高三物理一轮复习 法拉第电磁感应定律 自感 涡流教案1

合集下载

高考物理一轮复习 第十章 第2讲 法拉第电磁感应定律 自感现象教案 新人教版-新人教版高三全册物理教

高考物理一轮复习 第十章 第2讲 法拉第电磁感应定律 自感现象教案 新人教版-新人教版高三全册物理教

第2讲 法拉第电磁感应定律 自感现象考点1 法拉第电磁感应定律的理解和应用1.法拉第电磁感应定律的理解(1)感应电动势的大小由线圈的匝数和穿过线圈的磁通量的变化率ΔΦΔt 共同决定,而与磁通量Φ的大小、变化量ΔΦ的大小没有必然联系.(2)磁通量的变化率ΔΦΔt 对应Φ­t 图线上某点切线的斜率.2.应用法拉第电磁感应定律的三种情况(1)磁通量的变化是由面积变化引起时,ΔΦ=B ·ΔS ,则E =n B ΔSΔt ; (2)磁通量的变化是由磁场变化引起时,ΔΦ=S ·ΔB ,则E =nS ·ΔBΔt; (3)磁通量的变化是由面积和磁场共同变化引起时,则根据定义,ΔΦ=|Φ末-Φ初|,E =n|B 2S 2-B 1S 1|Δt ≠n |ΔB ΔS |Δt.1.(2018·全国卷Ⅲ)(多选)如图甲,在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧.导线PQ 中通有正弦交流电i ,i 的变化如图乙所示,规定从Q 到P 为电流正方向.导线框R 中的感应电动势( AC )A .在t =T 4时为零B .在t =T 2时改变方向C .在t =T2时最大,且沿顺时针方向D .在t =T 时最大,且沿顺时针方向解析:本题考查楞次定律的应用及法拉第电磁感应定律.由i ­t 图象可知,在t =T4时,Δi Δt =0,此时穿过导线框R 的磁通量的变化率ΔΦΔt=0,由法拉第电磁感应定律可知,此时导线框R 中的感应电动势为0,选项A 正确;同理在t =T 2和t =T 时,Δi Δt 为最大值,ΔΦΔt为最大值,导线框R 中的感应电动势为最大值,不改变方向,选项B 错误;根据楞次定律,t =T2时,导线框R 中的感应电动势的方向为顺时针方向,而t =T 时,导线框R 中的感应电动势的方向为逆时针方向,选项C 正确,选项D 错误.2.如图甲所示,用一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的直径.在ab 的右侧存在一个足够大的匀强磁场,t =0时刻磁场方向垂直于竖直圆环平面向里,磁场磁感应强度B 随时间t 变化的关系如图乙所示,则0~t 1时间内( D )A .圆环中产生感应电流的方向为逆时针B .圆环中产生感应电流的方向先顺时针后是逆时针C .圆环一直具有扩X 的趋势D .圆环中感应电流的大小为B 0rS4t 0ρ解析:磁通量先向里减小再向外增大,由楞次定律“增反减同”可知,线圈中的感应电流方向为一直为顺时针,故A 、B 错误;由楞次定律的“来拒去留”可知,0~t 0为了阻碍磁通量的减小,线圈有扩X 的趋势,t 0~t 1为了阻碍磁通量的增大,线圈有缩小的趋势,故C 错误;由法拉第电磁感应定律,得E =ΔBS 2Δt =B 0πr 22t 0,感应电流I =E R =B 0πr 22t 0·Sρ×2πr=B 0rS4t 0ρ,故D 正确. 3.(2019·某某某某质检)如图甲所示,导体棒MN 置于水平导轨上,P 、Q 之间有阻值为R 的电阻,PQNM 所围的面积为S ,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的磁场,规定磁场方向竖直向上为正,在0~2t 0时间内磁感应强度的变化情况如图乙所示,导体棒MN 始终处于静止状态.下列说法正确的是( D )A .在0~t 0和t 0~2t 0内,导体棒受到导轨的摩擦力方向相同B .在t 0~2t 0内,通过电阻R 的电流方向为P 到QC .在0~t 0内,通过电阻R 的电流大小为2B 0SRt 0D .在0~2t 0内,通过电阻R 的电荷量为B 0S R解析:本题考查法拉第电磁感应定律的图象问题,定性分析加定量计算可快速求解.由图乙所示图象可知,0~t 0内磁感应强度减小,穿过回路的磁通量减小,由楞次定律可知,为阻碍磁通量的减少,导体棒具有向右的运动趋势,导体棒受到向左的摩擦力,在t 0~2t 0内,穿过回路的磁通量增加,为阻碍磁通量的增加,导体棒有向左的运动趋势,导体棒受到向右的摩擦力,在两时间段内摩擦力方向相反,故A 错误;由图乙所示图象可知,在t 0~2t 0内磁感应强度增大,穿过闭合回路的磁通量增大,由楞次定律可知,感应电流沿顺时针方向,通过电阻R 的电流方向为Q 到P ,故B 错误;由图乙所示图象,应用法拉第电磁感应定律可得,在0~t 0内感应电动势E 1=ΔΦΔt =S ·ΔB Δt =B 0S t 0,感应电流为I 1=E 1R =B 0S Rt 0,故C 错误;由图乙所示图象,应用法拉第电磁感应定律可得,在0~2t 0内通过电阻R 的电荷量为q 1=N ΔΦR=2B 0S -B 0S R =B 0SR,故D 正确.应用电磁感应定律需注意的三个问题(1)公式E =n ΔΦΔt 求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt 求感应电动势时,S 为线圈在磁场X 围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关,与Φ是否均匀变化无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR.考点2 导体切割磁感线产生的感应电动势考向1 平动切割1.计算公式:E =BLv 或E =BLv sin θ. 2.E =Blv 的三个特性(1)正交性:本公式要求磁场为匀强磁场,而且B 、l 、v 三者互相垂直.(2)有效性:公式中的l 为导体棒切割磁感线的有效长度.下图中,导体棒的有效长度为ab 间的距离.(3)相对性:E =Blv 中的速度v 是导体棒相对磁场的速度,若磁场也在运动,应注意速度间的相对关系.(2019·某某某某统考)(多选)半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B .杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示.则( )A .θ=0时,杆产生的电动势为2BavB .θ=π3时,杆产生的电动势为3BavC .θ=0时,杆受的安培力大小为2B 2av(π+2)R 0D .θ=π3时,杆受的安培力大小为3B 2av(5π+3)R 0[审题指导] (1)导体棒长度指处在磁场中的长度,称为有效长度.θ=0和θ=π3时二者不同.(2)先计算感应电动势,再计算感应电流,最后计算安培力.【解析】 当θ=0时,杆产生的电动势E =BLv =2Bav ,故A 正确;当θ=π3时,根据几何关系得出此时导体棒的有效切割长度为a ,所以杆产生的电动势为E =Bav ,故B 错误;当θ=0时,由于单位长度电阻均为R 0,所以电路中总电阻为(2+π)aR 0,所以杆受的安培力大小为F =BIL =B ·2a 2Bav (2+π)aR 0=4B 2av (2+π)R 0,故C 错误;当θ=π3时,电路中总电阻为⎝⎛⎭⎪⎫1+5π3aR 0,所以杆受的安培力大小为F ′=BI ′L ′=3B 2av (3+5π)R 0,故D 正确.【答案】 AD1.(2019·某某某某模拟)如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L ,左端接有阻值为R 的电阻,一质量为m 、长度为L 的匀质金属棒cd 放置在导轨上,金属棒的电阻为r ,整个装置置于方向竖直向上的匀强磁场中,磁场的磁感应强度为B .金属棒在水平向右的外力作用下,由静止开始做加速度大小为a 的匀加速直线运动,经过的位移为s 时,则( C )A .金属棒中感应电流方向由d 到cB .金属棒产生的感应电动势为BL asC .金属棒中感应电流为BL 2asR +rD .水平拉力F 的大小为B 2L 22asR +r解析:根据楞次定律可知电流I 的方向从c 到d ,故A 错误;设金属棒cd 的位移为s 时速度为v ,则有v 2=2as ,金属棒产生的电动势为E =BLv =BL 2as ,故B 错误;金属棒中感应电流的大小为I =ER +r,解得I =BL 2asR +r,故C 正确;金属棒受到的安培力大小为f =BIL ,根据牛顿第二定律可得F -f =ma ,联立解得F =B 2L 22asR +r+ma ,故D 错误.考向2 导体棒转动切割磁感线当导体棒在垂直于磁场的平面内绕一端以角速度ω匀速转动时,产生的感应电动势为E =Bl v =12Bl 2ω,如图所示.如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a —b —c —aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a —c —b —a[审题指导] (1)金属框在转动过程中,磁通量不变,无感应电流产生. (2)金属框bc 边和ac 边都在切割磁感线,所以有感应电动势.【解析】 穿过金属框的磁通量始终为零,没有发生变化,故金属框中无电流,B 、D 项错误;bc 边切割磁感线的等效速度为12lω,根据右手定则U b <U c ,故U bc =-12Bl 2ω,C 项正确;ac 边切割磁感线,根据右手定则得U a <U c ,A 项错误.【答案】 C2.(2018·全国卷Ⅰ)如图,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于( B )A.54B.32C.74D .2 解析:本题考查法拉第电磁感应定律及电荷量公式.由公式E =ΔΦΔt ,I =ER ,q =It 得q =ΔΦR ,设半圆弧半径为r ,对于过程Ⅰ,q 1=B ·πr 24·R ,对于过程Ⅱ,q 2=(B ′-B )·πr22R ,由q 1=q 2得,B ′B =32,故B 项正确.四种求电动势的方法考点3 自感现象涡流考向1 通电自感与断电自感1.自感现象的四大特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.2.自感中“闪亮”与“不闪亮”问题电流突然增大,灯泡立刻变亮,然后逐12开关S1瞬间,灯A1突然闪亮,然后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立刻变亮,最终A2与A3的亮度相同.下列说法正确的是( C )A.图1中,A1与L1的电阻值相同B.图1中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图2中,变阻器R与L2的电阻值相同D.图2中,闭合S2瞬间,L2中电流与变阻器R中电流相等解析:本题考查自感现象判断.在图1中断开S1瞬间,灯A1突然闪亮,说明断开S1前,L1中的电流大于A1中的电流,故L1的阻值小于A1的阻值,A、B选项均错误;在图2中,闭合S2瞬间,由于L2的自感作用,通过L2的电流很小,D错误;闭合S2后,最终A2与A3亮度相同,说明两支路电流相等,故R与L2的阻值相同,C项正确.2.(2019·某某模拟)在如图所示的电路中,S闭合时流过线圈L的电流是2 A,流过灯泡A的电流是1 A.将S突然断开,则S断开前后,能正确反映流过灯泡的电流I随时间t变化关系的是图中的( D )解析:当电键断开时,由于线圈中自感电动势阻碍电流减小,线圈中的电流逐渐减小,线圈与灯泡A构成回路,所以灯泡中的电流与线圈中电流大小相等,灯泡中电流也逐渐减小,但与断开前方向相反.故D正确,A、B、C错误.分析自感现象的两点注意(1)断电自感现象中灯泡是否“闪亮”的判断:关键在于对电流大小的分析,只有断电瞬间通过灯泡的电流比原来大,灯泡才先闪亮后慢慢熄灭.(2)断电自感现象中电流方向是否改变的判断:与线圈在同一支路的用电器的电流方向不变,与线圈不在同一支路的用电器中的电流方向改变.考向2 对涡流的考查3.(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示,实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是( AB )A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动解析:小磁针在圆盘所在处形成的磁场是非匀强磁场,圆盘可以等效为许多环形闭合线圈,圆盘转动过程中,穿过每个环形闭合线圈的磁通量不断地发生变化,在每一环形线圈上产生电动势和涡电流,A正确;环形线圈随圆盘转动,由楞次定律可知,线圈会受到小磁针施加的阻碍相对运动的力,根据牛顿第三定律可知,小磁针会受到与线圈即圆盘转动方向相同的力的作用,此力来源于电磁感应形成的涡电流,而不是自由电子随圆盘转动形成的电流,B正确,D错误.从圆盘的整个盘面上看,圆盘转动过程中穿过整个圆盘的磁通量不变,C 错误.4.扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是( A )解析:本题考查电磁阻尼.若要有效衰减紫铜薄板上下及左右的微小振动,则要求施加磁场后,在紫铜薄板发生上下及左右的微小振动时,穿过紫铜薄板横截面的磁通量都能发生变化.由选项图可知只有A满足要求,故选A.对安培力是动力、阻力的理解技巧电磁阻尼是安培力总是阻碍导体运动的现象,电磁驱动是安培力使导体运动起来的现象,但实质上均是感应电流使导体在磁场中受到安培力.学习至此,请完成课时作业34。

高考物理一轮复习 第九章 电磁感应 第2讲 法拉第电磁感应定律 自感 涡流教案

高考物理一轮复习 第九章 电磁感应 第2讲 法拉第电磁感应定律 自感 涡流教案

第2讲 法拉第电磁感应定律 自感 涡流知识点一 法拉第电磁感应定律 1.感应电动势(1)概念:在 中产生的电动势.(2)产生条件:穿过回路的 发生改变,与电路是否闭合 . (3)方向判断:感应电动势的方向用 或 判断. 2.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一电路的 成正比. (2)公式:E =n ΔΦΔt,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:遵守闭合电路的 定律,即I = . 3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E = . (2)v ∥B 时,E =0.答案:1.(1)电磁感应现象 (2)磁通量 无关 (3)楞次定律 右手定则 2.(1)磁通量的变化率 (3)欧姆ER +r3.(1)Blv知识点二 自感、涡流 1.自感现象(1)概念:由于导体本身的 变化而产生的电磁感应现象称为自感. (2)自感电动势①定义:在自感现象中产生的感应电动势叫做 . ②表达式:E = . (3)自感系数L①相关因素:与线圈的 、形状、 以及是否有铁芯有关. ②单位:亨利(H),1 mH = H,1 μH = H. 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生 ,这种电流像水的漩涡所以叫涡流.答案:1.(1)电流 (2)①自感电动势 ②L ΔIΔt (3)①大小 匝数②10-310-62.感应电流(1)磁通量变化越大,产生的感应电动势也越大.( ) (2)磁通量变化越快,产生的感应电动势就越大.( ) (3)磁通量的变化率描述的是磁通量变化的快慢.( ) (4)感应电动势的大小与线圈的匝数无关.( ) (5)线圈中的自感电动势越大,自感系数就越大.( )(6)磁场相对导体棒运动时,导体棒中也能产生感应电动势.( ) (7)对于同一线圈,当电流变化越快时,线圈中的自感电动势越大.( ) (8)自感电动势阻碍电流的变化,但不能阻止电流的变化.( ) 答案:(1) (2)√ (3)√ (4) (5) (6)√ (7)√ (8)√动生电动势和感生电动势当线圈匝数为1时,法拉第电磁感应定律的数学式是E =d Φd t ,E 表示电动势的大小.中学教材中写成E =ΔΦΔt ,既表示平均也表示瞬时.应用时常遇到两种情况,一是S 不变而B 随时间变化,则可用形式E =S ΔB Δt ;二是B 不变而S 变化,则可应用形式E =B ΔSΔt .至于导体棒切割磁感线产生的电动势E =Blv ,教材则是通过一典型模型利用E =B ΔSΔt推出的.我们知道,B 不随时间变化(恒定磁场)而闭合电路的整体或局部在运动,这样产生的感应电动势叫动生电动势,其非静电力是洛伦兹力.B 随时间变化而闭合电路的任一部分都不动,这样产生的感应电动势叫感生电动势,其非静电力是涡旋电场(非静电场)对电荷的作用力.上述两种电动势统称感应电动势,其联系何在?分析磁通量Φ的定义公式Φ=BS 可见Φ与BS 两个变量有关,既然E =d Φd t ,那么根据全导数公式有d Φd t =S ∂B ∂t +B ∂S ∂t ,其中S ∂B∂t 即感生电动势,体现了因B 随时间变化而产生的影响.B ∂S∂t 同样具有电动势的单位,其真面目是什么呢?我们采用和现行中学教材一样的方法,建立一物理模型分析.如图所示,MN 、PQ 是两水平放置的平行光滑金属导轨,其宽度为L ,ab 是导体棒,切割速度为v .设匀强磁场磁感应强度为B ,方向垂直纸面向里.在Δt 时间内,回路面积变化为ΔS =L Δx ,面积的平均变化率ΔS Δt =L Δx Δt .当Δt →0时,Δx Δt →v ,即d S d t =Lv ,d S d t 对应全导数公式中的∂S ∂t ,可见B ∂S ∂t =BLv ,这就是动生电动势,体现了因面积变化而产生的影响.推而广之,线圈在匀强磁场中做收缩、扩张、旋转等改变面积的运动而产生的电动势也是动生电动势.两种电动势可以同时出现.考点一 法拉第电磁感应定律的理解和应用1.感应电动势的决定因素(1)由E =n ΔΦΔt 知,感应电动势的大小由穿过电路的磁通量的变化率ΔΦΔt 和线圈匝数n 共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)ΔΦΔt 为单匝线圈产生的感应电动势大小.2.法拉第电磁感应定律的两个特例(1)回路与磁场垂直的面积S 不变,磁感应强度发生变化,则ΔΦ=ΔB ·S ,E =n ΔBΔt ·S .(2)磁感应强度B 不变,回路与磁场垂直的面积发生变化,则ΔΦ=B ·ΔS ,E =nB ΔSΔt.[典例1] (2017·安徽安庆质检)如图甲所示,一个电阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路,线圈的半径为r 1.在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示(规定图甲中B 的方向为正方向).图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求0~t 1时间内:甲 乙 (1)通过电阻R 1的电流大小和方向;(2)通过电阻R 1的电荷量q 及电阻R 1上产生的热量.[解题指导] (1)B ­t 图象为一条倾斜直线,表示磁场均匀变化,即变化率恒定. (2)本题应区分磁场的面积和线圈的面积.[解析] (1)根据楞次定律可知,通过R 1的电流方向为由b 到a .根据法拉第电磁感应定律得,线圈中的电动势E =n ΔB πr 22Δt =n ·B 0πr 22t 0根据闭合电路欧姆定律得,通过R 1的电流I =E 3R =nB 0πr 223Rt 0. (2)通过R 1的电荷量q =It 1=nB 0πr 22t 13Rt 0R 1上产生的热量Q =I 2R 1t 1=2n 2B 20π2r 42t 19Rt 2. [答案] (1)nB 0πr 223Rt 0方向由b 到a(2)nB 0πr 22t 13Rt 0 2n 2B 20π2r 42t 19Rt 2[变式1] 如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )A.Ba 22ΔtB.nBa 22ΔtC.nBa 2ΔtD.2nBa 2Δt答案:B 解析:磁感应强度的变化率ΔB Δt=2B -B Δt =B Δt ,法拉第电磁感应定律公式可写成E =n ΔΦΔt =n ΔBΔt S ,其中磁场中的有效面积S =12a 2,代入得E =n Ba 22Δt,选项B 正确,A 、C 、D 错误. [变式2](2016·北京卷)如图所示,匀强磁场中有两个导体圆环a 、b ,磁场方向与圆环所在平面垂直.磁感应强度B 随时间均匀增大.两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a 和E b .不考虑两圆环间的相互影响.下列说法正确的是( )A.E a ∶E b =4∶1,感应电流均沿逆时针方向B.E a ∶E b =4∶1,感应电流均沿顺时针方向C.E a ∶E b =2∶1,感应电流均沿逆时针方向D.E a ∶E b =2∶1,感应电流均沿顺时针方向答案:B 解析:由法拉第电磁感应定律E =ΔΦΔt =ΔB Δt πr 2,ΔB Δt 为常数,E 与r 2成正比,故E a ∶E b =4∶1.磁感应强度B 随时间均匀增大,故穿过圆环的磁通量增大,由楞次定律知,感应电流产生的磁场方向与原磁场方向相反,垂直纸面向里,由安培定则可知,感应电流均沿顺时针方向,故B 项正确.应用电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt 求解的是一个回路中某段时间内的平均感应电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR. 考点 导体切割磁感线产生感应电动势的计算1.平动切割(1)常用公式:若运动速度v 和磁感线方向垂直,则感应电动势E =BLv .注意:公式E =BLv 要求B ⊥L 、B ⊥v 、L ⊥v ,即B 、L 、v 三者两两垂直,式中的L 应该取与B 、v 均垂直的有效长度(即导体的有效切割长度).(2)有效长度:公式中的L 为有效切割长度,即导体在与v 垂直的方向上的投影长度. (3)相对性:E =BLv 中的速度v 是相对于磁场的速度,若磁场也运动时,应注意速度间的相对关系.2.转动切割在磁感应强度为B 的匀强磁场中,长为L 的导体棒绕一端为轴以角速度ω匀速转动时,此时产生的感应电动势E =BLv 中=12B ωL 2.若转动的是圆盘,则可以把圆盘看成由很多根半径相同的导体杆组合而成的.考向1 导体棒平动切割磁感线[典例2] (2015·安徽卷)如图所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计.已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )A.电路中感应电动势的大小为Blvsin θB.电路中感应电流的大小为Bv sin θrC.金属杆所受安培力的大小为B 2lv sin θrD.金属杆的热功率为B 2lv 2r sin θ[解题指导] 解答该题要明确以下几点:(1)金属杆切割磁感线的有效长度并不是它的实际长度,而是它的长度沿垂直速度方向的投影长度.(2)金属杆相当于电源,电路中的电流可利用欧姆定律求得. (3)金属杆的热功率可用公式P =I 2R 求得.[解析] 金属杆的运动方向与金属杆不垂直,电路中感应电动势的大小为E =Blv (l为切割磁感线的有效长度),选项A 错误;电路中感应电流的大小为I =ER =Blv lsin θr=Bv sin θr ,选项B 正确;金属杆所受安培力的大小为F =BIl ′=B ·Bv sin θr ·l sin θ=B 2lvr ,选项C 错误;金属杆的热功率为P =I 2R =B 2v 2sin 2θr 2·lr sin θ=B 2lv 2sin θr,选项D 错误.[答案] B考向2 导体棒旋转切割磁感线[典例3] (多选)1831年,法拉第发明的圆盘发电机(图甲)是利用电磁感应的原理制成的,是人类历史上第一台发电机.图乙是这个圆盘发电机的示意图:铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C 、D 分别与转动轴和铜盘的边缘良好接触,使铜盘转动,电阻R 中就有电流通过.若所加磁场为匀强磁场,方向水平向右,回路的总电阻恒定,从左往右看,铜盘沿顺时针方向匀速转动,下列说法正确的是( )甲 乙A.铜盘转动过程中,穿过铜盘的磁通量不变B.电阻R 中有正弦式交变电流通过C.若不给铜盘施加任何外力,铜盘最终会停下来D.通过R 的电流方向是从a 流向b[解析] 铜盘切割磁感线产生感应电动势,铜盘相当于电源,从而在电路中形成方向不变的电流,内部电流方向是从负极(D 点)到正极(C 点).由于铜盘在运动中受到安培力的阻碍作用,故最终会停下来.故选A 、C.[答案] AC [变式3](2015·新课标全国卷Ⅱ)如图所示,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A.U a >U c ,金属框中无电流B.U b >U c ,金属框中电流方向沿a →b →c →aC.U bc =-12Bl 2ω,金属框中无电流D.U ac =12Bl 2ω,金属框中电流方向沿a →c →b →a答案:C 解析:闭合金属框在匀强磁场中以角速度ω逆时针转动时,穿过金属框的磁通量始终为零,金属框中无电流.由右手定则可知U b =U a <U c ,A 、B 、D 选项错误;b 、c 两点的电势差U bc =-Blv 中=-12Bl 2ω,选项C 正确.公式E =Blv 与E =n ΔΦΔt的比较考点通电自感和断电自感1.对自感现象的理解(1)自感电动势总是阻碍导体中原电流的变化. (2)通过线圈中的电流不能发生突变,只能缓慢变化. (3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.2.自感中“闪亮”与“不闪亮”问题考向1 通电自感[典例4] 如图所示,A 、B 是两个完全相同的灯泡,L 的自感系数较大的线圈,其直流电阻忽略不计.当开关S 闭合时,下列说法正确的是( )A.A 比B 先亮,然后A 熄灭B.B 比A 先亮,然后B 逐渐变暗,A 逐渐变亮C.A、B一起亮,然后A熄灭D.A、B一起亮,然后A逐渐变亮,B的亮度不变[解析] 开关闭合的瞬间,线圈由于自感阻碍电流通过,相当于断路,B灯先亮,之后线圈阻碍作用减弱,相当于电阻减小,则总电阻减小,总电流增大,路端电压减小,B灯所在支路电流减小,B灯变暗,A灯所在支路电流增大,A灯变亮.[答案] B考向2 断电自感[典例5] 如图所示电路中,L是一电阻可忽略不计的电感线圈,a、b为L的左、右两端点,A、B、C为完全相同的三个灯泡,原来开关S是闭合的,三个灯泡均在发光.某时刻将开关S断开,则下列说法正确的是( )A.a点电势高于b点,A灯闪亮后缓慢熄灭B.b点电势高于a点,B、C灯闪亮后缓慢熄灭C.a点电势高于b点,B、C灯闪亮后缓慢熄灭D.b点电势高于a点,B、C灯不会闪亮只是缓慢熄灭[解题指导] (1)断电自感现象中电流方向不改变.(2)L电阻不计,开关闭合时电流满足I A>I B=I C.[解析] 开关S闭合稳定时,电感线圈支路的总电阻较B、C灯支路电阻小,故流过A灯的电流I1大于流过B、C灯的电流I2,且电流方向由a到b,a点电势高于b点.当开关S断开,电感线圈会产生自感现象,相当于电源,b点电势高于a点,阻碍流过A灯电流的减小,瞬间流过B、C灯支路的电流比原来的大,故B、C灯闪亮后再缓慢熄灭,故B正确.[答案] B考向3 自感现象中的图象问题[典例6]在如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的灯泡,E是一内阻不计的电源.t=0时刻,闭合开关S,经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过灯泡D1和D2的电流,规定图中箭头所示的方向为电流正方向,选项中能定性描述电流I 随时间t 变化关系的是( )A B C D[解析] 当S 闭合时,D 1、D 2同时亮且通过的电流大小相等,但由于L 的自感作用,D 1被短路,I 1逐渐减小到零,I 2逐渐增大至稳定;当S 再断开时,D 2马上熄灭,D 1与L 组成回路,由于L 的自感作用,D 1慢慢熄灭,电流反向且减小;综上所述知A 正确.[答案] A分析自感现象时的两点注意(1)通电自感线圈中的电流不能发生突变,即通电过程中,电流是逐渐变大的;断电过程中,电流是逐渐变小的,此时线圈可等效为“电源”,该“电源”与其他元件形成回路.(2)断电自感中,灯泡是否闪亮问题的判断 ①通过灯泡的自感电流大于原电流时,灯泡闪亮; ②通过灯泡的自感电流小于等于原电流时,灯泡不会闪亮.1.[公式E =BLv 的应用]如图所示,空间有一匀强磁场,一直金属棒与磁感应强度方向垂直,当它以速度v 沿与棒和磁感应强度都垂直的方向运动时,棒两端的感应电动势大小为ε;将此棒弯成两段长度相等且相互垂直的折线,置于与磁感应强度相垂直的平面内,当它沿两段折线夹角平分线的方向以速度v 运动时,棒两端的感应电动势大小为ε′,则ε′ε等于( )A.12B.22C.1D. 2答案:B 解析:设弯折前金属棒切割磁感线的长度为L ,弯折后,金属棒切割磁感线的有效长度为l =22L ,故产生的感应电动势为ε′=Blv =22BLv =22ε,所以ε′ε=22,B 正确.2.⎣⎢⎡⎦⎥⎤公式E =n ΔΦΔt 的应用如图所示为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S .若在t 1到t 2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B 1均匀增加到B 2,则该段时间线圈两端a 和b 之间的电势差φa -φb ( )A.恒为nS (B 2-B 1)t 2-t 1B.从0均匀变化到nS (B 2-B 1)t 2-t 1 C.恒为-nS (B 2-B 1)t 2-t 1D.从0均匀变化到-nS (B 2-B 1)t 2-t 1答案:C 解析:由楞次定律判定,感应电流从a 流向b ,b 点电势高于a 点电势,故φa -φb =-nS B 2-B 1t 2-t 1,因为磁场均匀增加,所以φa -φb 为恒定的,可见C 正确. 3.⎣⎢⎡⎦⎥⎤公式E =12BL 2ω的应用如图所示,半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆时针方向匀速运动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计)( )A.由c 到d ,I =Br 2ωRB.由d 到c ,I =Br 2ωRC.由c 到d ,I =Br 2ω2RD.由d 到c ,I =Br 2ω2R答案:D 解析:由右手定则判定通过电阻R 的电流的方向是由d 到c ;而金属圆盘产生的感应电动E =12Br 2ω,所以通过电阻R 的电流大小是I =Br 2ω2R,选项D 正确. 4.[通电自感与断电自感]在如图所示的电路中,a 、b 为两个完全相同的灯泡,L 为电阻可忽略不计的自感线圈,E 为电源,S 为开关.关于两灯泡点亮和熄灭的先后次序,下列说法正确的是( )A.合上开关,a 先亮,b 后亮;断开开关,a 、b 同时熄灭B.合上开关,b 先亮,a 后亮;断开开关,a 先熄灭,b 后熄灭C.合上开关,b 先亮,a 后亮;断开开关,a 、b 同时熄灭D.合上开关,a 、b 同时亮;断开开关,b 先熄灭,a 后熄灭答案:C 解析:由于L 是自感线圈,当合上S 时,自感线圈L 将产生自感电动势,阻碍电流的增加,故有b 灯先亮,a 灯后亮;当S 断开时,L 、a 、b 组成回路,L 产生自感电动势阻碍电流的减弱,由此可知,a 、b 同时熄灭,C 正确.5.公式E =12BL 2ω和E =n ΔΦΔt的应用如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔB Δt的大小应为( )A.4ωB 0πB.2ωB 0πC.ωB 0πD.ωB 02π答案:C 解析:当导线框匀速转动时,设半径为r ,导线框电阻为R ,在很小的Δt 时间内,转过圆心角Δθ=ωΔt ,由法拉第电磁感应定律及欧姆定律可得感应电流I 1=B 0ΔS R Δt =B 0·πr 2Δθ2πR Δt =B 0r 2ω2R ;当导线框不动,而磁感应强度发生变化时,同理可得感应电流I 2=ΔBS R Δt =ΔB ·πr 22R Δt ,令I 1=I 2,可得ΔB Δt =B 0ωπ,C 对.。

第63课时法拉第电磁感应定律、自感和涡流2025届高考物理一轮复习课件

第63课时法拉第电磁感应定律、自感和涡流2025届高考物理一轮复习课件
则可知杆MN将向左运动切割磁感线,由于MN切割磁感线产生的感应
电流方向由N到M,使回路中的电流减小,则杆OP受到的安培力减
小,杆MN中的电流减小,安培力会减小,加速度减小,故B、C错
误,D正确。
目录
高中总复习·物理
1. 【平动切割问题】
(多选)如图所示,分布于全空间的匀强磁场垂
直于纸面向里,其磁感应强度大小为B=2 T。宽
图乙中b曲线,故B错误;断开开关前,两支路中电流相等,刚断开
开关时,回路中的电流不变,所以小灯泡不会发生明显闪亮,而是
逐渐熄灭,故C错误;t1时刻,两支路中电压相等,电流相等,则电
阻相等,即小灯泡与线圈的电阻相等,故D正确。
目录
高中总复习·物理
2. 【涡流问题】
(2023·全国乙卷17题)一学生小组在探究电磁感应现象时,进行
C. 在t=0.05 s时,金属框ab边受到安培力的方向垂直于ab向右
D. 在t=0到t=0.1 s时间内,金属框中电流的电功率为0.064 W
目录
高中总复习·物理
Δ
解析:根据法拉第电磁感应定律E=
,金属框的面积不
Δ
Δ
0.2T
2
变,磁场的磁感应强度变化,故ΔΦ=ΔB·
L, =
=2
Δ
T/s,解得E=0.08
0.1s

0.08
V,故A正确;感应电流为I= =
A=

0.1
0.8 A,在t=0.05 s时,ab边受到的安培力大小为F=BIl=
0.1×0.8×0.2 N=0.016 N,故B正确;根据楞次定律,感应电
流阻碍原磁通量的变化,原磁通量随时间在减小,故线框有
扩大的趋势,则ab边受到的安培力水平向左,故C错误;电功

关于涡流的物理教案

关于涡流的物理教案

关于涡流的物理教案第一章:涡流的概念与产生教学目标:1. 让学生了解涡流的定义及其产生条件。

2. 让学生掌握涡流的产生原理。

教学内容:1. 涡流的定义:涡流是指在导体内部产生的交变电流。

2. 涡流的产生条件:闭合回路、交变磁场、导体。

3. 涡流的产生原理:根据法拉第电磁感应定律,当闭合回路中的磁通量发生变化时,回路中会产生感应电流。

教学活动:1. 引入涡流的概念,引导学生思考为什么会在导体内部产生电流。

2. 通过实验演示涡流的产生,让学生直观地了解涡流的形成过程。

3. 讲解涡流的产生条件,让学生明白何时会产生涡流。

4. 分析涡流的产生原理,引导学生运用法拉第电磁感应定律解释涡流的产生。

作业与练习:1. 让学生画出涡流的产生条件,并简要说明。

2. 给出一个实例,让学生判断其中是否产生了涡流。

第二章:涡流的效应教学目标:1. 让学生了解涡流引起的效应。

2. 让学生掌握涡流的热效应和磁效应。

教学内容:1. 涡流的热效应:涡流在导体中产生热量,导致导体温度升高。

2. 涡流的磁效应:涡流产生的磁场会对原磁场产生影响,导致磁场减弱。

教学活动:1. 引入涡流效应的概念,引导学生思考涡流会引起哪些现象。

2. 讲解涡流的热效应,让学生了解涡流如何产生热量。

3. 讲解涡流的磁效应,让学生了解涡流对磁场的影响。

4. 进行实验演示,让学生直观地了解涡流的效应。

作业与练习:1. 让学生分析一个实际应用中涡流效应的例子,如电烙铁、电炉等。

2. 让学生计算一个给定条件下涡流的热效应,如导体长度、截面积、交变磁场频率等。

第三章:涡流的防止与应用教学目标:1. 让学生了解涡流的防止方法。

2. 让学生掌握涡流的应用。

教学内容:1. 涡流的防止方法:采用绝缘材料、改变导体形状、使用磁性材料等。

2. 涡流的应用:电炉、电烙铁、变压器、感应加热等。

教学活动:1. 引入涡流防止的概念,引导学生思考如何减少涡流带来的影响。

2. 讲解涡流的防止方法,让学生了解各种防止手段的原理。

2020版新一线高考物理(人教版)一轮复习教学案:第10章 第2节 法拉第电磁感应定律 自感 涡流 含答案

2020版新一线高考物理(人教版)一轮复习教学案:第10章 第2节 法拉第电磁感应定律 自感 涡流 含答案

第2节 法拉第电磁感应定律 自感 涡流知识点一| 法拉第电磁感应定律1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势。

产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻。

(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =E R +r。

2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

(2)公式:E =n ΔΦΔt,n 为线圈匝数。

3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Bl v 。

(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Bl v sin_θ。

[判断正误](1)Φ=0,ΔΦΔt 不一定等于0。

(√) (2)感应电动势E 与线圈匝数n 有关,所以Φ、ΔΦ、ΔΦΔt的大小均与线圈匝数有关。

(×) (3)线圈中磁通量变化越快,产生的感应电动势越大。

(√) (4)法拉第提出了法拉第电磁感应定律。

(×)(5)当导体在匀强磁场中垂直磁场方向运动时(运动方向和导体垂直),感应电动势为E =BL v 。

(√)考法1 对感生电动势E =n ΔΦΔt 的理解与应用1.关于感应电动势的大小,下列说法中正确的是( )A .穿过线圈的磁通量Φ越大,所产生的感应电动势就越大B.穿过线圈的磁通量的变化量ΔΦ越大,所产生的感应电动势就越大C.穿过线圈的磁通量的变化率ΔΦΔt越大,所产生的感应电动势就越大D.穿过线圈的磁通量Φ等于0,所产生的感应电动势就一定为0C[根据法拉第电磁感应定律可知,感应电动势的大小与磁通量的变化率ΔΦΔt成正比,与磁通量Φ及磁通量的变化量ΔΦ没有必然联系。

当磁通量Φ很大时,感应电动势可能很小,甚至为0。

当磁通量Φ等于0时,其变化率可能很大,产生的感应电动势也会很大。

所以只有选项C正确。

]2.(2017·天津高考)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R。

2019年高考物理一轮复习第十章电磁感应第2讲法拉第电磁感应定律自感和涡流学案(1)word版本

2019年高考物理一轮复习第十章电磁感应第2讲法拉第电磁感应定律自感和涡流学案(1)word版本

第2讲 法拉第电磁感应定律、自感和涡流一、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关. (3)方向判断:感应电动势的方向用楞次定律或右手定则判断. 2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:E =n ΔΦΔt,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:遵循闭合电路的欧姆定律,即I =ER +r.(4)说明:①当ΔΦ仅由B 的变化引起时,则E =n ΔB·SΔt ;当ΔΦ仅由S 的变化引起时,则E =n B·ΔS Δt ;当ΔΦ由B 、S 的变化同时引起时,则E =n B2S2-B1S1Δt ≠n ΔB·ΔSΔt .②磁通量的变化率ΔΦΔt 是Φ-t 图象上某点切线的斜率.二、导体切割磁感线产生的感应电动势 1.公式E =Blv 的使用条件 (1)匀强磁场.(2)B 、l 、v 三者相互垂直. 2.“瞬时性”的理解(1)若v 为瞬时速度,则E 为瞬时感应电动势. (2)若v 为平均速度,则E 为平均感应电动势. 3.切割的“有效长度”公式中的l 为有效切割长度,即导体在与v 垂直的方向上的投影长度.图1中有效长度分别为:图1甲图:沿v 1方向运动时,l =cd ;沿v 2方向运动时,l =cd ·sin β; 乙图:沿v 1方向运动时,l =MN ;沿v 2方向运动时,l =0;丙图:沿v 1方向运动时,l =2R ;沿v 2方向运动时,l =0;沿v 3方向运动时,l =R . 4.“相对性”的理解E =Blv 中的速度v 是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.三、自感和涡流现象 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势. (2)表达式:E =L ΔI Δt.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关. (4)自感现象“阻碍”作用的理解:①流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.②流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.线圈就相当于电源,它提供的电流从原来的I L 逐渐变小. 2.涡流现象(1)涡流:块状金属放在变化磁场中,或者让它在磁场中运动时,金属块内产生的旋涡状感应电流.(2)产生原因:金属块内磁通量变化→感应电动势→感应电流.(3)涡流的利用:冶炼金属的高频感应炉利用强大的涡流产生焦耳热使金属熔化;家用电磁炉也是利用涡流原理制成的.(4)涡流的减少:各种电机和变压器中,用涂有绝缘漆的硅钢片叠加成的铁芯,以减少涡流.1.判断下列说法是否正确.(1)线圈中磁通量越大,产生的感应电动势越大.( × ) (2)线圈中磁通量变化越大,产生的感应电动势越大.( × ) (3)线圈中磁通量变化越快,产生的感应电动势越大.( √ ) (4)线圈中的电流越大,自感系数也越大.( × )(5)对于同一线圈,当电流变化越快时,线圈中的自感电动势越大.( √ )2.(人教版选修3-2P17第1题改编)将闭合多匝线圈置于仅随时间变化的磁场中,关于线圈中产生的感应电动势和感应电流,下列表述正确的是( ) A .感应电动势的大小与线圈的匝数无关 B .穿过线圈的磁通量越大,感应电动势越大 C .穿过线圈的磁通量变化越快,感应电动势越大 D .感应电流产生的磁场方向与原磁场方向始终相同 答案 C3.(人教版选修3-2P21第4题改编)如图2所示,纸面内有一矩形导体闭合线框abcd ,ab 边长大于bc 边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN .第一次ab 边平行MN 进入磁场,线框上产生的热量为Q 1,通过线框导体横截面的电荷量为q 1;第二次bc 边平行MN 进入磁场,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则( )图2A .Q 1>Q 2,q 1=q 2B .Q 1>Q 2,q 1>q 2C .Q 1=Q 2,q 1=q 2D .Q 1=Q 2,q 1>q 2答案 A解析 由Q =I 2Rt 得,Q 1=⎝ ⎛⎭⎪⎫E1R 2Rt =错误!×错误!=错误!,同理,Q 2=错误!,又因为L ab>L bc ,故Q 1>Q 2.由电荷量q =I Δt =n ΔΦR =nBLbcLabR ,故q 1=q 2.所以A 正确.4.(多选)电吉他中电拾音器的基本结构如图3所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发出声音,下列说法正确的有( )图3A .选用铜质弦,电吉他仍能正常工作B .取走磁体,电吉他将不能正常工作C .增加线圈匝数可以增大线圈中的感应电动势D .弦振动过程中,线圈中的电流方向不断变化 答案 BCD解析 铜质弦为非磁性材料,不能被磁化,选用铜质弦,电吉他不能正常工作,A 项错误;若取走磁体,金属弦不能被磁化,其振动时,不能在线圈中产生感应电动势,电吉他不能正常工作,B 项对;由E =nΔΦΔt可知,C 项正确;弦振动过程中,穿过线圈的磁通量大小不断变化,由楞次定律可知,线圈中感应电流方向不断变化,D 项正确.命题点一 法拉第电磁感应定律的理解及应用1.求解感应电动势常见情况2.应用注意点公式E =n ΔΦΔt 的应用,ΔΦ与B 、S 相关,可能是ΔΦΔt =B ΔS Δt ,也可能是ΔΦΔt =S ΔBΔt,当B =kt 时,ΔΦΔt=kS . 例1 轻质细线吊着一质量为m =0.42kg 、边长为L =1m 、匝数n =10的正方形线圈,其总电阻为r =1Ω.在线圈的中间位置以下区域分布着磁场,如图4甲所示.磁场方向垂直纸面向里,磁感应强度大小随时间变化关系如图乙所示.(g =10m/s 2)图4(1)判断线圈中产生的感应电流的方向是顺时针还是逆时针; (2)求线圈的电功率;(3)求在t =4s 时轻质细线的拉力大小.①中间位置以下区域分布着磁场;②磁感应强度大小随时间变化关系.答案 (1)逆时针 (2)0.25W (3)1.2N解析 (1)由楞次定律知感应电流的方向为逆时针方向.(2)由法拉第电磁感应定律得E =nΔΦΔt =n ·12L 2ΔBΔt=0.5V 则P =E2r=0.25W(3)I =Er=0.5A ,F 安=nBILF 安+F 线=mg联立解得F 线=1.2N.拓展延伸 (1)在例1中磁感应强度为多少时,细线的拉力刚好为0? (2)在例1中求在t =6s 内通过导线横截面的电荷量? 答案 (1)0.84T (2)3C解析 (1)细线的拉力刚好为0时满足:F 安=mg F 安=nBIL联立解得:B =0.84T(2)由q =It 得:q =0.5×6C =3C.1.(2016·北京理综·16)如图5所示,匀强磁场中有两个导体圆环a 、b ,磁场方向与圆环所在平面垂直.磁感应强度B 随时间均匀增大.两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a 和E b ,不考虑两圆环间的相互影响.下列说法正确的是( )图5A .E a ∶E b =4∶1,感应电流均沿逆时针方向B .E a ∶E b =4∶1,感应电流均沿顺时针方向C .E a ∶E b =2∶1,感应电流均沿逆时针方向D .E a ∶E b =2∶1,感应电流均沿顺时针方向 答案 B解析 由法拉第电磁感应定律得圆环中产生的电动势为E =ΔΦΔt =πr 2·ΔB Δt ,则Ea Eb =r2a r2b =41,由楞次定律可知感应电流的方向均沿顺时针方向,B 项对. 2.如图6所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )图6A.Ba22Δt B.nBa22Δt C.nBa2Δt D.2nBa2Δt答案 B解析 线圈中产生的感应电动势E =n ΔФΔt =n ·ΔB Δt ·S =n ·2B -B Δt ·a22=nBa22Δt ,选项B 正确.3.如图7所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为7匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则()图7A .两线圈内产生顺时针方向的感应电流B .a 、b 线圈中感应电动势之比为9∶1C .a 、b 线圈中感应电流之比为3∶4D .a 、b 线圈中电功率之比为3∶1 答案 B解析 根据楞次定律可知,两线圈内均产生逆时针方向的感应电流,选项A 错误;因磁感应强度随时间均匀增大,设ΔB Δt =k ,根据法拉第电磁感应定律可得E =n ΔΦΔt =n ΔB Δtl 2,则Ea Eb =(31)2=91,选项B 正确;根据I =E R =E ρ4nl S =n ΔBΔt l2S 4ρnl =klS4ρ可知,I ∝l ,故a 、b 线圈中感应电流之比为3∶1,选项C 错误;电功率P =IE =klS 4ρ·n ΔB Δt l 2=nk2l3S 4ρ,则P ∝l 3,故a 、b 线圈中电功率之比为27∶1,选项D 错误.命题点二导体切割磁感线产生感应电动势1.计算:说明(1)导体与磁场方向垂直;(2)磁场为匀强磁场.2.判断:(1)把产生感应电动势的那部分电路或导体当作电源的内电路,那部分导体相当于电源.(2)若电路是不闭合的,则先假设有电流通过,然后应用楞次定律或右手定则判断出电流的方向.(3)电源内部电流的方向是由负极(低电势)流向正极(高电势),外电路顺着电流方向每经过一个电阻电势都要降低.例2(多选)(2016·全国Ⅱ·20)法拉第圆盘发电机的示意图如图8所示.铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B中.圆盘旋转时,关于流过电阻R的电流,下列说法正确的是( )图8A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍答案AB解析将圆盘看成无数幅条组成,它们都在切割磁感线从而产生感应电动势和感应电流,则当圆盘顺时针(俯视)转动时,根据右手定则可知圆盘上感应电流从边缘流向中心,流过电阻的电流方向从a到b,B对;由法拉第电磁感应定律得感应电动势E=BL v=12BL2ω,I =ER +r,ω恒定时,I 大小恒定,ω大小变化时,I 大小变化,方向不变,故A 对,C 错;由P =I 2R =错误!知,当ω变为原来的2倍时,P 变为原来的4倍,D 错.求感应电动势大小的五种类型及对应解法1.磁通量变化型:E =n ΔΦΔt2.磁感应强度变化型:E =nS ΔBΔt3.面积变化型:E =nB ΔSΔt4.平动切割型:E =Blv ·sin θ (1)θ为l 与v 的夹角.(2)l 为导体切割磁感线的有效长度:首尾相连在垂直速度方向的分量. (3)v 为导体相对磁场的速度. 5.转动切割型:E =Blv =12Bl 2ω4.(2015·全国Ⅱ·15)如图9,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )图9A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿abcaC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿acba答案 C解析 金属框abc 平面与磁场平行,转动过程中磁通量始终为零,所以无感应电流产生,选项B 、D 错误.转动过程中bc 边和ac 边均切割磁感线,产生感应电动势,由右手定则判断U a <U c ,U b <U c ,选项A 错误.由转动切割产生感应电动势的公式得U bc =-12Bl 2ω,选项C 正确.5.(多选)半径为a 、右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着垂直纸面向里的匀强磁场,磁感应强度为B .直杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,直杆始终有两点与圆环良好接触,从圆环中心O 开始,直杆的位置由θ确定,如图10所示.则( )图10A .θ=0时,直杆产生的电动势为2BavB .θ=π3时,直杆产生的电动势为3BavC .θ=0时,直杆受的安培力大小为错误!D .θ=π3时,直杆受的安培力大小为错误!答案 AD解析 当θ=0时,直杆切割磁感线的有效长度l 1=2a ,所以直杆产生的电动势E 1=Bl 1v =2Bav ,选项A 正确.此时直杆上的电流I 1=错误!=错误!,直杆受到的安培力大小F 1=BI 1l 1=错误!,选项C 错误.当θ=错误!时,直杆切割磁感线的有效长度l 2=2a cos 错误!=a ,直杆产生的电动势E 2=Bl 2v =Bav ,选项B 错误.此时直杆上的电流I 2=错误!=错误!,直杆受到的安培力大小F 2=BI 2l 2=错误!,选项D 正确.6.(2015·安徽理综·19)如图11所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计.已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )图11A .电路中感应电动势的大小为Blvsin θB .电路中感应电流的大小为Bvsin θrC .金属杆所受安培力的大小为B2lvsin θrD .金属杆的热功率为B2lv2rsin θ答案 B解析 电路中的感应电动势E =Blv ,感应电流I =E R =E l sin θ r =Bvsin θr,故A 错误,B正确;金属杆所受安培力大小F =BI l sin θ=B2lv r,故C 错误;金属杆的热功率P =I 2R =I 2l sin θr =B2lv2sin θr,故D 错误.命题点三 自感和涡流 1.自感现象的四大特点(1)自感电动势总是阻碍导体中原电流的变化. (2)通过线圈中的电流不能发生突变,只能缓慢变化. (3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向. 2.自感中“闪亮”与“不闪亮”问题例3 (多选)如图12甲、乙所示的电路中,电阻R 和自感线圈L 的电阻值都很小,且小于灯泡A 的电阻,接通S ,使电路达到稳定,灯泡A 发光,则( )图12A .在电路甲中,断开S 后,A 将逐渐变暗B .在电路甲中,断开S 后,A 将先变得更亮,然后才逐渐变暗C .在电路乙中,断开S 后,A 将逐渐变暗D .在电路乙中,断开S 后,A 将先变得更亮,然后才逐渐变暗①L 的电阻很小;②灯泡A 发光.答案 AD解析 题图甲所示电路中,灯A 和线圈L 串联,电流相同,断开S 时,线圈上产生自感电动势,阻碍原电流的减小,通过R 、A 形成回路,灯A 逐渐变暗,选项A 正确,B 错误;题图乙所示电路中,电阻R 和灯A 串联,灯A 的电阻大于线圈L 的电阻,电流则小于线圈L 中的电流,断开S 时,电源不给灯供电,而线圈L 产生自感电动势阻碍电流的减小,通过R 、A 形成回路,灯A 中电流比原来大,A 将变得更亮,然后逐渐变暗.处理自感现象问题的技巧1.通电自感:线圈相当于一个变化的电阻——阻值由无穷大逐渐减小,通电瞬间自感线圈处相当于断路.2.断电自感:断电时自感线圈处相当于电源,自感电动势由某值逐渐减小到零. 3.电流稳定时,理想的自感线圈相当于导体,非理想的自感线圈相当于定值电阻.7.(多选)如图13所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的灯泡,E是一内阻不计的电源.t=0时刻,闭合开关S,经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过灯泡D1和D2的电流,规定图中箭头所示的方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是( )图13答案AC解析当S闭合时,L的自感作用会阻碍其中的电流变大,电流从D1流过;当L的阻碍作用变小时,L中的电流变大,D1中的电流变小至零;D2中的电流为电路总电流,电流流过D1时,电路总电阻较大,电流较小,当D1中电流为零时,电流流过L与D2,总电阻变小,电流变大至稳定;当S再断开时,D2马上熄灭,D1与L组成回路,由于L的自感作用,D1慢慢熄灭,电流反向且减小;综上所述知A、C正确.8.如图14所示,电路中A、B是两个完全相同的灯泡,L是一个自感系数很大、电阻可忽略的自感线圈,C是电容很大的电容器.当S闭合与断开时,A、B灯泡的发光情况是( )图14A.S刚闭合后,A亮一下又逐渐熄灭,B逐渐变亮B.S刚闭合后,B亮一下子又逐渐变暗,A逐渐变亮C.S闭合足够长时间后,A和B一样亮D.S闭合足够长时间后,A、B都熄灭答案 A解析S刚闭合时,A、B都变亮,之后A逐渐熄灭,B逐渐变亮,选项A正确,B错误.S 闭合足够长时间后,A熄灭,B一直都是亮的,选项C、D错误.电磁阻尼与电磁驱动的比较典例 如图15所示,上下开口、内壁光滑的铜管P 和塑料管Q 竖直放置.小磁块先后在两管中从相同高度处由静止释放,并落至底部.则小磁块( )图15A .在P 和Q 中都做自由落体运动B .在两个下落过程中的机械能都守恒C .在P 中的下落时间比在Q 中的长D .落至底部时在P 中的速度比在Q 中的大 答案 C解析 小磁块从铜管P 中下落时,P 中的磁通量发生变化,P 中产生感应电流,给小磁块一个向上的磁场力,阻碍小磁块向下运动,因此小磁块在P 中不是做自由落体运动,而塑料管Q 中不会产生电磁感应现象,因此Q 中小磁块做自由落体运动,A 项错误;P 中的小磁块受到的磁场力对小磁块做负功,机械能不守恒,B 项错误;由于在P 中小磁块下落的加速度小于g ,而Q 中小磁块做自由落体运动,因此从静止开始下落相同高度,在P 中下落的时间比在Q 中下落的时间长,C 项正确;根据动能定理可知,落到底部时在P 中的速度比在Q 中的速度小,D 项错误.对安培力是动力、阻力的理解技巧电磁阻尼是安培力总是阻碍导体运动的现象,电磁驱动是安培力使导体运动起来的现象,但实质上均是感应电流使导体在磁场中受到安培力.题组1 法拉第电磁感应定律的理解及应用1.(多选)如图1所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度随时间变化.下列说法正确的是( )图1A .当磁感应强度增加时,线框中的感应电流可能减小B .当磁感应强度增加时,线框中的感应电流一定增大C .当磁感应强度减小时,线框中的感应电流一定增大D .当磁感应强度减小时,线框中的感应电流可能不变 答案 AD解析 线框中的感应电动势为E =ΔB Δt S ,设线框的电阻为R ,则线框中的电流I =ER=ΔB Δt ·S R ,因为B 增大或减小时,ΔBΔt可能减小,也可能增大,也可能不变.线框中的感应电动势的大小只和磁通量的变化率有关,和磁通量的变化量无关.故选项A 、D 正确. 2.(多选)用一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的一条直径.如图2所示,在ab 的左侧存在一个均匀变化的匀强磁场,磁场垂直圆环所在平面,磁感应强度大小随时间的变化率ΔBΔt=k (k <0).则( )图2A .圆环中产生逆时针方向的感应电流B .圆环具有扩张的趋势C .圆环中感应电流的大小为⎪⎪⎪⎪⎪⎪krS 2ρD .图中a 、b 两点间的电势差U ab =⎪⎪⎪⎪⎪⎪k πr24答案 BD解析 磁通量均匀减少,根据楞次定律可知,圆环中产生顺时针方向的感应电流,选项A 错误;圆环在磁场中的部分,受到向外的安培力,所以有扩张的趋势,选项B 正确;圆环产生的感应电动势大小为⎪⎪⎪⎪⎪⎪k πr22,则圆环中的电流大小为I =⎪⎪⎪⎪⎪⎪kSr 4ρ,选项C 错误;Uab=E 2=⎪⎪⎪⎪⎪⎪k πr24,选项D 正确. 3.(2015·重庆理综·4)如图3为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S .若在t 1到t 2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B 1均匀增加到B 2,则该段时间线圈两端a 和b 之间的电势差φa -φb ( )图3A .恒为错误!B .从0均匀变化到错误!C .恒为-错误!D .从0均匀变化到-错误! 答案 C解析 根据法拉第电磁感应定律,E =n ΔΦΔt=n 错误!,由楞次定律可以判断a 点电势低于b 点电势,所以a 、b 两点之间的电势差为-n 错误!,C 项正确.4.如图4所示,两块水平放置的金属板距离为d ,用导线、开关K 与一个n 匝的线圈连接,线圈置于方向竖直向上的变化磁场B 中.两板间放一台压力传感器,压力传感器上表面静止放置一个质量为m 、电荷量为q 的带负电小球.K 断开时传感器上有示数mg ,K 闭合稳定后传感器上示数为mg3.则线圈中的磁场B 的变化情况和磁通量的变化率分别是( )图4A .正在增加,ΔΦΔt =mgdqB .正在减弱,ΔΦΔt =mgd3nqC .正在增加,ΔΦΔt =mgd3qD .正在减弱,ΔΦΔt =2mgd3nq答案 D解析 K 闭合稳定后传感器上示数为mg3,说明此时上极板带正电,即上极板电势高于下极板电势,极板间的场强方向向下,大小满足Eq +mg 3=mg ,即E =2mg3q ,又U =Ed ,所以两极板间的电压U =2mgd3q;线圈部分相当于电源,则感应电流的方向是从下往上,据此结合楞次定律可判断穿过线圈的磁通量正在减少,线圈中产生的感应电动势的大小为n ΔΦΔt ,根据n ΔΦΔt =2mgd 3q 可得ΔΦΔt =2mgd 3nq .题组2 导体切割磁感线产生感应电动势的计算5.如图5,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框运动过程中同样大小的电流,磁感应强度随时间的变化率ΔBΔt的大小应为( )图5A.4ωB0π B.2ωB0π C.ωB0π D.ωB02π答案 C解析 线框匀速转动时产生的感应电动势E 1=B 0rv =B 0rωr 2=12B 0ωr 2.当磁感应强度大小随时间线性变化时,产生的感应电动势E 2=ΔΦΔt =S ΔB Δt =12πr 2·ΔBΔt ,要使两次产生的感应电流大小相等,必须E 1=E 2,即12B 0ωr 2=12πr 2·ΔB Δt ,解得ΔB Δt =ωB0π,选项C 正确,A 、B 、D 错误.6.如图6所示,两根相距为l 的平行直导轨ab 、cd ,b 、d 间连有一固定电阻R ,导轨电阻可忽略不计.MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(垂直纸面向里).现对MN 施力使它沿导轨方向以速度v 水平向右做匀速运动.令U 表示MN 两端电压的大小,下列说法正确的是( )图6A .U =12Blv ,流过固定电阻R 的感应电流由b 经R 到dB .U =Blv ,流过固定电阻R 的感应电流由d 经R 到bC .MN 受到的安培力大小F A =B2l2v2R ,方向水平向右D .MN 受到的安培力大小F A =B2l2vR ,方向水平向左答案 A解析 根据电磁感应定律,MN 产生的电动势E =Blv ,由于MN 的电阻与外电路电阻相同,所以MN 两端的电压U =12E =12Blv ,根据右手定则,流过固定电阻R 的感应电流由b 经R到d ,故A 正确,B 错误;MN 受到的安培力大小F A =B2l2v2R ,方向水平向左,故C 、D 错误.7.在xOy 平面内有一条抛物线金属导轨,导轨的抛物线方程为y 2=4x ,磁感应强度为B 的匀强磁场垂直于导轨平面向里,一根足够长的金属棒ab 垂直于x 轴从坐标原点开始,以恒定速度v 沿x 轴正方向运动,运动中始终与金属导轨保持良好接触,如图7所示.则下列图象中能表示回路中感应电动势大小随时间变化的是( )图7答案 B解析 金属棒ab 沿x 轴以恒定速度v 运动,因此x =vt ,则金属棒在回路中的有效长度l=2y =4x =4vt ,由电磁感应定律得回路中感应电动势E =Blv =4B v3t ,即E 2∝t ,B 正确.8.如图8所示,MN 、PQ 是两根足够长的光滑平行金属导轨,导轨间距为d ,导轨所在平面与水平面成θ角,M 、P 间接阻值为R 的电阻.匀强磁场的方向与导轨所在平面垂直,磁感应强度大小为B .质量为m 、阻值为r 的金属棒放在两导轨上,在平行于导轨的拉力作用下,以速度v 匀速向上运动.已知金属棒与导轨始终垂直并且保持良好接触,重力加速度为g .求:图8(1)金属棒产生的感应电动势E ; (2)通过电阻R 的电流I ; (3)拉力F 的大小.答案 (1)Bdv (2)Bdv R +r (3)mg sin θ+B2d2vR +r解析 (1)根据法拉第电磁感应定律得E =Bdv . (2)根据闭合电路欧姆定律得I =E R +r =BdvR +r(3)导体棒的受力情况如图所示,根据牛顿第二定律有F -F 安-mg sin θ=0,又因为F 安=BId =B2d2v R +r ,所以F =mg sin θ+B2d2vR +r .题组3 自感和涡流现象9.在研究自感现象的实验中,用两个完全相同的灯泡A 、B 与自感系数很大的线圈L 和定值电阻R 组成如图9所示的电路(线圈的直流电阻可忽略,电源的内阻不能忽略),关于这个实验下面说法中正确的是( )图9A.闭合开关的瞬间,A、B一起亮,然后A熄灭B.闭合开关的瞬间,B比A先亮,然后B逐渐变暗C.闭合开关,待电路稳定后断开开关,B逐渐变暗,A闪亮一下然后逐渐变暗D.闭合开关,待电路稳定后断开开关,A、B灯中的电流方向均为从左向右答案 B解析闭合开关的瞬间,线圈中产生很大的自感电动势,阻碍电流的通过,故B立即亮,A逐渐变亮.随着A中的电流逐渐变大,流过电源的电流也逐渐变大,路端电压逐渐变小,故B逐渐变暗,A错误,B正确;电路稳定后断开开关,线圈相当于电源,对A、B供电,回路中的电流在原来通过A的电流的基础上逐渐变小,故A逐渐变暗,B闪亮一下然后逐渐变暗,C错误;断开开关后,线圈中的自感电流从左向右,A灯中电流从左向右,B灯中电流从右向左,故D错误.10.(多选)如图10所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措施可行的有( )图10A.增加线圈的匝数B.提高交流电源的频率C.将金属杯换为瓷杯D.取走线圈中的铁芯答案AB解析当电磁铁接通交流电源时,金属杯处在变化的磁场中产生涡电流发热,使水温升高.要缩短加热时间,需增大涡电流,即增大感应电动势或减小电阻.增加线圈匝数、提高交变电流的频率都是为了增大感应电动势,瓷杯不能产生涡电流,取走铁芯会导致磁性减弱.所以选项A、B正确,选项C、D错误.11.如图11所示,某同学在玻璃皿中心放一个圆柱形电极接电源的负极,沿边缘放一个圆环形电极接电源的正极做“旋转的液体”实验,若蹄形磁铁两极间正对部分的磁场可视为匀强磁场,磁感应强度为B=0.1T,玻璃皿的横截面的半径为a=0.05m,电源的电动势。

法拉第电磁感应定律(一)

法拉第电磁感应定律(一)

新县高中高三物理一轮复习物理导学案(101)编题人:余海珠 审题人:孙小生 时间:2015 .1 学生姓名:法拉第电磁感应定律(一)【教学要求】1.理解法拉第电磁感应定律。

2.理解计算感应电动势的两个公式E=BLv 和tE ∆∆=ϕ的区别和联系,并应用其进行计算。

(对公式E=BLv 的计算,只限于L 与B 、v 垂直的情况)。

【知识再现】一、感应电动势:在电磁感应现象中产生的电动势.叫感应电动势。

产生感应电动势的那一部分导体相当于电源,当电路断开时,无感应电流,但仍有感应电动势。

二、法拉第电磁感应定律:1、内容:电路中的感应电动势大小,跟穿过这一电路的___________________成正比。

2、公式:E =n △ф/△t 。

3、E =n △ф/△t 计算的是感应电动势的平均值,可以理解为E =n B △S/△t ,或E =n S △B/△t 。

三、导体做切割磁感线时感应电动势大小的计算:1、公式:E =BL V2、条件:①匀强磁场,②L ⊥B ,③V ⊥L3、注意:①L 为导体“有效”切割磁感线的等效长度.②V 为导体切割磁感线的速度,一般导体各部分切割磁感线的速度相同。

③电势高低的判断:电源内部的电流是从低电势点流向高电势点。

4、对有些导体各部分切割磁感线的速度不相同的情况,V 指平均速度.如图所示,一长为L 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动,转动的区域内有垂直纸面向里的匀强磁场,磁感强度为B .求导体做切割磁感线时感应电动势大小。

【重难点突破】一、磁通量ф、磁通量的变化量△ф及磁通量的变化率△ф/△t 的关系【例1】矩形形线框abcd 绕OO ' 轴在磁感强度为0.2T 的匀强磁场中以2 r /s 的转速匀速转动,已知ab =20cm ,bd=40cm ,匝数为100匝,当线框从如图示位置开始转过 90°,则(1)线圈中磁通量的变化量ΔΦ等于多少?(2)磁通量平均变化率为多少?(3)线圈中产生的平均感应电动势E 为多少?二、E =n △ф/△t 与E =BLV 的比较1.研究对象不同:2.适用范围不同:3.条件不同:4.意义不同:5.使用情况不同:(1)求解导体做切割磁感线运动产生感应电动势的问题时,两个公式都可。

高考物理复习教学案-专题9.2 法拉第电磁感应定律 自感 涡流-教学案学生版1

高考物理复习教学案-专题9.2 法拉第电磁感应定律 自感 涡流-教学案学生版1

【重点知识梳理】 一、法拉第电磁感应定律 1.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即tkE ∆∆Φ=,在国际单位制中可以证明其中的k =1,所以有t E ∆∆Φ=。

对于n 匝线圈有tn E ∆∆Φ=。

在导线切割磁感线产生感应电动势的情况下,由法拉第电磁感应定律可推出感应电动势的大小是:E=BLv sinα(α是B 与v 之间的夹角)。

【例1】如图所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。

求:将线圈以向右的速度v 匀速拉出磁场的过程中,⑴拉力F 大小; ⑵拉力的功率P ; ⑶拉力做的功W ; ⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q 。

二、感应电量的计算根据法拉第电磁感应定律,在电磁感应现象中,只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流。

设在时间∆t 内通过导线截面的电量为q ,则根据电流定义式I q t =/∆及法拉第电磁感应定律t n E ∆∆Φ=/,得:如果闭合电路是一个单匝线圈(n =1),则q R=∆Φ. 上式中n 为线圈的匝数,∆Φ为磁通量的变化量,R 为闭合电路的总电阻。

可见,在电磁感应现象中,只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流,在时间∆t 内通过导线截面的电量q 仅由线圈的匝数n 、磁通量的变化量∆Φ和闭合电路的电阻R 决定,与发生磁通量的变化量的时间无关。

因此,要快速求得通过导体横截面积的电量q ,关键是正确求得磁通量的变化量∆Φ。

磁通量的变化量∆Φ是指穿过某一面积末时刻的磁通量Φ2与穿过这一面积初时刻的磁通量Φ1之差,即∆ΦΦΦ=-21。

在计算∆Φ时,通常只取其绝对值,如果Φ2与Φ1反向,那么Φ2与Φ1的符号相反。

线圈在匀强磁场中转动,产生交变电流,在一个周期内穿过线圈的磁通量的变化量∆Φ=0,故通过线圈的电量q =0。

穿过闭合电路磁通量变化的形式一般有下列几种情况:(1)闭合电路的面积在垂直于磁场方向上的分量S 不变,磁感应强度B 发生变化时,∆Φ∆=⋅B S ; (2)磁感应强度B 不变,闭合电路的面积在垂直于磁场方向上的分量S 发生变化时,∆Φ∆=⋅B S ; (3)磁感应强度B 与闭合电路的面积在垂直于磁场方向的分量S 均发生变化时,∆ΦΦΦ=-21。

第十二章 第2课时 法拉第电磁感应定律、自感和涡流-2025物理大一轮复习讲义人教版

第十二章 第2课时 法拉第电磁感应定律、自感和涡流-2025物理大一轮复习讲义人教版

第2课时法拉第电磁感应定律、自感和涡流目标要求1.理解法拉第电磁感应定律,会应用E =nΔΦΔt进行有关计算。

2.会计算导体切割磁感线产生的感应电动势。

3.了解自感现象、涡流、电磁驱动和电磁阻尼。

考点一法拉第电磁感应定律的理解及应用1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势。

(2)产生条件:穿过电路的磁通量发生改变,与电路是否闭合无关。

2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

(2)公式:E =nΔΦΔt,其中n 为线圈匝数。

①若已知Φ-t 图像,则图线上某一点的切线斜率为ΔΦΔt。

②当ΔΦ仅由B 的变化引起时,E =nS ΔBΔt,其中S 为线圈在磁场中的有效面积。

若B =B 0+kt ,则ΔBΔt=k 。

③当ΔΦ仅由S 的变化引起时,E =nB ΔSΔt。

④当B 、S 同时变化时,则E =n B 2S 2-B 1S 1Δt ≠n ΔB ·ΔSΔt 。

求瞬时值时,分别求出动生电动势E 1和感生电动势E 2并进行叠加。

(3)感应电流与感应电动势的关系:I =ER +r。

(4)说明:E 的大小与Φ、ΔΦ无关,决定于磁通量的变化率ΔΦΔt。

1.Φ=0,ΔΦΔt不一定等于0。

(√)2.穿过线圈的磁通量变化越大,感应电动势也越大。

(×)3.穿过线圈的磁通量变化越快,感应电动势越大。

(√)4.线圈匝数n 越多,磁通量越大,产生的感应电动势也越大。

(×)例1(2023·湖北卷·5)近场通信(NFC)器件应用电磁感应原理进行通讯,其天线类似一个压平的线圈,线圈尺寸从内到外逐渐变大。

如图所示,一正方形NFC 线圈共3匝,其边长分别为1.0cm 、1.2cm 和1.4cm ,图中线圈外线接入内部芯片时与内部线圈绝缘。

若匀强磁场垂直通过此线圈,磁感应强度变化率为103T/s ,则线圈产生的感应电动势最接近()A .0.30VB .0.44VC .0.59VD .4.3V答案B解析根据法拉第电磁感应定律E =ΔΦΔt ,可得E 1=ΔB Δt S 1,E 2=ΔB Δt S 2,E 3=ΔBΔtS 3,三个线圈产生的感应电动势方向相同,故E =E 1+E 2+E 3=103×(1.02+1.22+1.42)×10-4V =0.44V ,故选B 。

2019届高三物理第一轮复习第十章电磁感应《法拉第电磁感应定律的理解和应用 自感和涡流》学案教师版

2019届高三物理第一轮复习第十章电磁感应《法拉第电磁感应定律的理解和应用 自感和涡流》学案教师版

第十章 电磁感应 第二节 法拉第电磁感应定律 自感 涡流考点一 法拉第电磁感应定律的理解与应用1.感应电动势—⎪⎪⎪⎪→概念—|在 电磁感应 现象中产生的电动势→产生条件—⎪⎪⎪ 穿过回路的磁通量发生 变化 ,与电路是否 闭合 无关→方向—|用楞次定律或右手定则判断2.定律—⎪⎪⎪⎪→内容—⎪⎪⎪感应电动势的大小跟穿过这一电路的磁通量的 变化率 成正比→公式—⎪⎪ E =n ΔΦΔt【典例1】 (多选)线圈所围的面积为0.1 m2,线圈电阻为1 Ω.规定线圈中感应电流I 的正方向从上往下看沿顺时针方向,如图(甲)所示.磁场的磁感应强度B 随时间t 的变化规律如图(乙)所示.则以下说法正确的是( )A.在0~5 s 时间内,I 的最大值为0.01 AB.在t=4 s 时刻,I 的方向为逆时针C.前2 s 内,通过线圈某一截面的总电荷量为 0.01 CD.第3 s 内,线圈的发热功率最大【即时训练1】.(2016·北京卷,16)如图所示,匀强磁场中有两个导体圆环a 、b ,磁场方向与圆环所在平面垂直.磁感应强度B 随时间均匀增大.两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a 和E b .不考虑两圆环间的相互影响.下列说法正确的是( )A .E a ∶E b =4∶1,感应电流均沿逆时针方向B .E a ∶E b =4∶1,感应电流均沿顺时针方向C .E a ∶E b =2∶1,感应电流均沿逆时针方向D .E a ∶E b =2∶1,感应电流均沿顺时针方向【解析】 由题意可知ΔB Δt =k ,导体圆环中产生的感应电动势E =ΔΦΔt =ΔB Δt ·S =ΔBΔt ·πr 2,因r a ∶r b =2∶1,故E a ∶E b =4∶1;由楞次定律知感应电流的方向均沿顺时针方向,选项B 正确.【答案】 B【即时训练 2】如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R .金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是( )A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小【解析】 A 错:根据楞次定律,ab 中感应电流方向由a 到b .B 错:根据E =ΔB Δt ·S ,因为ΔB Δt 恒定,所以E 恒定,根据I =ER +r 知,回路中的感应电流恒定.C 错:根据F =BIl ,由于B 减小,安培力F 减小.D 对:根据平衡条件,静摩擦力f =F ,故静摩擦力减小. 【答案】 D考点二 导体切割磁感线产生感应电动势的计算表达式E=nt∆Φ∆E=BLvsin θ E=12BL 2ω 情景图研究 对象回路(不一定闭合)一段直导线(或等效成直导线)绕一端转动的一段导体棒意义一般求平均感应电动势,当Δt →0时求的是瞬时感应电动势一般求瞬时感应电动势,当v 为平均速度时求的是平均感应电动势用平均值法求瞬时感应电动势适用条件所有磁场(匀强磁场定量计算、非匀强磁场定性分析)匀强磁场匀强磁场 质量为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求:(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【解析】 (1)对金属杆由牛顿第二定律:F -μmg =ma 匀加速直线运动:v =at 0 动生电动势:E =Bl v 解得:E =Blt 0⎝⎛⎭⎫Fm -μg . (2)金属杆进磁场后匀速运动:F =μmg +BIl 由欧姆定律:I =ER得:R =B 2l 2t 0m.【答案】 (1)Blt 0⎝⎛⎭⎫F m -μg (2)B 2l 2t 0m【即时训练 3】如图所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P .【解析】 (1)MN 刚扫过金属杆时,金属杆的感应电动势E =Bd v 0① 回路的感应电流I =ER ②由①②式解得I =Bd v 0R.③(2)金属杆所受的安培力F =BId ④ 由牛顿第二定律得,对金属杆F =ma ⑤ 由③④⑤式得a =B 2d 2v 0mR.⑥(3)金属杆切割磁感线的相对速度v ′=v 0-v ⑦ 感应电动势E =Bd v ′⑧ 感应电流的电功率P =E 2R ⑨由⑦⑧⑨式得P =B 2d 2(v 0-v )2R⑩【答案】 (1)Bd v 0R (2)B 2d 2v 0mR (3)B 2d 2(v 0-v )2R【即时训练4】(2014·课标卷Ⅱ,25)半径分别为r 和2r 的同心圆形导轨固定在同一水平面内,一长为r 、质量为m 且质量分布均匀的直导体棒AB 置于圆导轨上面,BA 的延长线通过圆导轨中心O ,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B ,方向竖直向下.在内圆导轨的C 点和外圆导轨的D 点之间接有一阻值为R 的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O 逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小为g .求:(1)通过电阻R 的感应电流的方向和大小; (2)外力的功率.【思路点拨】 1.由右手定则可判断导体电流方向(电源内部电流方向)→通过R 的电流方向;2.由法拉第电磁感应定律→感应电动势→欧姆定律求电流;3.能的转化和守恒→确定各部分的功率.【解析】 (1)在Δt 时间内,导体棒扫过的面积为: ΔS =12ωΔt [(2r )2-r 2]①根据法拉第电磁感应定律,导体棒产生的感应电动势大小为:E =B ΔSΔt②根据右手定则,感应电流的方向是从B 端流向A 端,因此流过电阻R 的电流方向是从C 端流向D 端;由欧姆定律:I =E R③ 联立①②③可得:I =3ωBr 22R ④(2)在竖直方向有: mg -2F N =0⑤式中,由于质量分布均匀,内、外圆导轨对导体棒的正压力相等,其值为F N ,两导轨对运动的导体棒的滑动摩擦力均为:F f =μF N ⑥在Δt 时间内,导体棒在内、外圆导轨上扫过的弧长分别为:l 1=rωΔt ⑦ l 2=2rωΔt ⑧克服摩擦力做的总功为:W f =F f (l 1+l 2)⑨在Δt 时间内,消耗在电阻R 上的功为:W R =I 2R Δt ⑩ 根据能量转化和守恒定律,外力在Δt 时间内做的功为: W =W f +W R ⑪外力的功率为:P =WΔt⑫由④~⑫式可得:P =32μmgωr +9ω2B 2r 44R .【答案】 (1)C 端流向D 端 3ωBr 22R(2)32μmgωr +9ω2B 2r 44R考点三 自感现象和涡流1.通电自感和断电自感的比较通电自感断电自感电路图器材 A 1、A 2同规格,R =R L ,L 较大 L 很大(有铁芯),R L <R A现象S 闭合瞬间,A 2灯立即亮起来,A 1灯逐渐变亮,最终一样亮开关S 断开时,灯A 突然闪亮一下后再渐渐熄灭【典例3】(2017·河南洛阳第二次联考)(多选)如图所示,电路中A,B是规格相同的灯泡,L 是电阻可忽略不计的电感线圈,那么下列判断正确的是()A.闭合开关S时,A,B一起亮,然后A变暗后熄灭B.闭合开关S时,B先亮,A逐渐变亮,最后A,B一样亮C.断开开关S时,A立即熄灭,B由亮变暗后熄灭D.断开开关S时,B立即熄灭,A闪亮一下后熄灭【即时训练4】如图所示,两相同灯泡A1,A2,A1与一理想二极管D连接.假设该二极管的正向电阻为零,反向电阻为无穷大;线圈L的直流电阻不计.下列说法正确的是()A.闭合开关S后,A1会逐渐变亮B.闭合开关S稳定后,A1,A2亮度相同C.断开S的瞬间,A1会逐渐熄灭D.断开S的瞬间,a点的电势比b点低【即时训练5】(2015·全国Ⅰ卷,19)(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是()A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动【巩固训练】1. (2015·课标卷Ⅱ,15)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a -b -c -aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a -c -b -a【解析】 金属框绕ab 边转动时,闭合回路abc 中的磁通量始终为零(即不变),所以金属框中无电流.金属框在逆时针转动时,bc 边和ac 边均切割磁感线,由右手定则可知φb <φc ,φa <φc ,所以根据E =Bl v 可知,U bc =U ac =-Bl v =-Bl 0+ωl 2=-12Bl 2ω.由以上分析可知选项C 正确.【答案】 C2.(2018·武汉十四中高三上学期质检)如图所示,在边长为a 的等边三角形区域内有匀强磁场B ,其方向垂直于纸面向外,一个边长也为a 的等边三角形导线框架EFG 正好与上述磁场区域的边界重合,而后绕其几何中心O 点在纸面内以角速度ω顺时针方向匀速转动,于是线框EFG 中产生感应电动势,若转过60°后线框转到图中的虚线位置,则在这段时间内( )A .感应电流方向为E →G →F →EB .感应电流方向为E →F →G →EC .平均感应电动势大小等于3ωa 2B4πD .平均感应电动势大小等于3ωa 2B3π【解析】 根据题意,穿过线框的磁通量变小,根据楞次定律,感应电流的磁场方向与原磁场相同,再由安培定则可知感应电流方向为E→F→G→E,A项错误,B项正确;根据几何关系可得,磁场穿过线框的有效面积减小了ΔS=312a2,根据法拉第电磁感应定律得平均感应电动势E=ΔSΔt B=3ωa2B4π,C项正确,D项错误.【答案】BC3.(平动切割)(2017·全国Ⅱ卷,20)(多选)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m、总电阻为0.005 Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd边于t=0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是()A.磁感应强度的大小为0.5 TB.导线框运动速度的大小为0.5 m/sC.磁感应强度的方向垂直于纸面向外D.在t=0.4 s至t=0.6 s这段时间内,导线框所受的安培力大小为0.1 N4.(转动切割)(2016·全国Ⅱ卷,20)(多选)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P,Q分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B中.圆盘旋转时,关于流过电阻R的电流,下列说法正确的是()A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍5.(2018·华中师大附中高三一模)如图所示的电路中,L是一个自感系数很大、直流电阻不计的线圈,D1、D2和D3是三个完全相同的灯泡,E是内阻不计的电源.在t=0时刻,闭合开关S,电路稳定后在t1时刻断开开关S.规定以电路稳定时流过D1、D2的电流方向为正方向,分别用I1、I2表示流过D1和D2的电流,则下列四个图象中能定性描述电流I1、I2随时间t 变化关系的是()【解析】在闭合开关S时,流过D2的电流立即增大到稳定值I2′,流过D1的电流由于线圈的自感作用并不能立即增大,而是缓慢地增大到I1′,且I1′=2I2′,在断开开关S 时,线圈中产生自感电动势,D1、D2和D3组成回路,回路中有逆时针方向的电流,且电流从I1′逐渐减小,最后减为零,所以选项C正确.【答案】 C6.(2017·北京卷,19)图1和图2是教材中演示自感现象的两个电路图,L1和L2为电感线圈.实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同.下列说法正确的是()A.图1中,A1与L1的电阻值相同B.图1中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图2中,变阻器R与L2的电阻值相同D.图2中,闭合S2瞬间,L2中电流与变阻器R中电流相等【解析】A错:断开开关S1瞬间,线圈L1产生自感电动势,阻碍电流的减小,通过L1的电流反向通过灯A1,灯A1突然闪亮,随后逐渐变暗,说明IL1>I A1,即RL1<R A1.B错:图1中,闭合S1,电路稳定后,因为RL1<R A1,所以A1中电流小于L1中电流.C对:闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同,说明变阻器R与L2的电阻值相同.D错:闭合S2瞬间,通过L2的电流增大,由于电磁感应,线圈L2产生自感电动势,阻碍电流的增大,则L2中电流与变阻器R中电流不相等.【答案】 C7 (2016·课标卷Ⅲ,25)如图,两条相距l 的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R 的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S 的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B 1随时间t 的变化关系为B 1=kt ,式中k 为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN (虚线)与导轨垂直,磁场的磁感应强度大小为B 0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN ,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:(1)在t =0到t =t 0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t (t >t 0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小. 【解析】 (1)在金属棒越过MN 之前,t 时刻穿过回路的磁通量为Φ=ktS ①设在从t 时刻到t +Δt 的时间间隔内,回路磁通量的变化量为ΔΦ,流过电阻R 的电荷量为Δq .根据法拉第电磁感应有ε=ΔΦΔt②根据欧姆定律可得i =εR ③根据电流的定义可得i =ΔqΔt ④联立①②③④可得|Δq |=kSRΔt ⑤根据⑤可得,在t =0到t =t 0的时间间隔内,流过电阻R 的电荷量q 的绝对值为|q |=kt 0SR.⑥(2)当t >t 0时,金属棒已越过MN ,由于金属棒在MN 右侧做匀速运动,有f =F ⑦ 式中,f 是外加水平恒力,F 是匀强磁场施加的安培力,设此时回路中的电流为I ,F 的大小为F =B 0Il ⑧此时金属棒与MN 之间的距离为s =v 0(t -t 0)⑨ 匀强磁场穿过回路的磁通量为Φ′=B 0ls ⑩ 回路的总磁通量为Φt =Φ+Φ′⑪式中,Φ仍如①式如所示.由①⑨⑩⑪可得,在时刻t (t >t 0)穿过回路的总磁通量为Φt=B 0l v 0(t -t 0)+kSt ⑫201911 在t 到t +Δt 的时间间隔内,总磁通量的改变ΔΦt 为 ΔΦt =(B 0l v 0+kS )Δt ⑬由法拉第电磁感应定律可得,回路感应电动势的大小为ε1=ΔΦt Δt⑭ 由欧姆定律有I =ε1R⑮ 联立⑦⑧⑬⑭⑮可得f =(B 0l v 0+kS )B 0l R .【答案】 (1)kt 0S R(2)B 0l v 0(t -t 0)+kSt(B 0l v 0+kS )B 0l R。

9.2法拉第电磁感应定律 自感 涡流

9.2法拉第电磁感应定律 自感 涡流

课题2 法拉第电磁感应定律 自感 涡流知识与技能目标:1、熟悉电磁感应现象的两种情况感生和动生2、学会运用电磁感应定律的规律解题〖导 学 过 程〗知识点回顾一、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.(2)产生条件:穿过回路的 发生改变,与电路是否闭合无关. (3)方向判断:感应电动势的方向用 或右手定则判断. 2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的 成正比. (2)公式:E = 其中n 为 .(3)感应电流与感应电动势的关系:遵循闭合电路的欧姆定律,即I = .(4)说明:①当ΔΦ仅由B 的变化引起时,则E = ;当ΔΦ仅由S 的变化引起时,则E =n ;当ΔΦ由B 、S 的变化同时引起时,则E =n ≠n ΔB ·ΔSΔt .②磁通量的变化率ΔΦΔt 是Φ-t 图像上某点切线的3.导体切割磁感线时的感应电动势(1)导体垂直切割磁感线时,感应电动势可用E = 求出,式中l 为导体切割磁感线的有效长度; (2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E =Bl = (平均速度等于中点位置的线速度12lω).二、自感、涡流 1.自感现象(1)概念:由于导体本身的 变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做 电动势. (2)表达式:E =(3)自感系数L 的影响因素:与线圈的 、形状、 以及是否有铁芯有关. 2.涡流现象(1)涡流:块状金属放在 磁场中,或者让它在磁场中运动时,金属块内产生的旋涡状感应电流. (2)产生原因:金属块内 变化→感应电动势→感应电流.新授:一、法拉第电磁感应定律的理解和应用1.求解感应电动势常见情况2.应用注意点公式E =n ΔΦΔt 的应用,ΔΦ与B 、S 相关,可能是ΔΦΔt =B ΔS Δt ,也可能是ΔΦΔt =S ΔB Δt ,当B =kt 时,ΔΦΔt=kS .【例1】 轻质细线吊着一质量为m =0.42 kg 、边长为L =1 m 、匝数n =10的正方形线圈,其总电阻为r =1 Ω。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交流感应电动机就是利用电磁驱动的原理工作的.
(3)电磁阻尼和电磁驱动的原理体现了楞次定律的推广应用.
小结
作业:基础自测
教后
反思
审核人签字:年月日
(1)内容:
(2)公式:E=n ,其中n为线圈匝数.
(3)感应电流与感应电动势的关系:遵守,
即I= .
3.导体切割磁感线时的感应电动势
(1)导体垂直切割磁感线时,感应电动势可用E=Blv求出,式中l为导体切割磁感线的有效长度.
(2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E=Bl = Bl2ω(平均速度等于中点位置的线速度 lω).
课题
法拉第电磁感应定律 自感 涡流1
第课时
三维目
1、法拉第电磁感应定律及应用
2、了解自感、涡流现象
重点
法拉第电磁感应定律及应用
中心发
言人
陈熠
难点
法拉第电磁感应定律及应用
教具
课型
课时安排
课时
教法
学法
个人主页

学过程ຫໍສະໝຸດ 教学过程
1.感应电动势
(1)概念:.
(2)产生条件:
(3)方向判断:.
2.法拉第电磁感应定律
1.自感现象
2.自感电动势
(1)定义:
(2)表达式:E=L
(3)自感系数L
①相关因素:
②单位:
3.涡流
当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的旋涡所以叫做涡流.
(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.
(2)电磁驱动:如果磁场相对于导体运动,在导体中会产生感应电流使导体受到安培力的作用,安培力使导体运动起来.
相关文档
最新文档