线性代数二阶与三阶行列式
二阶三阶行列式计算方法
二阶三阶行列式计算方法行列式是线性代数中的一个重要概念,它是一个数学工具,用于描述矩阵的性质和变换。
在实际应用中,行列式经常用于求解线性方程组、计算矩阵的逆、判断矩阵是否可逆等问题。
本文将介绍二阶三阶行列式的计算方法。
二阶行列式二阶行列式是一个2×2的矩阵,它的计算方法如下:$$\begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22}\end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$其中,$a_{11}$、$a_{12}$、$a_{21}$、$a_{22}$是矩阵中的元素。
例如,对于矩阵$\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$,它的二阶行列式为:$$\begin{vmatrix}1 &2 \\3 & 4\end{vmatrix} = 1\times4 - 2\times3 = -2$$三阶行列式三阶行列式是一个3×3的矩阵,它的计算方法如下:$$\begin{vmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$其中,$a_{11}$、$a_{12}$、$a_{13}$、$a_{21}$、$a_{22}$、$a_{23}$、$a_{31}$、$a_{32}$、$a_{33}$是矩阵中的元素。
二阶三阶行列式对角线法则-概述说明以及解释
二阶三阶行列式对角线法则-概述说明以及解释1.引言1.1 概述行列式是线性代数中的重要概念,它是一个数学工具,用于描述线性方程组的性质和解的情况。
二阶和三阶行列式是行列式理论中的基础,它们具有重要的数学意义和广泛的应用。
在本文中,我们将重点讨论二阶和三阶行列式的性质和计算方法,特别是介绍对角线法则在求解行列式值时的应用。
通过学习二阶和三阶行列式,可以深入理解行列式的概念和性质,为进一步学习多阶行列式奠定基础。
同时,对角线法则作为一种简便的计算方法,可以帮助我们更快速地求解行列式的值,提高解题效率。
因此,本文的目的是帮助读者全面了解二阶和三阶行列式,并掌握对角线法则的运用,为深入学习行列式理论打下坚实的基础。
1.2 文章结构文章结构部分:本文主要分为三个部分,即引言、正文和结论。
引言部分主要包括对二阶和三阶行列式的简要概述,介绍了行列式在数学和工程中的重要性和应用,并说明了文章的目的和意义。
正文部分分为二阶行列式、三阶行列式和对角线法则三个小节,将详细介绍二阶和三阶行列式的定义、性质和计算方法,以及介绍对角线法则在计算行列式时的应用和意义。
结论部分将对二阶和三阶行列式进行总结,展示其重要性和应用,并展望未来在更高阶行列式及其在数学和工程中的进一步研究和应用。
1.3 目的目的部分的内容应该概括文章的主要目标和意义。
例如:目的:本文旨在介绍二阶、三阶行列式以及它们的性质,并重点讲解对角线法则在计算行列式时的应用。
通过本文的阐述,读者可以深入了解行列式的计算方法,并且掌握对角线法则在简化计算过程中的重要作用。
同时,我们也希望读者能够进一步应用这些知识,解决实际问题和拓展数学思维。
2.正文2.1 二阶行列式二阶行列式是指一个2x2矩阵的行列式,通常表示为:a bc d其中,a、b、c、d分别为矩阵中的元素。
二阶行列式的计算公式为ad - bc。
这个公式也被称为“交叉相乘减交叉相乘”的方法。
举个例子,对于矩阵2 34 1其二阶行列式的计算过程为:2*1 - 3*4 = 2 - 12 = -10。
二阶与三阶行列式分析
二阶与三阶行列式分析二阶行列式分析:二阶行列式是由两行两列元素组成的方阵。
例如,一个二阶行列式可以表示为:abcd其中a、b、c、d是实数。
二阶行列式的计算方法是将对角线上的元素相乘,然后减去另一条对角线上的元素相乘。
根据这个定义,二阶行列式的值可以表示为:abc d , = ad - bc其中ad表示a和d的乘积,bc表示b和c的乘积。
三阶行列式分析:三阶行列式是由三行三列元素组成的方阵。
例如,一个三阶行列式可以表示为:abcdefghi其中a、b、c、d、e、f、g、h、i是实数。
三阶行列式的计算方法可以通过展开定理来计算。
展开定理指出,三阶行列式可以按照第一行或第一列展开为两个二阶行列式的乘积。
根据展开定理,三阶行列式的值可以表示为:abcdefg h i , = aei + bfg + cdh - ceg - bdi - afh其中aei、bfg、cdh分别表示第一行的元素与其对应的代数余子式的乘积,ceg、bdi、afh分别表示第一列的元素与其对应的代数余子式的乘积。
行列式的应用:行列式在线性代数中起着重要的作用,具有广泛的应用。
以下是几个行列式的应用示例:1.解线性方程组:通过求解行列式的值,可以确定线性方程组的解的排列情况和数量。
2.计算面积和体积:通过行列式的计算,可以求得平面上一组向量所围成的面积,或者三维空间中一组向量所围成的体积。
3.判断向量的线性相关性:使用行列式可以判断一组向量是否线性相关,通过计算行列式的值,若行列式为0则表示向量线性相关,否则线性无关。
4.矩阵的逆、行列式的转置:行列式的性质可以用于计算矩阵的逆矩阵和行列式的转置。
总结:二阶行列式可以通过对角线元素的乘积减去反对角线元素的乘积来计算。
三阶行列式可以通过展开定理,将其展开为两个二阶行列式的乘积。
行列式在线性代数中有广泛的应用,包括解线性方程组、计算面积和体积、判断向量的线性相关性等。
行列式的性质可以用于计算矩阵的逆矩阵和行列式的转置。
线性代数§1.1二阶、三阶行列式
线性代数§1.1⼆阶、三阶⾏列式本章说明与要求⾏列式的理论是⼈们从解线性⽅程组的需要中建⽴和发展起来的,它在线性代数以及其他数学分⽀上都有着⼴泛的应⽤。
在本章⾥我们主要讨论下⾯⼏个问题:(1) ⾏列式的定义;(2) ⾏列式的基本性质及计算⽅法;(3) 利⽤⾏列式求解线性⽅程组(克莱姆法则)。
本章的重点:是⾏列式的计算,要求在理解n阶⾏列式的概念,掌握⾏列式性质的基础上,熟练正确地计算三阶、四阶及简单的n阶⾏列式。
计算⾏列式的基本思路是:按⾏(列)展开公式,通过降阶来计算.但在展开之前往往先利⽤⾏列式性质通过对⾏列式的恒等变形,使⾏列式中出现较多的零和公因式,从⽽简化计算。
常⽤的⾏列式计算⽅法和技巧:直接利⽤定义法,化三⾓形法,降阶法,递推法,数学归纳法,利⽤已知⾏列式法。
⾏列式在本章的应⽤:求解线性⽅程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应⽤的条件。
本章的重点:⾏列式性质;⾏列式的计算。
本章的难点:⾏列式性质;⾼阶⾏列式的计算;克莱姆法则。
==============================================§1.1 ⼆阶、三阶⾏列式⾏列式的概念起源于解线性⽅程组,它是从⼆元与三元线性⽅程组的解的公式引出来的。
因此我们⾸先讨论解⽅程组的问题。
设有⼆元线性⽅程组()()------1 ------2ax by c dx ey f +=+=?? ⽤消元法求解:()()12:e b - ()ae bd x ce bf -=-?,ce bf x ae bd-=-, ()()21:a d - ()ae bd y af dc -=-?,af dc y ae bd-=-。
即得⽅程组的解:ce bf x ae bd af dc y ae bd -?=??-?-?=?-?。
这就是⼀般⼆元线性⽅程组的解公式。
但这个公式很不好记忆,应⽤时⼗分不⽅便。
由此可想⽽知,多元线性⽅程组的解公式肯定更为复杂。
2-1_二阶_三阶行列式的性质
三阶行列式的性质
根据已经证明的关于2阶行列式的性质,3阶行列式也有同样的性质 性质 行列互换,3阶行列式的值不变,即 = 证明:等式左端的行列式按照第1列展开利用性质1可得
等式右端
■
性质 两行 (列) 互换,3阶行列式的值变号. (只给出行列式的前 2行变换的情形,其他情形类似). =
证明:把等式左端的行列式按第 3 行展开再利用性质3可得 = + + = 等式右端 ■
例0.4:计算下列行列式: (1) (2)
(3)
解:(1)
( 3) r1 r 2
解:(2)
( r 2 r 3) r1
c1 c2 c1 c3
注:此题的做法,对所有行(列)和相等的行列式均适用.
解:(3)
c1 c2 c1 c3
本讲小结
1、转置不变(行列等价) 2、行(列)加法拆项法则 3、行(列)倍乘 4、对换取反 5、倍加不变 6、行列展开公式 行(列)初等变换,产生尽量多的0元素. 初等变换,是行列式 计算中最常用的方法.
称为三阶行列式对其第一行的展开公式.
= = ( ) ( ) ( )
=
因此,我们已经有
类似地,我们也可以得到
以上三个式子分别称为三阶行列式对其第一、二、三行的展开公式.
同样也有三阶行列式对其一、二、三列的展开公式,即
易知,2阶行列式也满足这个结论,故我们就证明了以下的定理. 定理 2、3阶行列式等于它的任一行 (或列) 元素与自己的代数余子式 乘积之和.
■
性质2 若二阶行列式中某行(列)每个元素分成两个数之和,则该行列 式可关于该行(列)拆开成两个行列式之和,拆开时其他行均保持不变, 即 = + 证明: = ( = + ■
行列式的求解方法
行列式的求解方法行列式是线性代数中的重要概念,它在代数学、几何学以及物理学等领域中都有广泛的应用。
行列式的求解方法有很多,接下来将介绍一些常见的求解方法。
1. 二阶和三阶行列式的求解:对于二阶行列式:$D = \begin{vmatrix} a & b\\ c & d \end{vmatrix} = ad - bc$对于三阶行列式:$D = \begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i\end{vmatrix} = aei + bfg + cdh - ceg - bdi - afh$这种求解方法适用于二阶和三阶行列式,其实质是按照一定的规律对行列式进行展开计算。
2. 扩展行列式法:对于n阶行列式的求解,可以利用扩展行列式法逐步缩小求解规模。
首先选择行列式中的某一行或者某一列,将其展开并作为公因子,得到n个n-1阶的代数余子式。
然后,对每个n-1阶代数余子式再次进行类似的展开操作,得到n-1个n-2阶的代数余子式。
如此循环递归,直到求得1阶行列式,即可得到n阶行列式的解。
例如,对于4阶行列式:$D = \begin{vmatrix} a & b & c & d\\ e & f & g & h\\ i & j & k & l \\ m & n & o & p \end{vmatrix}$,选择第一行进行展开,得到:$D = a \begin{vmatrix} f & g & h \\ j & k & l \\ n & o & p\end{vmatrix} - b \begin{vmatrix} e & g & h \\ i & k & l \\ m & o& p \end{vmatrix} + c \begin{vmatrix} e & f & h \\ i & j & l \\ m& n & p \end{vmatrix} - d \begin{vmatrix} e & f & g \\ i & j & k\\ m & n & o \end{vmatrix}$然后,对每个3阶代数余子式再次进行展开,最终得到4阶行列式的解。
常见行列式
常见行列式常见行列式是指在线性代数中常出现的一些具有特定形式的行列式。
行列式是一个矩阵的一个重要性质,它代表了该矩阵的某些特征。
接下来我将介绍一些常见的行列式,并解释它们的特点和应用。
首先,最常见的行列式就是二阶和三阶行列式。
二阶行列式是一个2×2的矩阵,记作|A|=ad-bc。
其中,a、b、c和d为矩阵A的元素。
二阶行列式的求解方法是将对角线上的乘积相加,并减去非对角线上的乘积。
二阶行列式常用于计算平面上两个向量的行列式,从而判断它们的线性相关性。
三阶行列式是一个3×3的矩阵,记作|A|=a(ei-fh)-b(di-fg)+c(dh-eg)。
三阶行列式的求解方法是将每个元素与与其对应的代数余子式相乘,然后按正负号相加。
三阶行列式广泛应用于三维几何体的体积计算和解线性方程组等问题。
其次,特殊的行列式包括单位矩阵和零矩阵的行列式。
单位矩阵是一个n×n的矩阵,主对角线上的元素均为1,其他元素均为0。
单位矩阵的行列式为1,它表示了一个矩阵在相似变换下的不变性。
零矩阵是一个所有元素都为0的矩阵,它的行列式为0。
此外,对角矩阵和上三角矩阵的行列式也具有一定的特殊性质。
对角矩阵是一个所有非对角元素都为0的矩阵,对角元素可以相同也可以不同。
对角矩阵的行列式等于对角元素的乘积。
上三角矩阵是一个除了主对角线以下的元素都为0的矩阵,它的行列式等于主对角线上的元素的乘积。
对角矩阵和上三角矩阵的行列式的计算相对简单,这使得它们在实际问题中的应用更加方便。
另外,行列式的特征值和特征向量是线性代数中的重要概念。
特征值是一个矩阵的一个标量,特征向量是对应于特征值的一个向量。
行列式的特征值和特征向量有着丰富的几何意义和应用。
特征值和特征向量可以用于求解线性方程组、矩阵的对角化和求取矩阵的幂等等问题。
最后,通过行列式的定义和性质,我们可以推导出一些行列式的重要公式,如拉普拉斯展开公式和克拉默法则等。
线性代数1-3n阶行列式的定义
行列式的值具有可消性,即 行或列中某些元素为0时,其 对应的因子也为0。
THANKS
感谢观看
线性代数1-3n阶行列式的定义
• 1阶行列式 • 2阶行列式 • 3阶行列式 • n阶行列式
01
1阶行列式
定义
1阶行列式表示为|a|,其中a是一个数。
它表示数a的绝对值。
计算方法
计算方法很简单,直接取绝对值即可 。
如果a是正数,则|a|=a;如果a是负数, 则|a|=-a;如果a=0,则|a|=0。
计算方法
01
按照定义,三阶行列式是由三个行组成的矩阵,每个行有3个元素。
02
计算三阶行列式时,需要按照定义展开,即按照行优先的顺序展开。
03
具体计算方法为:将第一行的元素与第二行对应元素的代数余子式相乘,加上 第一行的元素与第三行对应元素的代数余子式相乘,最后加上第二行的元素与 第三行对应元素的代数余子式相乘。
03
行列式的值等于主对角线上的元素之积减去副对角线上的元 素之积。
计算方法
01
计算二阶行列式,需要先计算出矩阵中各元素的代数余子式。
02
行列式的值等于主对角线上的元素之积减去副对角线上的元素
之积。
如果行列式中存在0元素,则可以简化计算过程。
03
性质
01
行列式的值与矩阵的转置无关 。
02
行列式的值与矩阵的行变换或 列变换无关。
03
行列式的值是非负的,且等于0 当且仅当矩阵是奇异的(即行列 式中至少有一个元素为0)。
03
3阶行列式
式的扩展,由三个行组成的矩阵,每 个行有3个元素。
02
三阶行列式通常表示为3|a b c|,其中a、b、c分别表示三个 行中的元素。
线性代数知识点总结
线性代数知识点总结第一章 行列式一要点1、二阶、三阶行列式2、全排列和逆序数;奇偶排列可以不介绍对换及有关定理;n 阶行列式的定义3、行列式的性质4、n 阶行列式ij a D =;元素ij a 的余子式和代数余子式;行列式按行列展开定理5、克莱姆法则二基本要求1、理解n 阶行列式的定义2、掌握n 阶行列式的性质3、会用定义判定行列式中项的符号4、理解和掌握行列式按行列展开的计算方法;即+11j i A a +22j i A a ⎩⎨⎧≠==+j i j i D A a jn in 0 +j i A a 1122i j a A +⎩⎨⎧≠==+j i j i D A a nj ni0 5、会用行列式的性质简化行列式的计算;并掌握几个基本方法:归化为上三角或下三角行列式;各行列元素之和等于同一个常数的行列式;利用展开式计算6、掌握应用克莱姆法则的条件及结论会用克莱姆法则解低阶的线性方程组7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件第二章 矩阵一要点1、矩阵的概念n m ⨯矩阵n m ij a A ⨯=)(是一个矩阵表..当n m =时;称A 为n 阶矩阵;此时由A 的元素按原来排列的形式构成的n 阶行列式;称为矩阵A 的行列式;记为A .注:矩阵和行列式是两个完全不同的两个概念..2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法1矩阵的乘法不满足交换律和消去律;两个非零矩阵相乘可能是零矩阵..如果两矩阵A 与B 相乘;有BA AB =;则称矩阵A 与B 可换..注:矩阵乘积不一定符合交换2方阵的幂:对于n 阶矩阵A 及自然数k ;个k k A A A A ⋅⋅= 规定I A =0;其中I 为单位阵 .3 设多项式函数k k k k a a a a ++++=--λλλλϕ1110)( ;A 为方阵;矩阵A 的多项式I a A a A a A a A k k k k ++++=--1110)( ϕ;其中I 为单位阵..4n 阶矩阵A 和B ;则B A AB =.5n 阶矩阵A ;则A A nλλ=4、分块矩阵及其运算5、逆矩阵:可逆矩阵若矩阵A 可逆;则其逆矩阵是唯一的;矩阵A 的伴随矩阵记为*A ; E A A A AA ==**矩阵可逆的充要条件;逆矩阵的性质..6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵..7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩8、矩阵的等价二要求1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等2、了解几种特殊的矩阵及其性质3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时;会用伴随矩阵求逆矩阵5、了解分块矩阵及其运算的方法1在对矩阵的分法符合分块矩阵运算规则的条件下;其分块矩阵的运算在形式上与不分块矩阵的运算是一致的..2特殊分法的分块矩阵的乘法;例如n m A ⨯;l n B ⨯;将矩阵B 分块为) (21l b b b B =;其中j b l j 2, ,1=是矩阵B 的第j 列;则=AB ) (21l b b b A ) (21l Ab Ab Ab =又如将n 阶矩阵P 分块为) (21n p p p P =;其中j p n j 2, ,1=是矩阵P 的第j 列.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n P λλλ 0 0 00 0 00 0 0 21 ) (21n p p p = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ 0 0 00 0 00 0 0 21) (2211n n p p p λλλ = 3设对角分块矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=SS A A A A 2211 ;),2,1(s P A PP =均为方阵; A 可逆的充要条件是PP A 均可逆;s P ,2,1=;且⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----11221111 ss A A A A6、理解和掌握矩阵的初等变换和初等矩阵及其有关理论;掌握矩阵的初等变换;化矩阵为行最简形;会用初等变换求矩阵的秩、求逆矩阵7、理解矩阵的秩的概念以及初等变换不改变矩阵的秩等有关理论8、若矩阵A 经过有限次初等变换得到矩阵B ;则称矩阵A 和矩阵B 等价;记为B A ≅. n m ⨯矩阵A 和B 等价当且仅当)()(B r A r =;在等价意义下的标准型:若r A r =)(;则r D A ≅;⎥⎦⎤⎢⎣⎡=000 r r I D ;r I 为r 阶单位矩阵.. 因此n 阶矩阵A 可逆的充要条件为n I A ≅..第三章 线性方程组一要点1、n 维向量;向量的线性运算及其有关运算律记所有n 维向量的集合为n R ;n R 中定义了n 维向量的线性运算;则称nR 为 n 维向量空间..2、向量间的线性关系1线性组合与线性表示;线性表示的判定2线性相关与线性无关;向量组的线性相关与无关的判定3、向量组的等价;向量组的秩;向量组的极大无关组及其求法;向量组的秩及其求法 1设有两个向量组,1α,2αs α )(A,1β,2βt β )(B向量组)(A 和)(B 可以相互表示;称向量组)(A 和)(B 等价..向量组的等价具有传递性..2一个向量组的极大无关组不是惟一的;但其所含向量的个数相同;那么这个相同的个数定义为向量组的秩..4、矩阵的秩与向量组的秩的关系5、线性方程组的求解1线性方程组的消元解法2线性方程组解的存在性和唯一性的判定3线性方程组解的结构4齐次线性方程的基础解系与全部解的求法5非齐次方程组解的求法二要求1、理解n 维向量的概念;掌握向量的线性运算及有关的运算律2、掌握向量的线性组合、线性表示、线性相关、线性无关等概念3、掌握线性表示、线性相关、线性无关的有关定理4、理解并掌握向量组的等价极大无关组、向量组的秩等概念;及极大无关组、向量组秩的求法5、掌握线性方程组的矩阵形式、向量形式的表示方法6、会用消元法解线性方程组7、理解并掌握齐次方程组有非零解的充分条件及其判别方法8、理解并掌握齐次方程组的基础解系、全部解的概念及其求法9、理解非齐次方程组与其导出组解的关系;掌握非齐次方程组的求解方法第四章 矩阵的特征值与特征向量一要点1、矩阵的特征值与特征向量的定义;特征方程、特征值与特征向量的求法与性质2、相似矩阵的定义、性质;矩阵可对角化的条件3、实对称矩阵的特征值和特征向量向量内积的定义及其性质;正交向量组;施密特正交化方法;正交矩阵;实对称矩阵的特征值与特征向量的性质;实对称矩阵的对角化二要求1、理解矩阵的特征值、特征向量的概念及有关性质2、掌握特征值与特征向量的求法3、理解并掌握相似矩阵的概念与性质4、掌握判断矩阵与对角矩阵相似的条件及对角化的方法5、会将实对称矩阵正交相似变换化为对角矩阵..第五章二次型一要点1、二次型与对称矩阵:二次型的定义;二次型与对称矩阵的对应关系2、二次型与对称矩阵的标准形配方法;初等变换法;正交变换法;合同矩阵;二次型及对称矩阵的标准形与规范形 3、二次型与对称矩阵的有定性二次型与对称矩阵的正定、负定、半正定、半负定二要求1、理解并掌握二次型的定义及其矩阵的表示方法..2、会用三种非退化线性替换:即配方法、初等变换法、正交变换法化二次型为标准形及规范型3、掌握二次型的正定、负定、半正定、半负定的定义;会判定二次型的正定性..。
二阶三阶行列式
二阶三阶行列式1.引言1.1 概述二阶行列式和三阶行列式是线性代数中常见的概念。
行列式是一个整数或实数的方阵,它具有很多重要的性质和应用。
二阶行列式是一个2×2的方阵,而三阶行列式是一个3×3的方阵。
在本文中,我们将介绍二阶行列式和三阶行列式的定义以及计算方法,并总结它们的特点和重要性。
在二阶行列式部分,我们将详细介绍二阶行列式的定义和计算方法。
二阶行列式的定义是由其中的四个元素按一定的规则相乘再相减得到的一个数值。
计算二阶行列式可以使用简单的公式,即将对角线上的两个元素相乘再相减。
我们将提供详细的计算示例,并讨论二阶行列式在几何学和线性方程组中的应用。
在三阶行列式部分,我们将进一步介绍三阶行列式的定义和计算方法。
三阶行列式的计算比较复杂,需要按一定的规则进行乘法和加减运算。
我们将解释这些规则,并提供实际的计算例子。
此外,我们还将探讨三阶行列式在向量空间和线性方程组中的应用,以及它们与二阶行列式之间的关系。
通过本文的学习,读者将能够理解二阶行列式和三阶行列式的概念和计算方法。
同时,他们还将认识到行列式在数学和实际应用中的重要性。
了解行列式可以帮助我们解决各种问题,包括求解线性方程组、计算向量的正交性和计算面积和体积等。
行列式是线性代数中的基础知识,对于进一步学习和应用线性代数的内容具有重要的意义。
1.2文章结构1.2 文章结构本文将首先介绍二阶行列式的概念和定义,详细阐述其计算方法。
然后,我们将进一步探讨三阶行列式的定义和计算方法。
在分析和比较二阶行列式与三阶行列式的异同之后,我们将总结这两者的特点和应用。
本文的主要目的是通过对二阶和三阶行列式的研究,帮助读者更好地理解和应用行列式的相关概念和计算方法。
具体来说,本文的内容安排如下:2. 正文2.1 二阶行列式2.1.1 定义在这一部分中,我们将引入二阶行列式的概念,并详细解释其定义。
通过具体的例子,我们将展示如何构建并计算二阶行列式。
线性代数第一章二元、三元方程组与二阶与三阶行列式
20 2020/7/4
a00b
例2:计算
0 D
0
c e
d f
0 0
g00h
解 D是一个4!=24项的代数和.
在这24项中,除了 acfh, adeh, bdeg, bcfg 这四项之外,
其余的项都至少含有一个0因子,因而为0.
上面四项的行标都是按标准序排列,列标依次为: 1234,1324,4321,4231.
12 n ;
n
对角行列式
1
2
n n 1
1 2 12 n.
n
次对角行列式
24 2020/7/4
0 001 0
0 0200
例4 计算 Dn
n 1 0 0 0 0
0 000n
00
00
解 Dn
n 1 0
00
010
200
1 n1n2 321n n!
a31 a32 a33
a31 a32 a33
9 2020/7/4
1 2 4
例2:计算三阶行列式 D 2 2 1
3 4 2
解:D 122 21 3 (4)(2) 4
114 2(2)(2) (4) 2(3)
4 (6) 32 4 8 24
14
0 xy
abc
练习:x 0 z 0, b c a 3abc a3 b3 c3.
当 a11a22 a12a21 0 时, 得方程组(1)的惟一解:
2020/7/4
x1
b1 a 2 2 a1 1a 2 2
a12b2 a12a21
;
b1 a12
=
b2 a22 a11 a12
D1 D
a21 a22
线性代数二阶与三阶行列式
1 1 1
1 2 1 11 1 2 2 1 1 31
5 0,
同理可得
2 2 1
1 2 1
D1 1 1 3 5, D2 2 1 3 10,
0 1 1
1 0 1
1 2 2
D3 2 1 1 5, 1 1 0
故方程组的解为:
得一个关于未知数 a, b, c 的线性方程组, 又 D 20 0, D1 40, D2 60, D3 20. 得 a D1 D 2, b D2 D 3, c D3 D 1
故所求多项式为
f x 2x2 3x 1.
副对角线
a21
a22
对于二元线性方程组
aa1211
x1 x1
a12 x2 a22 x2
b1 , b2 .
若记
D a11 a12 ,
系数行列式
a21 a22
aa1211
x1 x1
a12 x2 a22 x2
b1 , b2 .
D a11 a12 , a21 a22
aa1211
x1 x1
a12 x2 a22 x2
称列)的数表
a11 a12
a21 a22
(4)
表达式 a11a22 a12a21称为数表(4)所确定的二阶
行列式,并记作 a11 a12
(5)
a21 a22
即
D a11 a21
a12 a22
a11a22 a12a21.
二阶行列式的计算 对角线法则
主对角线 a11
a12
a11a22 a12a21.
D2
a11 a21
b1 . b2
则二元线性方程组的解为
线性代数1-1 二、三阶行列式
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 .
注意 红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号.
注 对角线法则只适用于二阶与三阶行列式.
2. 三阶行列式的计算
a 11 a 12 a 22 a 32 a 13 a 23 a 33
(1)沙路法 D a 21
a 31
D a11a22a33 a12a23a31 a13a21a32
a11a23a32 a12a21a33 a13a22a31 .
(2)对角线法则
x 2 3,
有否统一的公式?
用消元法解二元线性方程组
a 11 x 1 a 12 x 2 b1 , a 21 x 1 a 22 x 2 b 2 .
1
2
1 a 22 : 2 a 12 :
a 11 a 22 x 1 a 12 a 22 x 2 b1 a 22 , a 12 a 21 x 1 a 12 a 22 x 2 b 2 a 12 ,
(6)
a 13 a 22 a 31 a 12 a 21 a 33 a 11 a 23 a 32
(6)式称为数表(5)所确定的三阶行列式.
a 11 D a 21 a 31
a 12 a 22 a 32
a 13 a 23 a 33
.列标 行标
a 11 a 21 a 31 a 12 a 22 a 32
1.定义 设有 9 个数排成 3 行 3 列的数表
二阶三阶行列式计算方法
二阶三阶行列式计算方法在线性代数中,行列式是一个与矩阵相关的重要概念。
行列式具有许多重要的性质和应用,例如计算矩阵的逆、解线性方程组、计算几何体的体积等。
在本文中,我将介绍二阶和三阶行列式的计算方法。
1.二阶行列式的计算方法二阶行列式指的是一个由2x2矩阵组成的行列式。
一个二阶矩阵可以表示为:abcd二阶行列式的计算方法可以使用下面的公式:det(A) = ,a*d - b*c其中,a、b、c、d分别表示矩阵中的元素。
2.三阶行列式的计算方法三阶行列式指的是一个由3x3矩阵组成的行列式。
一个三阶矩阵可以表示为:abcdefghi三阶行列式的计算方法可以使用下面的公式:det(A) = a*(e*i - h*f) - b*(d*i - g*f) + c*(d*h - g*e)在这个公式中,每个元素与其所在行号和列号有关。
元素a与第一行第一列的乘积乘以一个二阶行列式,这个二阶行列式的元素是除去第一行第一列之后的所有元素。
元素b与第一行第二列的乘积乘以一个二阶行列式,这个二阶行列式的元素是除去第一行第二列之后的所有元素,以此类推。
最后,根据正负规律,将所有乘积相加得到最终的结果。
3.示例计算让我们通过一个具体的示例来计算一个二阶和一个三阶行列式。
a)计算二阶行列式:2345使用二阶行列式的公式,我们可以计算:det(A) = 2*5 - 3*4 = 10 - 12 = -2所以这个二阶行列式的结果是-2b)计算三阶行列式:123456789使用三阶行列式的公式,我们可以计算:det(A) = 1*(5*9 - 8*6) - 2*(4*9 - 7*6) + 3*(4*8 - 7*5)=1*(45-48)-2*(36-42)+3*(32-35)=-3+12-9=0所以这个三阶行列式的结果是0。
通过以上示例,我们可以理解二阶和三阶行列式的计算方法。
对于更高阶的行列式,可以使用类似的方法进行计算,但公式会变得更加复杂。
二三阶行列式的计算公式
二三阶行列式的计算公式行列式是线性代数中的一种基本概念,它是一个方阵的一个标量值,用于表示线性变换对体积的影响。
在实际应用中,求解行列式是非常重要的,因此,对于二三阶行列式的计算公式的掌握显得尤为重要。
一、二阶行列式的计算公式二阶行列式是一种特殊的行列式,它由一个2×2的方阵构成。
其计算公式为:$$begin{vmatrix}a & bc & dend{vmatrix} = ad-bc$$其中,a、b、c、d均为实数。
二阶行列式的计算公式非常简单,只需要将主对角线上的元素乘起来,再将副对角线上的元素乘起来,最后将两个积相减即可。
例如,求解以下二阶行列式:$$begin{vmatrix}1 & 23 & 4end{vmatrix}$$根据公式可得:$$begin{vmatrix}1 & 23 & 4end{vmatrix} = (1times4)-(2times3)=-2$$因此,二阶行列式的计算非常简单,只需要掌握公式即可。
二、三阶行列式的计算公式三阶行列式是一种比较常见的行列式,它由一个3×3的方阵构成。
其计算公式为:$$begin{vmatrix}a &b & cd &e & fg & h & iend{vmatrix} = aei+bfg+cdh-ceg-bdi-afh$$其中,a、b、c、d、e、f、g、h、i均为实数。
三阶行列式的计算公式比较复杂,需要掌握一定的技巧。
一种常用的计算方法是“按行展开法”,即按照第一行的元素展开,将行列式转化为二阶行列式的形式,然后再利用二阶行列式的计算公式进行求解。
例如,求解以下三阶行列式:$$begin{vmatrix}1 &2 & 34 &5 & 67 & 8 & 9end{vmatrix}$$按照第一行的元素展开,有:$$begin{vmatrix}1 &2 & 34 &5 & 67 & 8 & 9end{vmatrix} = 1begin{vmatrix}5 & 68 & 9end{vmatrix} - 2begin{vmatrix}4 & 67 & 9end{vmatrix} + 3begin{vmatrix}4 & 57 & 8end{vmatrix}$$利用二阶行列式的计算公式,可得:$$begin{vmatrix}1 &2 & 34 &5 & 67 & 8 & 9end{vmatrix} =1times(5times9-6times8)-2times(4times9-6times7)+3times(4tim es8-5times7)=-6$$因此,掌握了行列式的计算公式和计算方法,就可以轻松求解二三阶行列式了。
几何与线性代数(第三章 行列式与矩阵)
n 2时 ,D a11 A11 a12 A12 a1n A1n a1 j A1 j j1
其中A1 j (1)1 j M1 j
a21 a2, j1
M1 j
a31
a3, j1
an1 an, j1
a2, j1 a2n a3, j1 a3n
an, j1 ann
( j 1,2,..,n)
ai1 j1 ai2 j1
aik j1
ai1 j2 ai2 j2
aik j2
ai1 jk ai2 jk
aik jk
非零子式
定义(秩):非零矩阵A的非零子式的最高阶数称为A的秩, 记为r(A)或R(A)。规定:零矩阵的秩为0
注:最高阶数,即指A存在r阶非零子式,但所有r+1阶子式 (如果存在)都等于0,则最高阶数为r。 注:r(A)=r(AT)
例:
1 4 2
A 3 5 1
2 1 6
性质2:
a11
a12 a1n
a11 a12 a1n
kai1 kai2 kain k ai1 ai2 ann
推论:
** * * 0 0 0 0 ** * *
性质3:
***
*** ***
k (5) A1 1
A
规定:当A可逆时,A0 E, Ak ( A1 )k k N,则当r, s Z时,有
Ar As Ars , ( Ar )s Ars
伴随矩阵
a11
A
a21
an1
a12 a22
an2
a1n
A11
a2n ann
A*
A12
A1n
A21 A22
| A|
| A|
线性代数课件第一章
逆序. 一个排列中所有逆序的总数叫做这个排列的逆 序数.
在一个 n 阶排列中,任何一个数对不是构成逆序 就是构成顺序.如果我们把顺序的个数称为顺序数,则 一个 n 阶排列的顺序数与逆序数的和为 n(n –1)/2 .
a12a21) a12a21)
x1 x2
b1a22 a11b2
a12b2 b1a21
, .
当 a11a22 – a12a21 0 时,求得方程组(1)的解为
x1
x2
b1a22
a11a22 a11b2
a11a22
a12b2
a12a21 b1a21
a12a21
, .
(2)
为了记忆该公式,引入记号
(为偶排列). 带负号的三项列标排列:132 , 213 , 321
(为奇排列). 故三阶行列式可以写成
a11 a12 a13
a21 a22 a23 (1)t a1p1 a2 p2 a3 p3 ,
a31 a32 a33
其中 t 为排列 p1p2p3 的逆序数, 表示对1,2,3 三个 数的所有排列 p1p2p3 求和.
a11 a21
a12 a22
a11a22 a12a21
并称之为二阶行列式.其中 aij 称为行列式的元素,
aij 的两个下标表示该元素在行列式中的位置,第一个下
标称为行标, 表示该元素所在的行,第二个下标称为列
标,表示该元素所在的列,常称 aij 为行列式的(i , j ) 元1由a11成a11baaa1a1111b122二12二aaa22122b222阶22阶22ba1abaa行行11112aa22baa22ba11a1列12列22a22122baaa112式12式1222,.1b12的,,. 定即bb12 义aa,12(22 ,(22a)11b)2
二阶三阶行列式一般规律
二阶三阶行列式一般规律
行列式是线性代数中一个重要的概念,它具有广泛的应用。
本文将探讨二阶和三阶行列式的一般规律,帮助读者更好地理解和应用行列式。
首先,我们来看二阶行列式。
二阶行列式由两行两列组成,可以表示为:
其中,a、b、c、d分别是二阶行列式的元素。
二阶行列式的求法较为简单,可以通过交叉相乘再相减的方式得到结果。
具体而言,二阶行列式的计算公式为:
|a b|=ad-bc
这个公式是二阶行列式的一般规律,适用于任意的二阶行列式。
接下来,我们来探讨三阶行列式。
三阶行列式由三行三列组成,可以表示为:
同样,a、b、c、d、e、f、g、h、i分别是三阶行列式的元素。
三阶行列式的计算稍微复杂一些,可以通过按行展开或按列展开的方式进行计算。
具体而言,三阶行列式的计算公式为:
|a b c|=aei+bfg+cdh-ceg-bdi-afh
这个公式是三阶行列式的一般规律,同样适用于任意的三阶行列式。
总的来说,二阶和三阶行列式都有其特定的计算规律。
在实际应用中,我们可以根据这些规律来求解更高阶的行列式,从而解决一些线性方程组和矩阵运算的问题。
通过本文的讲解,相信读者对于二阶和三阶行列式的一般规律有了更好的理解。
行列式在数学和工程领域中有着广泛的应用,希望读者能够进一步深入学习和应用行列式的相关知识,为自己的学业和研究工作增添一份力量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a11 a12 a13 D a21 a22 a23 a31 a32 a33 a11 a12 b1 D3 a21 a22 b2 . a31 a32 b3
b1 D1 b2 b3
a12 a13 a22 a23 , a32 a33 a13 a23 , a33
a11 b1 D2 a21 b2 a31 b3
例4
解线性方程组 x1 2 x2 x3 2, 2 x1 x2 3 x3 1, x x x 0. 1 2 3
解
由于方程组的系数行列式
1 D 2 1
2 1 1
3 1 1 1 2 3 1 1
由方程组的四个系数确定.
(3)
定义
由四个数排成二行二列(横排称行、竖排
称列)的数表
a11 a12 a21 a22 ( 4)
表达式 a11a22 a12a21称为数表( 4)所确定的二阶 a11 a12 行列式,并记作 a21 a22
即
( 5)
a11 a12 D a11a22 a12a21 . a21 a22
若记
或
b1 b2 b 1
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 b1 D1 b2 b3 b1 D1 b2 b3 a12 a13 a22 a23 , a32 a33 a12 a13 a22的三阶行列式.
a11 a12 a13 D a21 a22 a23 .列标 a31 a32 a33 行标 三阶行列式的计算 a11 a12 a13 a11 a12 (1)沙路法 D a21 a22 a23 a21 a22 a31 a32 a33 a31 a32
D a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31 .
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
得
a11 b1 D2 a21 b2 a31 b3
a13 a23 , a33 a11 a12 a13 D a21 a22 a23 a31 a32 a33
3 x1 2 x2 12, 2 x1 x2 1.
解
D
3 2 2 1
3 ( 4) 7 0,
D1
12 2 1 1
14, D2
3 12 2 1
21,
D1 14 D2 21 x1 3. 2, x 2 D 7 D 7
1
1 2 1 1 1 1 2 2 1 1 3 1 5 0,
同理可得
2 2 D1 1 0 1 D3 2 1 1 1 1 1
1
1
2 1 0
1 3 10, 1
3 5, D2 2 1 1 1 5, 0
二、三阶行列式
定义
设有9个数排成3行3列的数表 a11 a12 a21 a22 a13 a23 a33 ( 5)
记 a11
a31 a32
a21 a31
a12 a13 a22 a23 a11a22a33 a12a23a31 a13a21a32 (6) a a a a a a a a a 11 23 32 12 21 33 13 22 31, a32 a33
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
4 6 32 4 8 24 14.
1 1
例3 解
1 x 0. x2
求解方程 2 3 4 9
方程左端
D 3 x 2 4 x 18 9 x 2 x 2 12
x 2 5 x 6,
由 x 5x 6 0 解得
2
x 2 或 x 3.
2. 三阶行列式包括3!项,每一项都是位于不同行, 不同列的三个元素的乘积,其中三项为正,三项为 负. 利用三阶行列式求解三元线性方程组 a11 x1 a12 x2 a13 x3 b1 , 如果三元线性方程组 a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
思考题
求一个二次多项式 f x , 使
f 1 0, f 2 3, f 3 28.
思考题解答
解 设所求的二次多项式为
f x ax2 bx c,
由题意得
f 1 a b c 0, f 3 9a 3b c 28, f 2 4a 2b c 3,
二阶行列式的计算
主对角线 副对角线
对角线法则
a11a22 a12a21 .
a11 a12
a12
a22
a11 x1 a12 x2 b1 , 对于二元线性方程组 a21 x1 a22 x2 b2 .
若记 系数行列式
a11 a12 D , a21 a22
学习交流:89903800
学习交流:89903800
则二元线性方程组的解为
b1
a12
a11
b1
D1 b2 a22 x1 , D a11 a12 a21 a22
注意
D2 a21 b2 x2 . D a11 a12 a21 a22
分母都为原方程组的系数行列式.
例1 求解二元线性方程组
两式相减消去 x2,得
(a11a22 a12a21)x1 b1a22 a12b2 ;
类似地,消去 x1,得 (a11a22 a12a21)x2 a11b2 b1a21 ,
当 a11a22 a12a21 0 时, 方程组的解为
b1a22 a12b2 a11b2 b1a21 x1 , x2 . a11a22 a12a21 a11a22 a12a21
记
即
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 a11 a12 a13 D a21 a22 a23 a31 a32 a33
得一个关于未知数 a , b, c 的线性方程组, 又 D 20 0, D1 40, D2 60, D3 20.
得 a D1 D 2, b D2 D 3, c D3 D 1
故所求多项式为
2 f x 2 x 3 x 1.
得
a11 b1 D2 a21 b2 a31 b3
a13 a23 , a33
a11 a12 b1 a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , D3 a21 a22 b2 . a x a x a x b ; a31 a32 b3 31 1 32 2 33 3 3
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
a11 a12 D , a21 a22
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
b1 D1 b2 a12 , a22
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
则三元线性方程组的解为:
D1 x1 , D
D2 x2 , D D3 x3 . D
1
2 -4
例2 计算三阶行列式 D - 2 2 解 按对角线法则,有
1 -3 4 -2
D 1 2 ( 2 ) 2 1 ( 3 ) ( 4 ) ( 2 ) 4
1 1 4 2 ( 2 ) ( 2 ) ( 4 ) 2 ( 3 )
a11 a12 D , a21 a22
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
b1 D1 b2 a12 , a22
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
a11 b1 D2 . a21 b2
a11 a12 a13 的系数行列式 D a21 a22 a23 0, a31 a32 a33
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 b1 D1 b2 b3 a11 D a21 a31 a12 a22 a32 a12 a22 a32 a13 a23 , a33 a13 a23 a33
学习交流:89903800
一、二阶行列式的引入
用消元法解二元线性方程组
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
1 2
1 a22 : 2 a12 :
a11a22 x1 a12a22 x2 b1a22 , a12a21 x1 a12a22 x2 b2a12 ,