分析:(1)根据坐标系可得B 点坐标,再根据关于y 轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(2)首先确定A 、B 、C 三点平移后的对应点位置,然后再连接即可;(3)根据△AOB 的平移可得P 的坐标为(a ,b ),平移后横坐标﹣3,纵坐标+2. 解:(1)B 点关于y 轴的对称点坐标为(﹣3,2),故答案为(﹣3,2);(2)如图所示:(3)P 的坐标为(a ,b )平移后对应点P 1的坐标为(a ﹣3,b+2).故答案为(a ﹣3,b+2).点评:此题主要考查了作图﹣﹣平移变换,关键是几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点.25.(1) 18003x y =⎧⎨=⎩;(2) 434;(3) 180. 【解析】解:(1)依题意,得20024003002700x y x y +=⎧⎨+=⎩解,得18003x y =⎧⎨=⎩(2)设他当月要卖服装m 件.则180033100m +≥ 14333m ≥ 14333m ≥的最小整数是434 答:他当月至少要卖服装434件.(3)设甲、乙、丙服装的单价分别为a 元、b 元、c 元.则3235023370a b c a b c ++=⎧⎨++=⎩∴ 444720a b c ++= ∴ 180a b c ++=答:购买甲、乙、丙各一件共需180元.。
七年级下册数学试卷及答案
七年级下册数学试卷及答案知识有重量,但成就有光泽。
有⼈感觉到知识的⼒量,但更多的⼈只看到成就的光泽。
下⾯给⼤家分享⼀些关于七年级下册数学试卷及答案,希望对⼤家有所帮助。
⼀、选择题(本题共10⼩题,每⼩题3分,共30分)1.(3分)下列各数:、、0.101001…(中间0依次递增)、﹣π、是⽆理数的有( )A. 1个B. 2个C. 3个D. 4个考点:⽆理数.分析:根据⽆理数的定义(⽆理数是指⽆限不循环⼩数)判断即可.解答:解:⽆理数有,0.101001…(中间0依次递增),﹣π,共3个,故选C.点评:考查了⽆理数的应⽤,注意:⽆理数是指⽆限不循环⼩数,⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数.2.(3分)(2001?北京)已知:如图AB∥CD,CE平分∠ACD,∠A=110°,则∠ECD等于( )A. 110°B. 70°C. 55°D. 35°考点:平⾏线的性质;⾓平分线的定义.专题:计算题.分析:本题主要利⽤两直线平⾏,同旁内⾓互补,再根据⾓平分线的概念进⾏做题.解答:解:∵AB∥CD,根据两直线平⾏,同旁内⾓互补.得:∴∠ACD=180°﹣∠A=70°.再根据⾓平分线的定义,得:∠ECD= ∠ACD=35°.故选D.点评:考查了平⾏线的性质以及⾓平分线的概念.3.(3分)下列调查中,适宜采⽤全⾯调查⽅式的是( )A. 了解我市的空⽓污染情况B. 了解电视节⽬《焦点访谈》的收视率C. 了解七(6)班每个同学每天做家庭作业的时间D. 考查某⼯⼚⽣产的⼀批⼿表的防⽔性能考点:全⾯调查与抽样调查.分析:由普查得到的调查结果⽐较准确,但所费⼈⼒、物⼒和时间较多,⽽抽样调查得到的调查结果⽐较近似.解答:解:A、不能全⾯调查,只能抽查;B、电视台对正在播出的某电视节⽬收视率的调查因为普查⼯作量⼤,适合抽样调查;C、⼈数不多,容易调查,适合全⾯调查;D、数量较⼤,适合抽查.故选C.点评:本题考查了抽样调查和全⾯调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选⽤,⼀般来说,对于具有破坏性的调查、⽆法进⾏普查、普查的意义或价值不⼤时,应选择抽样调查,对于精确度要求⾼的调查,事关重⼤的调查往往选⽤普查.4.(3分)⼀元⼀次不等式组的解集在数轴上表⽰为( )A. B. C. D.考点:在数轴上表⽰不等式的解集;解⼀元⼀次不等式组.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表⽰出来即可.解答:解:,由①得,x<2,由②得,x≥0,故此不等式组的解集为:0≤x<2,在数轴上表⽰为:故选B.点评:本题考查的是在数轴上表⽰不等式组的解集,熟知“同⼤取⼤;同⼩取⼩;⼤⼩⼩⼤中间找;⼤⼤⼩⼩找不到”的原则是解答此题的关键.5.(3分)⼆元⼀次⽅程2x+y=8的正整数解有( )A. 2个B. 3个C. 4个D. 5个考点:解⼆元⼀次⽅程.专题:计算题.分析:将x=1,2,3,…,代⼊⽅程求出y的值为正整数即可.解答:解:当x=1时,得2+y=8,即y=6;当x=2时,得4+y=8,即y=4;当x=3时,得6+y=8,即y=2;则⽅程的正整数解有3个.故选B点评:此题考查了解⼆元⼀次⽅程,注意x与y都为正整数.6.(3分)若点P(x,y)满⾜xy<0,x<0,则P点在( )A. 第⼆象限B. 第三象限C. 第四象限D. 第⼆、四象限考点:点的坐标.分析:根据实数的性质得到y>0,然后根据第⼆象限内点的坐标特征进⾏判断.解答:解:∵xy<0,x<0,∴y>0,∴点P在第⼆象限.故选A.点评:本题考查了点的坐标平⾯内的点与有序实数对是⼀⼀对应的关系.坐标:直⾓坐标系把平⾯分成四部分,分别叫第⼀象限,第⼆象限,第三象限,第四象限.坐标轴上的点不属于任何⼀个象限.7.(3分)如图,AB∥CD,∠A=125°,∠C=145°,则∠E的度数是( )A. 10°B. 20°C. 35°D. 55°考点:平⾏线的性质.分析:过E作EF∥AB,根据平⾏线的性质可求得∠AEF和∠CEF的度数,根据∠E=∠AEF﹣∠CEF即可求得∠E的度数.解答:解:过E作EF∥AB,∵∠A=125°,∠C=145°,∴∠AEF=180°﹣∠A=180°﹣125°=55°,∠CEF=180°﹣∠C=180°﹣145°=35°,∴∠E=∠AEF﹣∠CEF=55°﹣35°=20°.故选B.点评:本题考查了平⾏线的性质,解答本题的关键是作出辅助线,要求同学们熟练掌握平⾏线的性质:两直线平⾏,同旁内⾓互补.8.(3分)已知是⽅程组的解,则是下列哪个⽅程的解( )A. 2x﹣y=1B. 5x+2y=﹣4C. 3x+2y=5D. 以上都不是考点:⼆元⼀次⽅程组的解;⼆元⼀次⽅程的解.专题:计算题.分析:将x=2,y=1代⼊⽅程组中,求出a与b的值,即可做出判断.解答:解:将⽅程组得:a=2,b=3,将x=2,y=3代⼊2x﹣y=1的左边得:4﹣3=1,右边为1,故左边=右边,∴是⽅程2x﹣y=1的解,故选A.点评:此题考查了⼆元⼀次⽅程组的解,⽅程组的解即为能使⽅程组中两⽅程成⽴的未知数的值.9.(3分)下列各式不⼀定成⽴的是( )A. B. C. D.考点:⽴⽅根;算术平⽅根.分析:根据⽴⽅根,平⽅根的定义判断即可.解答:解:A、a为任何数时,等式都成⽴,正确,故本选项错误;B、a为任何数时,等式都成⽴,正确,故本选项错误;C、原式中隐含条件a≥0,等式成⽴,正确,故本选项错误;D、当a<0时,等式不成⽴,错误,故本选项正确;故选D.点评:本题考查了⽴⽅根和平⽅根的应⽤,注意:当a≥0时, =a,任何数都有⽴⽅根10.(3分)若不等式组的整数解共有三个,则a的取值范围是( )A. 5<a<6 p="" 5≤a≤6<="" d.="" 5≤a<6="" c.="" 5考点:⼀元⼀次不等式组的整数解.分析:⾸先确定不等式组的解集,利⽤含a的式⼦表⽰,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从⽽求出a的范围.解答:解:解不等式组得:2<x≤a,< p="">∵不等式组的整数解共有3个,∴这3个是3,4,5,因⽽5≤a<6.故选C.点评:本题考查了⼀元⼀次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同⼤取较⼤,同⼩取较⼩,⼩⼤⼤⼩中间找,⼤⼤⼩⼩解不了.⼆、填空题(本题共8⼩题,每⼩题3分,共24分)11.(3分)(2009?恩施州)9的算术平⽅根是 3 .考点:算术平⽅根.分析:如果⼀个⾮负数x的平⽅等于a,那么x是a的算术平⽅根,根据此定义即可求出结果.解答:解:∵32=9,∴9算术平⽅根为3.故答案为:3.点评:此题主要考查了算术平⽅根的等于,其中算术平⽅根的概念易与平⽅根的概念混淆⽽导致错误.12.(3分)把命题“在同⼀平⾯内,垂直于同⼀条直线的两条直线互相平⾏”写出“如果…,那么…”的形式是:在同⼀平⾯内,如果 两条直线都垂直于同⼀条直线 ,那么 这两条直线互相平⾏ .考点:命题与定理.分析:根据命题题设为:在同⼀平⾯内,两条直线都垂直于同⼀条直线;结论为这两条直线互相平⾏得出即可.解答:解:“在同⼀平⾯内,垂直于同⼀条直线的两条直线互相平⾏”改写成“如果﹣﹣﹣,那么﹣﹣﹣”的形式为:“在同⼀平⾯内,如果两条直线都垂直于同⼀条直线,那么这两条直线互相平⾏”.故答案为:两条直线都垂直于同⼀条直线,这两条直线互相平⾏.点评:本题考查了命题与定理:判断事物的语句叫命题,命题由题设和结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.13.(3分)将⽅程2x+y=25写成⽤含x的代数式表⽰y的形式,则y= 25﹣2x .考点:解⼆元⼀次⽅程.分析:把⽅程2x+y=25写成⽤含x的式⼦表⽰y的形式,需要把含有y的项移到⽅程的左边,其它的项移到另⼀边即可.解答:解:移项,得y=25﹣2x.点评:本题考查的是⽅程的基本运算技能,表⽰谁就该把谁放到⽅程的左边,其它的项移到另⼀边.此题直接移项即可.14.(3分)不等式x+4>0的最⼩整数解是 ﹣3 .考点:⼀元⼀次不等式的整数解.分析:⾸先利⽤不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.解答:解:x+4>0,x>﹣4,则不等式的解集是x>﹣4,故不等式x+4>0的最⼩整数解是﹣3.故答案为﹣3.点评:本题考查了⼀元⼀次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.15.(3分)某校在“数学⼩论⽂”评⽐活动中,共征集到论⽂60篇,并对其进⾏了评⽐、整理,分成组画出频数分布直⽅图(如图),已知从左到右5个⼩长⽅形的⾼的⽐为1:3:7:6:3,那么在这次评⽐中被评为优秀的论⽂有(分数⼤于或等于80分为优秀且分数为整数) 27 篇.考点:频数(率)分布直⽅图.分析:根据从左到右5个⼩长⽅形的⾼的⽐为1:3:7:6:3和总篇数,分别求出各个⽅格的篇数,再根据分数⼤于或等于80分为优秀且分数为整数,即可得出答案.解答:解:∵从左到右5个⼩长⽅形的⾼的⽐为1:3:7:6:3,共征集到论⽂60篇,∴第⼀个⽅格的篇数是: ×60=3(篇);第⼆个⽅格的篇数是: ×60=9(篇);第三个⽅格的篇数是: ×60=21(篇);第四个⽅格的篇数是: ×60=18(篇);第五个⽅格的篇数是: ×60=9(篇);∴这次评⽐中被评为优秀的论⽂有:9+18=27(篇);故答案为:27.点评:本题考查读频数分布直⽅图的能⼒和利⽤统计图获取信息的能⼒;利⽤统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.16.(3分)我市A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨,求去年A、B两煤矿原计划分别产煤多少万吨?设A、B两煤矿原计划分别产煤x万吨,y万吨;请列出⽅程组 .考点:由实际问题抽象出⼆元⼀次⽅程组.分析:利⽤“A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨”列出⼆元⼀次⽅程组求解即可.解答:解:设A矿原计划产煤x万吨,B矿原计划产煤y万吨,根据题意得:,故答案为::,点评:本题考查了由实际问题抽象出⼆元⼀次⽅程组的知识,解题的关键是从题⽬中找到两个等量关系,这是列⽅程组的依据.17.(3分)在平⾯直⾓坐标系中,已知线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,则端点B的坐标是 (﹣5,4)或(3,4) .考点:坐标与图形性质.分析:根据线段AB∥x轴,则A,B两点纵坐标相等,再利⽤点B可能在A点右侧或左侧即可得出答案.解答:解:∵线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,∴点B可能在A点右侧或左侧,则端点B的坐标是:(﹣5,4)或(3,4).故答案为:(﹣5,4)或(3,4).点评:此题主要考查了坐标与图形的性质,利⽤分类讨论得出是解题关键.18.(3分)若点P(x,y)的坐标满⾜x+y=xy,则称点P为“和谐点”,如:和谐点(2,2)满⾜2+2=2×2.请另写出⼀个“和谐点”的坐标 (3, ) .考点:点的坐标.专题:新定义.分析:令x=3,利⽤x+y=xy可计算出对应的y的值,即可得到⼀个“和谐点”的坐标.解答:解:根据题意得点(3, )满⾜3+ =3× .故答案为(3, ).点评:本题考查了点的坐标平⾯内的点与有序实数对是⼀⼀对应的关系.坐标:直⾓坐标系把平⾯分成四部分,分别叫第⼀象限,第⼆象限,第三象限,第四象限.坐标轴上的点不属于任何⼀个象限.三、解答题(本⼤题共46分)19.(6分)解⽅程组 .考点:解⼆元⼀次⽅程组.分析:先根据加减消元法求出y的值,再根据代⼊消元法求出x的值即可.解答:解:,①×5+②得,2y=6,解得y=3,把y=3代⼊①得,x=6,故此⽅程组的解为 .点评:本题考查的是解⼆元⼀次⽅程组,熟知解⼆元⼀次⽅程组的加减消元法和代⼊消元法是解答此题的关键.20.(6分)解不等式:,并判断是否为此不等式的解.考点:解⼀元⼀次不等式;估算⽆理数的⼤⼩.分析:⾸先去分母、去括号、移项合并同类项,然后系数化成1即可求得不等式的解集,然后进⾏判断即可.解答:解:去分母,得:4(2x+1)>12﹣3(x﹣1)去括号,得:8x+4>12﹣3x+3,移项,得,8x+3x>12+3﹣4,合并同类项,得:11x>11,系数化成1,得:x>1,∵ >1,∴是不等式的解.点评:本题考查了解简单不等式的能⼒,解答这类题学⽣往往在解题时不注意移项要改变符号这⼀点⽽出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同⼀个数或整式不等号的⽅向不变;在不等式的两边同时乘以或除以同⼀个正数不等号的⽅向不变;在不等式的两边同时乘以或除以同⼀个负数不等号的⽅向改变.21.(6分)学着说点理,填空:如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.理由如下:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,( 垂直定义 )∴AD∥EG,( 同位⾓相等,两直线平⾏ )∴∠1=∠2,( 两直线平⾏,内错⾓相等 )∠E=∠3,(两直线平⾏,同位⾓相等)⼜∵∠E=∠1(已知)∴ ∠2 = ∠3 (等量代换)∴AD平分∠BAC( ⾓平分线定义 )考点:平⾏线的判定与性质.专题:推理填空题.分析:根据垂直的定义及平⾏线的性质与判定定理即可证明本题.解答:解:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(垂直定义)∴AD∥EG,(同位⾓相等,两直线平⾏)∴∠1=∠2,(两直线平⾏,内错⾓相等)∠E=∠3,(两直线平⾏,同位⾓相等)⼜∵∠E=∠1(已知)∴∠2=∠3(等量代换)∴AD平分∠BAC(⾓平分线定义 ).点评:本题考查了平⾏线的判定与性质,属于基础题,关键是注意平⾏线的性质和判定定理的综合运⽤.22.(8分)在如图所⽰的正⽅形⽹格中,每个⼩正⽅形的边长为1,格点三⾓形(顶点是⽹格线的交点的三⾓形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所⽰的⽹格平⾯内作出平⾯直⾓坐标系;(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;(3)求△ABC的⾯积.考点:作图-平移变换.分析: (1)根据A点坐标,将坐标轴在A点平移到原点即可;(2)利⽤点的坐标平移性质得出A,′B′,C′坐标即可得出答案;(3)利⽤矩形⾯积减去周围三⾓形⾯积得出即可.解答:解:(1)∵点A的坐标为(﹣4,5),∴在A点y轴向右平移4个单位,x轴向下平移5个单位得到即可;(2)如图所⽰:△A′B′C′即为所求;(3)△ABC 的⾯积为:3×4﹣ ×3×2﹣ ×1×2﹣ ×2×4=4.点评:此题主要考查了平移变换以及三⾓形⾯积求法和坐标轴确定⽅法,正确平移顶点是解题关键.23.(10分)我市中考体育测试中,1分钟跳绳为⾃选项⽬.某中学九年级共有若⼲名⼥同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进⾏统计后分为A、B、C、D四等,并绘制成下⾯的频数分布表(注:5~10的意义为⼤于等于5分且⼩于10分,其余类似)和扇形统计图(如图).等级分值跳绳(次/1分钟) 频数A 12.5~15 135~160 mB 10~12.5 110~135 30C 5~10 60~110 nD 0~5 0~60 1(1)m的值是 14 ,n的值是 30 ;(2)C等级⼈数的百分⽐是 10% ;(3)在抽取的这个样本中,请说明哪个分数段的学⽣最多?(4)请你帮助⽼师计算这次1分钟跳绳测试的及格率(10分以上含10分为及格).考点:扇形统计图;频数(率)分布表.分析: (1)⾸先根据B等级的⼈数除以其所占的百分⽐即可求得总⼈数,然后乘以28%即可求得m的值,总⼈数减去其他三个⼩组的频数即可求得n的值;(2)⽤n值除以总⼈数即可求得其所占的百分⽐;(3)从统计表的数据就可以直接求出结论;(4)先计算10分以上的⼈数,再除以50乘以100%就可以求出结论.解答:解:(1)观察统计图和统计表知B等级的有30⼈,占60%,∴总⼈数为:30÷60%=50⼈,∴m=50×28%=14⼈,n=50﹣14﹣30﹣1=5;(2)C等级所占的百分⽐为: ×100%=10%;(3)B等级的⼈数最多;(4)及格率为:×100%=88%.点评:本题考查了频数分布表的运⽤,扇形统计图的运⽤,在解答时看懂统计表与统计图得关系式关键.24.(10分)(2012?益阳)为响应市政府“创建国家森林城市”的号召,某⼩区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好⽤去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出⼀种费⽤最省的⽅案,并求出该⽅案所需费⽤.考点:⼀元⼀次不等式的应⽤;⼀元⼀次⽅程的应⽤.专题:压轴题.分析: (1)假设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利⽤购进A、B两种树苗刚好⽤去1220元,结合单价,得出等式⽅程求出即可;(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出⽅案.解答:解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:80x+60(17﹣x )=1220,解得:x=10,∴17﹣x=7,答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:17﹣x<x,< p="">解得:x> ,购进A、B两种树苗所需费⽤为80x+60(17﹣x)=20x+1020,则费⽤最省需x取最⼩整数9,此时17﹣x=8,这时所需费⽤为20×9+1020=1200(元).答:费⽤最省⽅案为:购进A种树苗9棵,B种树苗8棵.这时所需费⽤为1200元.点评:此题主要考查了⼀元⼀次不等式组的应⽤以及⼀元⼀次⽅程应⽤,根据⼀次函数的增减性得出费⽤最省⽅案是解决问题的关键.。
七年级全册数学试题及答案
七年级全册数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -5B. 0C. 3D. -22. 若a和b互为相反数,且a+b=0,则下列哪个选项正确?A. a=0B. b=0C. a=bD. a=-b3. 一个数的绝对值等于它本身,这个数是:A. 负数B. 正数C. 0D. 正数或04. 计算下列哪个式子的结果为正数?A. -3 - 2B. 4 + (-6)C. 5 × (-2)D. -7 ÷ (-1)5. 下列哪个分数是最简分数?A. 3/6B. 5/10C. 7/14D. 4/86. 若x=2是方程2x-3=1的解,则x的值是:A. 2B. 1C. 3D. 07. 一个圆的半径为5cm,它的周长是:A. 10π cmB. 20π cmC. 25π cmD. 30π cm8. 下列哪个图形是轴对称图形?A. 平行四边形B. 等腰三角形C. 矩形D. 不规则五边形9. 一个数的立方根等于它本身,这个数是:A. 0B. 1C. -1D. 810. 若a=3,b=-2,则a+b的值是:A. 1B. -5C. 5D. -1二、填空题(每题3分,共30分)11. 一个数的相反数是-4,这个数是________。
12. 一个数的绝对值是5,这个数可以是________或________。
13. 计算2x+3=7,解得x=________。
14. 一个数除以-2等于3,这个数是________。
15. 一个数的平方等于9,这个数可以是________或________。
16. 一个数的立方等于-8,这个数是________。
17. 一个圆的直径是10cm,它的面积是________cm²。
18. 一个三角形的两边长分别是3cm和4cm,第三边的长x满足________< x < ________。
19. 一个数的平方根等于2,这个数是________。
浙教版初中数学七年级下册专题50题(含答案)
浙教版初中数学七年级下册专题50题含答案一、单选题1.下列运算正确的是 ( ) A .222()a b a b +=+ B .236a a a ⋅= C .22()()a b b a a b --=- D .236()a a =2.若22x x -+的值等于0,则x 的值是( )A .2B .2-C .2或2-D .03.如图,是世界人口扇形统计图,中国部分的圆心角的度数为( )A .20°B .36°C .72°D .18°4.下列的计算正确的是( ). A .236a a a ⋅= B .()444a b a b +=- C .()236a a =D .()3322a a =5.已知在同一平面内,直线a ,b ,c 互相平行,直线a 与b 之间的距离是3cm ,直线b 与c 之间的距离是5cm ,那么直线a 与c 的距离是( )cm .A .8B .2C .8或2D .无法确定6.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两,问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A .64485338x y x y +=⎧⎨+=⎩B .64385348x y x y +=⎧⎨+=⎩C .46483538x y x y +=⎧⎨+=⎩D .46383548x y x y +=⎧⎨+=⎩7.如图所示,直线a 、b 与直线c 相交,给出下列条件:①①1=①2,①①3=①6,①①5=①7,①①6=①8,①①4+①7=180°,①①3+①5=180°,①①2+①7=180°,其中能使a①b 的正确个数有( )A .4个B .5个C .6个D .7个8.若x m y n ÷(14x 3y)=4x 2,则( ) A .m=6,n=1B .m=5,n=1C .m=5,n=0D .m=6,n=09.如图,已知①1=①2,则有( )A .AD ①BCB .AB ①CDC .①ABC =①ADCD .AB ①CD10.下列因式分解正确的是( ) A .x 2﹣9=(x ﹣3)2 B .x 2﹣2x ﹣1=x (x ﹣2)﹣1 C .4y 2﹣8y +4=(2y ﹣2)2D .x (x ﹣2)﹣(2﹣x )=(x ﹣2)(x +1) 11.下列计算正确的是( ) A .235a a a +=B .34a a a ⋅=C .623a a a ÷=D .329()a a =12.如图,已知直线a b ∥,把三角板的直角顶点放在直线b 上.若140∠=︒,则2∠的度数为( )A .140°B .130°C .120°D .110°13.如图所示,由图形B 到图形A 的平移变换中,下列描述正确的是( )A.向下平移1个单位,向右平移5个单位B.向上平移1个单位,向左平移5个单位C.向下平移1个单位,向右平移4个单位D.向上平移1个单位,向左平移4个单位14.下列运算正确的是()A.(x2)3=x5B.(xy)3=xy3 C.4x3y÷x=4x2y(x≠0)D.x2+x2=x415.若分式42xx-+的值为0,则x的值是()A.2-B.4-C.4D.2 16.式子2014-a2+2ab-b2的最大值是()A.2012B.2013C.2014D.201517.若x+1x=3,求2421xx x++的值是()A.18B.110C.12D.1418.三个数中,最小的是()A.B.C.D.不能确定19.九年级某班在一次考试中对某道单选题的答题情况进行统计,结果如图所示:根据以上统计图,下列判断错误的是()A.选A的有8人B.选B的有4人C .选C 的有28人D .该班共有40人参加考试20.已知2x =a ,2y =b ,那么2x +y 等于( ) A .a +bB .2abC .abD .xy二、填空题21.若8,2a b ab +==-,则22a b +=___________.22.下列命题:①如果AC =BC ,那么点C 是线段AB 的中点;①不相等的两个角一定不是对顶角;①直角三角形的两个锐角互余;①同位角相等;①两点之间直线最短.其中真命题的个数有_____.(填写序号) 23.计算:a 3•a 2•a 4=____.24.已知①A 的两边与①B 的两边分别平行,且①A 比①B 的3倍少40°,那么①A=______°.25.分解因式:8x 3﹣2x =_______.26.如图,长方形ABCD 的周长为24,以它的四条边为边长向外作正方形,如果这四个正方形的面积和为160,则长方形ABCD 的面积为___.27.若()()267x x x mx n +-=++,则m =______,n =______.28.已知x ,y 2,则x 2+y 2+2xy =_____.29.如果 x 2+ (m -1) x +1 是完全平方式,则 m 的值为______________. 30.用科学记数法表示0.000053为_____.31.如图,A 处在B 处的北偏东45°方向,C 处在A 处的南偏东15°方向,则①BAC 等于________°.32.因式分解:x 2-y (2x -y )= _______.33.若20195a b +=,5a b -=,则22a b -=______. 34.若4112121x M x x x x -=++-+-()(),则整式M =______.35.分解因式:2244x y -=_______________; 36.已知2x =3,2y =5,则22x +y -1=_____.37.如图,Rt ①ABC 中,①ACB=90°,①A=50°,D 为AB 上一点,过点D 作DE ①AC ,若CD 平分①ADE ,则①BCD 的度数为_____°.38.我市今年中考数学学科开考时间是6月22日15时,数串“201506221500”中“0”出现的频数是_____.39.如果30a b -=,那么代数式2222ab b a b aaa 的值是__________.40.方程组24393251156711x y z x y z x y z ++=⎧⎪-+=⎨⎪-+=⎩①②③中,未知数_________的系数成倍数关系,解此方程组首先考虑消去未知数______较简单,得到关于_______________的二元一次方程组为____________.三、解答题41.为了了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题: ①求m 值.①求扇形统计图中阅读时间为5小时的扇形圆心角的度数.①补全条形统计图.(2)求出这组数据的平均数.42.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)补全条形统计图,补全扇形统计图中乐器所占的百分比;(2)本次调查学生选修课程的“众数”是__________;(3)若该校有1200名学生,请估计选修绘画的学生大约有多少名?43.经过平移,①ABC的边AB移到了MN,作出平移后的三角形,你能给出几种作法?44.因式分解:42--.x x362445.计算:(1(2)xy2•(-2x3y2)3÷4x546.某市第三中学组织学生参加生命安全知识网络测试,小明对九年级2班全体学生的测试成绩进行统计,并绘制了如图不完整的频数分布表和扇形统计图.x<060x<60708090x <90100x根据图表中的信息解答下列问题: (1)求九年级2班学生的人数; (2)写出频数分布表中a ,b 的值;(3)已知该市共有80000名中学生参加这次安全知识测试,若规定80分以上(含80分)为优秀,估计该市本次测试成绩达到优秀的人数;(4)小明通过该市教育网站搜索发现,全市参加本次测试的中学生中,成绩达到优秀有56320人.请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因. 47.计算(1(2)化简:11()12--(3)解方程2x 2﹣1=7;(4)解方程组:320x y x y -=⎧⎨+=⎩ 48.计算: (1)2222532x y xx y x y +---(2) 324(2)()21m m m m -+-⋅-- 49.已知:x+y =6,xy =7,求(3x+y)2+(x+3y)2的值. 50.在数学课上,老师给出了这样一道题:计算2162164m m+--.以下是小明同学的计算过程. 解:原式162(4)(4)4m m m =--+- ①162(4)(4)(4)(4)(4)m m m m m +=--+-+ ①1628(4)(4)m m m -+=-+ ①(1)以上过程中,第_________步是进行分式的通分,通分的依据是_________; (2)以上计算过程是否正确?若正确,请你继续完成本题后续解题过程;若不正确,请指出是哪一步出现了错误,并写出本题完整、正确的解答过程.参考答案:1.D【分析】A 利用完全平方公式展开,即可作出判断;B 利用同底数幂的乘法计算,即可作出判断;C 利用多项式乘多项式展开,即可作出判断;D 利用幂的乘方计算,即可作出判断.【详解】A :222()2a b a b ab +=++,故选项A 错误;B :2253+3=a a a a ⋅=,故选项B 错误;C :2222()()=2b a a a b b a b a b ab b a --=----+,故选项C 错误;D :23236()a a a ⨯==,故选项D 正确; 故答案选择D.【点睛】本题主要考查了完全平方公式、同底数幂的乘法、多项式乘多项式以及幂的乘方运算,熟练掌握公式是解决本题的关键. 2.A【分析】根据分式值为零的条件可得:|x |-2=0且x +2≠0,再解即可. 【详解】解:若22x x -+的值等于0,则|x |-2=0且x +2≠0,所以x =2. 故选:A .【点睛】本题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少. 3.C【分析】用360°乘中国的百分比即可. 【详解】解:360°×20%=72° 故答案为C【点睛】本题主要考查了扇形统计图圆心角的求法,即360°乘以其所占的百分比. 4.C【详解】解:①a 2•a 3=a 5, ①选项A 不符合题意; ①()444a b a b +≠-,①选项B 不符合题意; ①(a 3)2=a 6, ①选项C 符合题意; ①(2a )3=8a 3, ①选项D 不符合题意. 故选:C .【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,要熟练掌握. 5.C【分析】画出图形(1)(2),根据图形进行计算即可. 【详解】解:有两种情况,如图:(1)直线a 与c 的距离是3+5=8cm ; (2)直线a 与c 的距离是5−3=2cm ; 故选:C .【点睛】本题主要考查对平行线之间的距离的理解和掌握,能求出所有情况是解此题的关键. 6.C【分析】设马每匹x 两,牛每头y 两,根据“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”列出方程组,即可求解. 【详解】解:设马每匹x 两,牛每头y 两,根据题意得:46483538x y x y +=⎧⎨+=⎩. 故选:C【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.7.B【分析】根据平行线的判定逐个判断即可.【详解】理由是:①①①1=①2,①a①b,(同位角相等,两直线平行)①①①3=①6,不能得到a①b,①①5=①7,①a①b,(内错角相等,两直线平行)①①6=①8, ①8=①7,①①6=①7,①a①b,(同位角相等,两直线平行)①①4+①7=180°,①a①b,(同旁内角互补,两直线平行)①①3+①5=180°, ①3=①2,①①2+①5=180°,①a①b,(同旁内角互补,两直线平行)①①2+①7=180°,不能得到a①b.故选B.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键. 8.B【分析】根据整式除法法则进行计算即可.【详解】因为,x m y n÷(14x3y)=4x2所以,m-3=2,n-1=0所以,m=5,n=1故选B【点睛】熟练掌握整式除法法则,特别是同底数幂除法法则. 9.B【分析】根据平行线的判定解答即可.【详解】①①1=①2,①AB ①CD ,故选:B .【点睛】此题考查平行线的判定和性质问题,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.10.D【分析】各式分解得到结果,即可作出判断.【详解】解:A 、原式=(x +3)(x ﹣3),错误;B 、原式不能分解,错误;C 、原式=4(y 2﹣2y +1)=4(y ﹣1)2,错误;D 、原式=x (x ﹣2)+(x ﹣2)=(x ﹣2)(x +1),正确.故选:D .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.B【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、幂的乘方运算法则对各选项逐一判断即可.【详解】A. 23a a +,无法计算,不合题意;B. 34a a a ⋅=,正确;C.624a a a ÷=,故此选项错误;D.326()a a =,故此选项错误;故选:B【点睛】本题考查的是整式的运算,如何合并同类项,同底数幂的乘法、除法、幂的乘方基本法则.12.B【分析】根据互余计算出3904050∠=︒-︒=︒,再根据平行线的性质由a b ∥得到21803130∠=︒-∠=︒.【详解】解:①1+3=90∠∠︒,①3904050∠=︒-︒=︒,①a b ∥,①23180∠+∠=︒.①218050130︒︒=∠=-︒.故选:B .【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.13.D【分析】根据图形中两个三角形顶点的平移变换即可得.【详解】由图形中两个三角形顶点的平移变换可知:向上平移1个单位,向左平移4个单位,故选:D .【点睛】本题考查了图形的平移,熟练掌握平移的概念是解题关键.14.C【详解】试题分析:分别根据幂的乘方、积的乘方、单项式除以单项式、整式的加法分别计算即可判断.解:A 、(x 2)3=x 6,此选项错误;B 、(xy )3=x 3y 3,此选项错误;C 、4x 3y÷x=4x 2y (x≠0),此选项正确;D 、x 2+x 2=2x 2,此选项错误;故选C .点评:本题主要考查整式的运算与幂的运算,熟练掌握整式的运算与幂的运算法则是解题关键.15.C【分析】根据分式的值为0的条件是分子为0,分母不为0,求解即可.【详解】由题:40x -=,20x +≠,①4x =,符合题意,故选:C .【点睛】本题考查分式值为0的条件,理解并熟记基本结论是解题关键.16.C【详解】试题分析:2014-a 2+2ab-b 2=2014-(a 2-2ab+b 2)=2014-(a-b )2,①(a-b )2≥0,①原式的最大值为:2014.故选C .考点:1.因式分解-运用公式法;2.偶次方.17.A【分析】把x +1x =3两边平方后,得到221x x +=7,先计算出原代数式的倒数4221x x x ++=2211x x ++的值后,再计算原代数式的值. 【详解】解:①x +1x=3, ①(x +1x )2=9,即221x x+=9﹣2=7, ①4221x x x ++=2211x x ++=7+1=8, ①2421x x x ++=18. 故选A .【点睛】此题要熟悉完全平方公式,同时注意先求原式的倒数,可以约分,简便计算. 18.C【详解】试题分析:根据幂的运算分别化简三个数,再根据有理数的大小比较法则可判断大小.,,,,因此可得到最小. 考点:1零指数幂;2负整数指数幂;3有理数大小比较.19.D【分析】先求出九年级某班参加考试的人数,再分别求出选A 、选B 、选C 的人数即可.【详解】①九年级某班参加考试的人数是8+4+28+10=50人,①选A 的人有50×16%=8人,选B 的人有50×8%=4人,选C 的人有50×56%=28人,故选D .【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.C【详解】①2x =a ,2y =b ,①2x +y =2x ·2y =ab.故选C.21.68【分析】根据完全平方公式,将a +b =8两边同时平方并展开,将ab 的值代入,将a 2+b 2整体作为一个未知数求解.【详解】解:因为a +b =8,所以(a +b )2=82,展开得:a 2+2ab +b 2=64,将ab =-2代入并移项得:()22642268a b +=-⨯-=,故答案为:68.【点睛】本题考查了完全平方公式,解题关键是熟练掌握完全平方公式及其变形并加以灵活运用.22.①①【分析】利用线段中点的定义、对顶角的定义、直角三角形的性质、平行线的性质及线段的性质分别判断后即可确定正确的选项.【详解】解:①如果AC =BC ,那么点C 是线段AB 的中点,错误,是假命题,不符合题意;①不相等的两个角一定不是对顶角,正确,是真命题,符合题意;①直角三角形的两个锐角互余,正确,是真命题,符合题意;①两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;①两点之间线段最短,故原命题错误,是假命题,不符合题意,真命题有①①.故答案为:①①.【点睛】考查了命题与定理的知识,解题的关键是了解线段中点的定义、对顶角的定义、直角三角形的性质、平行线的性质及线段的性质等知识,难度不大.23.a 9【分析】根据同底数幂乘法运算法则计算即可.【详解】根据:“同底数幂相乘,底数不变,指数相加”得:3243249··a a a a a ++==故答案为:9a .【点睛】本题考查了同底数幂乘法运算,准确记忆运算法则是解决问题的关键. 24.20°或125°【分析】设①B 的度数为x ,则①A 的度数为3x-40°,根据两边分别平行的两个角相等或互补得到x=3x-40°或x+3x-40°=180°,再分别解方程,然后计算3x-40°的值即可.【详解】解:设①B 的度数为x ,则①A 的度数为3x-40°,当①A=①B 时,即x=3x-40°,解得x=20°,①①A=20°;当①A+①B=180°时,即x+3x-40°=180°,解得x=55°,①①A=125°;即①A 的度数为20°或125°.故答案为:20°或125°.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,掌握平行线的性质是解题的关键.25.2x (2x +1)(2x ﹣1)【分析】首先提取公因式2x ,再利用平方差公式分解因式得出即可.【详解】解:8x 3﹣2x =2x (4x 2﹣1)=2x (2x +1)(2x ﹣1).故答案为:2x (2x +1)(2x ﹣1).【点睛】本题考查了综合提公因式法与公式法分解因式,熟练掌握相关知识,并且能彻底分解是解题的关键26.32【分析】根据题意易得12AD AB +=,2280AD AB +=,然后根据完全平方公式可进行求解.【详解】解:由长方形周长及正方形面积公式可得:()224AD AB +=,2222160AD AB +=, ①12AD AB +=,2280AD AB +=,①()2222144AD AB AD AD AB AB +=+⋅+=,①264AD AB ⋅=,即32AD AB ⋅=,①长方形ABCD 的面积为32;故答案为32.【点睛】本题主要考查完全平方公式的应用,熟练掌握长方形面积及周长、正方形的面积公式是解题的关键.27. 1- 42-【分析】根据多项式乘以多项式法则计算出等式左边,再和等式右边对比,得出m 与n 的值即可.【详解】解:①()()226742x x x x x mx n +-=--=++, ①1m =-,42n =-.故答案为:1-;42-【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.多项式乘以多项式法则:先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.28.20【分析】原式利用完全平方公式化简,把x 与y 的值代入计算即可求出值;【详解】①2x = ,2y = ,① 22x y +==,则原式=()220x y += ,故答案为:20.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解题的关键;29.3或-1【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】解:①x 2+(m-1)x+1是完全平方式,①(12m-)2=1,即(m-1)2=4,开方得:m-1=2或m-1=-2,解得:m=3或m=-1.故答案为3或-1.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.30.55.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10na-⨯.与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.在本题中a应为5.3,10的指数为5-.【详解】用科学记数法表示50.000053 5.310-=⨯.故答案为55.310-⨯.【点睛】本题考查用科学记数法表示绝对值较小的数,一般形式为10na-⨯,其中110a≤<,n为由原数左边起第一个不为零的数字前面的0的个数.31.60【分析】如图,根据方向角的定义,即可求得①DBA,①EAC的度数,即可求解.【详解】解:如图,①AE,DB是正南正北方向,①BD①AE,①①DBA=45°,①①BAE=①DBA=45°,①①EAC=15°,①①BAC=①BAE+①EAC=45°+15°=60°,故答案是:60.【点睛】本题主要考查了方向角的定义,正确理解定义是解题的关键.32.2()x y -【分析】原式先展开,再利用完全平方公式分解即可.【详解】解:原式= ()2222x xy y x y +=--故答案为:2()x y -【点睛】此题考查了用完全平方公式进行因式分解,熟练掌握因式分解的方法是解本题的关键.33.2019【分析】直接利用平方差公式分解因式后再整体代入进行计算即可.【详解】22a b -=(a +b )(a -b )=20195=20195⨯, 故答案为:2019.【点睛】此题考查平方差公式,解题关键在于掌握运算公式.34.3【分析】已知等式右边通分并利用同分母分式的加法法则计算,再根据分式相等确定出M 即可. 【详解】解:已知等式整理得:41122121x M x x x x x x --++=+-+-()()()()(), 411212x M x x M x M ∴-=-++=++-()(),14M ∴+=,解得:3M =.故答案为:3.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.35.4()()x y x y +-【分析】先提公因数4,再利用平方差公式分解因式即可解答.【详解】解:2244x y -=224()x y -=4()()x y x y +-,故答案为:4()()x y x y +-.【点睛】本题考查因式分解、平方差公式,熟练掌握因式分解的方法和步骤是解答的关键.36.452【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x +y -1=22x ×2y ÷2=(2x )2×2y ÷2=9×5÷2 =452故答案为:452. 【点睛】本题考查了同底数幂的乘法与除法的逆用,熟记法则并根据法则计算是解题关键.37.25°【详解】①CD 平分①ADE ,①①ADC=①EDC, ①DE①AC ,①①EDC=①ACD, ①①ADC=①ACD, ①①A=50°, ①A+①ADC+①ACD=180°, ①ACD=18050652 , ①①ACB=90°, ①①BCD=90°-65°=25°.38.4.【详解】试题分析:数串“201506221500”中“0”出现的频数是4.故答案为4. 考点:频数与频率.39.12. 【分析】根据分式的运算法则即可求出答案.【详解】解:当30a b -=时,即3a b = ∴2222ab b a b a a a22222·a ab b a a a b -+=- 2()()()a b a a a b a b -=+- a b a b -=+ 33b b b b12=故答案是:12.【点睛】本题考查分式的化简求值,熟练运用分式的运算法则是解题的关键.40.y y x、z81331 4820 x zx z+=⎧⎨+=⎩【分析】利用解三元一次方程组的基本思想-消元的思想,判断即可得到结果.【详解】解:解三元一次方程组的基本想法是:先消去一个未知数,将解三元一次方程组转化为二元一次方程组,再转化为解一元一次方程,方程组24393251156711x y zx y zx y z++=⎧⎪-+=⎨⎪-+=⎩①②③, 未知数y的系数成倍数关系,解此方程组首先考虑消去未知数y较简单,得到关于x、z的二元一次方程组为81331 4820 x zx z+=⎧⎨+=⎩.故答案为y,y,x、z,81331 4820 x zx z+=⎧⎨+=⎩.【点睛】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.41.(1)①m=60;①30°;①补全条形统计图见解析;(2)平均数为2.75小时.【详解】试题分析:(1)①根据图一、图二的数据,即可求解.①结合①中的m值,即可求解①结合①中的m值,即可求出每周平均课外阅读时间为3小时的人数为60101510520----=人,补全条形统计图即可.(2)平均数为一组数据中所有数据之和再除以这组数据的个数,那么根据定义,即可求得平均数.试题解析:(1)①①课外阅读时间为2小时的所在扇形的圆心角的度数为90°,①其所占的百分比为901 3604=,①课外阅读时间为2小时的有15人,①m=15÷14=60;①依题意得:×360°=30°;①第三小组的频数为:60﹣10﹣15﹣10﹣5=20,补全条形统计图为:(2)平均数为:1011522031045560⨯+⨯+⨯+⨯+⨯=2.75小时.42.(1)详见解析;(2)舞蹈;(3)240【分析】(1)由舞蹈人数及其所占百分比求得总人数,总人数乘以书法对应百分比可求得其人数,依据各科目人数之和等于总人数求得绘画人数,再用乐器人数除以总人数可得其对应百分比.(2)根据众数的定义求解即可.(3)用总人数乘以样本中绘画对应的比例即可求解.【详解】解:(1)被调查的总人数为:20÷40%=50(人),①书法的人数为:50×10%=5人,绘画的人数为:50-15-20-5=10(人),则乐器所在的百分比为:15÷50×100%=30%,补全统计图如图所示:(2)本次调查学生选修课程的“众数”是舞蹈;故答案为:舞蹈.(3)选修绘画的人数占总人数的百分比为:1050100%=20%÷⨯,所以估计选修绘画的学生大约有:120020%240⨯=(人);故答案为:240人.【点睛】本题考查条形统计图、扇形统计图、用样本估算总体,解答本题的关键是明确题意,利用数形结合思想解答.43.见解析【详解】试题分析:可根据对应线段分别平行,画出其余两条线段得到另一交点;也可根据一组对应线段平行且相等得到另一顶点,连接即可.给出以下两种作法:(1)依据平移后的图形与原来的图形的对应线段平行,那么应有MD①AC,ND①BC,MD与ND的交点即为点D.(2)还可根据平移后对应点所连接的线段平行且相等,那么连接AM,作CD①AM,且CD=AM,连接DM、DN即可.考点:本题主要考查平移的性质点评:解答本题的关键是熟练掌握平移的性质:平移前后对应线段平行且相等,对应点连成的线段平行且相等.44.2+-+3(2)(2)(2)x x x【分析】先提公因式,然后利用十字相乘法分解因式,然后利用平方差公式分解因式即可求解.【详解】解:原式42=--3(28)x x22=-+3(4)(2)x x2=+-+.x x x3(2)(2)(2)【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.45.(1)﹣7;(2)﹣2x5y8【分析】(1)根据立方根和算术平方根计算;(2)先算积的乘方,再根据整式乘除法计算;【详解】解:(1)原式=﹣2﹣5=﹣7(2)原式=xy2•(﹣8x9y6)÷4x5.=-8x10y8÷4x5=﹣2x5y8【点睛】本题考查立方根和算术平方根,整式乘除法.46.(1)九年级2班学生的人数为50人;(2)a=12,b=14;(3)41600人;(4)见解析.【分析】(1)用C组的频数除以扇形统计图中C组人数所占百分比即得结果;(2)用总人数乘以扇形统计图中D组人数所占百分比即可求出a,用总人数减去其它各组的人数即可求出b;(3)用D、E两组的频率之和乘以80000即得结果;(4)样本人数太小,所抽取的样本不具有代表性,据此解答即可.【详解】解:(1)17÷34%=50(人),答:九年级2班学生的人数为50人.(2)a=24%×50=12,b=50-2-5-17-12=14.(3)14÷50=28%,(28%+24%)×80000=41600(人),答:估计该市本次测试成绩达到优秀的人数为41600人;(4)全市参加本次测试的中学生中,成绩达到优秀有56320人,而样本中估计该市本次测试成绩达到优秀的人数为41600人,原因是:小明是以第三中学九年级2班全体学生的测试成绩作为样本,样本人数太小,不能代表全市中学的总体情况,所以会出现较大偏差.【点睛】本题考查了频数分布表、扇形统计图、抽样调查和利用样本估计总体等知识,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键.47.(1)﹣(2)(3)x1=2,x2=﹣2;(4)12 xy=⎧⎨=-⎩【分析】(1)先将二次根式化简,再合并同类二次根式;(2)先根据负整数指数幂和绝对值的定义进行化简,最后合并同类项即可;(3)利用直接开平方法解方程;(4)利用加减法解方程组即可.【详解】解:(16=﹣(2)化简:原式=21)=2=(3)解方程2x 2﹣1=7,2x 2=8,x 2=4,x =±2,①x 1=2,x 2=﹣2;(4)320x y x y -=⎧⎨+=⎩①②, ①+①得:3x =3,x =1,把x =1代入①得:1﹣y =3,y =﹣2,①方程组的解为:12x y =⎧⎨=-⎩. 【点睛】本题考查了二次根式的化简、绝对值和负整数指数幂的意义及二元一次方程组的解,灵活运用法则和性质,选择恰当的解题途径,往往能事半功倍.48.(1)3x y-;(2)m+1. 【分析】(1)先根据同分母分式加减计算,再分子分母分解因式,约分化为最简分式即可;(2)先计算括号内的加减,再计算乘法即可.【详解】(1)原式=22532x y x x y +--=2233x y x y +-=3()()()x y x y x y ++-=3x y -; (2)原式=24324()221m m m m m --+⋅---=(1)(1)221m m m m m +--⋅--=m+1. 【点睛】本题考查了分式的化简,熟悉通分、约分的法则是解题的关键.49.304.【分析】先利用完全平方公式展开合并得到原式=10(x 2+y 2)+12xy ,再进行配方得到原式=10(x+y )2-8xy ,然后利用整体代入的方法计算即可.【详解】原式=9x 2+6xy+y 2+x 2+6xy+9y 2=10x 2+12xy+10y 2=10(x 2+y 2)+12xy=10(x+y)2﹣8xy ,当x+y =6,xy =7,原式=10×62﹣8×7=304.【点睛】本题考查了完全平方公式:(a±b )2=a 2±2ab+b 2.50.(1)①,分式的基本性质 (2)24-+m【分析】(1)由分式加减法的计算方法进行计算即可,即先通分,再按照同分母分式加减法的计算方法进行计算即可;(2)先通分,再按照同分母分式加减法的计算方法进行计算即可.【详解】(1)解:根据计算步骤可知,第①步是分式的通分,通分的依据是分式的基本性质,故答案为①①,分式的基本性质;(2)解:第①步错误 原式1628(4)(4)m m m --=-+ 82(4)(4)m m m -=-+ 24m =-+. 【点睛】本题考查分式的加减法,掌握分式加减法的计算方法进行计算即可.。
七年级数学(下)第9章《不等式与不等式组》综合测试题含答案
A CDB 七年级数学(下)第9章《不等式与不等式组》综合测试题一、选择题:(每题3分,共30分)1.下列根据语句列出的不等式错误的是( ) A. “x 的3倍与1的和是正数”,表示为3x+1>0.B. “m 的15与n 的13的差是非负数”,表示为15m-13n ≥0. C. “x 与y 的和不大于a 的12”,表示为x+y ≤12a.D. “a 、b 两数的和的3倍不小于这两数的积”,表示为3a+b ≥ab. 2.给出下列命题:①若a>b,则ac 2>bc 2;②若ab>c,则b>ca;③若-3a>2a,则a<0;•④若a<b,则a-c<b-c,其中正确命题的序号是( )A.③④B.①③C.①②D.②④ 3.解不等式3x-32<2x-2中,出现错误的一步是( ) A.6x-3<4x-4 B.6x-4x<-4+3 C.2x<-1 D.x>-124.不等式12,39x x -<⎧⎨-≤⎩ 的解集在数轴上表示出来是( )5. .下列结论:①4a>3a;②4+a>3+a;③4-a>3-a 中,正确的是( ) A.①② B.①③ C.②③ D.①②③6.某足协举办了一次足球比赛,记分规则是:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场共积7分,则甲队可能平了( ) A.2场 B.3场 C.4场 D.5场7.某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( ) A.3项B.4项C.5项D.6项8.若│a │>-a,则a 的取值范围是( ) A.a>0B.a ≥0C.a<0D.自然数9.不等式23>7+5x 的正整数解的个数是( ) A.1个B.无数个C.3个D.4个10.已知(x+3)2+│3x+y+m │= 0中,y 为负数,则m 的取值范围是( ) A.m>9 B.m<9C.m>-9D.m<-9二、填空题:(每题3分,共24分)11.若y=2x-3,当x______时,y ≥0;当x______时,y<5. 12.若x=3是方程2x a --2=x-1的解,则不等式(5-a)x<12的解集是_______. 13.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x<1,则a=_______,b=_______.14. (2008苏州)6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市 元. 15.不等式组204060x x x +>⎧⎪->⎨⎪-<⎩的解集为________.16.小明用100元钱去购买笔记本和钢笔共30分,已知每本笔记本2元,•每枝钢笔5元,那么小明最多能买________枝钢笔. 17.如果不等式组212x m x m >+⎧⎨>+⎩的解集是x>-1,那么m 的值是_______.18.关于x 、y 的方程组321431x y a x y a +=+⎧⎨+=-⎩的解满足x>y,则a 的取值范围是_________.三、解答题:(共46分)19.解不等式(组)并把解集在数轴上表示出来(每题4分,共16分)(1)5(x+2)≥1-2(x-1) (2)273125y yy+>-⎧⎪-⎨≥⎪⎩(3)42x--3<522x+; (4)32242539x xx xx+>⎧⎪->-⎨⎪->-⎩20. (5分)k取何值时,方程23x-3k=5(x-k)+1的解是负数.21. (5分)某种客货车车费起点是2km以内2.8元.往后每增加455m车费增加0.5元.现从A 处到B处,共支出车费9.8元;如果从A到B,先步行了300m然后乘车也是9.8元,求AB的中点C到B处需要共付多少车费?22.(5分)(1)A、B、C三人去公园玩跷跷板,从下面的示意图(1)•中你能判断三人的轻重吗?(2)P、Q、R、S四人去公园玩跷跷板,从示意图(2)•中你能判断这四个人的轻重吗?23. (7分)某市“全国文明村”白村果农王保收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王保如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?24.(8分) 2011年我市筹备30周年庆典,园林部门决定利用现有的3490盆甲种花卉和2950,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型盆乙种花卉搭配A B需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?参考答案一、1.D 2.A 3.D 4.A 5. C 6.C 7.B 8.B 9.C 10.A 二、11.x ≥32,x<4 ; 12.x<120; 13.a=1,b=-2; 14.8 ; 15.4<x<6 ; 16.13; 17.-3; 18.a>-6.三、19. (1)x ≥-1 (2)2≤y<8;(3)x>-3; (4)-2<x<3 20.k<1221.设走xm 需付车费y 元,n 为增加455m 的次数.∴y=2.8+0.5n,可得n=70.5=14 ∴2000+455×13<x ≤2000+455×14 即7915<x ≤8370,又7915<x-300≤8370 ∴8215<x ≤8670, 故8215<x ≤8370,CB 为2x ,且4107.5<2x≤4185, 4107.52000455-=4.63<5,41852000455-=4.8<5,∴n=5代入y=2.8+0.5×5=5.3(元) ∴从C 到B 需支付车费5.3元. 22.(1)C 的重量>A 的重量>B 的重量(2)从图中可得S>P,P+R>Q+S ,R>Q+(S-R),∴R>Q; 由P+R>Q+S ,S-P<R-Q ∴ (Q+R-P)-P<R-Q ∴P>Q, 同理R>S,∴R>S>P>Q23. 解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12, 解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案:(2)方案一所需运费 300×2 + 240×6 = 2040元; 方案二所需运费 300×3 + 240×5 = 2100元; 方案三所需运费 300×4 + 240×4 = 2160元. 所以王保应选择方案一运费最少,最少运费是2040元.24. 解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ,解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x 是整数,x ∴可取313233,,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个 ②A 种园艺造型32个 B 种园艺造型18个 ③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 方法二:方案①需成本:318001996043040⨯+⨯=(元) 方案②需成本:328001896042880⨯+⨯=(元) 方案③需成本:338001796042720⨯+⨯=元∴应选择方案③,成本最低,最低成本为42720元。
初中数学七年级下期末习题(含答案解析)
一、选择题1.点M(2,-3)关于原点对称的点N的坐标是: ( ) A.(-2,-3) B.(-2, 3) C.(2, 3) D.(-3, 2)2.116的平方根是( )A.±12B.±14C.14D.123.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°4.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A.34°B.56°C.66°D.146°5.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,则k的值是()A.k=-5 B.k=5 C.k=-10 D.k=106.已知方程组276359632713x yx y+=⎧⎨+=-⎩的解满足1x y m-=-,则m的值为()A.-1B.-2C.1D.27.如图所示的表格是某次篮球联赛部分球队的积分表,则下列说法不正确的是()队名比赛场数胜场负场积分前进1410424光明149523远大147a21卫星14410b钢铁 14 0 14 14 ……………A .负一场积1分,胜一场积2分B .卫星队总积分b =18C .远大队负场数a =7D .某队的胜场总积分可以等于它的负场总积分8.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( ) A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)9.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠1=∠AC .∠1=∠4D .∠A=∠310.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( ) A .﹣2B .2C .3D .﹣311.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b =⎧⎨=⎩,则a 、b 分别为( )A .a=8,b=﹣2B .a=8,b=2C .a=12,b=2D .a=18,b=812.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50° 13.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-214.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .3215.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22< D .2x 2y -<-二、填空题16.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B , 则点B 的坐标为_______.17.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .18.已知点P (3﹣m ,m )在第二象限,则m 的取值范围是____________________. 19.为了了解某商品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是______.20.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长x 尺,木长y 尺.可列方程组为__________.21.如图,直线//a b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55°,则∠2的度数为______.22.如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA=6cm ,PB=5cm ,PC=7cm ,则点P 到直线l 的距离是_____cm.23.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.24.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.25.如果点M (a-1,a+1)在x 轴上,则a 的值为___________.三、解答题26.已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1; (2)直接写出△A 1B 1C 1各顶点的坐标 (3)求出△A 1B 1C 1的面积27.为了扶贫户学生好读书,读好书,某实验学校校友会在今年开学初,到新华书店采购文学名著和自然科学两类图书.经了解,购买30本文学名著和50本自然科学书共需2350元,20本文学名著比20本自然科学书贵500元.(注:所采购的文学名著价格都一样,所采购的自然科学书价格都一样) (1)求每本文学名著和自然科学书的单价.(2)若该校校友会要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,请求出所有符合条件的购书方案. 28.已知,点、、A B C 不在同一条直线上,//AD BE(1)如图①,当,58118A B ︒︒∠=∠=时,求C ∠的度数;(2)如图②,,AQ BQ 分别为,DAC EBC ∠∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下且//AC QB ,QP PB ⊥,直接写11,,DAC ACB CBE ∠∠∠的值29.如图,在平面直角坐标系中,点A ,B 的坐标分别为(a ,0),(b ,0),且满足()()22130a b ++-=现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD . (1)求点C ,D 的坐标及四边形ABDC 的面积;(2)在y 轴上是否存在一点M ,连接MA ,MB ,使S △MAB =S 四边形ABDC ?若存在这样一点,求出点M 的坐标;若不存在,试说明理由;(3)点P 是射线BD 上的一个动点(不与B ,D 重合),连接PC ,PA ,求∠CPA 与∠DCP 、∠BAP 之间的关系.30.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件) 质量(吨/件) A 型商品0.8 0.5 B 型商品21(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.A3.B4.B5.A6.A7.D8.D9.B10.B11.C12.C13.A14.A15.D二、填空题16.(﹣1﹣1)【解析】试题解析:点B的横坐标为1-2=-1纵坐标为3-4=-1所以点B的坐标是(-1-1)【点睛】本题考查点的平移规律;用到的知识点为:点的平移左右平移只改变点的横坐标左减右加;上下平17.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C 作CD⊥AB于D∵AC2+B18.m>3【解析】试题分析:因为点P在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组19.抽样调查【解析】【分析】根据抽样调查的定义可直接得到答案【详解】为了了解某商品促销广告中所称中奖的真实性某人买了100件该商品调查其中奖率那么他采用的调查方式是抽样调查故答案为抽样调查【点睛】本题主20.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程21.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【22.【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度可得答案【详解】解:∵PB⊥lPB=5cm∴P到l的距离是垂线段PB的长度5cm故答案为:5【点睛】本题考查了点到直线的距离的定23.145【解析】【分析】如图:延长AB交l2于E根据平行线的性质可得∠AED=∠1根据可得AE//CD根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB交l2于E∵l24.【解析】【分析】本题可设打x折根据保持利润率不低于5可列出不等式:解出x的值即可得出打的折数【详解】设可打x折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关25.-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.2.A解析:A【解析】【分析】根据平方根的性质:一个正数的平方根有两个,它们互为相反数计算即可.【详解】14,14的平方根是12,∴116的平方根是12±,故选A.【点睛】本题考查平方根的性质,一个正数的平方根有两个,它们互为相反数,0的平方根还是0,熟练掌握相关知识是解题关键.3.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.4.B解析:B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.5.A解析:A【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.6.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.7.D解析:D【解析】【分析】A、设胜一场积x分,负一场积y分,根据前进和光明队的得分情况,即可得出关于x,y 的二元一次方程组,解之即可得出结论;B、根据总积分=2×得胜的场次数+1×负的场次数,即可求出b值;C、由负的场次数=总场次数-得胜的场次数,即可求出a值;D、设该队胜了z场,则负了(14-z)场,根据胜场总积分等于负场总积分,即可得出关于z的一元一次方程,解之即可得出z值,由该值不为整数即可得出结论.【详解】A、设胜一场积x分,负一场积y分,依题意,得:10424 9523x yx y+⎧⎨+⎩==,解得:21xy⎧⎨⎩==,∴选项A正确;B、b=2×4+1×10=18,选项B正确;C、a=14-7=7,选项C正确;D、设该队胜了z场,则负了(14-z)场,依题意,得:2z=14-z,解得:z=143,∵z=143不为整数,∴不存在该种情况,选项D错误.故选:D.【点睛】本题考查了一元一次方程的应用以及二元一次方程组的应用,找准等量关系,正确列出一元一次方程(或二元一次方程组)是解题的关键.8.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.9.B解析:B【解析】【分析】利用平行线的判定定理,逐一判断,容易得出结论.【详解】A选项:∵∠2+∠A=180°,∴AB∥DF(同旁内角互补,两直线平行);B选项:∵∠1=∠A,∴AC∥DE(同位角相等,两直线平行),不能证出AB∥DF;C选项:∵∠1=∠4,∴AB∥DF(内错角相等,两直线平行).D选项:∵∠A=∠3,∴AB∥DF(同位角相等,两直线平行)故选B.【点睛】考查了平行线的判定;正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.10.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B. 11.C 解析:C 【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.12.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°. 故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.13.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.14.A解析:A【解析】分析:由S △ABC =9、S △A′EF =4且AD 为BC 边的中线知S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知2A DE ABDS A D AD S ''=(),据此求解可得. 详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB , 则2A DE ABD S A D AD S ''=(),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.15.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立;若x <y ,则3x <3y ,选项B 成立;若x <y ,则x 2<y 2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立,故选D .【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.二、填空题16.(﹣1﹣1)【解析】试题解析:点B 的横坐标为1-2=-1纵坐标为3-4=-1所以点B 的坐标是(-1-1)【点睛】本题考查点的平移规律;用到的知识点为:点的平移左右平移只改变点的横坐标左减右加;上下平解析:(﹣1,﹣1)【解析】试题解析:点B的横坐标为1-2=-1,纵坐标为3-4=-1,所以点B的坐标是(-1,-1).【点睛】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.17.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.18.m>3【解析】试题分析:因为点P在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组解析:m>3.【解析】试题分析:因为点P在第二象限,所以,30{mm-<>,解得:考点:(1)平面直角坐标;(2)解不等式组19.抽样调查【解析】【分析】根据抽样调查的定义可直接得到答案【详解】为了了解某商品促销广告中所称中奖的真实性某人买了100件该商品调查其中奖率那么他采用的调查方式是抽样调查故答案为抽样调查【点睛】本题主解析:抽样调查【解析】【分析】根据抽样调查的定义可直接得到答案.【详解】为了了解某商品促销广告中所称中奖的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是抽样调查,故答案为抽样调查.【点睛】本题主要考查了抽样调查的定义,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,这种调查方式叫抽样调查.20.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程解析:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-12绳长=1,据此可列方程组求解.【详解】设绳长x尺,长木为y尺,依题意得4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩,故答案为:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程.21.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【解析:【解析】【分析】先根据∠1=55°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出结论【详解】解:∵AB ⊥BC ,∠1=55°,∴∠3=90°-55°=35°.∵a ∥b ,∴∠2=∠3=35°.故答案为:35°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等。
七年级下册数学试题及答案
一、选择题: 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <22。
下列各式中,正确的是( ) A 。
=±4 B 。
±=4 C 。
=—3 D 。
=—43.已知a >b >0,那么下列不等式组中无解..的是( ) A . B . C . D .4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40°(C) 先右转50°,后左转130° (D ) 先右转50°,后左转50°5.解为的方程组是( )A 。
B 。
C. D 。
6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000 B .1100 C .1150 D .1200(1) (2) (3) 7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3 C.2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2 B .12 c m 2 C .15 cm 2 D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4) B 。
(4,5) C.(3,4) D.(4,3)二、填空题11。
七年级(下)期末数学试卷(含答案)
七年级(下)期末数学试卷(解析版)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣15.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.36.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是18.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=,n=.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG.∴∠1=∠2.=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3.∴AD平分∠BAC.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn 的值.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=,<3.5>=.(2)若[x]=2,则x的取值范围是;若<y>=﹣1,则y的取值范围是.(3)已知x,y满足方程组,求x,y的取值范围.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排【分析】根据在平面内,要有两个有序数据才能清楚地表示出一个点的位置,即可得答案.【解答】解:在平面内,点的位置是由一对有序实数确定的,只有A能确定一个位置,故选A.【点评】本题考查了在平面内,如何表示一个点的位置的知识点.2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考查的对象是某校初三年级400名学生的体重情况,故总体是400名学生的体重.故选:A.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据非负数的性质判断出点P的纵坐标是负数,再根据各象限内点的坐标特征解答.【解答】解:∵﹣x2﹣1≤﹣1,∴点P(3,﹣x2﹣1)所在的象限是第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【分析】本题可对a>﹣1,与a<﹣1的情况进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解本题.【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意同除a+1时是否要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变.在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;在不等式的两边同时乘以或除以同一个负数,不等号的方向改变.5.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.3【分析】方程组两方程相减即可求出x﹣y的值.【解答】解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°【分析】先根据平行线的性质及对顶角相等求出∠AEM的度数,再根据垂直的性质求出∠2的度数即可.【解答】解:∵∠1=130°,∴∠3=∠1=130°,∵AB∥CD,∴∠3=∠AEM,∵HE⊥MN,∴∠HEM=90°,∴∠2=∠3﹣∠HEM=130°﹣90°=40°.故选B.【点评】本题涉及到的知识点为:(1)对顶角相等;(2)两直线平行,同位角相等;(3)垂线的定义.7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是1【分析】A、根据立方根的即可判定;B、根据算术平方根、平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据平方根、立方根的定义求解即可判定.【解答】解:A、27的立方根是3,故选项错误;B、的平方根是±2,故选项错误;C、9的算术平方根是3,故选项正确;D、立方根等于平方根的数是1和0,故选项错误.故选C.【点评】本题主要考查了平方根和立方根的性质,并利用此性质解题.平方根的被开数不能是负数,开方的结果必须是非负数;立方根的符号与被开立方的数的符号相同.要注意一个正数的平方根有两个,它们互为相反数.8.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100;根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲商品原来的单价是x元,乙商品原来的单价是y元.根据题意列方程组:.故选:C.【点评】找到两个等量关系是解决本题的关键,还需注意相对应的原价及相应的百分比得到的新价格.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③【分析】利用同位角相等(都等于90°),同旁内角互补,两条直线平行,或同一平面内,垂直于同一条直线的两条直线平行作答.【解答】解:由图可知,用角尺画木板边缘的两条垂线,这样画的理由:①同位角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.故选C.【点评】本题考查平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行;在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤【分析】先求出两个不等式的解集,再根据有解列出不等式组求解即可.【解答】解:,解不等式①得,x<2m,解不等式②得,x>2﹣m,∵不等式组有解,∴2m>2﹣m,∴m>.故选C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为9.【分析】直接利用非负数的性质得出x,y的值,进而利用有理数的乘方运算法则求出答案.【解答】解:∵|x+3|+=0,∴x=﹣3,y=2,则x y=(﹣3)2=9.故答案为:9.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为1.【分析】根据在数轴上表示不等式解集的方法得出不等式的解集,再用a表示出不等式的解集,进而可得出a的值.【解答】解:由题意可知,x<2,∵解不等式x﹣a<1得,x<1+a,∴1+a=2,解得a=1.故答案为:1.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=1,n=0.【分析】根据二元一次方程的定义,可得x和y的指数分别都为1,列关于m、n的方程组,再求出m和n的值,最后代入可得到m n的值.【解答】解:根据二元一次方程的定义,得,解得,故答案为:1,0.【点评】考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是15.【分析】根据平移的性质,判断出△HEC∽△ABC,再根据相似三角形的性质列出比例式解答.【解答】14.15解:由平移的性质知,BE=3,DE=AB=6,∴HE=DE﹣DH=6﹣2=4,∴S四边形HDFC =S梯形ABEH=(AB+EH)BE=(6+4)×3=15.故答案为:15.【点评】本题主要利用了平行线截线段对应成比例和平移的基本性质求解,找出阴影部分和三角形面积之间的关系是关键.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为(n,n2+1).【分析】首先观察各点坐标,找出一般规律,然后根据规律确定点A n的坐标.【解答】解:设A n(x,y).∵当n=1时,A1(1,1),即x=1,y=12+1,当n=2时,A2(2,5),即x=2,y=22+1;当n=3时,A3(3,10),即x=3,y=32+1;当n=4时,A1(4,17),即x=4,y=42+1;…∴当n=n时,x=n,y=n2+1,故答案为:(n,n2+1).【点评】此题主要考查了点的坐标规律,解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.【分析】(1)先用加减消元法求出x的值,再用代入消元法求出y的值即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1),①+②×3得,10x=50,解得x=5,把x=5代入②得,10+y=13,解得y=3.故方程组的解为;(2),由①得,x<3,由②得,x≥﹣2,故方程组的解为:﹣2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG同位角相等,两直线平行.∴∠1=∠2两直线平行,内错角相等.∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3等量代换.∴AD平分∠BAC角平分线的定义.【分析】根据平行线的判定与性质进行解答即可.【解答】解:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;∠E;等量代换;角平分线的定义.【点评】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn的值.【分析】根据甲看错了方程①中的m,②没有看错,代入②得到一个方程求出n的值,乙看错了方程②中的n,①没有看错,代入①求出m的值,然后再把m、n的值代入代数式计算即可求解【解答】解:根据题意得,4×(﹣3)﹣b(﹣1)=﹣2,5a+5×4=15,解得m=﹣1,n=10,把m=﹣1,n=10代入代数式,可得:原式=91.【点评】本题考查了二元一次方程的解,根据题意列出方程式解题的关键.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?【分析】(1)根据乒乓球的总数为50,频数为0.50,求出体育器材总数,然后减去乒乓球、排球、篮球数目,即可得到足球频数、频率及合计数.(2)根据统计表中的数据,将统计图补充完整即可.(3)列方程求出篮球和足球的单价,再根据单价列出不等式,推知购买方案.【解答】解:(1)50÷0.50=100个;则足球有100﹣20﹣50﹣25=5个;足球频率=0.05;排球频率=0.2;合计为100.故答案为:0.2;5,0.05;100.(2)如图:.(3)设篮球每个x元,足球每个(x+10)元,列方程得,25x+5(x+10)=950,解得x=30,则篮球每个30元,足球每个40元.设再买y个篮球,列不等式得,30y+40(10﹣y)≤320,解得y≥8,由于篮球足球共10个,则篮球8个,足球2个;或篮球9个,足球1个.【点评】本题考查了频数分布表、频数分布直方图及一元一次方程的应用,从图中得到相关信息是解题的关键.20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?【分析】(1)设购买一块A型小黑板需要x元,一块B型为y元,根据等量关系:购买一块A型小黑板比买一块B型小黑板多用20元;购买5块A型小黑板和4块B型小黑板共需820元;可列方程组求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从公司购买A、B 两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,可列不等式组求解.【解答】解:(1)设一块A型小黑板x元,一块B型小黑板y元.则,解得.答:一块A型小黑板100元,一块B型小黑板80元.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块则,解得20≤m≤22,又∵m为正整数∴m=20,21,22则相应的60﹣m=40,39,38∴共有三种购买方案,分别是方案一:购买A型小黑板20块,购买B型小黑板40块;方案二:购买A型小黑板21块,购买B型小黑板39块;方案三:购买A型小黑板22块,购买B型小黑板38块.方案一费用为100×20+80×40=5200元;方案二费用为100×21+80×39=5220元;方案三费用为100×22+80×38=5240元.∴方案一的总费用最低,即购买A型小黑板20块,购买B型小黑板40块总费用最低,为5200元.【点评】本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,列出不等式组求解.21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=﹣5,<3.5>=4.(2)若[x]=2,则x的取值范围是2≤x<3;若<y>=﹣1,则y的取值范围是﹣2≤y<﹣1.(3)已知x,y满足方程组,求x,y的取值范围.【分析】(1)根据题目所给信息求解;(2)根据[2.5]=2,[3]=3,[﹣2.5]=﹣3,可得[x]=2中的2≤x<3,根据<a>表示大于a 的最小整数,可得<y>=﹣1中,﹣2≤y<﹣1;(3)先求出[x]和<y>的值,然后求出x和y的取值范围.【解答】解:(1)由题意得,[﹣4.5]=﹣5,<3.5>=4;(2)∵[x]=2,∴x的取值范围是2≤x<3;∵<y>=﹣1,∴y的取值范围是﹣2≤y<﹣1;(3)解方程组得:,∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.【点评】本题考查了一元一次不等式组的应用,解答本题的关键是读懂题意,根据题目所给的信息进行解答.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.【分析】(1)如图①,过P点作PE∥AC交CD于E点,由于AC∥BD,则PE∥BD,根据平行线的性质得∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,所以∠CPD=50°;(2)证明方法与(1)一样;(3)如图②,过P点作PF∥BD交CD于F点,由于AC∥BD,则PF∥AC,根据平行线的性质得∠CPF=∠PCA,∠DPF=∠PDB,所以∠CPD=∠PCA﹣∠PDB.【解答】解:(1)如图①,过P点作PE∥AC交CD于E点,∵AC∥BD∴PE∥BD,∴∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,∴∠CPD=∠CPE+∠DPE=50°;(2)∠CPD=∠PCA+∠PDB(证明方法与(1)一样;(3)∠CPD=∠PCA﹣∠PDB.理由如下:如图②,过P点作PF∥BD交CD于F点,∵AC∥BD,∴PF∥AC,∴∠CPF=∠PCA,∠DPF=∠PDB,∴∠CPD=∠CPF﹣∠DPF=∠PCA﹣∠PDB;【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.合理添加平行线是解决此题的关键.。
七年级数学(下)第七章《平面直角坐标系》测试卷含答案
七年级数学(下)第七章《平面直角坐标系》测试卷(测试时间:90分钟满分:120分)一、选择题(共10小题,每题3分,共30分)1.下面的有序数对的写法正确的是()A. (1、3)B. (1,3)C. 1,3D. 以上表达都正确2.我们用以下表格来表示某超市的平面示意图.如果用(C,3)表示“体育用品”的位置,那么表示“儿童服装”的位置应记作()A B C D1 收银台收银台收银台收银台2 酒水糖果小食品熟食3 儿童服装化妆品体育用品蔬菜4 入口服装家电日用杂品A. (A,3)B. (B,4)C. (C,2)D. (D,1)3.如图所示,网格中画有一张脸,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A. (1,0)B. (-1,0)C. (-1,1)D. (1,-1)4.电影票上的“2排5号”如果用(2,5)表示,那么“5排2号”应该表示为( )A. (2,5)B. (5,2)C. (-5,-2)D. (-2,-5)5.已知点P(x,y)在第二象限,且点P到x轴、y轴的距离分别为3,5,则点P的坐标()A. (﹣5,3)B. (5,﹣3)C. (﹣3,5)D. (3,﹣5)6.体育课上,七年级某班49名同学在操场上练习正方形方队,他们站成7×7方队,每横队7人,每纵队7人,小敏在第2纵队的排头,记为(1,2),小娟在第5纵队的队尾,则小娟的位置应记为()A. (6,5)B. (5,6)C. (5,7)D. (7,5)7.下列点中,位于直角坐标系第二象限的点是()A. (2,1)B. (-2,-1)C. (-2,1)D. (2,-1)8.在平面直角坐标系中,点A(2,-3)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.在平面直角坐标系中,一个三角形的三个顶点的坐标,纵坐标保持不变,横坐标增加4个单位,则所得的图形与原来图形相比()A. 形状不变,大小扩大4倍B. 形状不变,向右平移了4个单位C. 形状不变,向上平移了4个单位D. 三角形被横向拉伸为原来的4倍10.如图所示,小亮从学校到家所走最短路线是( )A. (2,2)→(2,1)→(2,0)→(0,0)B. (2,2)→(2,1)→(1,1)→(0,1)C. (2,2)→(2,3)→(0,3)→(0,1)D. (2,2)→(2,0)→(0,0)→(0,1)二、填空题(共10小题,每题3分,共30分)11.如果用(7,3)表示七年级三班,则(9,6)表示________.12.点P (-2,-3)把坐标系向左平移1个单位长度,再向上平移3个单位长度,则点P的坐标变为________.13.有序数对(2,5)和(5,2)表示的含义_________.(填“相同”或“不同”)14.已知点P在第二象限,且横坐标与纵坐标的和为4,试写出一个符合条件的点P__.15.如图,长方形ABOC在直角坐标系中,点A的坐标为(–2,1),则长方形的面积等于﹒16.若图中的有序数对(4,1)对应字母D,有一个英文单词的字母顺序对应图中的有序数对为(1,1),(2,3),(2,3),(5,2),(5,1),则这个英文单词是__________.17.如图,一所学校的平面示意图中,如果图书馆的位置记作(3,2),实验楼的位置记作(1,﹣1),则校门的位置记作________.18.点P (a ﹣1,a 2﹣9)在x 轴负半轴上,则P 点坐标是________.19.如图,小东在____排____列;小强在____排___列,如果先表示列数,后表示排数,则用有序数对表示小东和小强的位置为:________,________.20.第三象限内的点P(x ,y),满足5x =, 29y =,则点P 的坐标是_________. 三、解答题(共60分)21.(8分)如图,A (—1,0),C (1,4),点B 在x 轴上,且AB=3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下数学试题含答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】图 1七年级(下)期末教学质量监测数 学 试 卷(满分120分,120分钟完卷)题号 一二三四五总分总分人 得分一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填在每题后的括号内) 1、下列方程中,解为x =-2的是( )A .3x -2=2xB .4x -1=2x +3C .5x +1=3x -3D .5x -3=6x -22、在数轴上表示不等式2x +4≤0的解集,正确的是( )3、若代数式4x -27与2x 12-的值相等,则 x 的值是( ) A .1 B .2 C .3D .24、下列四个图形中,既是轴对称图形,又是中心对称图形是( ) (1) (2) (3) (4)A .(1)、(2)B .(1)、(3)C .(1)、(4)D .(2)、(3)5、如图1所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是( )A. 60°B. 90°C. 72° °6、仁寿城市湿地公园位于高滩村,公园全长约公里,占地约500亩。
预计今年全面竣工。
仁寿县城某初中七年级1班学生20人在2016年3月12日植树节当天在湿地公园共种了68棵树苗,其中男生每人种4棵,女生每人种3棵,设男生有x 人,女生有y 人,根据题意,列方程组( )A. ⎩⎨⎧=+=+203468y x y xB. ⎩⎨⎧=+=+204368y x y x得分 评卷人0 2 -2 0 0 2 -2 0A B C DC. ⎩⎨⎧=+=+684320y x y xD. ⎩⎨⎧=+=+683420y x y x 7、仁寿美家好超市在“六一”儿童节,将一种儿童玩具按标价9折出售,仍获利润10%,若该玩具标价为33元,那么该玩具进货价为( ) A. 27元元C .31元D .元8、如图2所示,将边长为4的等边三角形沿BC 向右平移2得到△DEF ,则四边形ABFD 的周长为( ) .16 C9、等腰三角形两条边的长分别为5和2,那么它的周长是( )A .12 .9 C 或9 D.无法确定10、下列正多边形的组合中,能够铺满地面不留缝隙的是( ) A.正八边形和正三角形; B.正五边形和正八边形;C.正六边形和正三角形;D.正六边形和正五边形11、a ,b 都是实数,且a <b ,则下列不等式的变形正确的是( )A .a + x >b + x B. 3a <3bC. ﹣a+1<﹣b+1D .22ba > 12、已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+13my nx ny mx 的解,则3m -n 的值是( ).3 C 二、填空(本大题共8个小题,每小题3分,共24分) 13、对于方程25x y -=,用含x 的代数式表示y 为 。
14、若不等式组220x a b x ->⎧⎨->⎩的解集是-1<x <1,则(a +b )2016=15、将一副直角三角尺如图3放置,若∠AOD=25°,则∠BOC 的度数是 16、如果一个多边形的内角和是其外角和的4倍,则这个多边形的边数是 。
得分 评卷人ADBE C F图217、已知关于x ,y 的二元一次方程组⎩⎨⎧-=-=+1332y x ky x 的解互为相反数, 则k 的值是 。
18、李大爷用560元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了4千克,则甲种药材买了 千克.19、端午节,小明坐父亲的车到黑龙滩,他从反光镜中看到后面一辆车的车牌号的数字是“”,则后面这辆车车牌的实际数字为________.20、关于x 的方程3x -m ≤0的正整数解有三个,那么m 的取值范围是 .三、(本大题共3个小题,每小题7分,共21分)21、解方程 312123+=--x x22、解方程组23、如图4,已知∠A=20°,∠B=30°,AC ⊥DE ,垂足为P ,求∠D ,∠1的度数.四、(本大题共2个小题,每小题9分,共18分)24、解不等式组:⎩⎨⎧->->+93133x x x 并把解集在数轴画出来,并求出所有整数解的和。
得分 评卷人得分 评卷人x +y -z =11 ①y +z -x =5 ②z +x -y =1 ③图425、作图题(不要求写作法)如图5,在10×10的方格纸中,每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上。
(1)先将Rt△AB C向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1;(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt△A2B2C2;(3)计算Rt△ABC到Rt△A2B2C2在上述过程中B点到B2所经过的路线长.五、(本大题共2个小题,2621分)267小时;如果两厂同时处理2.5(1)甲、乙两厂每小时各处理污水多少立方米(2)已知甲厂每小时需要污水处理费用550元,乙厂每小时需要污水处理费用495元.如果每天用于处理全县污水的费用不得超过7370元,那么甲厂每天至少处理污水多少小时图527、五角星是指一种有五只尖角、并以五条直线画成的星星图形。
英文“五角星”(pentagram)一词出于希腊语中的πεντγραμμο,(pentagrammos )或πεντγραμμο,(pentegrammos )的名词形式πεντγραμμον,(pentagrammon ),原意大概是“五条直线的”或“五条线”。
中文“五角星”的意义则显而易见,指有五只角的星形。
然而,中文“五角星”不一定指“标准”五角星。
中文“五角星”一词有时亦泛指所有有五只角的星形物。
如图:(1)图6(1)中是一个五角星,求∠A +∠B +∠C +∠D +∠E .(2)图6(1)中的点A 向下移到BE 上时,五个角的和(即∠CAD +∠B +∠C +∠D +∠E )有无变化?如图6(2),说明你的结论的正确性.(3)把图6(2)中的点C 向上移动到BD 上时,五个角的和(即∠CAD +∠B+∠ACE +∠D +∠E )有无变化?如图6(3),说明你的结论的正确性.七年级(下)期末教学质量监测数学参考答案一、选择题选择题(本大题共12个小题,每小题3分,共36个选项中,只有一个是正确的,请把正确选项的字母填在每题后的括号内)1.C2.D 3.A 4.B 5.C 6.D 7.A 8.B9.A 10.C11.B 12.D二、填空(本大题共3个小题,每小题8分,共24分)13、y=2x -5, 14、1, 15、1550, 16、10 17、4118、1019、85238 20、9≤m <12三(本大题共3个小题,每小题7分,共21分) 21、解:3(x -3)-6=2(2x +1)………………3分 3x -9-6=4x +2…………… ……4分 -x =17………………………6分A(1B C D AEB C DEA B CD(2(3图6x=-17……………………7分22、解:①+②得2y=16y=8 …………2分①+③得2x=12x=6 …………4分②+③的得2z=6z=3 …………6分所以683xyz=⎧⎪=⎨⎪=⎩……7分23、解(1)∵∠A=20°∠B=30°∴∠ACD=50°∵AC⊥DE∴∠CPD=90°∵∠CPD+∠ACD+∠D=180°∴∠D=40° (4分)(2) ∵∠1+∠B+∠D=180°∠D=40°∠B=30°∴∠1=110°(7分)四、(本大题共2个小题,每小题9分,共18分)24、解:解不等式①得:x<2………………………………………….2分解不等式②得:x>-3 ………………………………………4分所以不等式组的解集为-3<x<2………………………………5分……7分所有整数解的和为:-2+(-1)+0+1=-2 …………9分25、图略(1)Rt△A 1B 1C 1作正确(3分)(2)Rt△A 2B 2C 2作正确(3分)(3)6+23π(3分)五、(本大题共2个小题,26小题10分,27小题11分,共21分)26、解:(1)设甲厂每小时处理污水x 立方米,乙厂每小时处理污水y 立方米,由题意得⎩⎨⎧=++=+70010)(5.2700)(7y y x y x (4分)解得:⎩⎨⎧==4555y x答:甲厂每小时处理污水55立方米,乙厂每小时处理污水45立方米,(7分) (2)设甲厂每天至少处理污水z 小时,由题意得550z +4555700z -×495≤7370解得z ≥6答:甲厂每天至少处理污水6小时. (10分) 27、解:(1)∵∠FGC=∠B+∠E∠=∠A+∠D∴∠FGC+∠+∠C=∠A+∠B+∠C+∠D+∠E=180° (3分) (2) ∵∠=∠B+∠E∠GFD=∠CAD+∠C∴∠+∠GFD+∠D=∠CAD+∠B+∠C+∠D+∠E=180° (7分) (3) ∵∠CAD+∠D=∠CB∠B+∠E=∠ECD∴∠+∠A+∠ECD=∠CAD+∠B+∠ACE+∠D+∠E =180°(11分)A(1BCDA B CA B C D (2(3图6F G G F。