知识点1一元二次方程的基本概念

合集下载

1+x的知识点

1+x的知识点

1+x的知识点知识点1:一元二次方程的基本概念1、一元二次方程3x2+5x-2=0的常数项是-2。

2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。

3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。

4、把方程3x(x-1)-2=-4x化成通常式为3x2-x-2=0。

知识点2:直角坐标系与点的位置1、直角坐标系则中,点a(3,0)在y轴上。

2、直角坐标系中,x轴上的任意点的横坐标为0。

3、直角坐标系则中,点a(1,1)在第一象限。

4、直角坐标系中,点a(-2,3)在第四象限。

5、直角坐标系则中,点a(-2,1)在第二象限。

知识点3:已知自变量的值求函数值1、当x=2时,函数y=的值1。

2、当x=3时,函数y=的值为1。

3、当x=-1时,函数y=的值1。

知识点4:基本函数的概念及性质1、函数y=-8x就是一次函数。

2、函数y=4x+1是正比例函数。

3、函数就是反比例函数。

4、抛物线y=-3(x-2)2-5的开口向下。

5、抛物线y=4(x-3)2-10的对称轴就是x=3。

6、抛物线的顶点坐标是(1,2)。

7、反比例函数的图象在第一、三象限。

知识点5:数据的平均数中位数与众数1、数据13,10,12,8,7的平均数就是10。

2、数据3,4,2,4,4的众数是4。

3、数据1,2,3,4,5的中位数就是3。

知识点6:特殊三角函数值1、cos30°=。

2、sin°+cos°=1。

3、2sin30°+tan45°=2。

4、tan45°=1。

5、cos60°+sin30°=1。

知识点7:圆的基本性质1、半圆或直径面元的`圆周角就是直角。

2、任意一个三角形一定有一个外接圆。

3、在同一平面内,至定点的距离等同于定长的点的轨迹,就是以定点为圆心,定长为半径的圆。

4、在同圆或等圆中,相等的圆心角所对的弧相等。

一元二次方程知识点总结

一元二次方程知识点总结

一元二次方程知识点总结一、 一元二次方程的定义1. 一元二次方程的定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 二、 一元二次方程的解1. 方程解的含义解题方法:将方程的根带入方程求出参数.三、 解一元二次方程(直接开平方法、配方法、公式法、因式分解法)1. 直接开平方法:适用于)0()()0(22≥=+≥=b b a x a a x 或形式的方程. 2. 配方法:2222244)2(0)0(0a ac b a b x b c x a b x a c bx ax -=+⇒=++⇒≠=++. 注意:用配方法解方程时必须注意在方程两边同时加上的是一次项系数一半的平方.3. 公式法:a ac b b x ac b c bx ax 24040222-±-=≥-=++时当. 4. 因式分解法:将一元二次方程化简成一般式后,把等号左边的多项式进行因式分解,再根据“如果,0=ab ,那么00==b a 或”进行求解.注意:利用因式分解法解方程时,将方程的一边分解因式而方程的另一边必须化为零;四、 判别式与一元二次方程解的个数的关系1. 一元二次方程解与判别式的关系:一元二次方程)0(02≠=++a c bx ax 根的情况可由根的判别式△=ac b 42-的值来决定,它的值与一元二次方程的根的关系是:①042>-ac b ⇔方程有两个不等的实数根.②042=-ac b ⇔方程有两个相等的实数根.③042<-ac b ⇔方程没有实数根.五、 一元二次方程的应用题(增长率、面积、握手、传染)1. 增长率问题:设a 为原量,x 为平均增长率,n 为增长次数,b 为增长后的量,则nx a b )1(+=.2. 面积问题:先通过平移变换,再根据面积公式列出方程.3. 握手问题:n 个人见面,任意两人都要握手一次,一共握手2)1(-n n 次. 4. 传染问题:一人感染,一人传染x 人,第一轮:1+x ;第二轮:1+x +x (1+x ).六、 根与系数的关系1. 根与系数的关系:若一元二次方程)0(02≠=++a c bx ax 的两根分别是21,x x 则a cx x a b x x ==+2121-,.注意:使用根与系数的关系时需要先检验△。

一元二次方程讲义全

一元二次方程讲义全

一元二次方程讲义全一元二次方程讲义考点一、概念1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。

2)一般表达式:ax^2+bx+c=(a≠0)注:当b=0时可化为ax^2+c=0,这是一元二次方程的配方式。

3)四个特点:只含有一个未知数;且未知数次数最高次数是2;是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。

如果能整理为ax^2+bx+c=(a≠0)的形式,则这个方程就为一元二次方程。

4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)。

4)难点:如何理解“未知数的最高次数是2”:①该项系数不为0;②未知数指数为2;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x的一元二次方程的是()A。

(x+1)^3=2(x+1)B。

2√x+1-11=0C。

ax^2+bx+c=0D。

x^2+2x=x^2+1变式:当k≠0时,关于x的方程kx^2+2x=x^2+3是一元二次方程。

例2、方程(m+2)x^m+3mx+1=0是关于x的一元二次方程,则m的值为。

考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;典型例题:例1、已知2y^2+y-3的值为2,则4y^2+2y+1的值为。

例2、关于x的一元二次方程(a-2)x^2+x+(a^2-4)=0的一个根为-2,则a的值为。

说明:任何时候,都不能忽略对一元二次方程二次项系数的限制。

例3、已知关于x的一元二次方程ax^2+bx+c=0(a≠0)的系数满足a+c=b,则此方程必有一根为-1.说明:本题的关键点在于对“代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。

例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为。

完整版)一元二次方程(知识点考点题型总结)

完整版)一元二次方程(知识点考点题型总结)

完整版)一元二次方程(知识点考点题型总结)一元二次方程专题复考点一、概念一元二次方程是只含有一个未知数,且未知数的最高次数是2的整式方程。

一般表达式为ax^2+bx+c=0,其中a不等于0.关于“未知数的最高次数是2”,需要注意以下三点:一是该项系数不为0;二是未知数指数为2;三是若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x的一元二次方程的是():A。

2x^2+11x-2=0B。

ax^2+bx+c=DC。

2x=x+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。

例2、方程m+2xm+1=0是关于x的一元一次方程,求m 的值,并写出关于x的一元一次方程。

针对练:1.方程8x^2+3mx+1=0是关于x的一元二次方程,则m的值为多少?2.若方程m-2x=0是关于x的一元一次方程,求m的值,并写出关于x的一元一次方程。

3.若方程(m-1)x+m·x=1是关于x的一元二次方程,则m 的取值范围是多少?4.若方程nx+x-2x=0是一元二次方程,则下列不可能的是():A。

m=n=2B。

m=2.n=1C。

n=2.m=1D。

m=n=1考点二、方程的解方程的解是指使方程两边相等的未知数的值。

根的概念可用于求代数式的值。

典型例题:例1、已知2y+y^2-3的值为2,则4y+2y^2+1的值为多少?例2、关于x的一元二次方程(a-2)x^2+x+a-4=0的一个根为2,求a的值。

例3、已知关于x的一元二次方程ax^2+bx+c=0的系数满足a+c=b,则此方程必有一根为多少?例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为多少?针对练:1.已知方程x+kx-10=0的一根是2,则k为多少?另一根是多少?2.已知关于x的方程x^2+kx-2=0的一个解与方程(x+1)/(x-1)=3的解相同,求k的值,并求方程的另一个解。

初三数学一元二次方程知识点

初三数学一元二次方程知识点

初三数学一元二次方程知识点一元二次方程知识点概述一、一元二次方程的定义一元二次方程是指含有一个未知数,且未知数的最高次数为2的整式方程。

一般形式为:\[ ax^2 + bx + c = 0 \]其中,\( a \)、\( b \) 和 \( c \) 是已知的实数,且 \( a \neq 0 \)。

二、解的性质1. 判别式:\[ \Delta = b^2 - 4ac \]- 当 \( \Delta > 0 \) 时,方程有两个不相等的实数根。

- 当 \( \Delta = 0 \) 时,方程有两个相等的实数根(重根)。

- 当 \( \Delta < 0 \) 时,方程没有实数根,有一对共轭复根。

2. 根与系数的关系- 和的关系:\( x_1 + x_2 = -\frac{b}{a} \)- 积的关系:\( x_1 \cdot x_2 = \frac{c}{a} \)三、解法1. 配方法- 将方程 \( ax^2 + bx + c = 0 \) 通过配方,转化为 \( (x + h)^2 = k \) 的形式,进而求得方程的根。

2. 公式法- 使用一元二次方程的求根公式:\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \]其中,\( \Delta = b^2 - 4ac \)。

3. 因式分解法- 当方程能够分解为两个一次因式的乘积,即 \( (mx + n)(px + q) = 0 \),可以通过设置 \( mx + n = 0 \) 和 \( px + q = 0 \) 来求解。

4. 完全平方法- 类似于配方法,但适用于更广泛的情况,通过将方程左边变为完全平方的形式求解。

四、实际应用1. 面积问题- 利用一元二次方程解决实际问题中的面积最值问题。

2. 速度与加速度问题- 在物理学中,一元二次方程可以用来描述物体在一定加速度下的速度变化。

3. 几何图形的对称性- 通过一元二次方程分析抛物线的对称性等几何特性。

一元二次方程知识点归纳和重难点精析

一元二次方程知识点归纳和重难点精析

一元二次方程知识点归纳和重难点精析一、知识点归纳1.一元二次方程的基本概念一元二次方程是指只含有一个未知数,且未知数的最高次数为2的整式方程。

其一般形式为ax²+bx+c=0(a≠0)。

2.一元二次方程的解法公式一元二次方程的解法公式为x=[-b ±sqrt(b²-4ac)] / (2a)。

其中,sqrt表示求平方根,x为未知数,a、b、c为方程的系数。

二、重难点精析九年级数学一元二次方程的重难点1.高次项:一元二次方程中,二次项的系数a不能为0.且最高次数为2.这是在解一元二次方程时需要特别注意的难点。

2.整体化简:在求解一元二次方程时,需要将方程进行整体化简,从而得到未知数的值。

这需要学生具备一定的化简和运算能力。

针对重难点的解决方法及相关思考题1.高次项注意事项:在一元二次方程中,要确保二次项的系数不为0.且最高次数不超过2.如有其他高次项,可将其合并或转化为二次项。

2.整体化简技巧:为了更好地求解一元二次方程,学生需要掌握整体化简的方法。

可以通过移项、合并同类项等方式,将方程化简为更易于求解的形式。

思考题:求解一元二次方程x²-6x+9=0时,有哪些方法可以解题?哪种方法更适合处理此类方程?三、扩展知识一元二次方程的历史背景及应用领域一元二次方程作为九年级数学的重要知识点,在实际生活和后续学习中有着广泛的应用。

例如,在解决实际问题时,一元二次方程可用于解决诸如最大化、最小化、平均值等优化问题。

此外,在物理、化学、生物等科学领域中,一元二次方程也常常用于描述现象和解决问题。

相关知识点补充在求解一元二次方程的过程中,可能会涉及到其他数学知识点,如三角函数、平移和缩放等。

这些知识点对于理解一元二次方程的解法和实际应用都有一定的帮助。

例如,三角函数可以用于求解一元二次方程的近似解;平移和缩放可以用于将复杂的一元二次方程转化为简单的形式,从而更容易求解。

因此,学生在学习的过程中需要注意知识点的联系与运用。

一元二次方程知识点整理笔记

一元二次方程知识点整理笔记

一元二次方程是初中数学的重要知识点之一,以下是一些关于一元二次方程的知识点整理笔记:一、一元二次方程的定义一元二次方程是一个整式方程,只含有一个未知数,且未知数的最高次数为2。

一元二次方程的一般形式为:ax²+bx+c=0(a≠0),其中a、b、c为常数。

二、一元二次方程的解一元二次方程的解也称为根,是指使方程成立的未知数的值。

一元二次方程的解可以通过公式法、配方法、因式分解法等方法求解。

一元二次方程的解的个数取决于判别式b²-4ac的值。

当b²-4ac>0时,方程有两个不相等的实根;当b²-4ac=0时,方程有两个相等的实根;当b²-4ac<0时,方程没有实根。

三、一元二次方程的图像一元二次函数的图像是一条抛物线。

抛物线的开口方向取决于二次项系数a的正负。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

抛物线的顶点坐标可以通过配方法或公式法求解。

四、一元二次方程的应用一元二次方程在实际问题中有广泛的应用,如求解物体运动的最大高度、最大距离等问题。

在解决实际问题时,需要根据问题的实际意义来设定未知数和建立方程。

在解决实际问题时,需要注意方程的解是否符合问题的实际意义。

五、一元二次方程的解法直接开平方法:对于形如x²=a(a≥0)的方程,可以直接开平方求解。

因式分解法:对于可以因式分解的一元二次方程,可以通过因式分解法求解。

公式法:对于一般形式的一元二次方程,可以通过公式法求解。

公式为:x=[-b±√(b²-4ac)]/2a。

配方法:对于可以配成完全平方的一元二次方程,可以通过配方法求解。

具体步骤为:将常数项移到等号的右边;将含x的项的系数化为1;等式两边同时加上一次项系数一半的平方;用直接开平方法求解。

一元二次方程知识点总结

一元二次方程知识点总结

21章一元二次方程知识点一、一元二次方程1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程。

注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于02、一元二次方程的一般形式:,它的特征是:等式左边是一个关于未知数x的二次三项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。

(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

(3)形如不一定是一元二次方程,当且仅当时是一元二次方程.二、一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当时,所以是方程的解。

一元二次方程的解也叫一元二次方程的根.一元二次方程有两个根(相等或不等)三、一元二次方程的解法1、直接开平方法:直接开平方法理论依据:平方根的定义。

利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。

三种类型:(1)的解是;(2)的解是;(3)的解是.2、配方法:配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。

(一)用配方法解二次项系数为1的一元二次方程用配方法解二次项系数为1的一元二次方程的步骤:(1)把一元二次方程化成一般形式(2)在方程的左边加上一次项系数绝对值的一半的平方,再减去这个数;(3)把原方程变为的形式。

(4)若,用直接开平方法求出的值,若n﹤0,原方程无解。

(二)用配方法解二次项系数不是1的一元二次方程当一元二次方程的形式为时,用配方法解一元二次方程的步骤:(1)把一元二次方程化成一般形式(2) 先把常数项移到等号右边,再把二次项的系数化为1:方程的左、右两边同时除以二项的系数;(3)在方程的左、右两边加上一次项系数绝对值的一半的平方把原方程化为的形式;(4)若,用直接开平方法或因式分解法解变形后的方程.3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

第1章《一元二次方程》知识讲练(学生版)

第1章《一元二次方程》知识讲练(学生版)

2023-2024学年苏科版数学九年级上册章节知识讲练知识点1:一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只,并且未知数的的,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使叫做一元二次方程的解,也叫做细节剖析:判断一个方程是否为一元二次方程时,首先观察其是否是,否则一定一元二次方程;其次再将整式方程整理化简使方程的,看是否具备另两个条件:①一个;②未知数的最高次数为对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.知识点2:一元二次方程的解法1.基本思想一元二次方程 2.基本解法细节剖析:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用知识点3:一元二次方程根的判别式及根与系数的关系一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即(1)当△>0时,一元二次方程有 的实数根;(2)当△=0时,一元二次方程有 的实数根;(3)当△<0时,一元二次方程 实数根.如果一元二次方程的两个实数根是, 那么,. 注意它的使用条件为a ≠0, Δ≥0.细节剖析:1.一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题.−−−→降次)0(02≠=++a c bx ax ac b 42-)0(02≠=++a c bx ax ∆ac b 42-=∆)0(02≠=++a c bx ax 21x x ,a b x x -=+21ac x x =212. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.知识点4:列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是审题;二是把握问题中的三是的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清等);设 (设,有时会用 );列 (根据题目中的, );解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.细节剖析:列方程解应用题就是先把实际问题抽象为,然后由数学问题的解决而获得对的解决.一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•江都区期末)如图,在长为28米、宽为10米的矩形空地上修建如图所示的道路(图中的阴影部分)余下部分铺设草坪,要使得草坪的面积为243平方米,则可列方程为()A.28×10﹣28x﹣10x=243 B.(28﹣x)(10﹣x)+x2=243C.(28﹣x)(10﹣x)=243 D.2(28﹣x+10﹣x)=2432.(2分)(2023•锡山区校级四模)若关于x的方程x2﹣x﹣m=0有实数根,则实数m的取值范围是()A.B.C.D.3.(2分)(2023•雨花台区校级模拟)方程(x+1)(x﹣2)+1=0的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根4.(2分)(2023•无锡)2020年﹣2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的平均增长率为x,下列方程正确的是()A.5.76(1+x)2B.5.76(1+x2C.5.76(1+2x x25.(2分)(2023•海门市二模)《九章算术》是我国古代数学名著,记载着“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”意思是:一根笔直生长的竹子,高一丈(一丈=10尺),因虫害有病,一阵风吹来将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,求折断处离地面的高度是多少尺?设折断处离地面的高度为x尺,则可列方程为()A.x2+32=(10﹣x)2B.x2+32=102C.x2+(10﹣x)2=32D.(10﹣x)2+32=x26.(2分)(2023•海门市二模)若实数a,b,c满足a﹣b2﹣2=0,2a2﹣4b2﹣c=0,则c的最小值是()A.6 B.7 C.8 D.97.(2分)(2023•秦淮区二模)下列一元二次方程(a为常数,且a>0),有两个异号的实数根的是()A.(x﹣1)2+a=0 B.(x﹣1)(x﹣a)=0C.a(x+1)2=0 D.x2﹣x﹣a=08.(2分)(2023•武进区校级模拟)若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2 B.2 C.0 D.﹣2或29.(2分)(2022秋•江阴市期末)已知关于x的一元二次方程x2+10x+2a+6=0,其中一根是另一根的4倍,则a的值为()A.或5 B.或﹣5 C.D.510.(2分)(2023春•扬州月考)已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5 B.﹣1,3 C.﹣3,1 D.﹣1,5二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•高邮市模拟)设x1、x2是方程x2+mx﹣2=0的两个根,且x1+x2=2x1x2,则m=.12.(2分)(2023•淮安模拟)已知关于x的方程x2﹣(2m﹣1)x+m2=0的两实数根为x1,x2,若(x1+1)(x2+1)=3,则m的值为.13.(2分)(2023•邗江区二模)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云阔不及长一十二步,问长及阔各几步”.意思是:一块矩形田地的面积为864平方步,只知道它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为.14.(2分)(2023•海陵区校级二模)对于实数a,b,定义运算“*”:,例如4*2,因为4>2,所以4*2=42﹣4×2=8.若a,b是一元二次方程x2﹣2x﹣3=0的两个根,则a*b =.15.(2分)(2022秋•靖江市期末)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,且x1+x2+x1x2=1,则m的值为.16.(2分)(2023•建邺区二模)设x1,x2是关于x的方程x2+6x+m=0的两个根,且x1=2x2,则m=.17.(2分)(2022秋•宿城区期末)如果一元二次方程的两根相差1,那么该方程成为“差1方程”.例如x2+x =0是“差1方程”.若关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“差1方程”设t=10a﹣b2,t的最大值为.18.(2分)(2023•靖江市模拟)已知x、y为实数,且满足x2﹣xy+y2=2,记W=x2+xy+y2的最大值为M,最小值为m,则M+m=.19.(2分)(2020秋•常州期中)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有(填序号)①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程:则4m2+5mn+n2=0;③若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程以ax2+bx+c=0是倍根方程,则必有2b2=9ac.20.(2分)(2019秋•滨湖区期末)已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解.三.解答题(共8小题,满分60分)21.(6分)(2023春•仪征市期末)解方程:(1);(2)x2+3x﹣2=0.(用配方法)22.(6分)(2023•姜堰区二模)如图,用总长48m的篱笆依墙(墙足够长)围成如图所示的①②③三块矩形区域,且三块区域面积相等.(1)的值为;的值为;(2)当矩形ABCD的面积为108m2时,求BC的长.23.(8分)(2023•姜堰区一模)某草莓采摘园收费信息如下表:成人票儿童票带出草莓价格不超过10人超过10人20元/人30元/斤30元/人每增加1人,人均票价下降1元,但不低于儿童票价.(1)某社团共32人去该采摘园进行综合实践活动,购买了10张儿童票,其余均为成人票,总费用不超过1240元,求本次活动他们最多共带出草莓多少斤?(2)某公司员工(均为成人)在该草莓采摘园组织团建活动,共支付票价391元,求这次参加团建的共多少人?24.(8分)(2023春•仪征市期末)端午节前夕,某超市从厂家分两次购进蛋黄粽子、红豆粽子,两次进货时,两种粽子的进价不变.第一次购进蛋黄粽子60袋和红豆粽子90袋,总费用为4800元;第二次购进蛋黄粽子40袋和红豆粽子80袋,总费用为3600元.(1)求蛋黄粽子、红豆粽子每袋的进价各是多少元?(2)当蛋黄粽子销售价为每袋70元时,每天可售出20袋,为了促销,该超市决定对蛋黄粽子进行降价销售,经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当蛋黄粽子每袋的销售价为多少元时,每天售出蛋黄粽子所获得的利润为220元?25.(8分)(2023•广陵区校级一模)已知关于x的方程x2﹣(k+1)x+2k﹣2=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的三边a,b,c中a=3,另两边b、c恰好是这个方程的两个根,求k值.26.(8分)(2023•海陵区一模)2022年北京冬奥会吉祥物“冰墩墩”意喻敦厚、健康、活泼、可爱,象征着冬奥会运动员强壮的身体、坚韧的意志和鼓舞人心的奥林匹克精神.随着北京冬奥会开幕日的临近,某特许零售店“冰墩墩”的销售日益火爆.据调查“冰墩墩”每盒进价8元,售价12元.(1)商店老板计划首月销售330盒,经过首月试销售,老板发现单盒“冰墩墩”售价每增长1元,月销量就将减少20盒.若老板希望“冰墩墩”月销量不低于270盒,则每盒售价最高为多少元?(2)实际销售时,售价比(1)中的最高售价减少了2a元,月销量比(1)中最低销量270盒增加了60a 盒,于是月销售利润达到了1650元,求a的值.27.(8分)(2023•滨海县模拟)某服装销售商用48000元购进了一批时尚新款服装,通过网络平台进行销售,由于行情较好,第二次又用100000元购进了同种服装,第二次购进数量是第一次购进数量的2倍,每件的进价多了10元.(1)该销售商第一次购进了这种服装多少件,每件进价多少元?(2)该销售商卖出第一批服装后,统计发现:若按每件300元销售,每天平均能卖出80件,销售价每降低10元,则多卖出20件.依此行情,卖第二批服装时,让利促销,并使一天的利润恰好为3600元,销售价应为多少?28.(8分)(2022秋•灌南县校级月考)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?。

一元二次方程知识归纳总结

一元二次方程知识归纳总结

一元二次方程知识归纳总结一元二次方程是高中数学中的重要内容,也是解决实际问题的重要工具。

它的一般形式为:ax² + bx+ c= 0,其中a、b、c是已知实数,a≠ 0。

在本文中,我们将对一元二次方程的基本概念、性质以及解法进行归纳总结。

一、一元二次方程的基本概念一元二次方程是指只含有一个未知数的二次方程。

其中,a、b、c分别表示二次项系数、一次项系数和常数项。

二、一元二次方程的性质1. 解的存在性:一元二次方程必有两个解,或者一个解(二重解),或者无解。

2. 判别式:判别式Δ = b² - 4ac对于一元二次方程起到重要作用,它可以判断方程的解的情况。

- 当Δ > 0时,方程有两个不相等的实数解。

- 当Δ = 0时,方程有两个相等的实数解。

- 当Δ < 0时,方程无实数解。

3. 顶点坐标:一元二次方程的图像是一个抛物线,其中顶点坐标可以通过公式h = -b/2a 和 k = -Δ/4a求得。

三、一元二次方程的解法1. 因式分解法:对于可以因式分解的一元二次方程,我们可以通过将方程的左、右两边同时因式分解,然后利用“零乘法”将方程等号两边置零,得到方程的解。

2. 公式法:对于一般形式的一元二次方程ax² + bx + c = 0,我们可以利用求根公式x = (-b ± √Δ) / 2a求得方程的解。

- 当Δ > 0时,方程有两个不相等的实数解。

- 当Δ = 0时,方程有两个相等的实数解。

- 当Δ < 0时,方程无实数解。

3. 完全平方式:对于特殊的一元二次方程,可以通过将未知数的平方项转化为完全平方式,然后利用公式求解。

4. 图像法:通过观察和分析一元二次方程的抛物线图像,可以大致推测出方程的解的情况。

四、一元二次方程的应用一元二次方程不仅仅是一种数学形式,还具有广泛的应用。

它可以用来解决各种实际问题,例如物体的运动轨迹、汽车的行驶距离等。

一元二次方程的基本概念与性质

一元二次方程的基本概念与性质

一元二次方程的基本概念与性质一元二次方程是数学中的重要概念,其形式为ax² + bx + c = 0,其中a、b、c为已知常数,且a ≠ 0。

本文将从基本概念和性质两个方面来探讨一元二次方程的相关内容。

一、基本概念一元二次方程是指只有一个未知数的二次方程,通常表示为:ax² + bx + c = 0。

其中,a ≠ 0,a、b、c为已知常数,且a、b均不为零。

在解一元二次方程之前,需要了解以下几个基本概念:1. 方程的次数:一元二次方程的次数为2,即方程中未知数的最高次数为2。

2. 系数:方程中的a、b、c分别称为二次项系数、一次项系数和常数项。

3. 解:解是指能够使方程成立的未知数值,也就是使方程的左边等于右边的值。

二、性质1. 解的个数:一元二次方程的解的个数与方程的判别式有关。

判别式Δ = b² - 4ac的值决定了解的情况。

a) 当Δ > 0时,方程有两个不相等的实数解;b) 当Δ = 0时,方程有两个相等的实数解,也称为重根;c) 当Δ < 0时,方程没有实数解,但可以有共轭复数解。

2. 解的表示形式:解可以用根的形式或者用因式分解的形式表示。

a) 用根的形式表示解时,通常表示为x₁、x₂。

例如方程ax² + bx + c = 0的解可以表示为x₁ = (-b + √Δ) / (2a)和x₂ = (-b - √Δ) / (2a)。

b) 用因式分解的形式表示解时,通常表示为(x - α)(x - β) = 0。

例如方程x² - (α + β)x + αβ = 0的解即为α和β。

3. 特殊情况:a) 当a = 0时,方程变为一元一次方程,解是唯一确定的。

b) 当c = 0时,方程成为一元二次齐次方程,解中必定包含0。

4. 图像表示:一元二次方程的图像是一个抛物线,可以通过方程的a值的正负来判断抛物线开口的方向。

a) 当a > 0时,抛物线开口向上;b) 当a < 0时,抛物线开口向下。

一元二次方程的基本概念和解法

一元二次方程的基本概念和解法

一元二次方程的基本概念和解法一元二次方程是代数学中的重要概念,由一次项、二次项和常数项构成,其一般形式为 ax² + bx + c = 0,其中a、b、c为实数且a ≠ 0。

本文将介绍一元二次方程的基本概念及其解法。

一、基本概念一元二次方程是一种含有未知数的方程,其最高次项为二次项。

方程中的未知数通常用x表示,而系数a、b、c则为已知的实数。

二、求解一元二次方程的步骤要求解一元二次方程,首先需要将方程化为标准形式,即将方程中的项按幂次降序排列,然后按照下列步骤进行求解:1. 将一元二次方程化为标准形式:ax² + bx + c = 0;2. 计算判别式Δ = b² - 4ac;3. 若Δ > 0,方程有两个不相等的实数解,可以通过求根公式 x = (-b ± √Δ) / (2a)来求解;4. 若Δ = 0,方程有且仅有一个实数解,解为 x = -b / (2a);5. 若Δ < 0,方程无实数解。

三、示例演示以一元二次方程 x² - 5x + 6 = 0 为例,演示求解过程:1. 将方程化为标准形式:x² - 5x + 6 = 0;2. 计算判别式Δ = (-5)² - 4(1)(6) = 25 - 24 = 1;3. 由于Δ > 0,方程有两个不相等的实数解,应用求根公式计算:x₁ = (-(-5) + √1) / (2(1)) = (5 + 1) / 2 = 3;x₂ = (-(-5) - √1) / (2(1)) = (5 - 1) / 2 = 2;因此,方程的解为 x₁ = 3,x₂ = 2。

四、一元二次方程的图像一元二次方程的图像是一个抛物线,其开口方向取决于二次项系数a的正负。

1. 若a > 0,抛物线开口向上。

以方程 y = x² - 2x + 1 为例:判别式Δ = (-2)² - 4(1)(1) = 0,方程有且仅有一个实数解 x = 1;图像经过点(1, 0),开口向上。

一元二次方程的基本概念

一元二次方程的基本概念

一元二次方程的基本概念一元二次方程是数学中常见的一种方程类型,它的形式为ax^2 + bx + c = 0,其中a、b、c是已知实数系数,而x则是未知数。

在本文中,我们将详细介绍一元二次方程的基本概念,并探讨其性质和解的方法。

一、一元二次方程的性质1. 零点和根:一元二次方程的解又称为方程的根或者零点。

如果一个实数r满足方程ax^2 + bx + c = 0,那么我们就说r是方程的一个根。

一个一元二次方程可能有1个、2个或者0个实根。

2. 判别式:一元二次方程的判别式Δ = b^2 - 4ac,它的值可以用来判断方程的根的情况。

当Δ > 0时,方程有两个不相等的实根;当Δ =0时,方程有两个相等的实根;当Δ < 0时,方程没有实根。

3. 对称性:一元二次方程的图像是一个抛物线,具有对称性。

对于方程ax^2 + bx + c = 0,如果r是它的一个根,那么2r-b是它的另一个根。

二、一元二次方程的解法解一元二次方程的方法主要有以下两种:1. 因式分解法:如果一元二次方程可以因式分解为(ax + b)(cx + d) = 0的形式,其中a、b、c、d是已知实数系数,那么方程的解就是使得(ax + b)和(cx + d)其中之一等于0的根。

这种方法适用于方程可以被因式分解的情况下。

2. 二次公式法:对于一元二次方程ax^2 + bx + c = 0,它的解可以通过以下公式得到:x = (-b ± √Δ) / (2a)其中,±表示取正负号,Δ是方程的判别式。

根据Δ的值,我们可以得到方程的解的情况。

三、一元二次方程的应用一元二次方程在实际问题中有着广泛的应用,例如:1. 物理学中的自由落体问题可以建模为一元二次方程,其中时间t 为未知数,加速度a为已知常数。

解方程可以得到自由落体的时间和运动轨迹。

2. 经济学中的成本和利润问题也可以转化为一元二次方程,帮助分析决策和预测趋势。

一元二次方程知识点归纳

一元二次方程知识点归纳
①平均增长率(降低率)问题:公式:b=a(1±x)n,a表示基数,x表示平均增长率(降低率),n表示变化的次数,b表示变化n次后的量;
②销售问题;利润问题,利润=售价-成本;利润率=利润/成本×100%;
③比赛问题:
④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通过割补或平移形成规则图形,运用面积之间的关系列方程.
例:方程 是关于x的一元二次方程,则方程的根为-1.
2.一元二次方程的解法
(1)直接开平方法:形如(x+m)2=n(n≥0)的方程,可直接开平方求解.
(2 )因式分解法:可化为(ax+m)(bx+n)=0的方程,用因式分解法求解.
(3)公式法:一元二次方程ax2+bx+c=0的求根公式为x= (b2-4ac≥0).
一元二次方程知识点
一、知识清单梳理
知识点一:一元二次方程及其解法
关键点拨及对应举例
1.一元二次方程的相关概念
(1)定义:只含有一个未知数=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.
(2)解题策略:已知一元二次方程,求关于方程两根的代数式的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与系数的关系求解.
与一元二次方程两根相关代数式的常见变形:x12+x22=(x1+x2)2-2x1x2,
(x1+1)(x2+1)=x1x2+(x1+x2)+1,
等.
失分点警示
在运用根与系数关系解题时,注意前提条件时△=b2-4ac≥0.a≠0
3.根的判别式
(1)当Δ= 0时,原方程有两个不相等的实数根.

一元二次方程 知识点总结

一元二次方程 知识点总结

一元二次方程知识点总结一、一元二次方程的概念。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。

2. 判断方程是否为一元二次方程。

- 首先看方程是否为整式方程。

- 然后看是否只含有一个未知数,且未知数的最高次数为2,同时二次项系数不为0。

例如x^2+2x - 1 = 0是一元二次方程;而x^2+(1)/(x)=1不是一元二次方程,因为它是分式方程。

二、一元二次方程的解法。

1. 直接开平方法。

- 对于方程x^2=p(p≥0),解为x=±√(p)。

- 例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。

2. 配方法。

- 步骤:- 把方程ax^2+bx + c = 0(a≠0)的常数项移到等号右边,得到ax^2+bx=-c。

- 二次项系数化为1,即x^2+(b)/(a)x =-(c)/(a)。

- 在等式两边同时加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=((b)/(2a))^2-(c)/(a)。

- 左边写成完全平方式(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2},然后用直接开平方法求解。

- 例如解方程x^2+6x - 7 = 0,移项得x^2+6x = 7,配方得x^2+6x + 9 = 7+9,即(x + 3)^2=16,解得x = 1或x=-7。

3. 公式法。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。

- 步骤:- 确定a、b、c的值。

- 计算b^2-4ac的值,判断方程是否有实数根。

- 当b^2-4ac≥0时,代入求根公式求解。

一元二次方程的基本概念与常见求解方法

一元二次方程的基本概念与常见求解方法

一元二次方程的基本概念与常见求解方法知识点睛一元二次方程的定义只含有一个未知数,并且未知数的最高次数是 2,最高次数的项系数不为 0 的整式方程叫做一元二次方程.一元二次方程的一般形式2(0)0ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项.(1)要判断一个方程是否是一元二次方程,必须符合以下四个标准:一元二次方程是整式方程,即方程的两边都是关于未知数的整式.一元二次方程是一元方程,即方程中只含有一个未知数.一元二次方程是二次方程,也就是方程中未知数的最高次数是2.一元二次方程最高次数的项系数不为0.(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式2(0)0ax bx c a ++=≠. 要特别注意对于关于 x 的方程2(0)0ax bx c a ++=≠.当0a ≠时,方程是一元二次方程;当00a b =≠且时,方程是一元一次方程. (3)关于x 的一元二次方程2(0)0ax bx c a ++=≠的项与各项的系数.ax 2 为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.一元二次方程的解法(1)直接开平方法:适用于解形如 (ax +b )2 = ()00a c ≠, 的一元二次方程. (2)配方法:解形如2 )00(ax bx c a ++=≠的一元二次方程,运用配方法解一元二次方程的一般步骤是:① 二次项系数化为1.② 常数项右移.③ 配方 (两边同时加上一次项系数一半的平方).④ 化成 (x +m )2 = n 的形式.⑤ 若0n ≥,直接开平方得出方程的解。

(3)公式法:设一元二次方程为2 )00(ax bx c a ++=≠,其根的判别式为:2124b ac x x ∆=-,, 是方程的两根,则:1. ∆ > 0 ⇔ 方程 2)00(ax bx c a ++=≠有两个不相等的实数根 x = 2. ∆ = 0 ⇔ 方程 2 )00(ax bx c a ++=≠有两个相等的实数根 122b x x a==-; 3. ∆ < 0 ⇔ 方程2 )00(ax bx c a ++=≠ 没有实数根.运用公式法解一元二次方程的一般步骤是:① 把方程化为一般形式.② 确定 a 、b 、c 的值.③ 计算24b ac -的值.④ 若 240b ac -≥,则代入公式求方程的根.⑤ 若240b ac -<,则方程无实数根.(4)因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.因式分解法的一般步骤:① 将方程化为一元二次方程的一般形式;② 把方程的左边分解为两个一次因式的积;③ 令每一个因式分别为零,得到两个一元一次方程;④ 解出这两个一元一次方程得到原方程的解. 一元二次方程解法的灵活运用直接开平方法,公式法,配方法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.(1)直接开平方法:用于缺少一次项以及形如 ax 2 = b 或 (x +a )2 = b (0)b ≥ 或 (ax +b )2 =(cx +d )2 的方程,能利用平方根的意义得到方程的解.(2)配方法:配方法是解一元二次方程的基本方法,而公式是由配方法演绎得到的.把一元二次方程的一般形式 ax 2 +bx +c = 0(a 、b 、c 为常数,0a ≠) 转化为它的简单形式 Ax 2 = B ,这种转化方法就是配方,之后再用直接开平方法就可得到方程的解.(3)公式法:适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算 24b ac -的值.(4)因式分解法:适用于右边为 0(或可化为 0),而左边易分解为两个一次因式积的方程,缺常数项或含有字母系数的方程用因式分解法较为简便,它是一种最常用的方法.【例 1】(1) 若 x 2a +b -3x a-b +1 = 0 是关于 x 的一元二次方程,求 a 、b 的值.(2) 若 n (n ≠0) 是关于 x 的方程 x 2 +mx +2n = 0 的根,则 m +n 的值为 ( )A. 1B. 2C. -1D. -2(3) 已知 43x =,则2421x x x ++的值是 .(4) 当 111552n n x -⎛⎫=- ⎪⎝⎭时,(.n x = ( n 为自然数)【例 2】(1) 用直接开平方法解方程:2269(5) 2x x x -+=-. (2) 用配方法解方程:22310x x ++=.(3) 用分解因式法解方程:2()2136x x -=-. (4) 用公式法解方程:161432)2(2x x x x ⎛⎫++-=+ ⎪⎝⎭例 3】(1) 解关于 x 的方程: 21 213()()0m x m x m -+-+-=. (2) 解关于 x 的方程22656223200x xy y x y --++-=. 【例 4】(1)如果方程 22()2020x px q x qx p p q -+=-+=≠和 有公共根,则该公共根为 .(2)若方程2222100ax ax x ax a +-=--=和有公共根,求a 的值例 5】(1) 解方程:22132(10)|2|x x ---+=.(2) 解方程:221|4|x x +-=.练习2 高次方程和无理方程知识点睛1.特殊高次方程的解法:一般的高次方程没有统一的求解方法. 对于一些特殊的高次方程, 可通过降次, 转化为一元二次方程或一元一次方程求解,转化的方法有因式分解法(因式定理)、换元法、变换主元法等.2. 特殊分式方程的解法:求解分式方程总的原则是通过去分母或换元, 使其转化为整式方程, 然后再求解. 在这个过程中离不开分式的恒等变形, 如通分、约分及降低分子的次数等等, 这就有可能使方程产生增根(或遗根).3. 特殊无理方程的解法:解无理方程的基本思路是把根式转化为有理方程求解. 转化过程中常用的方法有: 乘方、配方、因式分解、等价变换、换元、增元、对偶、利用比例性质等. 如果变形过程是非等价变形(如方程两边平方), 可能产生增根, 因此应注意验根.精讲精练【例 6】(1) 解方程:43225122560x x x x --++=.(2)解关于 x 的方程 ()()322212 0x t x tx t t +--+-=.(3)解方程 321010x x ++++=【例 7】(1)解方程:(8x + 7)2 (4x + 3)(x + 1)= 29 ;(2)解方程: x x x x x x +-=------2221120102910451069. (3)解方程:222234112283912x x x x x x x x ++-+=+-+.【例 8】(1)解方程:()()222323322x x x x x =+-++--. (2)解方程:22252x x x ⎛⎫+= ⎪+⎝⎭. (3)方程()()3232232?47615180x x x x x x x x -+---++-+=全部实根是 .【例 9】(12=.(2)解方程 266 0x x --+=.【例 10】(1)已知 2x =,求.(2)无理方程 221518x x -=-的解是 。

一元二次方程知识结构

一元二次方程知识结构

一元二次方程知识结构第一部分:引言一元二次方程是数学中的重要概念之一,它在代数学和几何学中有着广泛的应用。

一元二次方程包含一个未知数的二次项、一次项和常数项,其一般形式为ax^2+bx+c=0,其中a、b、c为已知常数,x 为未知数。

解一元二次方程的过程涉及到求根、判别式等数学概念和方法。

第二部分:一元二次方程的基本概念1. 一元二次方程的定义:一元二次方程是一个未知数的二次项、一次项和常数项的代数等式。

2. 二次项、一次项和常数项:二次项是未知数的平方,一次项是未知数的一次幂,常数项是不含未知数的常数。

3. 一元二次方程的一般形式:ax^2+bx+c=0,其中a、b、c为已知常数,x为未知数。

4. 解一元二次方程的含义:解一元二次方程就是求出使方程成立的未知数的值,即方程的根。

第三部分:一元二次方程的求解方法1. 因式分解法:当一元二次方程可以被因式分解为两个一次因式的乘积时,可以通过这种方法求解方程。

2. 完全平方公式:当一元二次方程的二次项和一次项都是完全平方时,可以利用完全平方公式求解方程。

3. 直接使用求根公式:对于一元二次方程ax^2+bx+c=0,可以直接使用求根公式x=(-b±√(b^2-4ac))/(2a)求解方程。

4. 判别式法:通过计算一元二次方程的判别式Δ=b^2-4ac的值,可以判断方程有几个实根、重根还是无实根。

第四部分:一元二次方程的应用领域1. 几何学中的应用:一元二次方程可以描述平面图形的性质,如抛物线的形状、焦点、顶点等。

2. 物理学中的应用:一元二次方程可以描述运动的轨迹、抛射物的飞行距离等物理现象。

3. 经济学中的应用:一元二次方程可以用于描述成本函数、收益函数等经济模型。

4. 工程学中的应用:一元二次方程可以用于解决工程问题,如求解最佳设计方案、优化问题等。

第五部分:一元二次方程的拓展1. 复数解:当一元二次方程的判别式Δ=b^2-4ac小于0时,方程没有实根,但可以有复数根。

小学数学认识一元二次方程

小学数学认识一元二次方程

小学数学认识一元二次方程一元二次方程是小学数学中较为复杂的一个概念,需要对数学概念有一定的了解才能理解和解决。

一元二次方程包含一个未知数和其次方的方程,通常写作ax^2 + bx + c = 0,其中a、b、c为已知系数,a不等于0。

本文将介绍一元二次方程的基本概念、解法以及应用。

一、基本概念在学习一元二次方程之前,我们需要了解一些基本概念。

1.1 平方数:一个数的平方,例如1、4、9、16等。

1.2 二次方程:方程中含有未知数的平方项的方程,例如x^2 + 2x + 1 = 0就是一个二次方程。

1.3 一元二次方程:方程中只有一个未知数的平方项的方程,例如3x^2 - 2x + 1 = 0就是一个一元二次方程。

二、解法解一元二次方程通常有以下两种方法:因式分解法和求根公式法。

2.1 因式分解法:对于一些特殊的一元二次方程,可以通过因式分解的方法得到方程的解。

例如,对于方程x^2 - 4x + 3 = 0,我们可以将其分解为(x - 3)(x - 1) = 0,从而得到x的解为x = 3或x = 1。

2.2 求根公式法:对于一般的一元二次方程,我们可以使用求根公式来求解。

求根公式为x = (-b ± √(b^2 - 4ac)) / (2a)。

例如,对于方程2x^2 + 5x + 2 = 0,我们可以代入a = 2,b = 5,c = 2,然后计算得到x的解为x = -1/2或x = -2。

三、应用一元二次方程在现实生活中有着广泛的应用。

3.1 抛物线运动:抛出的物体在空中的运动轨迹可以用一元二次方程来表示。

例如,投掷一颗子弹的运动轨迹可以表示成y = -5x^2 + 10x + 3的形式,其中y为高度,x为时间。

3.2 建模和预测:一元二次方程可以用来对一些现实问题进行建模和预测。

例如,根据某商品的销售数据,可以建立销售量和价格之间的一元二次方程,从而预测不同价格下的销售量。

3.3 几何问题:一元二次方程也可以用来解决几何问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。

2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 21-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1.3.2sin30°+ tan45°= 2. 4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。

知识点8:直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径.知识点9:圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点.知识点10:正多边形基本性质1.正六边形的中心角为60°. 2.矩形是正多边形.3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形.知识点11:一元二次方程的解1.方程042=-x 的根为 .A .x=2B .x=-2C .x 1=2,x 2=-2D .x=4 2.方程x 2-1=0的两根为 .A .x=1B .x=-1C .x 1=1,x 2=-1D .x=2 3.方程(x-3)(x+4)=0的两根为 .A.x 1=-3,x 2=4B.x 1=-3,x 2=-4C.x 1=3,x 2=4D.x 1=3,x 2=-4 4.方程x(x-2)=0的两根为 .A .x 1=0,x 2=2B .x 1=1,x 2=2C .x 1=0,x 2=-2D .x 1=1,x 2=-2 5.方程x 2-9=0的两根为 .A .x=3B .x=-3C .x 1=3,x 2=-3D .x 1=+3,x 2=-3知识点12:方程解的情况及换元法1.一元二次方程02342=-+x x 的根的情况是 . A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根2.不解方程,判别方程3x 2-5x+3=0的根的情况是 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根3.不解方程,判别方程3x 2+4x+2=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根4.不解方程,判别方程4x 2+4x-1=0的根的情况是 .A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.不解方程,判别方程5x 2-7x+5=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根6.不解方程,判别方程5x 2+7x=-5的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根7.不解方程,判别方程x 2+4x+2=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根8. 不解方程,判断方程5y 2+1=25y 的根的情况是 A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根9. 用 换 元 法 解方 程 4)3(5322=---x x x x 时, 令 32-x x = y ,于是原方程变为 . A.y 2-5y+4=0 B.y 2-5y-4=0 C.y 2-4y-5=0 D.y 2+4y-5=010. 用换元法解方程4)3(5322=---xx x x 时,令23x x -= y ,于是原方程变为 . A.5y 2-4y+1=0 B.5y 2-4y-1=0 C.-5y 2-4y-1=0 D. -5y 2-4y-1=0 11. 用换元法解方程(1+x x )2-5(1+x x )+6=0时,设1+x x=y ,则原方程化为关于y 的方程是 . A.y 2+5y+6=0 B.y 2-5y+6=0 C.y 2+5y-6=0 D.y 2-5y-6=0知识点13:自变量的取值范围1.函数2-=x y 中,自变量x 的取值范围是 . A.x ≠2 B.x ≤-2 C.x ≥-2 D.x ≠-2 2.函数y=31-x 的自变量的取值范围是 . A.x>3 B. x ≥3 C. x ≠3 D. x 为任意实数3.函数y=11+x 的自变量的取值范围是 . A.x ≥-1 B. x>-1 C. x ≠1 D. x ≠-1 4.函数y=11--x 的自变量的取值范围是 . A.x ≥1 B.x ≤1 C.x ≠1 D.x 为任意实数 5.函数y=25-x 的自变量的取值范围是 . A.x>5 B.x ≥5 C.x ≠5 D.x 为任意实数知识点14:基本函数的概念1.下列函数中,正比例函数是 .A. y=-8xB.y=-8x+1C.y=8x 2+1D.y=x8- 2.下列函数中,反比例函数是 . A. y=8x 2 B.y=8x+1 C.y=-8x D.y=-x8 3.下列函数:①y=8x 2;②y=8x+1;③y=-8x ;④y=-x8.其中,一次函数有 个 . A.1个 B.2个 C.3个 D.4个知识点15:圆的基本性质1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 . A. 50° B. 80° C. 90° D. 100° 2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 . A.100° B.130° C.80° D.50° 3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 . A.100° B.130° C.80° D.50°4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 . A.∠A+∠C=180° B.∠A+∠C=90° C.∠A+∠B=180° D.∠A+∠B=905.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cm D.6cm•DBCAO••BOCAD•BOCAD•BOAD6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . A.100° B.130° C.80° D.50 7.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . A.100° B.130° C.200° D.50 8. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是 . A.100° B.130° C.80° D.50°9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm. A.3 B.4 C.5 D. 10 10. 已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . A.100° B.130° C.200° D.50°12.在半径为5cm 的圆中,有一条弦长为6cm,则圆心到此弦的距离为 . A. 3cm B. 4 cm C.5 cm D.6 cm知识点16:点、直线和圆的位置关系1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 . A.相离 B.相切 C.相交 D.相交或相离2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 相离或相交3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . A.0个 B.1个 C.2个 D.不能确定5.一个圆的周长为a cm,面积为a cm 2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D. 不能确定6.已知圆的半径为6.5cm,直线l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D.不能确定7. 已知圆的半径为6.5cm,直线l 和圆心的距离为4cm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 相离或相交 8. 已知⊙O 的半径为7cm,PO=14cm,则PO 的中点和这个圆的位置关系是 . A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定知识点17:圆与圆的位置关系1.⊙O 1和⊙O 2的半径分别为3cm 和4cm ,若O 1O 2=10cm ,则这两圆的位置关系是 . A. 外离 B. 外切 C. 相交 D. 内切•CBAO•BOCAD•CBAO2.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是.A.内切B. 外切C. 相交D. 外离3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含4.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2==7cm,则这两个圆的位置关系是.A.外离B. 外切C.相交D.内切5.已知⊙O1、⊙O2的半径分别为3cm和4cm,两圆的一条外公切线长43,则两圆的位置关系是.A.外切B. 内切C.内含D. 相交6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含知识点18:公切线问题1.如果两圆外离,则公切线的条数为.A. 1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A. 1条B. 2条C.3条D.4条4.如果两圆内切,它们的公切线的条数为 .A. 1条B. 2条C.3条D.4条5. 已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条6.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条知识点19:正多边形和圆1.如果⊙O的周长为10πcm,那么它的半径为 .A. 5cmB.10cmC.10cmD.5πcm2.正三角形外接圆的半径为2,那么它内切圆的半径为 .A. 2B. 3C.1D.23.已知,正方形的边长为2,那么这个正方形内切圆的半径为.A. 2B. 1C.2D.3 4.扇形的面积为32π,半径为2,那么这个扇形的圆心角为= . A.30° B.60° C.90° D. 120°5.已知,正六边形的半径为R,那么这个正六边形的边长为 . A.21R B.R C.2R D.R 3 6.圆的周长为C,那么这个圆的面积S= .A.2C π B.π2C C.π22C D.π42C7.正三角形内切圆与外接圆的半径之比为 . A.1:2 B.1:3 C.3:2 D.1:2 8. 圆的周长为C,那么这个圆的半径R= . A.2C π B. C π C.π2C D. πC9.已知,正方形的边长为2,那么这个正方形外接圆的半径为 . A.2 B.4 C.22 D.2310.已知,正三角形的半径为3,那么这个正三角形的边长为 . A. 3 B.3 C.32 D.33知识点20:函数图像问题1.已知:关于x 的一元二次方程32=++c bx ax 的一个根为21=x ,且二次函数c bx ax y ++=2的对称轴是直线x=2,则抛物线的顶点坐标是 .A. (2,-3)B. (2,1)C. (2,3)D. (3,2)2.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 . A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 3.一次函数y=x+1的图象在 .A.第一、二、三象限B. 第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限4.函数y=2x+1的图象不经过 .A.第一象限B. 第二象限C. 第三象限D. 第四象限 5.反比例函数y=x2的图象在 . A.第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限 6.反比例函数y=-x10的图象不经过 . A 第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限 7.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 . A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 8.一次函数y=-x+1的图象在 .A .第一、二、三象限 B. 第一、三、四象限 C. 第一、二、四象限 D. 第二、三、四象限9.一次函数y=-2x+1的图象经过 . A .第一、二、三象限 B.第二、三、四象限 C.第一、三、四象限 D.第一、二、四象限10. 已知抛物线y=ax 2+bx+c (a>0且a 、b 、c 为常数)的对称轴为x=1,且函数图象上有三点A(-1,y 1)、B(21,y 2)、C(2,y 3),则y 1、y 2、y 3的大小关系是 .A.y 3<y 1<y 2B. y 2<y 3<y 1C. y 3<y 2<y 1D. y 1<y 3<y 2知识点21:分式的化简与求值1.计算:)4)(4(yx xyy x y x xy y x +-+-+-的正确结果为 . A. 22x y - B. 22y x - C. 224y x - D. 224y x -2.计算:1-(121)11222+-+-÷--a a a a a a 的正确结果为 . A. a a +2B. a a -2C. -a a +2D. -a a -23.计算:)21(22x xx -÷-的正确结果为 .A.xB.x1C.-x 1D. -x x 2-4.计算:)111()111(2-+÷-+x x 的正确结果为 . A.1 B.x+1 C.x x 1+ D.11-x5.计算)11()111(-÷-+-x x x x 的正确结果是 . A.1-x x B.-1-x x C.1+x x D.-1+x x 6.计算)11()(yx x y y y x x -÷-+-的正确结果是 . A.y x xy - B. -y x xy - C.y x xy + D.- yx xy +7.计算:22222222222)(yxy x xy y x y x y x y x y x +++-+--⋅-的正确结果为 . A.x-y B.x+y C.-(x+y) D.y-x8.计算:)1(1xx x x -÷-的正确结果为 . A.1 B.11+x C.-1 D.11-x9.计算x x x x x x -÷+--24)22(的正确结果是 . A.21-x B. 21+x C.- 21-x D.- 21+x 知识点22:二次根式的化简与求值1. 已知xy>0,化简二次根式2x y x -的正确结果为 .A.yB.y -C.-yD.-y -2.化简二次根式21a a a +-的结果是 . A.1--a B.-1--a C.1+a D.1--a 3.若a<b ,化简二次根式aba -的结果是 . A.ab B.-ab C.ab - D.-ab -4.若a<b ,化简二次根式ab a b a a 2)(---的结果是 . A.a B.-a C.a - D.a --5. 化简二次根式23)1(--x x 的结果是 . A.x x x --1 B.xxx ---1 C.x x x --1 D.1--x x x 6.若a<b ,化简二次根式ab a b a a 2)(---的结果是 . A.a B.-a C.a - D.a --7.已知xy<0,则y x 2化简后的结果是 .A.y xB.-y xC.y x -D.y x -8.若a<b ,化简二次根式ab a b a a 2)(---的结果是 . A.a B.-a C.a - D.a --9.若b>a ,化简二次根式a 2ab -的结果是 .A.ab aB.ab a --C.ab a -D.ab a - 10.化简二次根式21aa a +-的结果是 . A.1--a B.-1--a C.1+a D.1--a 11.若ab<0,化简二次根式321b a a-的结果是 . A.b b B.-b b C. b b - D. -b b -知识点23:方程的根1.当m= 时,分式方程x x m x x --=+--2312422会产生增根. A.1 B.2 C.-1 D.2 2.分式方程x x x x --=+--23121422的解为 .A.x=-2或x=0B.x=-2C.x=0D.方程无实数根 3.用换元法解方程05)1(2122=--++x x xx ,设x x 1-=y ,则原方程化为关于y 的方程 . A.y 2+2y-5=0 B.y 2+2y-7=0 C.y 2+2y-3=0 D.y 2+2y-9=04.已知方程(a-1)x 2+2ax+a 2+5=0有一个根是x=-3,则a 的值为 . A.-4 B. 1 C.-4或1 D.4或-1 5.关于x 的方程0111=--+x ax 有增根,则实数a 为 . A.a=1 B.a=-1 C.a=±1 D.a= 26.二次项系数为1的一元二次方程的两个根分别为-2-3、2-3,则这个方程是 . A.x 2+23x-1=0 B.x 2+23x+1=0 C.x 2-23x-1=0 D.x 2-23x+1=07.已知关于x 的一元二次方程(k-3)x 2-2kx+k+1=0有两个不相等的实数根,则k 的取值范围是 . A.k>-23 B.k>-23且k ≠3 C.k<-23 D.k>23且k ≠3 知识点24:求点的坐标1.已知点P 的坐标为(2,2),PQ ‖x 轴,且PQ=2,则Q 点的坐标是 . A.(4,2) B.(0,2)或(4,2) C.(0,2) D.(2,0)或(2,4)2.如果点P 到x 轴的距离为3,到y 轴的距离为4,且点P 在第四象限内,则P 点的坐标为 . A.(3,-4) B.(-3,4) C.4,-3) D.(-4,3) 3.过点P(1,-2)作x 轴的平行线l 1,过点Q(-4,3)作y 轴的平行线l 2, l 1、l 2相交于点A ,则点A 的坐标是 . A.(1,3) B.(-4,-2) C.(3,1) D.(-2,-4)知识点25:基本函数图像与性质1.若点A(-1,y 1)、B(-41,y 2)、C(21,y 3)在反比例函数y=xk(k<0)的图象上,则下列各式中不正确的是 . A.y 3<y 1<y 2 B.y 2+y 3<0 C.y 1+y 3<0 D.y 1•y 3•y 2<0 2.在反比例函数y=xm 63-的图象上有两点A(x 1,y 1)、B(x 2,y 2),若x 2<0<x 1 ,y 1<y 2,则m 的取值范围是 . A.m>2 B.m<2 C.m<0 D.m>0 3.已知:如图,过原点O 的直线交反比例函数y=x2的图象于A 、B 两点,AC ⊥x 轴,AD ⊥y 轴,△ABC 的面积为S,则 .A.S=2B.2<S<4C.S=4D.S>4 4.已知点(x 1,y 1)、(x 2,y 2)在反比例函数y=-x2的图象上, 下列的说法中: ①图象在第二、四象限;②y 随x 的增大而增大;③当0<x 1<x 2时, y 1<y 2;④点(-x 1,-y 1) 、(-x 2,-y 2)也一定在此反比例函数的图象上,其中正确的有 个.A.1个B.2个C.3个D.4个 5.若反比例函数xky =的图象与直线y=-x+2有两个不同的交点A 、B ,且∠AOB<90º,则k 的取值范围必是 .A. k>1B. k<1C. 0<k<1D. k<06.若点(m ,m 1)是反比例函数xn n y 122--=的图象上一点,则此函数图象与直线y=-x+b (|b|<2)的交点的个数为 .A.0B.1C.2D.47.已知直线b kx y +=与双曲线xky =交于A (x 1,y 1),B (x 2,y 2)两点,则x 1²x 2的值 . A.与k 有关,与b 无关 B.与k 无关,与b 有关 C.与k 、b 都有关 D.与k 、b 都无关知识点26:正多边形问题1.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形、正四边形、正六边形,那么另个一个为 .A. 正三边形B.正四边形C.正五边形D.正六边形2.为了营造舒适的购物环境,某商厦一楼营业大厅准备装修地面.现选用了边长相同的正四边形、正八边形这两种规格的花岗石板料镶嵌地面,则在每一个顶点的周围,正四边形、正八边形板料铺的个数分别是 .A.2,1B.1,2C.1,3D.3,13.选用下列边长相同的两种正多边形材料组合铺设地面,能平整镶嵌的组合方案是 . A.正四边形、正六边形 B.正六边形、正十二边形 C.正四边形、正八边形 D.正八边形、正十二边形4.用几何图形材料铺设地面、墙面等,可以形成各种美丽的图案.张师傅准备装修客厅,想用同一种正多边形形状的材料铺成平整、无空隙的地面,下面形状的正多边形材料,他不能选用的是 . A.正三边形 B.正四边形 C. 正五边形 D.正六边形5.我们常见到许多有美丽图案的地面,它们是用某些正多边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面.某商厦一楼营业大厅准备装修地面.现有正三边形、正四边形、正六边形、正八边形这四种规格的花岗石板料(所有板料边长相同),若从其中选择两种不同板料铺设地面,则共有 种不同的设计方案. A.2种 B.3种 C.4种 D.6种6.用两种不同的正多边形形状的材料装饰地面,它们能铺成平整、无空隙的地面.选用下列边长相同的正多边形板料组合铺设,不能平整镶嵌的组合方案是 . A.正三边形、正四边形 B.正六边形、正八边形 C.正三边形、正六边形 D.正四边形、正八边形7.用两种正多边形形状的材料有时能铺成平整、无空隙的地面,并且形成美丽的图案,下面形状的正多边形材料,能与正六边形组合镶嵌的是 (所有选用的正多边形材料边长都相同). A.正三边形 B.正四边形 C.正八边形 D.正十二边形8.用同一种正多边形形状的材料,铺成平整、无空隙的地面,下列正多边形材料,不能选用的是 . A.正三边形 B.正四边形 C.正六边形 D.正十二边形9.用两种正多边形形状的材料,有时既能铺成平整、无空隙的地面,同时还可以形成各种美丽的图案.下列正多边形材料(所有正多边形材料边长相同),不能和正三角形镶嵌的是 . A.正四边形 B.正六边形 C.正八边形 D.正十二边形知识点27:科学记数法1.为了估算柑桔园近三年的收入情况,某柑桔园的管理人员记录了今年柑桔园中某五株柑桔树的柑桔产量,结果如下(单位:公斤):100,98,108,96,102,101.这个柑桔园共有柑桔园2000株,那么根据管理人员记录的数据估计该柑桔园近三年的柑桔产量约为 公斤.A.2³105B.6³105C.2.02³105D.6.06³105 2.为了增强人们的环保意识,某校环保小组的六名同学记录了自己家中一周内丢弃的塑料袋数量,结果如下(单位:个):25,21,18,19,24,19.武汉市约有200万个家庭,那么根据环保小组提供的数据估计全市一周内共丢弃塑料袋的数量约为 .A.4.2³108B.4.2³107C.4.2³106D.4.2³105知识点28:数据信息题1.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为 .A. 45B. 51C. 54D. 572.某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的频率分布直方图,已知从左到右前4个小组频率分别为0.02,0.1,0.12,0.46.下列说法: ①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内; ③学生成绩的中位数在第四小组(22.5~26.5)范围内. 其中正确的说法是 .A.①②B.②③C.①③D.①②③3.某学校按年龄组报名参加乒乓球赛,规定“n 岁年龄组”只允许满n 岁但未满n+1岁的学生报名,学生报名情况如直方图所示.下列结论,其中正确的是 . A.报名总人数是10人; B.报名人数最多的是“13岁年龄组”;C.各年龄组中,女生报名人数最少的是“8岁年龄组”;D.报名学生中,小于11岁的女生与不小于12岁的男生人数相等.4.某校初三年级举行科技知识竞赛,50名参赛学生的最后得分(成绩均为整数)的频率分布直方图如图,从左起第一、二、三、四、五个小长方形的高的比是1:2:4:2:1,根据图中所给出的信息,下列结论,其中正确的有 . ①本次测试不及格的学生有15人; ②69.5—79.5这一组的频率为0.4;③若得分在90分以上(含90分)可获一等奖, 则获一等奖的学生有5人.A ①②③B ①②C ②③D ①③5.某校学生参加环保知识竞赛,将参赛学生的成绩(得分取整数)进行整理后分成五组,绘成频率分布直方图如图,图中从左起第一、二、三、四、五个小长方形的高的比是1:3:6:4:2,第五组的频数为6,则成绩在60分以上(含60分)的同学的人数 . A.43 B.44 C.45 D.486.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为 . A 45 B 51 C 54 D 577.某班学生一次数学测验成绩(成绩均为整数)进行统计分 析,各分数段人数如图所示,下列结论,其中正确的有( )①该班共有50人; ②49.5—59.5这一组的频率为0.08; ③本次测验分数的中位数在79.5—89.5这一组; ④学生本次测验成绩优秀(80分以上)的学生占全班人数的56%.A.①②③④ B.①②④ C.②③④ D.①③④ 8.为了增强学生的身体素质,在中考体育中考中取得优异成绩,某校初三(1)班进行了立定跳远测试,并将成绩整理后, 绘制了频率分布直方图(测试成绩保留一位小数),如图所示,已知从左到右4个组的频率分别是0.05,0.15,0.30,0.35,第五 小组的频数为9 , 若规定测试成绩在2米以上(含2米) 为合格, 则下列结论:其中正确的有 个 .①初三(1)班共有60名学生; ②第五小组的频率为0.15;③该班立定跳远成绩的合格率是80%. A.①②③ B.②③ C.①③ D.①②知识点29: 增长率问题1.今年我市初中毕业生人数约为12.8万人,比去年增加了9%,预计明年初中毕业生人数将比今年减少9%.下列说法:①去年我市初中毕业生人数约为%918.12 万人;②按预计,明年我市初中毕业生人数将与去年持平;③按预计,明年我市初中毕业生人数会比去年多.其中正确的是 . A. ①② B. ①③ C. ②③ D. ①绩2.根据湖北省对外贸易局公布的数据:2002年我省全年对外贸易总额为16.3亿美元,较2001年对外贸易总额增加了10%,则2001年对外贸易总额为 亿美元. A.%)101(3.16+ B.%)101(3.16- C.%1013.16+ D. %1013.16-3.某市前年80000初中毕业生升入各类高中的人数为44000人,去年升学率增加了10个百分点,如果今年继续按此比例增加,那么今年110000初中毕业生,升入各类高中学生数应为 . A.71500 B.82500 C.59400 D.6054.我国政府为解决老百姓看病难的问题,决定下调药品价格.某种药品在2001年涨价30%后,2003年降价70%后至78元,则这种药品在2001年涨价前的价格为 元. 78元 B.100元 C.156元 D.200元5.某种品牌的电视机若按标价降价10%出售,可获利50元;若按标价降价20%出售,则亏本50元,则这种品牌的电视机的进价是 元.( )A.700元B.800元C.850元D.1000元6.从1999年11月1日起,全国储蓄存款开始征收利息税的税率为20%,某人在2001年6月1日存入人民币10000元,年利率为2.25%,一年到期后应缴纳利息税是 元. A.44 B.45 C.46 D.487.某商品的价格为a 元,降价10%后,又降价10%,销售量猛增,商场决定再提价20%出售,则最后这商品的售价是 元.A.a 元B.1.08a 元C.0.96a 元D.0.972a 元8.某商品的进价为100元,商场现拟定下列四种调价方案,其中0<n<m<100,则调价后该商品价格最高的方案是 .A.先涨价m%,再降价n%B.先涨价n%,再降价m%C.先涨价2n m +%,再降价2nm +% D.先涨价mn %,再降价mn %9.一件商品,若按标价九五折出售可获利512元,若按标价八五折出售则亏损384元,则该商品的进价为 .A.1600元B.3200元C.6400元D.8000元 10.自1999年11月1日起,国家对个人在银行的存款利息征收利息税,税率为20%(即存款到期后利息的20%),储户取款时由银行代扣代收.某人于1999年11月5日存入期限为1年的人民币16000元,年利率为2.25%,到期时银行向储户支付现金 元. 16360元 B.16288 C.16324元 D.16000元知识点30:圆中的角1.已知:如图,⊙O 1、⊙O 2外切于点C ,AB 为外公切线,AC 的延长线交⊙O 1于点A••O 2O 1BCA DD,若AD=4AC,则∠ABC 的度数为 . A.15° B.30° C.45° D.60°2.已知:如图,PA 、PB 为⊙O 的两条切线,A 、B 为切点,AD ⊥PB 于D 点,AD 交⊙O 于点E,若∠DBE=25°,则∠P= .A.75°B.60°C.50°D.45° 3.已知:如图, AB 为⊙O 的直径,C 、D 为⊙O 上的两点,AD=CD ,∠CBE=40°,过点B 作⊙O的切线交DC 的延长线于E 点,则∠CEB= . A. 60° B.65° C.70° D.75°4.已知EBA 、EDC 是⊙O 的两条割线,其中EBA 过圆心,已知弧AC 的度数是105°,且AB=2ED ,则∠E 的度数为 .A.30°B.35°C.45°D.75 5.已知:如图,Rt △ABC 中,∠C=90°,以AB 上一点O 为圆心,OA 为半径作⊙O 与BC 相切于点D, 与AC 相交于点E,若∠ABC=40°,则∠CDE= .A.40°B.20°C.25°D.30° 6.已知:如图,在⊙O 的内接四边形ABCD 中,AB 是直径, ∠BCD=130º,过D 点的切线PD 与直线AB 交于P 点,则∠ADP 的度数为 . A.40º B.45º C.50º D.65º7.已知:如图,两同心圆的圆心为O ,大圆的弦AB 、 AC 切小圆于D 、E 两点,弧DE 的度数为110°, 则弧AB 的度数为 . A.70° B.90° C.110° D.1308. 已知:如图,⊙O 1与⊙O 2外切于点P ,⊙O 1的弦AB 切⊙O 2于C 点,若∠APB=30º, 则∠BPC= .A.60ºB.70ºC.75ºD.90º 知识点31:三角函数与解直角三角形1.在学习了解直角三角形的知识后,小明出了一道数学题:我站在综合楼顶,看到对面教学楼顶的俯角为30º,楼底的俯角为45º,两栋楼之间的水平距离为20米,请你算出教学楼的高约为 米.(结果保留两位小数,2≈1.4 ,3≈1.7)A.8.66B.8.67C.10.67D.16.67² B A CD OP •E OADBC • E DB OA C • • O 1 O 2AB C P •D B OA CE • A B OE DC2.在学习了解直角三角形的知识后,小明出了一道数学题:我站在教室门口,看到对面综合楼顶的仰角为30º,楼底的俯角为45º,两栋楼之间的距离为20米,请你算出对面综合楼的高约为米.(2≈1.4 ,3≈1.7)A.31B.35C.39D.54 3.已知:如图,P 为⊙O 外一点,P A 切⊙O 于点A,直线PCB 交⊙O 于C 、B, AD ⊥BC 于D,若PC=4,P A=8,设∠ABC=α,∠ACP=β,则sin α:sin β= . A.31 B.21C.2D. 4 4.如图,是一束平行的阳光从教室窗户射入的平面示意图,光线与地面所成角∠AMC=30°,在教室地面的影子MN=23米.若窗户的下檐到教室地面的距离BC=1米,则窗户的上檐到教室地面的距离AC 为 米. A. 23米 B. 3米 C. 3.2米 D.233米 5.已知△ABC 中,BD 平分∠ABC ,DE ⊥BC 于E 点,且DE:BD=1:2,DC:AD=3:4,CE=76,BC=6,则△ABC 的面积为 .A.3B.123C.243D.12知识点32:圆中的线段1.已知:如图,⊙O 1与⊙O 2外切于C 点,AB 一条外公切线,A 、B 分别为切点,连结AC 、BC.设⊙O 1的半径为R ,⊙O 2的半径为r ,若tan ∠ABC=2,则rR的值为 . A .2 B .3 C .2 D .32.已知:如图,⊙O 1、⊙O 2内切于点A ,⊙O 1的直径AB 交⊙O 2于点C ,O 1E ⊥AB 交⊙O 2于F 点,BC=9,EF=5,则CO 1= A.9 B.13 C.14 D.163.已知:如图,⊙O 1、⊙O 2内切于点P , ⊙O 2的弦AB 过O 1点且交⊙O 1于C 、D 两点,若AC :CD :DB=3:4:2,则⊙O 1与⊙O 2的直径之比为 . A.2:7 B.2:5 C.2:3 D.1:34.已知:如图,⊙O 1与⊙O 2外切于A 点,⊙O 1的半径为r ,⊙O 2的半径为R,且r:R=4:5,ABE DAC•┑αβO ADBC P² ² O 1O 2BAC • •BE C AO 2O 1F• •AO 2CO1DBP 为⊙O 1一点,PB 切⊙O 2于B 点,若PB=6,则P A= . A.2 B.3 C.4 D.56.已知:如图,P A 为⊙O 的切线,PBC 为过O 点的割线,P A=45,⊙O 的半径为3,A.413B.13133C.13265D.132615 4.已知:如图, Rt ΔABC ,∠C=90°,AC=4,BC=3,⊙O 1内切于ΔABC ,⊙O 2切BC ,且与AB 、AC 的延长线都相切,⊙O 1的半径⊙O 2的半径为R 2,则21R R= .A.21B.32C.43D.545.已知⊙O 1与边长分别为18cm 、25cm 的矩形三边相切,⊙O 2与⊙O 1外切,与边BC 、CD 相切,则⊙O 2的半径为 .A.4cmB.3.5cmC.7cmD.8cm6.已知:如图,CD 为⊙O 的直径,AC 是⊙O 的切线,AC=2,过A 点的割线AEF 交CD 的延长线于B 点,且AE=EF=FB ,则⊙O 的半径为 . A.7145 B.14145 C.714 D.14147.已知:如图, ABCD ,过B 、C 、D 三点作⊙O ,⊙O 切AB 于B 点,交AD 于E 点.若AB=4,CE=5,则DE 的长为 .A.2B.59C.516D.18. 如图,⊙O 1、⊙O 2内切于P 点,连心线和⊙O 1、⊙O 2分别交于A 、B 两点,过P 点的直线与⊙O 1、⊙O 2分别交于C 、D 两点,若∠BPC=60º,AB=2,则CD= . A.1 B.2 C.21 D.41• •DPO 1O 2A C •BAO CD E••O 2 O 1 ADBC•ODCBAEF知识点33:数形结合解与函数有关的实际问题1.某学校组织学生团员举行“抗击非典,爱护城市卫生”宣传活动,从学校骑车出发,先上坡到达A 地,再下坡到达B 地,其行程中的速度v(百米/分)与时间t(分)关系图象如图所示.若返回时的上下坡速度仍保持不变,那么他们从B 地返回学校时的平均速度为 百米/分.34110 B.27 C.43110 D.932102.有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y 升与时间x 分之间的函数关系如图所示.则在第7分钟时,容器内的水量为 升. A.15 B.16 C.17 D.183. 甲、乙两个个队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少 .A.12天B.13天C.14天D.15天 4. 某油库有一储油量为40吨的储油罐.在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的储油量(吨)与时间(分)的函数关系如图所示.现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是 分钟. A.16分钟 B.20分钟 C.24分钟 D.44分钟5. 校办工厂某产品的生产流水线每小时可生产100件产品,生产前没有积压.生产3小时后另安排工人装箱(生产未停止),若每小时装产品150件,未装箱的产品数量y 是时间t 的函数,则这个函数的大致图像只能是 .6. 如图,某航空公司托运行李的费用y(元)与托运行李的重量x(公斤)的关系为一次函数,由图中可知,行李不超过 公斤时,可以免费托运.A.18 B.19C.20D.21 7. 小明利用星期六、日双休骑自行车到城外小姨家去玩.星期六从家中出发,先上坡,分))。

相关文档
最新文档