2018学高考理科数学通用版二轮复习 第二部分 板块(二) (一)巧用性质 妙解函数
【通用版】2018年高考理科数学二轮复习:教学案全集(含答案)
[全国卷3年考情分析][题点·考法·全练]1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.2.(2018届高三·安徽名校阶段测试)设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <32B.⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪32<x ≤3 解析:选B A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <32. 3.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:选B 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.已知集合P ={n |n =2k -1,k ∈N *,k ≤50},Q ={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( )A .147B .140C .130D .117解析:选B 由题意得,y 的取值一共有3种情况,当y =2时,xy 是偶数,与y =3,y =5时,没有相同的元素,当y =3,x =5,15,25,…,95时,与y =5,x =3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140.5.已知集合A =⎩⎨⎧⎭⎬⎫-1,12,B ={x |mx -1=0,m ∈R},若A ∩B =B ,则所有符合条件的实数m 组成的集合是( )A .{-1,0,2} B.⎩⎨⎧⎭⎬⎫-12,0,1 C .{-1,2}D.⎩⎨⎧⎭⎬⎫-1,0,12解析:选A 因为A ∩B =B ,所以B ⊆A .若B 为∅,则m =0;若B ≠∅,则-m -1=0或12m -1=0,解得m =-1或2.综上,m ∈{-1,0,2}. [准解·快解·悟通][题点·考法·全练] 1.(2017·天津高考)设x∈R,则“2-x≥0”是“|x-1|≤1”的() A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选B由2-x≥0,得x≤2,由|x-1|≤1,得0≤x≤2.∵0≤x≤2⇒x≤2,x≤2⇒/ 0≤x≤2,故“2-x ≥0”是“|x -1|≤1”的必要而不充分条件.2.(2017·惠州三调)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选C 设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C.3.(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.4.已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .[1,+∞) C .(2,+∞)D .(-∞,-1]解析:选A 由3x +1<1,可得3x +1-1=-x +2x +1<0,所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2. 5.已知条件p :x +y ≠-2,条件q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以綈p :x +y =-2,綈q :x =-1且y =-1,因为綈q ⇒綈p 但綈p ⇒/綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q 的充分不必要条件.[准解·快解·悟通][题点·考法·全练]1.下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若tan x =3,则x =π3”的逆否命题解析:选B 对于选项A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故选项A 为假命题;对于选项B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知选项B 为真命题;对于选项C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故选项C 为假命题;对于选项D ,命题“若tan x =3,则x =π3”为假命题,故其逆否命题为假命题,综上可知,选B.2.(2015·全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2n C .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:选C 因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n ”的否定是“∀n ∈N ,n 2≤2n ”.3.(2017·山东高考)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧綈qC .綈p ∧qD .綈p ∧綈q解析:选B 当x >0时,x +1>1,因此ln(x +1)>0,即p 为真命题;取a =1,b =-2,这时满足a >b ,显然a 2>b 2不成立,因此q 为假命题.由复合命题的真假性,知B 为真命题.[准解·快解·悟通][专题过关检测]一、选择题1.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=() A.{1}B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.2.(2017·成都一诊)命题“若a>b,则a+c>b+c”的否命题是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”.3.(2017·广西三市第一次联考)设集合A={x|8+2x-x2>0},集合B={x|x=2n-1,n ∈N*},则A∩B等于()A.{-1,1} B.{-1,3}C.{1,3} D.{3,1,-1}解析:选C∵A={x|-2<x<4},B={1,3,5,…},∴A ∩B ={1,3}.4.(2017·郑州第二次质量预测)已知集合A ={x |log 2x ≤1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪1x>1,则A ∩(∁R B )=( )A .(-∞,2]B .(0,1]C .[1,2]D .(2,+∞)解析:选C 因为A ={x |0<x ≤2},B ={x |0<x <1},所以A ∩(∁R B )={x |0<x ≤2}∩{x |x ≤0或x ≥1}={x |1≤x ≤2}.5.(2017·北京高考)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝⎛⎦⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎫π2,π时,m ,n 不共线. 故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件.6.(2018届高三·湘中名校联考)已知集合A ={x |x 2-11x -12<0},B ={x |x =2(3n +1),n ∈Z},则A ∩B 等于( )A .{2}B .{2,8}C .{4,10}D .{2,4,8,10}解析:选B 因为集合A ={x |x 2-11x -12<0}={x |-1<x <12},集合B 为被6整除余数为2的数.又集合A 中的整数有0,1,2,3,4,5,6,7,8,9,10,11,故被6整除余数为2的数有2和8,所以A ∩B ={2,8}.7.(2017·石家庄调研)设全集U =R ,集合A ={x |x ≥1},B ={x |(x +2)(x -1)<0},则( ) A .A ∩B =∅ B .A ∪B =U C .∁U B ⊆AD .∁U A ⊆B解析:选A 由(x +2)(x -1)<0,解得-2<x <1,所以B ={x |-2<x <1},则A ∩B =∅,A ∪B ={x |x >-2},∁U B ={x |x ≥1或x ≤-2},A ⊆∁U B ,∁U A ={x |x <1},B ⊆∁U A ,故选A.8.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25解析:选A 本题关键看清-1和1本身也具备这种运算,这样所求集合即由-1,1,3和13,2和12这“四大”元素所能组成的集合.所以满足条件的集合的个数为24-1=15. 9.(2017·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有a =0或⎩⎪⎨⎪⎧a >0,a 2-4a <0,则0≤a <4,所以命题p 是命题q 的充分不必要条件. 10.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝⎛⎭⎫0,π2,f (x )<0,则( ) A .p 是假命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 C .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )>0 解析:选C 因为f ′(x )=3cos x -π,所以当x ∈⎝⎛⎭⎫0,π2 时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝⎛⎭⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.而p 的否定为∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0,故选C. 11.已知命题p :函数f (x )=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数y =x 2-a在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞)解析:选C 由题意可得,对命题p ,令f (0)·f (1)<0,即-1·(2a -2)<0,得a >1;对命题q ,令2-a <0,即a >2,则綈q 对应的a 的范围是(-∞,2].因为p 且綈q 为真命题,所以实数a 的取值范围是(1,2].12.在下列结论中,正确的个数是( )①命题p :“∃x 0∈R ,x 20-2≥0”的否定形式为綈p :“∀x ∈R ,x 2-2<0”;②O 是△ABC 所在平面上一点,若OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→,则O 是△ABC 的垂心;③“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N”的充分不必要条件;④命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”. A .1 B .2 C .3D .4解析:选C 由特称(存在性)命题与全称命题的关系可知①正确. ∵OA ―→·OB ―→=OB ―→·OC ―→,∴OB ―→·(OA ―→-OC ―→)=0,即OB ―→·CA ―→=0, ∴OB ―→⊥CA ―→.同理可知OA ―→⊥BC ―→,OC ―→⊥BA ―→,故点O 是△ABC 的垂心,∴②正确. ∵y =⎝⎛⎭⎫23x是减函数,∴当M >N 时,⎝⎛⎭⎫23M <⎝⎛⎭⎫23N ,当⎝⎛⎭⎫23M >⎝⎛⎭⎫23N 时,M <N . ∴“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N ”的既不充分也不必要条件,∴③错误. 由逆否命题的写法可知,④正确. ∴正确的结论有3个. 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________________________.解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x-a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R},集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}. 答案:{(2,3)}15.已知命题p :不等式xx -1<0的解集为{x |0<x <1};命题q :在△ABC 中,“A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论:①p 真q 假;②“p ∧q ”为真;③“p ∨q ”为真;④p 假q 真,其中正确结论的序号是________.解析:解不等式知,命题p是真命题,在△ABC中,“A>B”是“sin A>sin B”的充要条件,所以命题q是假命题,所以①③正确.答案:①③16.a,b,c为三个人,命题A:“如果b的年龄不是最大,那么a的年龄最小”和命题B:“如果c不是年龄最小,那么a的年龄最大”都是真命题,则a,b,c的年龄由小到大依次是________.解析:显然命题A和B的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A可知,当b不是最大时,则a是最小,所以c最大,即c>b>a;而它的逆否命题也为真,即“若a的年龄不是最小,则b的年龄是最大”为真,即b>a>c.同理,由命题B为真可得a>c>b或b>a>c.故由A与B均为真可知b>a>c,所以a,b,c三人的年龄大小顺序是:b最大,a次之,c最小.答案:c,a,b送分专题(二)函数的图象与性质[全国卷3年考情分析][题点·考法·全练]1.(2017·广州综合测试)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,1-log 2x ,x >0,则f (f (-3))=( ) A.43B .23C .-43D .3解析:选D 因为f (-3)=2-2=14,所以f (f (-3))=f ⎝⎛⎭⎫14=1-log 214=3. 2.函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 要使函数y =1-x 22x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以该函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1. 3.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x 的取值范围是⎝⎛⎭⎫-14,+∞.答案:⎝⎛⎭⎫-14,+∞ 4.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R)是偶函数,且它的值域为(-∞,2],则该函数的解析式为________.解析:由题意知:a ≠0,f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图象关于y 轴对称,所以2a +ab =0,b =-2.所以f (x )=-2x 2+2a 2,因为它的值域为(-∞,2],所以2a 2=2.所以f (x )=-2x 2+2.答案:f (x )=-2x 2+25.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.解析:当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,y =(1-2a )x +3a 必须取遍(-∞,1]内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.答案:⎣⎡⎭⎫0,12 [准解·快解·悟通][题点·考法·全练]1.(2018届高三·安徽名校阶段性测试)函数y =x 2ln|x ||x |的图象大致是( )解析:选D 易知函数y =x 2ln|x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x+1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D正确,故选D.2.已知函数f (x -1)是定义在R 上的奇函数,且在[0,+∞)上是增函数,则函数f (x )的图象可能是( )解析:选B 函数f (x -1)的图象向左平移1个单位,即可得到函数f (x )的图象,因为函数f (x -1)是定义在R 上的奇函数,所以函数f (x -1)的图象关于原点对称,所以函数f (x )的图象关于点(-1,0)对称,排除A 、C 、D ,选B.3.设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)解析:选C 因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y =f (x )的图象(如图所示),由于函数g (x )是二次函数,值域不会是选项A 、B ,易知,当g (x )的值域是[0,+∞)时,f (g (x ))的值域是[0,+∞).[准解·快解·悟通][题点·考法·全练]1.下列函数中,满足“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]<0”的是()A.f(x)=1x-x B.f(x)=x3C.f(x)=ln x D.f(x)=2x解析:选A“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)·[f(x1)-f(x2)]<0”等价于f(x)在(0,+∞)上为减函数,易判断f(x)=1x-x满足条件.2.(2017·广西三市第一次联考)已知f(x)是定义在R上的偶函数,且在区间(-∞,0]上单调递增,若实数a满足f(2log3a)>f(-2),则a的取值范围是()A.(-∞,3) B.(0,3)C.(3,+∞) D.(1,3)解析:选B∵f(x)是定义在R上的偶函数,且在区间(-∞,0]上单调递增,∴f(x)在区间[0,+∞)上单调递减.根据函数的对称性,可得f(-2)=f(2),∴f(2log3a)>f(2).∵2log 3a >0,f (x )在区间[0,+∞)上单调递减,∴0<2log 3a <2⇒log 3a <12⇒0<a < 3.3.(2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.解析:∵f (x +4)=f (x -2),∴f (x +6)=f (x ), ∴f (x )的周期为6,∵919=153×6+1,∴f (919)=f (1). 又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6. 答案:64.(2017·福建普通高中质量检测)已知函数f (x )=x 2(2x -2-x ),则不等式f (2x +1)+f (1)≥0的解集是________.解析:因为f (-x )=(-x )2(2-x -2x )=-x 2(2x -2-x )=-f (x ),所以函数f (x )是奇函数.不等式f (2x +1)+f (1)≥0等价于f (2x +1)≥f (-1).易知,当x >0时,函数f (x )为增函数,所以函数f (x )在R 上为增函数,所以f (2x +1)≥f (-1)等价于2x +1≥-1,解得x ≥-1.答案:{x |x ≥-1}[准解·快解·悟通][专题过关检测]一、选择题 1.函数f (x )=1x -1+x 的定义域为( ) A .[0,+∞) B .(1,+∞) C .[0,1)∪(1,+∞)D .[0,1)解析:选C 由题意知⎩⎪⎨⎪⎧x -1≠0,x ≥0,∴f (x )的定义域为[0,1)∪(1,+∞).2.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =1xB .y =|x |-1C .y =lg xD .y =⎝⎛⎭⎫12|x |解析:选B A 中函数y =1x 不是偶函数且在(0,+∞)上单调递减,故A 错误;B 中函数满足题意,故B 正确;C 中函数不是偶函数,故C 错误;D 中函数不满足在(0,+∞)上单调递增,故选B.3.已知函数f (x )=2×4x -a2x的图象关于原点对称,g (x )=ln(e x +1)-bx 是偶函数,则log a b =( )A .1B .-1C .-12D .14解析:选B 由题意得f (0)=0,∴a =2. ∵g (1)=g (-1),∴ln(e +1)-b =ln ⎝⎛⎭⎫1e +1+b , ∴b =12,∴log 212=-1.4.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2解析:选C 由图象可得a (-1)+b =3,ln(-1+a )=0,∴a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1, 故f (-3)=2×(-3)+5=-1.5.已知函数f (x )的定义域为(-∞,+∞),若f (x +2 017)=⎩⎨⎧2sin x ,x ≥0,lg (-x ),x <0,则f ⎝⎛⎭⎫2 017+π4·f (-7 983)=( ) A .2 016 B.14C .4 D.12 016解析:选C 由题意得,f ⎝⎛⎭⎫2 017+π4=2sin π4=1, f (-7 983)=f (2 017-10 000)=lg 10 000=4, ∴f ⎝⎛⎭⎫2 017+π4·f (-7 983)=4. 6.函数y =sin xx ,x ∈(-π,0)∪(0,π)的图象大致是( )解析:选A 函数y =sin xx ,x ∈(-π,0)∪(0,π)为偶函数,所以图象关于y 轴对称,排除B 、C ,又当x 趋近于π时,y =sin xx 趋近于0,故选A.7.(2016·山东高考)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A .-2 B .-1 C .0D .2解析:选D 由题意知,当x >12时,f ⎝⎛⎭⎫x +12=fx -12,则f (x +1)=f (x ). 又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1).又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.8.如图,动点P 在正方体ABCD -A 1B 1C 1D 1的体对角线BD 1上.过点P 作垂直于平面BB 1D 1D 的直线,与正方体的表面相交于M ,N 两点.设BP =x ,MN =y ,则函数y =f (x )的图象大致是( )解析:选B 设正方体的棱长为1,显然,当P 移动到体对角线BD 1的中点E 时,函数y =MN =AC =2取得唯一的最大值,所以排除A 、C ;当P 在BE 上时,分别过M ,N ,P 作底面的垂线,垂足分别为M 1,N 1,P 1,则y =MN =M 1N 1=2BP 1=2x cos ∠D 1BD =263x ,是一次函数,所以排除D.故选B.9.(2017·贵阳模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 10.函数f (x )=ax +b(x +c )2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0 解析:选C ∵f (x )=ax +b(x +c )2的图象与x 轴,y 轴分别交于N ,M ,且点M 的纵坐标与点N 的横坐标均为正,∴x =-b a >0,y =bc 2>0,故a <0,b >0,又函数图象间断点的横坐标为正,∴-c >0,c <0,故选C.11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,若f (2)=2,则不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞)解析:选C (转化法)由f (x 1)-f (x 2)x 1-x 2<1,可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,且是奇函数,F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x -1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.二、填空题13.函数f (x )=ln 1|x |+1的值域是________.解析:因为|x |≥0,所以|x |+1≥1. 所以0<1|x |+1≤1.所以ln 1|x |+1≤0, 即f (x )=ln1|x |+1的值域为(-∞,0]. 答案:(-∞,0]14.(2018届高三·安徽名校阶段性测试)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=________.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-2-log 23=-2log 213=-13.答案:-1315.若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是________.解析:如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象,由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则⎩⎪⎨⎪⎧a >1,log a 2≥1,解得1<a ≤2.答案:(1,2]16.(2017·惠州三调)已知定义在R 上的函数y =f (x )满足条件f ⎝⎛⎭⎫x +32=-f (x ),且函数y =f ⎝⎛⎭⎫x -34为奇函数,给出以下四个命题: ①函数f (x )是周期函数;②函数f (x )的图象关于点⎝⎛⎭⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中真命题的序号为____________.解析:f (x +3)=f ⎣⎡⎦⎤⎝⎛⎭⎫x +32+32=-f ⎝⎛⎭⎫x +32=f (x ),所以f (x )是周期为3的周期函数,①正确;函数f ⎝⎛⎭⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝⎛⎭⎫-34,0对称,②正确;因为f (x )的图象关于点⎝⎛⎭⎫-34,0对称,-34=-x +⎝⎛⎭⎫-32+x 2,所以f (-x )=-f ⎝⎛⎭⎫-32+x , 又f ⎝⎛⎭⎫-32+x =-f ⎝⎛⎭⎫-32+x +32=-f (x ), 所以f (-x )=f (x ),③正确;f (x )是周期函数在R 上不可能是单调函数,④错误. 故真命题的序号为①②③. 答案:①②③送分专题(三) 平面向量[全国卷3年考情分析][题点·考法·全练]1.(2017·贵州适应性考试)已知向量e 1与e 2不共线,且向量AB ―→=e 1+me 2,AC ―→=ne 1+e 2,若A ,B ,C 三点共线,则实数m ,n 满足的条件是( )A .mn =1B .mn =-1C .m +n =1D .m +n =-1解析:选A 法一:因为A ,B ,C 三点共线,所以一定存在一个确定的实数λ,使得AB―→=λAC ―→,所以有e 1+me 2=nλe 1+λe 2,由此可得⎩⎪⎨⎪⎧1=nλ,m =λ,所以mn =1.法二:因为A ,B ,C 三点共线,所以必有1n =m1,所以mn =1.2.如图所示,下列结论正确的是( )①PQ ―→=32a +32b ;②PT ―→=32a -b ;③PS ―→=32a -12b ;④PR ―→=32a +b .A .①②B .③④C .①③D .②④解析:选C ①根据向量的加法法则,得PQ ―→=32a +32b ,故①正确;②根据向量的减法法则,得PT ―→=32a -32b ,故②错误;③PS ―→=PQ ―→+QS ―→=32a +32b -2b =32a -12b ,故③正确;④PR ―→=PQ ―→+QR ―→=32a +32b -b =32a +12b ,故④错误.故正确命题的结论为①③.3.已知平面内不共线的四点O ,A ,B ,C ,若OA ―→-3OB ―→+2OC ―→=0,则|AB ―→||BC ―→|=________.解析:由已知得OA ―→-OB ―→=2(OB ―→-OC ―→),即BA ―→=2CB ―→, ∴|BA ―→|=2|CB ―→|,∴|AB ―→||BC ―→|=2.答案:24.已知e 1,e 2是不共线向量,a =me 1+2e 2,b =ne 1-e 2,且mn ≠0,若a ∥b ,则mn 等于________.解析:∵a ∥b ,∴a =λb ,即me 1+2e 2=λ(ne 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得m n =-2.答案:-2[准解·快解·悟通][题点·考法·全练]1.已知向量m =(t +1,1),n =(t +2,2),若(m +n )⊥(m -n ),则t =( ) A .0 B .-3 C .3D .-1解析:选B 法一:由(m +n )⊥(m -n )可得(m +n )·(m -n )=0,即m 2=n 2,故(t +1)2+1=(t +2)2+4,解得t =-3.法二:m +n =(2t +3,3),m -n =(-1,-1),∵(m +n )⊥(m -n ),∴-(2t +3)-3=0,解得t =-3.2.(2017·洛阳统考)已知向量a =(1,0),|b |=2,a 与b 的夹角为45°,若c =a +b ,d =a -b ,则c 在d 方向上的投影为( )A.55B .-55C .1D .-1解析:选D 依题意得|a |=1,a ·b =1×2×cos 45°=1,|d |=(a -b )2=a 2+b 2-2a ·b =1,c ·d =a 2-b 2=-1,因此c 在d 方向上的投影等于c ·d|d |=-1. 3.已知向量a =(2,1),b =(1,k ),且a 与b 的夹角为锐角,则实数k 的取值范围是( ) A.⎝⎛⎭⎫-2,12 B.⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞ C .(-2,+∞)D .[-2,+∞)解析:选B 当a ,b 共线时,2k -1=0,k =12,此时a ,b 方向相同,夹角为0,所以要使a 与b 的夹角为锐角,则有a·b >0且a ,b 不共线.由a·b =2+k >0得k >-2,又k ≠12,即实数k 的取值范围是⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞,选B. 4.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 解析:法一:易知|a +2b |=|a |2+4a ·b +4|b |2=4+4×2×1×12+4=2 3.法二:(数形结合法)由|a |=|2b |=2,知以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC ―→|.又∠AOB =60°,所以|a +2b |=2 3.答案:2 35.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析:因为(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2|·|e 1+λe 2|=3-λ21+λ2,故3-λ21+λ2=12,解得λ=33.答案:33[准解·快解·悟通][题点·考法·全练]1.在△ABC 中,∠ABC =90°,AB =6,点D 在边AC 上,且2AD ―→=DC ―→,则BA ―→·BD ―→的值是( )A .48B .24C .12D .6解析:选B 法一:由题意得,BA ―→·BC ―→=0,BA ―→·CA ―→=BA ―→·(BA ―→-BC ―→)=|BA ―→|2=36,∴BA ―→·BD ―→=BA ―→·(BC ―→+CD ―→)=BA ―→·⎝⎛⎭⎫BC ―→+23 CA ―→ =0+23×36=24. 法二:(特例法)若△ABC 为等腰直角三角形,建立如图所示的平面直角坐标系,则A (6,0),C (0,6).由2AD ―→=DC ―→,得D (4,2).∴BA ―→·BD ―→=(6,0)·(4,2)=24.2.如图所示,已知点G 是△ABC 的重心,过点G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则x +2y 的最小值为( )A .2 B.13 C.3+223D.34解析:选C 由已知可得AG ―→=23×12(AB ―→+AC ―→)=13AB ―→+13AC ―→=13x AM ―→+13y AN ―→,又M ,G ,N 三点共线,故13x +13y=1,∴1x +1y =3,则x +2y =(x +2y )·⎝⎛⎭⎫1x +1y ·13=13⎝⎛⎭⎫3+2y x +x y ≥3+223(当且仅当x =2y 时取等号).3.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ―→·(PB ―→+PC ―→)的最小值是( )A .-2B .-32C .-43D .-1解析:选B 如图,以等边三角形ABC 的底边BC 所在直线为x轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则PA ―→=(-x, 3-y ),PB ―→=(-1-x ,-y ),PC ―→=(1-x ,-y ),所以PA ―→·(PB ―→+PC ―→)=(-x ,3-y )·(-2x ,-2y )=2x 2+2⎝⎛⎭⎫y -322-32,当x =0,y =32时,PA ―→·(PB ―→+PC ―→)取得最小值,为-32.4.如图,已知△ABC 中,∠BAC =90°,∠B =30°,点P 在线段BC 上运动,且满足CP ―→=λCB ―→,当PA ―→·PC ―→取到最小值时,λ的值为( )A.14 B.15 C.16D.18解析:选D 如图所示,建立平面直角坐标系.不妨设BC =4,P (x,0)(0≤x ≤4),则A (3,3),C (4,0),∴PA ―→·PC ―→=(3-x ,3)·(4-x,0)=(3-x )(4-x )=x 2-7x +12=⎝⎛⎭⎫x -722-14.当x =72时,PA ―→·PC ―→取得最小值-14.∵CP ―→=λCB ―→,∴⎝⎛⎭⎫-12,0=λ(-4,0), ∴-4λ=-12,解得λ=18.故选D.5.如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP ―→=3PD ―→,AP ―→·BP ―→=2,则AB ―→·AD ―→的值是________.解析:因为AP ―→=AD ―→+DP ―→=AD ―→+14AB ―→,BP ―→=BC ―→+CP ―→=AD ―→-34AB ―→,所以AP ―→·BP ―→=⎝⎛⎭⎫AD ―→+14AB ―→·⎝⎛⎭⎫AD ―→-34AB ―→= |AD ―→|2-316|AB ―→|2-12AD ―→·AB ―→=2,将AB =8,AD =5代入解得AB ―→·AD ―→=22. 答案:22[准解·快解·悟通][专题过关检测]一、选择题1.设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32B .-53C.53D .32解析:选A 因为c =a +kb =(1+k,2+k ),又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.2.(2017·贵州适应性考试)已知向量a =(2,4),b =(-1,1),c =(2,3),若a +λb 与c 共线,则实数λ=( )A.25 B .-25C.35D .-35解析:选B 法一:a +λb =(2-λ,4+λ),c =(2,3),因为a +λb 与c 共线,所以必定存在唯一实数μ,使得a +λb =μc ,所以⎩⎪⎨⎪⎧2-λ=2μ,4+λ=3μ,解得⎩⎨⎧μ=65,λ=-25.法二:a +λb =(2-λ,4+λ),c =(2,3),由a +λb 与c 共线可知2-λ2=4+λ3,解得λ=-25. 3.(2018届高三·云南11校跨区调研)已知平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( )A .13+6 2B .2 5 C.30D .34解析:选D 依题意得a 2=2,a ·b =2×2×cos 45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34.4.在等腰梯形ABCD 中,AB ―→=-2CD ―→CD ―→,M 为BC 的中点,则AM ―→=( ) A.12AB ―→+12AD ―→ B.34AB ―→+12AD ―→ C.34AB ―→+14AD ―→ D.12AB ―→+34AD ―→ 解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB―→+AC ―→)=12(AB ―→+AD ―→+DC ―→)=12⎝⎛⎭⎫AB ―→+AD ―→+12AB ―→=34AB ―→+12AD ―→.5.(2017·成都二诊)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6 B.5π6 C.π4D.3π4解析:选A 法一:因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |=3,又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b|a +2b ||b |=343×12=32, 所以a +2b 与b 的夹角为π6.法二:(特例法)设a =(1,0),b =⎝⎛⎭⎫12cos π3,12sin π3=⎝⎛⎭⎫14,34,则(a +2b )·b =⎝⎛⎭⎫32,32·⎝⎛⎭⎫14,34=34,|a +2b |=⎝⎛⎭⎫322+⎝⎛⎭⎫322=3,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6. 6.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB ―→在CD ―→方向上的投影为( ) A.322B .3152C .-322D .-3152解析:选A 由题意知AB ―→=(2,1),CD ―→=(5,5),则AB ―→在CD ―→方向上的投影为|AB ―→|·cos 〈AB ―→,CD ―→〉=AB ―→·CD ―→|CD ―→|=322.7.(2017·安徽二校联考)在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD ―→·AE ―→等于( )A.16B.29C.1318D.13解析:选C 法一:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2=BD 2+AB 2-2BD ·AB ·cos 60° =⎝⎛⎭⎫132+12-2×13×1×12=79, 即AD =73,同理可得AE =73, 在△ADE 中,由余弦定理得 cos ∠DAE =AD 2+AE 2-DE 22AD ·AE=79+79-⎝⎛⎭⎫1322×73×73=1314,所以AD ―→·AE ―→=|AD ―→|·|AE ―→|cos ∠DAE =73×73×1314=1318. 法二:如图,建立平面直角坐标系,由正三角形的性质易得A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD ―→=⎝⎛⎭⎫-16,-32,AE ―→=⎝⎛⎭⎫16,-32,所以AD ―→·AE ―→=⎝⎛⎭⎫-16,-32·⎝⎛⎭⎫16,-32=-136+34=1318.8.(2017·东北四市模拟)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为( )A.52B.102C. 5D.10解析:选C 由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3), 则|OC ―→|=(1+2m )2+(4m -3)2=20m 2-20m +10 =20⎝⎛⎭⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.9.已知向量m ,n 的模分别为2,2,且m ,n 的夹角为45°.在△ABC 中,AB ―→=2m +2n ,AC ―→=2m -6n ,BC ―→=2BD ―→,则|AD ―→|=( )A .2B .2 2C .4D .8解析:选B 因为BC ―→=2BD ―→,所以点D 为边BC 的中点,所以AD ―→=12(AB ―→+AC ―→)=2m -2n ,所以|AD ―→|=2|m -n |=2(m -n )2=22+4-2×2×2×22=2 2. 10.(2018届高三·湘中名校联考)若点P 是△ABC 的外心,且PA ―→+PB ―→+λPC ―→=0,C =120°,则实数λ的值为( )A.12 B .-12C .-1D .1解析:选C 设AB 中点为D ,则PA ―→+PB ―→=2PD ―→PD ―→. 因为PA ―→+PB ―→+λPC ―→=0,所以2PD ―→+λPC ―→=0,所以向量PD ―→,PC ―→共线. 又P 是△ABC 的外心,所以PA =PB , 所以PD ⊥AB ,所以CD ⊥AB .因为∠ACB =120°,所以∠APB =120°, 所以四边形APBC 是菱形, 从而PA ―→+PB ―→=2PD ―→=PC ―→,所以2PD ―→+λPC ―→=PC ―→+λPC ―→=0,所以λ=-1.11.已知Rt △AOB 的面积为1,O 为直角顶点,设向量a =OA ―→|OA ―→|,b =OB ―→|OB ―→|,OP ―→=a +2b ,则PA ―→·PB ―→的最大值为( )A .1B .2C .3D .4解析:选A 如图,设A (m,0),B (0,n ),∴mn =2,则a =(1,0),b =(0,1),OP ―→=a +2b =(1,2),PA ―→=(m -1,-2),PB ―→=(-1,n -2),PA ―→·PB ―→=5-(m +2n )≤5-22nm =1,当且仅当m =2n ,即m =2,n =1时,等号成立.12.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF ―→·BC ―→的值为( )A .-58B.18 C.14D.118解析:选B 如图所示, AF ―→=AD ―→+DF ―→.又D ,E 分别为AB ,BC 的中点, 且DE =2EF ,所以AD ―→=12AB ―→,DF ―→=12AC ―→+14AC ―→=34AC ―→,所以AF ―→=12AB ―→+34AC ―→.又BC ―→=AC ―→-AB ―→,则AF ―→·BC ―→=⎝⎛⎭⎫12AB ―→+34AC ―→·(AC ―→-AB ―→)=12AB ―→·AC ―→-12AB ―→2+34AC ―→2-34AC ―→·AB ―→ =34AC ―→2-12AB ―→2-14AC ―→·AB ―→. 又|AB ―→|=|AC ―→|=1,∠BAC =60°, 故AF ―→·BC ―→=34-12-14×1×1×12=18.二、填空题13.在△ABC 中,点O 在线段BC 的延长线上,且||BO ―→=3||CO―→,当AO ―→=x AB ―→+y AC ―→时,则x -y =________.解析:∵AO ―→=AB ―→+BO ―→=AB ―→+32BC ―→=AB ―→+32(AC ―→-AB ―→)=-12AB ―→+32AC ―→,∴x -y =-2.答案:-214.已知a ,b 是非零向量,f (x )=(ax +b )·(bx -a )的图象是一条直线,|a +b |=2,|a |=1,则f (x )=________.解析:由f (x )=a ·bx 2-(a 2-b 2)x -a ·b 的图象是一条直线,可得a ·b =0.因为|a +b |=2,所以a 2+b 2=4.因为|a |=1,所以a 2=1,b 2=3,所以f (x )=2x . 答案:2x15.(2017·天津高考)在△ABC 中,∠A =60°,AB =3,AC =2.若BD ―→=2DC ―→,AE ―→=λAC ―→-AB ―→ (λ∈R),且AD ―→·AE ―→=-4,则λ的值为________.解析:法一:AD ―→=AB ―→+BD ―→=AB ―→+23BC ―→=AB ―→+23(AC ―→-AB ―→)=13AB ―→+23AC ―→.又AB ―→·AC ―→=3×2×12=3,所以AD ―→·AE ―→=⎝⎛⎭⎫13AB ―→+23AC ―→·(-AB ―→+λAC ―→) =-13AB ―→2+⎝⎛⎭⎫13λ-23AB ―→·AC ―→+23λAC ―→2 =-3+3⎝⎛⎭⎫13λ-23+23λ×4=113λ-5=-4, 解得λ=311.法二:以点A 为坐标原点,AB ―→的方向为x 轴正方向,建立平面直角坐标系,不妨假设点C 在第一象限,则A (0,0),B (3,0),C (1,3). 由BD ―→=2DC ―→,得D ⎝⎛⎭⎫53,233, 由AE ―→=λAC ―→-AB ―→,得E (λ-3,3λ),则AD ―→·AE ―→=⎝⎛⎭⎫53,233·(λ-3,3λ)=53(λ-3)+233×3λ=113λ-5=-4,解得λ=311.答案:31116.定义平面向量的一种运算a ⊙b =|a +b |·|a -b |·sin 〈a ,b 〉,其中〈a ,b 〉是a 与b 的夹角,给出下列命题:①若〈a ,b 〉=90°,则a ⊙b =a 2+b 2;②若|a |=|b |,则(a +b )⊙(a -b )=4a ·b ;③若|a |=|b |,则a ⊙b ≤2|a |2;④若a =(1,2),b =(-2,2),则(a +b )⊙b =10.其中真命题的序号是________.解析:①中,因为〈a ,b 〉=90°,则a ⊙b =|a +b |·|a -b |=a 2+b 2,所以①成立;②中,因为|a |=|b |,所以〈(a +b ),(a -b )〉=90°,所以(a +b )⊙(a -b )=|2a |·|2b |=4|a ||b |,所以②不成立;③中,因为|a |=|b |,所以a ⊙b =|a +b |·|a -b |·sin 〈a ,b 〉≤|a +b |·|a -b |≤|a +b |2+|a -b |22=2|a |2,所以③成立;④中,因为a =(1,2),b =(-2,2),所以a +b =(-1,4),sin 〈(a +b ),b 〉=33434,所以(a +b )⊙b =35×5×33434=453434,所以④不成立.故①③正确.答案:①③送分专题(四) 不等式[全国卷3年考情分析][题点·考法·全练]1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( )A .2B .-2C .-12D .12解析:选B 根据一元二次不等式与之对应方程的关系知-1,-12是一元二次方程ax 2+(a -1)x -1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2. 2.若x >y >0,m >n ,则下列不等式正确的是( ) A .xm >ymB .x -m ≥y -nC.x n >y mD .x >xy解析:选D A 不正确,因为同向同正不等式相乘,不等号方向不变,m 可能为0或负数;B 不正确,因为同向不等式相减,不等号方向不确定;C 不正确,因为m ,n 的正负不确定.故选D.3.(2017·云南第一次统一检测)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≥1,21-x -2,x <1,则不等式f (x -1)≤0的解集为( )A .{x |0≤x ≤2}B .{x |0≤x ≤3}C .{x |1≤x ≤2}D .{x |1≤x ≤3}解析:选D 由题意,得f (x -1)=⎩⎪⎨⎪⎧2x -2-2,x ≥2,22-x -2,x <2.当x ≥2时,由2x -2-2≤0,解得2≤x ≤3;当x <2时,由22-x -2≤0,解得1≤x <2.综上所述,不等式f (x -1)≤0的解集为{x |1≤x ≤3}.4.已知x ∈(-∞,1],不等式1+2x +(a -a 2)·4x >0恒成立,则实数a 的取值范围为( ) A.⎝⎛⎭⎫-2,14 B .⎝⎛⎦⎤-∞,14 C.⎝⎛⎭⎫-12,32 D .(-∞,6]解析:选C 根据题意,由于1+2x +(a -a 2)·4x >0对于一切的x ∈(-∞,1]恒成立,令2x =t (0<t ≤2),则可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+t t 2,故只要求解h (t )=-1+tt2(0<t ≤2)的最大值即可,h (t )=-1t 2-1t =-⎝⎛⎭⎫1t +122+14,又1t ≥12,结合二次函数图象知,当1t =12,即t =2时,h (x )取得最大值-34,即a -a 2>-34,所以4a 2-4a -3<0,解得-12<a <32,故实数a的取值范围为⎝⎛⎭⎫-12,32. [准解·快解·悟通]。
2018年高考数学大二轮、小三轮复习培优讲义全版 课标理科
最新高考数学大二轮、小三轮精准复习课堂讲义专题一函数第1讲函数的图象与性质1第2讲基本初等函数9第3讲分段函数与绝对值函数15第4讲函数的零点问题21第5讲函数的综合应用28专题二导数第6讲曲线的切线35第7讲函数的单调性40第8讲函数的极值与最值45第9讲导数及其应用53专题三不等式第10讲三个“二次”的问题62第11讲基本不等式与线性规划68专题四三角函数、向量与解三角形第12讲三角函数的化简与求值74第13讲三角函数的图象及性质79第14讲正、余弦定理及其应用84第15讲平面向量数量积89第16讲向量与三角函数的综合问题93专题五立体几何第17讲直线与平面的位置关系98第18讲平面与平面的位置关系103第19讲立体几何中的计算108专题六解析几何第20讲直线与圆115第21讲隐性圆问题121第22讲圆锥曲线的基本量计算125第23讲圆锥曲线中定点、定值问题130第24讲圆锥曲线中最值、范围问题138第25讲圆锥曲线中探索性问题144专题七数列第26讲等差、等比数列的基本运算151第27讲等差、等比数列的判定与证明155第28讲等差、等比数列的综合应用161第29讲数列的求和及其运用166第30讲数列中的创新性问题171专题八思想方法第31讲函数方程思想177第32讲数形结合思想183第33讲分类讨论思想190第34讲化归转化思想198专题九理科附加第35讲曲线与方程205第36讲空间向量与立体几何212第37讲随机变量及其分布列219第38讲数学归纳法225第39讲计数原理与二项式定理230课后训练专题一函数第1讲函数的图象与性质235第2讲基本初等函数238第3讲分段函数与绝对值函数240第4讲函数的零点问题243第5讲函数的综合应用246专题二导数第6讲曲线的切线249第7讲函数的单调性251第8讲函数的极值与最值253第9讲导数及其应用255专题三不等式第10讲三个“二次”的问题258第11讲基本不等式与线性规划261专题四三角函数、向量与解三角形第12讲三角函数的化简与求值264第13讲三角函数的图象及性质267第14讲正、余弦定理及其应用270第15讲平面向量数量积272第16讲向量与三角的综合问题274专题五立体几何第17讲直线与平面的位置关系277第18讲平面与平面的位置关系280第19讲立体几何中的计算282专题六解析几何第20讲直线与圆285第21讲隐性圆问题287第22讲圆锥曲线的基本量计算291第23讲圆锥曲线中定点、定值问题294第24讲圆锥曲线中最值、范围问题297第25讲圆锥曲线中探索性问题300专题七数列第26讲等差、等比数列的基本运算303第27讲等差、等比数列的判定与证明305第28讲等差、等比数列的综合应用307第29讲数列的求和及其运用310第30讲数列中的创新性问题312专题八思想方法第31讲函数方程思想315第32讲数形结合思想318第33讲分类讨论思想321第34讲化归转化思想324专题九理科附加第35讲曲线与方程327第36讲空间向量与立体几何330第37讲随机变量及其分布列333第38讲数学归纳法335第39讲计数原理与二项式定理338小三轮回归第一部分知识微专题——回归课本第1练函数图象与性质340第2练基本初等函数342第3练函数与方程344第4练用导数研究函数的性质346第5练不等式的解法348第6练基本不等式与线性规划350第7练三角函数化简与求值352第8练解三角形354第9练三角函数与平面向量356第10练等差数列与等比数列358第11练数列的通项与求和360第12练直线与圆362第13练圆锥曲线364第14练立体几何366第二部分热点微专题——抢分冲刺第1练多元函数的最值问题369第2练三角形中的三角函数371第3练解析几何中最值与范围问题374第4练实际应用性问题377第5练探索与创新性问题380第三部分压轴预测——考前热身2018年江苏高考预热卷(一)3832018年江苏高考预热卷(二)388专题一 函 数 第1讲 函数的图象与性质1. 函数的图象与性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一是识图,二是用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合在一起考查,既有具体函数也有抽象函数.2. 函数的图象与性质会涉及如下题型:(1) 函数“二域三性”的考查;(2) 函数性质在解决不等式问题中的应用;(3) 函数与方程问题;(4) 函数性质在数列等问题中的应用;(5) 利用导数来刻画函数的性质.1. 根据函数f(x)=x 2+1的图象,若0<x 1<x 2,则f(x 1)________f(x 2). 答案:<解析:作出函数图象,f(x)在(0,+∞)上单调递增,所以f(x 1)<f(x 2). 2. (2017·全国卷Ⅰ)函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x -2)≤1的x 的取值范围是________.答案:[1,3] 解析:因为f(x)为奇函数,所以f(-1)=1,不等式-1≤f(x -2)≤1,即f(1)≤f(x -2)≤f(-1).因为f(x)单调递减,所以-1≤x -2≤1,解得1≤x ≤3,故x 的取值范围是[1,3].3. 若关于x 的方程|x|=a -x 只有一个解,则实数a 的取值范围是________. 答案:(0,+∞)解析:由题意a =|x|+x ,令y =|x|+x =⎩⎪⎨⎪⎧2x ,x ≥0,0,x <0,图象如图所示,故要使a =|x|+x 只有一解,则a>0.4. (2017·山东卷)已知f(x)是定义在R 上的偶函数,且f(x +4)=f(x -2).若当x ∈[-3,0]时,f(x)=6-x,则f(919)=________.答案:6解析:由f(x +4)=f(x -2)可知周期T =6,所以f(919)=f(153×6+1)=f(1).因为f(x)为偶函数,所以f(1)=f(-1)=6-(-1)=6., 一) 研究函数的单调性, 1) 已知函数f(x)=a -1|x|.(1) 求证:函数y =f(x)在(0,+∞)上是增函数;(2) 若f(x)<2x 在(1,+∞)上恒成立,求实数a 的取值范围.(1) 证明:当x ∈(0,+∞)时,f(x)=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0,f(x 2)-f(x 1)=(a -1x 2)-(a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,所以f(x)在(0,+∞)上是增函数.(2) 解:由题意a -1x<2x 在(1,+∞)上恒成立,设h(x)=2x +1x,则a<h(x)在(1,+∞)上恒成立. 任取x 1,x 2∈(1,+∞)且x 1<x 2,h(x 1)-h(x 2)=(x 1-x 2)(2-1x 1x 2).因为1<x 1<x 2,所以x 1-x 2<0,x 1x 2>1,所以2-1x 1x 2>0,所以h(x 1)<h(x 2),所以h(x)在(1,+∞)上单调递增. 故a ≤h(1),即a ≤3,所以实数a 的取值范围是(-∞,3].已知a 为实常数,y =f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x<0时,f(x)=2x -a 3x2+1.(1) 求函数f(x)的单调区间;(2) 若f(x)≥a -1对一切x >0成立,求a 的取值范围.解:(1) 由奇函数的对称性可知,我们只要讨论f(x)在区间(-∞,0)上的单调性即可.f ′(x)=2+2a 3x3,令f′(x)=0,得x =-a.① 当a ≤0时,f ′(x)>0,故f(x)在区间(-∞,0)上单调递增; ② 当a >0时,x ∈(-∞,-a),f ′(x)>0,所以f(x)在区间(-∞,-a)上单调递增;x ∈(-a ,0),f ′(x)<0,所以f(x)在区间(-a ,0)上单调递减.综上所述,当a ≤0时,f(x)的单调增区间为(-∞,0),(0,+∞);当a >0时,f(x)的单调增区间为(-∞,-a),(a ,+∞),单调减区间为(-a ,0),(0,a).(2) 因为f(x)为奇函数,所以当x >0时,f(x)=-f(-x)=-(-2x -a 3x 2+1)=2x +a 3x2-1.① 当a <0时,要使f(x)≥a -1对一切x >0成立,即2x +a3x2≥a 对一切x >0成立.当x=-a2>0时,有-a +4a ≥a ,所以a ≥0,与a <0矛盾.所以a <0不成立.② 当a =0时,f(x)=2x -1>-1=a -1对一切x >0成立,故a =0满足题设要求. ③ 当a >0时,由(1)可知f(x)在(0,a)上是减函数,在(a ,+∞)上是增函数,所以f min (x)=f(a)=3a -1>a -1,所以a >0时也满足题设要求.综上所述,a 的取值范围是[0,+∞)., 二) 研究函数的最值 , 2) 已知函数f(x)=x 2-1,g(x)=a|x -1|.(1) 若关于x 的方程|f(x)|=g(x)只有一个实数解,求实数a 的取值范围;(2) 求函数h(x)=|f(x)|+g(x)在区间[-2,2] 上的最大值(直接写出结果,不需给出演算步骤).解:(1) 方程|f(x)|=g(x),即|x 2-1|=a|x -1|,变形得|x -1|(|x +1|-a)=0,显然,x =1已是该方程的根,从而欲使原方程只有一解,即要求方程|x +1|=a 有且仅有一个等于1的解或无解,结合图形得a<0或a =2.(2) 因为h(x)=|f(x)|+g(x)=|x 2-1|+a|x -1|=⎩⎪⎨⎪⎧x 2+ax -a -1,x ≥1,-x 2-ax +a +1,-1≤x<1,x 2-ax +a -1,x<-1.① 当a2>1,即a>2时,结合图形可知h(x)在[-2,1]上单调递减,在[1,2]上单调递增,且h(-2)=3a +3,h(2)=a +3.经比较,此时h(x)在[-2,2]上的最大值为3a +3.② 当0≤a 2≤1,即0≤a ≤2时,结合图形可知h(x)在[-2,-1],[-a2,1]上递减,在[-1,-a 2],[1,2]上递增,且h(-2)=3a +3,h(2)=a +3,h(-a 2)=a24+a +1.经比较,知此时h(x)在[-2,2]上的最大值为3a +3.③ 当-1≤a2<0,即-2≤a<0时,结合图形经比较,知此时h(x)在[-2,2]上的最大值为a +3.④ 当-32≤a2<-1,即-3≤a<-2时,结合图形经比较,知此时h(x)在[-2,2]上的最大值为a +3.⑤ 当a 2<-32,即a<-3时,结合图形可知h(x)在[-2,2]上的最大值为h(1)=0.综上所述,当a ≥0时,h(x)在[-2,2]上的最大值为3a +3; 当-3≤a<0时,h(x)在[-2,2]上的最大值为a +3; 当a<-3时,h(x)在[-2,2]上的最大值为0.设a 为实数,函数f(x)=x 2+|x -a|+1,x ∈R .(1) 讨论f(x)的奇偶性; (2) 求f(x)的最小值.解:(1) 当a =0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时f(x)为偶函数.当a ≠0时,f(a)=a 2+1,f(-a)=a 2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a).此时函数f(x)既不是奇函数,也不是偶函数.(2) ① 当x ≤a 时,函数f(x)=x 2-x +a +1=(x -12)2+a +34.若a ≤12,则函数f(x)在(-∞,a]上单调递减,从而函数f(x)在(-∞,a]上的最小值为f(a)=a 2+1;若a >12,则函数f(x)在(-∞,a]上的最小值为f(12)=34+a ,且f(12)≤f(a).② 当x ≥a 时,函数f(x)=x 2+x -a +1=(x +12)2-a +34.若a ≤-12,则函数f(x)在[a ,+∞)上的最小值为f(-12)=34-a ,且f(-12)≤f(a);若a >-12,则函数f(x)在[a ,+∞)上单调递增,从而函数f(x)在[a ,+∞)上的最小值为f(a)=a 2+1.综上,当a ≤-12时,函数f(x)的最小值是34-a ;当-12<a ≤12时,函数f(x)的最小值是a 2+1;当a >12时,函数f(x)的最小值是a +34.点评:函数奇偶性的讨论问题是中学数学的基本问题,如果平时注意知识的积累,对解此题会有较大帮助.因为x ∈R ,f(0)=|a|+1≠0,由此排除f(x)是奇函数的可能性.运用偶函数的定义分析可知,当a =0时,f(x)是偶函数,第(2)题主要考查学生对分类讨论思想、对称思想的运用., 三) 研究函数的图象 , 3) 已知f(x)为定义在R 上的奇函数,当x>0时,f(x)为二次函数,且满足f(2)=1,f(x)在(0,+∞)上的两个零点为1和3.(1) 求函数f(x)在R 上的解析式;(2) 作出f(x)的图象,并根据图象讨论关于x 的方程f(x)-c =0(c ∈R )根的个数.解:(1) 由题意,当x>0时,设f(x)=a(x -1)·(x -3)(a ≠0), 因为f(2)=1,所以a =-1,所以f(x)=-x 2+4x -3. 当x<0时,-x>0,因为f(x)为R 上的奇函数, 所以f(-x)=-f(x),所以f(x)=-f(-x)=-[-(-x)2+4(-x)-3]=x 2+4x +3, 即x<0时,f(x)=x 2+4x +3.因为f(x)是奇函数,所以当x =0时,得f(0)=0,所以f(x)=⎩⎪⎨⎪⎧-x 2+4x -3,x>0,0,x =0,x 2+4x +3,x<0.(2) 作出f(x)的图象(如图所示),由f(x)-c =0得c =f(x),在图中作y =c ,根据交点讨论方程的根:当c ≥3或c ≤-3时,方程有1个根; 当1<c<3或-3<c<-1时,方程有2个根; 当c =-1或c =1时,方程有3个根; 当0<c<1或-1<c<0时,方程有4个根; 当c =0时,方程有5个根.设函数f(x)=ax 2+bx +c(a>b>c)的图象经过点A(m 1,f(m 1))和点B(m 2,f(m 2)),且f(1)=0.若a 2+[f(m 1)+f(m 2)]·a +f(m 1)·f(m 2)=0,则b 的取值范围是________.答案:[0,+∞) 解析:因为f(1)=0,所以c =-(a +b).又由a>b>c 可知a>0,c<0.由a 2+[f(m 1)+f(m 2)]·a +f(m 1)·f(m 2)=0可得a =-f(m 1)或a =-f(m 2),即f(x)+a =0的两个根分别为m 1,m 2,即ax 2+bx +c +a =0有两个根m 1,m 2.所以ax 2+bx -b =0有两个根m 1,m 2,所以Δ=b 2-4a(-b)=b(b +4a)≥0,所以b ≥0或b ≤-4a.当b ≤-4a 时,4a +b ≤0,所以4a +b +c<0,所以a+b +c<0,与a +b +c =0矛盾,所以b ≥0., 四) 函数图象与性质的综合应用, 4) (2017·张家港模拟)已知函数f(x)=x|x -a|+2x(a ∈R ). (1) 当a =4时,解不等式f(x)≥8;(2) 当a ∈[0,4]时,求f(x)在区间[3,4]上的最小值;(3) 若存在a ∈[0,4],使得关于x 的方程f(x)=tf(a)有3个不相等的实数根,求实数t 的取值范围.解:(1) 当a =4时,不等式可化为x|x -4|+2x ≥8. 若x ≥4,则x 2-2x -8≥0,所以x ≥4; 若x<4,则x 2-6x +8≤0,所以2≤x<4. 综上,不等式的解集为{x|x ≥2}.(2) f(x)=⎩⎪⎨⎪⎧x 2-(a -2)x ,x ≥a ,-x 2+(a +2)x ,x<a=⎩⎨⎧(x -a -22)2-(a -22)2,x ≥a ,-(x -a +22)2+(a +22)2,x <a.下面比较a -22,a +22,a 的大小:因为a ∈[0,4],所以当a ∈[0,2]时,a -22-a =-a -22<0,a +22-a =2-a2≥0,所以作出函数f(x)的图象如图1.所以f(x)在(-∞,a],[a ,+∞)上为增函数, 即f(x)在R 上是增函数,所以f(x)在区间[3,4]上的最小值为f(3)=15-3a.,图1) ,图2)当a ∈(2,4]时,a -22-a =-a -22<0,a +22-a =2-a 2<0,a +22≤3.所以作出函数f(x)的图象如图2.所以f(x)在(-∞,a +22],[a ,+∞)上为增函数,在[a +22,a]上为减函数,所以若a ≤3,则f(x)在区间[3,4]上为增函数,最小值为f(3)=15-3a ; 若3<a ≤4,则f(x)在区间[3,4]上的最小值为f(a)=2a.(3) 由(2)知当a ∈[0,2]时,如图1,关于x 的方程f(x)=tf(a)不可能有3个不相等的实数根.当a ∈(2,4]时,要存在a ,使得关于x 的方程f(x)=tf(a)有3个不相等的实数根,则f(a)<tf(a)<f(a +22)有解,所以1<t<⎣⎢⎢⎡⎦⎥⎥⎤f (a +22)f (a )max (2<a ≤4), f (a +22)f (a )=18(a +4a +4),且函数y =a +4a 在区间(2,4]上为增函数,所以⎣⎢⎢⎡⎦⎥⎥⎤f (a +22)f (a )max =98,所以1<t<98.(2017·南通三模)已知函数f(x)=⎩⎪⎨⎪⎧x ,x ≥a ,x 3-3x ,x<a.若函数g(x)=2f(x)-ax 恰有2个不同的零点,则实数a 的取值范围是________.答案:(-32,2)解析:(解法1)要使g(x)=2f(x)-ax 有2个不同的零点,只需y =f(x)的图象与直线y =12ax 有两个不同的交点,考虑直线x =a ,y =12ax 与y =x 3-3x 交于同一点时的临界状态可求出a =-32(如图1)和a =2(如图2),当a 从-32连续变化到2时,直线y =12ax 绕着原点逆时针转动,分析可得a ∈(-32,2). ,图1) ,图2),图3)(解法2)可将条件转化为“若f(x)=⎩⎪⎨⎪⎧1,x ≥a ,x 2-3,x<a ,且y =2f(x)-a 恰有1个零点”求解.点评:本题考查分段函数、函数的零点,意在考查考生分类讨论、数形结合、等价转化、函数与方程的数学思想.填空题中的零点问题常利用分离函数、分离参数,继而数形结合得到处理,解答题中的零点问题常利用导数研究函数的性质,常考虑区间端点处函数值的符号、极值的符号,常通过零点赋值法由零点存在性定理处理.1. (2017·全国卷Ⅱ)已知函数f(x)是定义在R 上的奇函数,当x ∈(-∞,0)时,f(x)=2x 3+x 2,则f(2)=________.答案:12解析:因为函数f(x)为奇函数,所以f(2)=-f(-2)=-[2×(-2)3+(-2)2]=12.2. (2017·山东卷)设f(x)=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1.若f(a)=f(a +1),则f(1a )=________.答案:6解析:当0<a<1时,a +1>1,由f(a)=f(a +1)得a =2(a +1-1)=2a ,解得a =14,此时f(1a)=f(4)=2×(4-1)=6;当a ≥1时,a +1≥2,由f(a)=f(a +1)得2(a -1)=2(a +1-1),此时方程无解.综上可知,f(1a )=6.3. 设函数f(x)=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f(f(a))≤2,则实数a 的取值范围是________.答案:(-∞,2]解析:∵ 函数f(x)=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0,它的图象如图:由f(f(a))≤2,可得f(a)≥-2.当a <0时,f(a)=a 2+a =(a +12)2-14≥-2恒成立;当a ≥0时,f(a)=-a 2≥-2,即a 2≤2,解得0≤a ≤ 2. 综上,实数a 的取值范围是(-∞,2].4. (2017·天津卷)已知函数f(x)=⎩⎪⎨⎪⎧|x|+2,x<1,x +2x,x ≥1.设a ∈R ,若关于x 的不等式f(x)≥⎪⎪⎪⎪x 2+a 在R 上恒成立,则a 的取值范围是________.答案:[-2,2]解析:(解法1)由题意可知,函数y =f(x)的图象恒不在函数y =⎪⎪⎪⎪x 2+a 的图象下方,画出函数y =f(x)和函数y =⎪⎪⎪⎪x 2的图象,如图所示.当a =0时,显然f(x)>⎪⎪⎪⎪x 2+a ;当a<0时,函数y =⎪⎪⎪⎪x 2+a 的图象由函数y =⎪⎪⎪⎪x2的图象向右平移|2a|个单位长度得到.由图可知,当函数y =⎪⎪⎪⎪x 2+a 在x<-2a 部分的图象经过点(0,2)时,a 取得最小值,此时a =-2;当a>0时,函数y =⎪⎪⎪⎪x 2+a 的图象由函数y =⎪⎪⎪⎪x2的图象向左平移2a 个单位长度得到,由图可知,当函数y =⎪⎪⎪⎪x 2+a 在x>-2a 部分的图象经过点(0,2)或与函数y =f(x)在x>1部分的图象相切时,a 取得最大值,而经过点(0,2)时,a =2,当函数y =⎪⎪⎪⎪x 2+a 在x>-2a 部分的图象与函数y =f(x)在x>1部分的图象相切时,设切点为P(x 0,y 0)(x 0>1),因为x>1时,f ′(x)=1-2x 2,则1-2x 20=12,解得x 0=2,所以y 0=3.又点P(2,3)在函数y =⎪⎪⎪⎪x 2+a 在x>-2a 部分的图象上,所以⎪⎪⎪⎪22+a =3,解得a =2,因此a 的最大值为2.综上所述,a 的取值范围是[-2,2].(解法2)不等式f(x)≥⎪⎪⎪⎪x 2+a 转化为-f(x)≤x 2+a ≤f(x),当x<1时,有-|x|-2≤x 2+a ≤|x|+2,即-|x|-2-x 2≤a ≤|x|+2-x 2.因为当x<0时,-|x|-2-x 2=x 2-2<-2,|x|+2-x 2=-3x2+2>2,当0≤x<1时,-|x|-2-x 2=-3x 2-2≤-2,|x|+2-x 2=x2+2≥2,所以-2≤a ≤2;当x ≥1时,有-x -2x ≤x 2+a ≤x +2x ,即-3x 2-2x ≤a ≤x 2+2x .又-3x 2-2x ≤-23,x 2+2x≥2,所以-23≤a ≤2.综上,-2≤a ≤2.5. (2016·浙江卷)已知函数g(x)=ax 2-2ax +b(a >0)在区间[1,3]上有最大值5,最小值1.设f(x)=g (x )x.(1) 求a ,b 的值;(2) 若f(|lg x -1|)+k·2|lg x -1|-3k ≥1对任意x ∈[1,10)∪(10,100]恒成立,求k 的取值范围.解:(1) g(x)=a(x -1)2+b -a ,因为a >0,所以g(x)在区间[1,3]上是增函数, 故⎩⎪⎨⎪⎧g (1)=1,g (3)=5,解得⎩⎪⎨⎪⎧a =1,b =2. (2) 由已知和(1)可得f(x)=x +2x-2,f(|lg x -1|)+k·2|lg x -1|-3k ≥1,即|lg x -1|+2|lg x -1|-2+2k|lg x -1|-3k ≥1.令t =|lg x -1|,则t ∈(0,1],t +2+2kt-3k -3≥0对任意t ∈(0,1]恒成立.令h(t)=t +2+2kt-3k -3,t ∈(0,1],则① 当k =-1时,h(t)=t ≥0成立;② 当k <-1时,h(t)=t +2+2k t-3k -3在(0,1]上为增函数,t →0+时,h(t)→-∞,舍去;③ 当k >-1时,h(t)在(0,2+2k]上为减函数,在[2+2k ,+∞)上为增函数,若2+2k <1,即-1<k <-12时,h min (t)=h(2+2k)=22+2k -3k -3≥0,得-1≤k ≤-19,即-1<k <-12; 若2+2k ≥1,即k ≥-12时,h(t)在(0,1]上为减函数,h min (t)=h(1)=-k ≥0,即-12≤k≤0.综上,k 的取值范围是[-1,0].(本题模拟高考评分标准,满分16分) 已知函数f(x)=1+x +1-x. (1) 求函数f(x)的定义域和值域;(2) 设F(x)=a2·[f 2(x)-2]+f(x)(a 为实数),求F(x)在a<0时的最大值g(a);(3) 对(2)中g(a),若-m 2+2tm +2≤g(a)对a<0所有的实数a 及t ∈[-1,1]恒成立,求实数m 的取值范围.解:(1) 由1+x ≥0且1-x ≥0,得-1≤x ≤1,所以定义域为[-1,1].(2分) 又f 2(x)=2+21-x 2∈[2,4],由f(x)≥0得值域为[2,2].(4分)(2) 令t =f(x)=1+x +1-x ,则1-x 2=12t 2-1,所以F(x)=m(t)=a(12t 2-1)+t =12at 2+t -a ,t ∈[2,2].(6分)由题意知g(a)即为函数m(t)=12at 2+t -a ,t ∈[2,2]的最大值.注意到直线t =-1a 是抛物线m(t)=12at 2+t -a 的对称轴.因为a<0时,函数y =m(t),t ∈[2,2]的图象是开口向下的抛物线的一段,① 若t =-1a ∈(0,2],即a ≤-22,则g(a)=m(2)= 2.(7分)② 若t =-1a ∈(2,2],即-22<a ≤-12,则g(a)=m(-1a )=-a -12a .(8分)③ 若t =-1a ∈(2,+∞),即-12<a<0,则g(a)=m(2)=a +2.(9分)综上有g(a)=⎩⎪⎨⎪⎧a +2,-12<a<0,-a -12a ,-22<a ≤-12,2,a ≤-22.(10分)(3) 易得g min (a)=2,(11分)由-m 2+2tm +2≤g(a)对a<0恒成立, 即要使-m 2+2tm +2≤g min (a)=2恒成立⇒m 2-2tm ≥0,令h(t)=-2mt +m 2,对所有的t ∈[-1,1],h(t)≥0成立,只需⎩⎪⎨⎪⎧h (-1)=2m +m 2≥0,h (1)=-2m +m 2≥0,(14分)求出m 的取值范围是(-∞,-2]∪{0}∪[2,+∞).(16分)1. 已知函数f(x)=log 2a -x1+x为奇函数,则实数a 的值为________.答案:1解析:由奇函数得f(x)=-f(-x),即log 2a -x 1+x =-log 2a +x 1-x ,a -x 1+x =1-xa +x,解得a 2=1.因为a ≠-1,所以a =1.2. 已知函数f(x)=2x -ax的定义域为(0,1](a 为实数).(1) 当a =1时,求函数y =f(x)的值域;(2) 求函数y =f(x)在区间(0,1]上的最大值及最小值,并求出当函数f(x)取得最值时x 的值.解:(1) 当a =1时,f(x)=2x -1x ,任取1≥x 1>x 2>0,则f(x 1)-f(x 2)=2(x 1-x 2)-(1x 1-1x 2)=(x 1-x 2)(2+1x 1x 2).∵ 1≥x 1>x 2>0,∴ x 1-x 2>0,x 1x 2>0. ∴ f(x 1)>f(x 2),∴ f(x)在(0,1]上单调递增,无最小值,当x =1时取得最大值1,∴ f(x)的值域为(-∞,1].(2) 当a ≥0时,y =f(x)在(0,1]上单调递增,无最小值, 当x =1时取得最大值2-a ;当a <0时,f(x)=2x +-ax,当-a2≥1,即a ∈(-∞,-2]时,y =f(x)在(0,1]上单调递减,无最大值,当x =1时取得最小值2-a ;当-a 2<1,即a ∈(-2,0)时,y =f(x)在(0,-a 2]上单调递减,在[-a2,1]上单调递增,无最大值,当x =-a2时取得最小值2-2a.3. 设函数f(x),g(x)的定义域均为R ,且f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=e x ,其中e 为自然对数的底数.(1) 求f(x),g(x)的解析式,并求证:当x>0时,f(x)>0,g(x)>1;(2) 设a ≤0,b ≥1,求证:当x>0时,ag(x)+(1-a)<f (x )x<bg(x)+(1-b).(1) 解:f(x)是奇函数,g(x)是偶函数,即有f(-x)=-f(x),g(-x)=g(x),f(x)+g(x)=e x ,f(-x)+g(-x)=e -x ,即为-f(x)+g(x)=e -x ,∴ f(x)=12(e x -e -x ),g(x)=12(e x +e -x ).证明如下:当x>0时,e x >1,0<e -x <1,故f(x)>0.又由基本不等式,有g(x)=12(e x +e -x )>e x e -x =1,即g(x)>1.(2) 证明:由(1)得f ′(x)=12(e x -1e x )′=12(e x +e x e 2x )=12(e x +e -x)=g(x) ①,g ′(x)=12(e x +1e x )′=12(e x -e x e 2x )=12(e x -e -x)=f(x) ②,当x>0时,f (x )x>ag(x)+(1-a)等价于f(x)>axg(x)+(1-a)x ③,f (x )x<bg(x)+(1-b)等价于f(x)<bxg(x)+(1-b)x ④, 于是设函数h(x)=f(x)-cxg(x)-(1-c)x.由①②,有h′(x)=g(x)-cg(x)-cxf(x)-(1-c)=(1-c)[g(x)-1]-cxf(x).当x>0时,若c ≤0,则h′(x)>0,故h(x)在(0,+∞)上为增函数,从而h(x)>h(0)=0,即f(x)>cxg(x)+(1-c)x ,故③成立.若c ≥1,则h′(x)<0,故h(x)在(0,+∞)上为减函数,从而h(x)<h(0)=0,即f(x)<cxg(x)+(1-c)x ,故④成立.综合③④得,当x >0时,ag(x)+(1-a)<f (x )x<bg(x)+(1-b).请使用“课后训练·第1讲”活页练习,及时查漏补缺!第2讲 基本初等函数1. 高考对指数、对数函数的考查主要与其他基本初等函数知识相结合,考查函数的单调性及其基本性质,考查指数式的运算.2. 高考中主要涉及如下题型:(1) 指数与对数的基本运算、对数的运算性质;(2) 与指数式综合考查比较大小;(3) 有关图象的识别问题.1. (2017·南京、盐城二模)函数f(x)=ln 11-x的定义域为________.答案:(-∞,1)解析:由11-x>0,得1-x >0,即x <1.2. y =(log 12a)x 在R 上为减函数,则a ∈________.答案:(12,1)解析:因为y =(log 12a)x 在R 上为减函数,所以0<log 12a <1,所以12<a <1,即a ∈(12,1).3. (2017·天津卷)已知奇函数f(x)在R 上是增函数,g(x)=xf(x).若a =g(-log 25.1),b =g(20.8),c =g(3),则a ,b ,c 的大小关系为________.答案:b<a<c解析:由函数f(x)为奇函数且在R 上单调递增,可知当x>0时,f(x)>0,所以g(x)=xf(x)为偶函数,且在(0,+∞)上单调递增,所以c =g(3)>a =g(-log 25.1)=g(log 25.1)>g(2),b =g(20.8)<g(2),所以b<a<c.4. 已知函数f(x)(x ∈R ,且x ≠1)的图象关于点(1,0)对称,当x>1时f(x)=log a (x -1),且f(3)=-1,则不等式f(x)>1的解集是________.答案:(-∞,-1)∪(1,32)解析:由题意,f(x)=-f(2-x),因为当x >1时,f(x)=log a (x -1),且f(3)=-1,所以log a 2=-1,所以a =12.所以当x >1时,不等式f(x)>1可化为log 12(x -1)>1,所以1<x <32;当x <1时,2-x >1,不等式f(x)>1可化为-log 12(1-x)>1,所以x <-1., 一) 基本初等函数的性质研究, 1) 已知定义域为R 的函数f(x)=-2x +b2x +1+a是奇函数.(1) 求a ,b 的值;(2) 解关于t 的不等式f(t 2-2t)+f(2t 2-1)<0. 解:(1) 因为f(x)是定义在R 上的奇函数,所以f(0)=0,即-1+b2+a =0,解得b =1,所以f(x)=-2x +12x +1+a.由f(1)=-f(-1)知-2+14+a =--12+11+a,解得a =2.经检验,当a =2,b =1时,f(x)为奇函数.(2) 由(1)知f(x)=-2x +12x +1+2=-12+12x +1.易知f(x)在(-∞,+∞)上为减函数. 因为f(x)是奇函数,所以不等式f(t 2-2t)+f(2t 2-1)<0等价于f(t 2-2t)<-f(2t 2-1)=f(-2t 2+1). 因为f(x)是减函数,由上式推得t 2-2t>-2t 2+1,即3t 2-2t -1>0,解不等式可得t>1或t<-13,所以不等式的解集为⎩⎨⎧⎭⎬⎫t|t>1或t<-13.已知函数f(x)=a -22x +1(a ∈R ).(1) 试判断f(x)的单调性,并证明你的结论; (2) 若f(x)为定义域上的奇函数,求: ① 函数f(x)的值域;② 满足f(ax)<f(2a -x 2)的x 的取值范围. 解:(1) 函数f(x)的定义域为(-∞,+∞),且f(x)=a -22x +1,任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则f(x 2)-f(x 1)=a -22x 2+1-a +22x 1+1=2(2x 2-2x 1)(2x 2+1)(2x 1+1).因为y =2x 在R 上单调递增,且x 1<x 2,所以0<2x 1<2x 2,2x 2-2x 1>0,2x 1+1>0,2x 2+1>0, 所以f(x 2)-f(x 1)>0,即f(x 2)>f(x 1),所以f(x)在(-∞,+∞)上是单调增函数. (2) 因为f(x)是定义域上的奇函数, 所以f(-x)=-f(x),即a -22-x +1+(a -22x +1)=0对任意实数x 恒成立,化简得2a -(2·2x 2x +1+22x +1)=0,所以2a -2=0,即a =1.① 由a =1得f(x)=1-22x +1.因为2x +1>1,所以0<12x +1<1,所以-2<-22x +1<0,所以-1<1-22x +1<1,故函数f(x)的值域为(-1,1).② 由a =1得f(x)<f(2-x 2),且f(x)在(-∞,+∞)上单调递增, 所以x<2-x 2,解得-2<x<1. 故x 的取值范围是(-2,1)., 二) 基本初等函数的图象变换, 2) 设f(x)=|lg x|,a ,b 为实数,且0<a<b. (1) 若a ,b 满足f(a)=f(b),求证:ab =1;(2) 在(1)的条件下,求证:由关系式f(b)=2f(a +b2)所得到的关于b 的方程g(b)=0,存在b 0∈(3,4),使g(b 0)=0.证明:(1) 结合函数图象,由f(a)=f(b),0<a<b 可判断a ∈(0,1),b ∈(1,+∞),从而-lg a =lg b ,即ab =1.(2) 因为0<a<b ,所以a +b2>ab =1.由已知可得b =(a +b 2)2,得4b =a 2+b 2+2ab ,得1b2+b 2+2-4b =0.设g(b)=1b2+b 2+2-4b ,因为g(3)<0,g(4)>0,根据零点存在性定理可知,函数g(b)在(3,4)内一定存在零点, 即存在b 0∈(3,4),使g(b 0)=0.(2017·徐州、连云港、宿迁三检)如图,已知正方形ABCD 的边长为2,BC 平行于x 轴,顶点A ,B 和C 分别在函数y 1=3log a x ,y 2=2log a x 和y 3=log a x(a>1)的图象上,则实数a 的值为________.答案: 2解析:设A(t ,3log a t)(t>0),因为正方形ABCD 的边长为2, 所以B(t ,2log a t),C(t 2,2log a t),则⎩⎪⎨⎪⎧t 2-t =2,3log a t -2log a t =2,即⎩⎪⎨⎪⎧t 2-t -2=0,log a t =2, 解得⎩⎨⎧t =2,a =2,即所求的实数a 的值为 2., 三) 基本初等函数与不等式综合, 3) 已知f(log 2x)=x.(1) 若f(x)+x =10的根x 0∈(k 2,k +12),k ∈Z ,求k 的值;(2) 设g(x)=f (x +1)+af (x )+b(a<b)为其定义域上的奇函数,求实数a ,b 的值.解:(1) 令t =log 2x ,则x =2t , 所以f(t)=2t ,即f(x)=2x .方程f(x)+x =10即为2x +x =10.设h(x)=2x +x -10,显然h(x)在R 上为增函数,因为h(2)=22+2-10=-4<0,h(3)=23+3-10=1>0,h(52)=252+52-10=42-152<0, 所以函数h(x)的零点x 0∈(52,3),所以符合条件的整数k =5.(2) g(x)=2x +1+a2x +b,因为g(x)为其定义域上的奇函数, 所以g(-x)+g(x)=0恒成立,即2-x +1+a 2-x +b +2x +1+a 2x +b=0恒成立, 所以2+a·2x 1+b·2x +2x +1+a 2x +b=0,即(2+a·2x )(2x +b)+(1+b·2x )(2x +1+a)=0恒成立,化简为(a +2b)22x +2(ab +2)2x +(a +2b)=0恒成立,所以a +2b =0,且ab +2=0, 解得a =2,b =-1或a =-2,b =1. 因为a<b ,所以a =-2,b =1.已知函数f(x)=3-2log 2x ,g(x)=log 2x.(1) 当x ∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域; (2) 如果对任意的x ∈[1,4],不等式f(x 2)·f(x)>k·g(x)恒成立,求实数k 的取值范围. 解:(1) h(x)=(4-2log 2x)·log 2x =-2(log 2x -1)2+2,因为x ∈[1,4],所以log 2x ∈[0,2],故函数h(x)的值域为[0,2]. (2) 由f(x 2)·f(x)>k·g(x), 得(3-4log 2x)(3-log 2x)>k·log 2x.令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2], 所以(3-4t)(3-t)>k·t 对一切t ∈[0,2]恒成立, ① 当t =0时,k ∈R ;② 当t ∈(0,2]时,k<(3-4t )(3-t )t恒成立,即k<4t +9t -15,因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t-15的最小值为-3.综上,实数k 的取值范围是(-∞,-3)., 四) 基本初等函数与方程综合, 4) 已知a>0,且a ≠1,函数f(x)=log a (x +1),g(x)=log a 11-x,记F(x)=2f(x)+g(x).(1) 求函数F(x)的定义域D 及其零点;(2) 若关于x 的方程F(x)-m =0在区间[0,1)内有解,求实数m 的取值范围.解:(1) F(x)=2f(x)+g(x)=2log a (x +1)+log a 11-x (a>0且a ≠1),由⎩⎪⎨⎪⎧x +1>0,1-x>0,解得-1<x<1,所以函数F(x)的定义域D 为(-1,1).令F(x)=0,则2log a (x +1)+log a 11-x=0 (*).方程变为log a (x +1)2=log a (1-x), 即(x +1)2=1-x ,即x 2+3x =0,解得x 1=0,x 2=-3,经检验x =-3是方程(*)的增根,所以方程(*)的解为x =0, 即函数F(x)的零点为0.(2) m =2log a (x +1)+log a 11-x =log a x 2+2x +11-x =log a (1-x +41-x-4)(0≤x<1),a m =1-x +41-x -4,设1-x =t ∈(0,1],函数y =t +4t在区间(0,1]上是减函数,当t =1时,x =0,y min =5,所以a m ≥1. ① 若a>1,则m ≥0,方程有解; ② 若0<a<1,则m ≤0,方程有解.所以,当a >1时,m ≥0;当0<a <1时,m ≤0.已知函数f(x)=log a x -1x +1(其中a >0且a ≠1).(1) 讨论函数f(x)的奇偶性;(2) 已知关于x 的方程log a m(x +1)(7-x )=f(x)在区间[2,6]上有实数解,求实数m的取值范围.解:(1) 由对数有意义可得x -1x +1>0,解得x <-1或x >1,所以f(x)=log a x -1x +1的定义域为(-∞,-1)∪(1,+∞),关于原点对称.又f(-x)=log a -x -1-x +1=log a x +1x -1=-log a x -1x +1,所以f(-x)=-f(x),所以函数f(x)为奇函数.(2) 由题意可得⎩⎪⎨⎪⎧m(x +1)(7-x )>0,x -1x +1>0,m (x +1)(7-x )=x -1x +1.问题转化为求函数m =(x -1)(7-x)在x ∈[2,6]上的值域,该函数在[2,4]上递增,在[4,6]上递减,所以当x =2或6时,m 取最小值5;当x =4时,m 取最大值9. 所以m 的取值范围是[5,9].1. (2017·全国卷Ⅱ)函数f(x)=ln(x 2-2x -8)的单调增区间是________.答案:(4,+∞) 解析:函数y =x 2-2x -8=(x -1)2-9图象的对称轴为直线x =1,由x 2-2x -8>0解得x >4或x <-2,所以(4,+∞)为函数y =x 2-2x -8的一个单调增区间.根据复合函数的单调性可知,函数f(x)=ln(x 2-2x -8)的单调增区间为(4,+∞).2. (2017·山东卷)设函数y =4-x 2的定义域为A ,函数y =ln(1-x)的定义域为B ,则A ∩B = ________.答案:[-2,1)解析:由4-x 2≥0得-2≤x ≤2,所以A ={x|-2≤x ≤2};由1-x>0得x<1,所以B ={x|x<1}.故A ∩B ={x|-2≤x<1}.3. (2017·北京卷)已知函数f(x)=3x -(13)x ,则f(x)是________函数.(选填“奇”或“偶”)答案:奇解析:因为f(-x)=3-x -(13)-x =(13)x -3x =-3x +(13)x =-f(x),所以f(x)为奇函数.4. (2017·山东卷)若函数e xf(x)(e =2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M 性质.下列函数中所有具有M 性质的函数为________.(填序号)① f(x)=2-x ;② f(x)=3-x ;③ f(x)=x 3;④ f(x)=x 2+2. 答案:①④解析:令g(x)=e x f(x).对于①,f(x)的定义域为R ,g(x)=e x 2-x =(e 2)x 在R 上单调递增,具有M 性质;对于②,f(x)的定义域为R ,g(x)=e x 3-x =(e 3)x 在R 上单调递减,不具有M 性质;对于③,f(x)的定义域为R ,g(x)=e x x 3,g ′(x)=e x x 3+3x 2e x =e x (x 3+3x 2)>0在R 上不恒成立,所以g(x)在R 上不单调递增,不具有M 性质;对于④,f(x)的定义域为R ,g(x)=e x (x 2+2),g ′(x)=e x (x 2+2)+2xe x =e x (x 2+2x +2)>0在R 上恒成立,所以g(x)在R 上单调递增,具有M 性质.故填①④.5. (2017·全国卷Ⅰ)已知函数f(x)=e x (e x -a)-a 2x. (1) 讨论f(x)的单调性;(2) 若f(x)≥0,求a 的取值范围.解:(1) 函数f(x)的定义域为(-∞,+∞),f′(x)=2e 2x -ae x -a 2=(2e x +a)(e x -a). ① 若a =0,则f(x)=e 2x ,在(-∞,+∞)上单调递增. ② 若a >0,则由f′(x)=0得x =ln a.当x ∈(-∞,ln a)时,f ′(x)<0;当x ∈(ln a ,+∞)时,f ′(x)>0.故f(x)在(-∞,ln a)上单调递减,在(ln a ,+∞)上单调递增.③ 若a <0,则由f′(x)=0得x =ln(-a2).当x ∈(-∞,ln(-a 2))时,f ′(x)<0;当x ∈(ln(-a2),+∞)时,f ′(x)>0.故f(x)在(-∞,ln(-a 2))上单调递减,在(ln(-a2),+∞)上单调递增.(2) ① 若a =0,则f(x)=e 2x ,所以f(x)≥0.② 若a >0,则由(1)得,当x =ln a 时,f(x)取得最小值,最小值为f(ln a)=-a 2ln a .从而当且仅当-a 2ln a ≥0,即0<a ≤1时,f(x)≥0.③ 若a <0,则由(1)得当x =ln(-a 2)时,f(x)取得最小值,最小值为f(ln(-a 2))=a 2[34-ln(-a 2)].从而当且仅当a 2[34-ln(-a2)]≥0,即a ≥-2e 34时,f(x)≥0. 综上,a 的取值范围是[-2e 34,1].(本题模拟高考评分标准,满分16分)定义在D 上的函数f(x),如果满足:对任意x ∈D ,存在常数M>0,都有|f(x)|≤M 成立,则称f(x)是D 上的有界函数,其中M 称为函数f(x)的上界.举例:f(x)=x ,D =[-3,2],则对任意x ∈D ,|f(x)|≤3,根据上述定义,f(x)=x 在[-3,2]上为有界函数,上界可取3,5等等.已知函数f(x)=1+a·2x +4x,g(x)=1-2x1+2x.(1) 当a =1时,求函数f(x)在(0,+∞)上的值域,并判断函数f(x)在(0,+∞)上是否为有界函数,请说明理由;(2) 求函数g(x)在[0,1]上的上界T 的取值范围;(3) 若函数f(x)在(-∞,0]上是以3为上界的函数,求实数a 的取值范围. 解:(1) 当a =1时,f(x)=1+2x +4x ,设t =2x ,x ∈(0,+∞),所以t ∈(1,+∞), y =t 2+t +1,值域为(3,+∞), 不存在正数M ,使x ∈(0,+∞)时,|f(x)|≤M 成立,即函数在(0,+∞)上不是有界函数.(5分)(2) 设t =2x ,t ∈[1,2],g(t)=1-t 1+t =21+t-1在t ∈[1,2]上是减函数,值域为[-13,0],要使|g(x)|≤T 恒成立,则T ≥13.(10分)(3) 由已知x ∈(-∞,0]时,不等式|f(x)|≤3恒成立,即|1+a·2x +4x |≤3, 设t =2x ,t ∈(0,1],不等式化为|1+a·t +t 2|≤3. (解法1)讨论:当0<-a 2≤1,即-2≤a <0时,1-14a 2≥-3且2+a ≤3,得-2≤a<0;当-a 2≤0或-a2>1,即a <-2或a ≥0时,-3≤2+a ≤3,得-5≤a <-2或0≤a ≤1.综上,-5≤a ≤1.(16分)(解法2)不等式1+at +t 2≥-3且1+at +t 2≤3在t ∈(0,1]上恒成立.分离参数法得-a ≤t +4t 且-a ≥t -2t在t ∈(0,1]上恒成立,得-5≤a ≤1.(16分)1. 已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x >0,3x +1,x ≤0,则f(f(14))的值是________.答案:109解析:由题意可得f(14)=log 214=-2,∴ f(f(14))=f(-2)=3-2+1=109.2. 已知函数f(x)=ax 2+bx +c(a>0,b ∈R ,c ∈R ).(1) 若函数f(x)的最小值是f(-1)=0,且c =1,F(x)=⎩⎪⎨⎪⎧f (x ),x>0,-f (x ),x<0,求F(2)+F(-2)的值;(2) 若a =1,c =0,且|f(x)|≤1在区间(0,1]上恒成立,试求b 的取值范围.解:(1) 由已知c =1,a -b +c =0,且-b2a=-1,解得a =1,b =2,∴ f(x)=(x +1)2.∴ F(x)=⎩⎪⎨⎪⎧(x +1)2,x>0,-(x +1)2,x<0. ∴ F(2)+F(-2)=(2+1)2+[-(-2+1)2]=8. (2) 由a =1,c =0,得f(x)=x 2+bx ,从而|f(x)|≤1在区间(0,1]上恒成立,等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立.又在区间(0,1]上,1x -x 的最小值为0,-1x-x 的最大值为-2.∴ -2≤b ≤0.故b 的取值范围是[-2,0].3. 已知a ∈R ,函数f(x)=log 2(1x+a).(1) 当a =5时,解不等式f(x)>0;(2) 若关于x 的方程f(x)-log 2[(a -4)x +2a -5]=0的解集中恰好有一个元素,求a 的取值范围.解:(1) 当a =5时,f(x)=log 2(1x+5),由f(x)>0,得log 2(1x+5)>0,即1x +5>1,即x >0或x <-14, 即不等式的解集为⎩⎨⎧⎭⎬⎫x|x >0或x <-14.(2) 由f(x)-log 2[(a -4)x +2a -5]=0,得log 2(1x +a)-log 2[(a -4)x +2a -5]=0,即log 2(1x +a)=log 2[(a -4)x +2a -5],即1x+a =(a -4)x +2a -5>0 ①, 则(a -4)x 2+(a -5)x -1=0, 即(x +1)[(a -4)x -1]=0 ②,当a =4时,方程②的解为x =-1,代入①,成立; 当a =3时,方程②的解为x =-1,代入①,成立;当a ≠4且a ≠3时,方程②的解为x =-1或x =1a -4,若x =-1是方程①的解,则1x+a =a -1>0,即a >1;若x =1a -4是方程①的解,则1x +a =2a -4>0,即a >2.则要使方程①有且仅有一个解,则1<a ≤2.综上,若方程f(x)-log 2[(a -4)x +2a -5]=0的解集中恰好有一个元素,则a 的取值范围是1<a ≤2或a =3或a =4.请使用“课后训练·第2讲”活页练习,及时查漏补缺!第3讲 分段函数与绝对值函数1. 分段函数和绝对值函数是高考的重点内容,主要考查分类讨论思想,关键弄清楚为什么要分类,需要分几类,如何分,做到不重不漏.2. 涉及的题型主要有:一是明确在各个分段上的函数解析式,然后对各个分段进行性质讨论;二是结合函数图象,寻求解题方法.1. (2017·启东模考)设函数f(x)=⎩⎪⎨⎪⎧(12)x -1,x<0,-x 2+x ,x ≥0,则f(f(2))=________.答案:3解析:因为f(2)=-4+2=-2,f(-2)=(12)-2-1=3,所以f(f(2))=3.2. (2017·盐城模考)已知函数f(x)=⎩⎪⎨⎪⎧a x +1-2,x ≤1,2x -1,x >1.若f(0)=3,则f(a)= ________.答案:9解析:由f(0)=3,所以a -2=3,即a =5,所以f(a)=f(5)=9.3. (2017·盐城期中)若函数f(x)=⎩⎪⎨⎪⎧1x ,x<a ,|x +1|,x ≥a在区间(-∞,a)上单调递减,在(a ,+∞)上单调递增,则实数a 的取值范围是________. 答案:[-1,0]解析:函数f(x)=⎩⎪⎨⎪⎧1x ,x<a ,|x +1|,x ≥a ,根据反比例函数的性质可知,在区间(-∞,0)上单调递减,要使函数f(x)在区间(-∞,a)上单调递减,则a ≤0.因此函数f(x)=|x +1|在区间(a ,+∞)上单调递增,那么a +1≥0,解得a ≥-1.所以实数a 的取值范围是[-1,0].4. (2017·苏北四市一模)已知函数f(x)=|x 2-4|+a|x -2|,x ∈[-3,3].若f(x)的最大值是0,则实数a 的取值范围是________.答案:(-∞,-5] 解析:(解法1)因为函数f(x)的最大值为0,故f(x)≤0在[-3,3]上恒成立,从而f(3)≤0,解得a ≤-5.又f(x)=⎩⎪⎨⎪⎧x 2+ax -2a -4=(x +a 2)2-a 24-2a -4,x ∈[2,3],-x 2-ax +2a +4=-(x +a 2)2+a24+2a +4,x ∈(-2,2),x 2-ax +2a -4=(x -a 2)2-a 24+2a -4,x ∈[-3,-2]. 因为a ≤-5,所以-a 2≥52,当-a 2∈[52,3]时,画出f(x)的草图,结合图象可知函数f(x)在[-3,a 2]上单调递减,在[a 2,2]上单调递增,在[2,-a 2]上单调递减,在[-a2,3]上单调递增.因为f(2)=0,故f(-3)≤0且f(3)≤0,解得a ≤-5.当-a2≥3,即a ≤-6时,f(x)在[-3,2]上单调递增,在[2,3]上单调递减,且f(2)=0,所以f(x)≤0恒成立.故a ≤-5.(解法2)因为f(x)=|x -2|(|x +2|+a),|x -2|≥0,且函数f(x)的最大值为0,故|x +2|+a ≤0在[-3,3]上恒成立,从而a ≤-|x +2|在[-3,3]上恒成立.因为(-|x +2|)min =-5,故a ≤-5., 一) 绝对值函数的图象与性质, 1) 已知函数f(x)=x|x -2|. (1) 写出f(x)的单调区间; (2) 解不等式f(x)<3;(3) 设a>0,求f(x)在[0,a]上的最大值. 解:(1) f(x)=x|x -2|= ⎩⎪⎨⎪⎧x 2-2x =(x -1)2-1,x ≥2,-x 2+2x =-(x -1)2+1,x <2, 所以f(x)的单调增区间是(-∞,1]和[2,+∞); 单调减区间是[1,2].(2) 因为x|x -2|<3⇔⎩⎪⎨⎪⎧x ≥2,x 2-2x -3<0或⎩⎪⎨⎪⎧x<2,x 2-2x +3>0,解得2≤x <3或x <2,所以不等式f(x)<3的解集为{x|x<3}.(3) ① 当0<a <1时,f(x)是[0,a]上的增函数,此时f(x)在[0,a]上的最大值是f(a)=a(2-a);② 当1≤a ≤2时,f(x)在[0,1]上是增函数,在[1,a]上是减函数,此时f(x)在[0,a]上的最大值是f(1)=1;③ 当a >2时,令f(a)-f(1)=a(a -2)-1=a 2-2a -1>0,解得a>1+ 2. (ⅰ) 当2<a ≤1+2时,此时f(a)≤f(1),f(x)在[0,a]上的最大值是f(1)=1; (ⅱ) 当a>1+2时,此时f(a)>f(1),f(x)在[0,a]上的最大值是f(a)=a(a -2).综上,当0<a <1时,f(x)在[0,a]上的最大值是a(2-a);当1<a ≤1+2时,f(x)在[0,a]上的最大值是1;当a>1+2时,f(x)在[0,a]上的最大值是a(a -2).点评:对于绝对值函数可以转化为与它等价的分段函数,然后结合函数的单调区间和图象,对于每一段上的函数进行研究,得出相应的结论,最终将各段得出的结论进行综合,就可以得到问题的解.(2017·南通平潮中学模考)设函数f(x)=|lg x|.若方程f(x)=(110)x 有两个不等的实数根x 1,x 2(x 1<x 2),试比较x 1x 2与1的大小.解:由题意,|lg x 1|=(110)x 1,|lg x 2|=(110)x 2,因为x 1<x 2,由图知,0<x 1<1<x 2.所以-lg x 1=(110)x 1,lg x 2=(110)x 2,所以(110)x 2-(110)x 1=lg x 2+lg x 1=lg x 1x 2.因为x 1<x 2,所以(110)x 2-(110)x 1<0,所以lg x 1x 2<0,从而x 1x 2<1., 二) 分段函数的图象与性质, 2) 已知函数f(x)=⎩⎪⎨⎪⎧-x 2+2x ,x>0,0,x =0,x 2+mx ,x<0是奇函数.(1) 求实数m 的值;(2) 若函数f(x)在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1) 设x<0,则-x>0,。
2018届高三理科数学二轮复习讲义:模块二+专题五+第二讲 圆锥曲线的方程与性质+Word版含解析
专题五 解析几何 第二讲 圆锥曲线的方程与性质高考导航以某一圆锥曲线或两种曲线组合为载体,考查的角度有定义、方程和性质,尤其是离心率、焦点三角形和焦点弦问题是考查的重点.1.(2017·浙江卷)椭圆x 29+y 24=1的离心率是( ) A.133 B.53 C.23 D.59 [解析] 由题意得,a =3,b =2, ∴c =a 2-b 2=5, ∴离心率e =c a =53,故选B. [答案] B2.(2017·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1[解析] 解法一:由双曲线的渐近线方程可设双曲线方程为x 24-y 25=k (k >0),即x 24k -y 25k =1,∵双曲线与椭圆x 212+y 23=1有公共焦点,∴4k +5k =12-3,解得k =1,故双曲线C 的方程为x 24-y 25=1.解法二:∵椭圆x 212+y 23=1的焦点为(±3,0),双曲线与椭圆x 212+y 23=1有公共焦点,∴a 2+b 2=(±3)2=9①,∵双曲线的一条渐近线为y =52x ,∴b a =52②,联立①②可解得a 2=4,b 2=5.∴双曲线C 的方程为x 24-y 25=1.[答案] B3.(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8[解析] 不妨设C :y 2=2px (p >0),A (x 1,22),则x 1=(22)22p =4p ,由题意可知|OA |=|OD |,得⎝ ⎛⎭⎪⎫4p 2+8=⎝ ⎛⎭⎪⎫p 22+5,解得p =4.故选B.[答案] B4.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13[解析] 以线段A 1A 2为直径的圆的方程为x 2+y 2=a 2,该圆与直线bx -ay +2ab =0相切,∴|b ×0-a ×0+2ab |b 2+(-a )2=a ,即2b =a 2+b 2,∴a 2=3b 2,∵a 2=b 2+c 2,∴c 2a 2=23,∴e =c a =63.[答案] A5.(2017·全国卷Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.[解析] 如图所示,设N (0,m ).又F (2,0),则M ⎝ ⎛⎭⎪⎫1,m 2.设M 代入y 2=8x ,得m 24=8,解得m =±4 2.∴|FN |=(2-0)2+(0-m )2=36=6.[答案] 6考点一 圆锥曲线的定义与标准方程圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|); (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|);(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M .[对点训练]1.(2017·惠州二模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是(2,0),且截直线x =2所得弦长为436,则该椭圆的方程为( )A.x 212+y 28=1 B.x 28+y 212=1 C.x 24+y 26=1D.x 26+y 24=1[解析] 由已知得c =2,直线x =2过椭圆的右焦点,且垂直于x 轴,由⎩⎨⎧x =c ,x 2a 2+y 2b 2=1可得y =±b 2a ,∴截直线x =2所得弦长为2b 2a ,由⎩⎨⎧2b 2a =436,a 2-b 2=2得a 2=6,b 2=4. ∴所求椭圆的方程为x 26+y 24=1. [答案] D2.(2017·惠阳二模)已知F 1,F 2为双曲线C :x 216-y 29=1的左、右焦点,点P 在双曲线C 上,且|PF 1|=2|PF 2|,则cos ∠F 1F 2P =( )A.45B.35C.5564 D .-2340[解析] 由题意可知,a =4,b =3,∴c =5,设|PF 1|=2x ,|PF 2|=x ,则|PF 1|-|PF 2|=x =2a =8,故|PF 1|=16,|PF 2|=8,又|F 1F 2|=10,利用余弦定理可得cos ∠F 1F 2P =|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=-2340. [答案] D3.(2017·湖南六校联考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 1,F 2为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )A.x 216-y 29=1 B.x 23-y 24=1 C.x 29-y 216=1D.x 24-y 23=1[解析] 以F 1,F 2为直径的圆的方程为x 2+y 2=c 2,又因为点(3,4)在圆上,所以32+42=c 2,所以c =5,双曲线的一条渐近线方程为y =b a x ,且点(3,4)在这条渐近线上,所以b a =43,又a 2+b 2=c 2=25,解得a =3,b =4,所以双曲线的方程为x 29-y 216=1,故选C.[答案] C4.(2017·武汉市武昌区高三二调)已知抛物线Γ:y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点P 在Γ上且|PK |=2|PF |,则△PKF 的面积为________.[解析] 由已知得,F (2,0),K (-2,0),过P 作PM 垂直于准线,则|PM |=|PF |,又|PK |=2|PF |,∴|PM |=|MK |=|PF |,∴PF ⊥x 轴,△PFK 的高等于|PF |,不妨设P (m 2,22m )(m >0),则m 2+2=4,解得m =2,故△PKF 的面积S =4×22×2×12=8.[答案] 8求解圆锥曲线标准方程的思路方法(1)定型,就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程.(2)计算,即利用定义或待定系数法求出方程中的a 2,b 2或p . 【特别提醒】 抛物线定义的实质是抛物线上的点到焦点的距离与到准线的距离的转化.考点二 圆锥曲线的几何性质1.在椭圆中:a 2=b 2+c 2,离心率为e =c a =1-⎝ ⎛⎭⎪⎫b a 2. 2.在双曲线中:c 2=a 2+b 2,离心率为e =ca =1+⎝ ⎛⎭⎪⎫b a 2. 3.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x .[对点训练]1.(2017·惠州市高三三调)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )A. 3B. 2 C .2 D .3[解析] 设双曲线C 的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1中得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2,∴y =±b 2a ,故|AB |=2b 2a ,依题意 2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a 2=e 2-1=2,∴e =3,选A.[答案] A2.(2017·临汾二模)若直线y =-3x 与椭圆C :x 2a 2+y 2b 2=1(a >b >0)交于A ,B 两点,以线段AB 为直径的圆恰好经过椭圆的右焦点,则椭圆C 的离心率为( )A.32 B.3-12 C.3-1 D .4-2 3[解析] 设椭圆的左、右焦点分别为F 1,F 2,O 为坐标原点,由题意可得|OF 2|=|OA |=|OB |=|OF 1|=c .由y =-3x 得∠AOF 2=2π3,∠AOF 1=π3,∴|AF 2|=3c ,|AF 1|=c .由椭圆的定义知,|AF 1|+|AF 2|=2a ,∴c +3c =2a ,∴e =ca =3-1. [答案] C3.(2017·南昌调研)已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( )A.2x ±y =0 B .x ±2y =0 C .x ±2y =0D .2x ±y =0[解析] 由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得, |PF 1|-|PF 2|=2a , 又|PF 1|+|PF 2|=6a , 解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a , 所以|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2×2c ×4a cos30°,得c =3a ,所以b =c 2-a 2=2a ,所以双曲线的渐近线方程为y =±ba x =±2x ,即2x ±y =0.故选A.[答案] A4.(2017·山西四校联考)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,若在双曲线上存在点P 满足2|PF 1→+PF 2→|≤|F 1F 2→|,则双曲线C 的离心率的取值范围是________.[解析] 设O 为坐标原点,由2|PF 1→+PF 2→|≤|F 1F 2→|,得4|PO →|≤2c (2c 为双曲线的焦距),∴|PO →|≤12c ,又由双曲线的性质可得|PO →|≥a ,于是a ≤12c ,e ≥2,即e 的取值范围是[2,+∞).[答案] [2,+∞)应用圆锥曲线性质的2个注意点(1)明确圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.(2)在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.考点三 抛物线中的最值问题抛物线中的最值问题一般情况下都与抛物线的定义有关,实现由点到点的距离与点到直线的距离的转化.[解析](1)由题意得圆x2+(y-4)2=1的圆心A(0,4),半径r=1,抛物线的焦点F(1,0).由抛物线的几何性质可得:点P到点Q的距离与点P到抛物线的准线距离之和的最小值是|AF|-r=1+16-1=17-1.选C.(2)过P作PM⊥l于M,则由抛物线定义知|PM|=|PF|,故|P A|+|PF|=|P A|+|PM|.当A、P、M三点共线时,|P A|+|PM|最小,此时点P坐标为(2,2),故选C.[答案] (1)C (2)C[探究追问] 若本例(2)中A 点坐标改为(-3,2),其他条件不变,则|P A |-|PF |的最小值为________.[解析] 当P A ∥x 轴时,|P A |-|PF |取得最小值,此时|P A |-|PF |=52.[答案] 52与抛物线最值有关问题的两种转化(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解.(2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”解决.[对点训练]1.(2017·郑州检测)已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( )A.34B.32 C .1 D .2[解析] 由题意知,抛物线的准线l :y =-1,过点A 作AA 1⊥l 交l 于点A 1,过点B 作BB 1⊥l 交l 于点B 1,设弦AB 的中点为M ,过点M 作MM 1⊥l 交l 于点M 1,则|MM 1|=|AA 1|+|BB 1|2.因为|AB |≤|AF |+|BF |(F 为抛物线的焦点),即|AF |+|BF |≥6,所以|AA 1|+|BB 1|≥6,2|MM 1|≥6,|MM 1|≥3,故点M 到x 轴的距离d ≥2,选D.[答案] D2.已知点F为抛物线y2=-8x的焦点,O为坐标原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,则|P A|+|PO|的最小值为()A.6 B.2+4 2C.213 D.4 3[解析]由已知可得抛物线y2=-8x的焦点为F(-2,0),准线方程为x=2.设点A的坐标为(x0,y0),根据抛物线的定义可得2-x0=4,所以x0=-2,y0=±4.O关于准线的对称点为O′(4,0),则当点P为AO′与准线x=2的交点时,|P A|+|PO|有最小值,且最小值为|AO′|=213.[答案] C热点课题18方程思想在圆锥曲线几何性质中的应用[感悟体验]1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线与椭圆的一个交点为P ,若∠F 1PF 2=45°,则椭圆的离心率为( )A.24B.22 C.3-1 D.2-1[解析] 根据题意可知,在Rt △PF 1F 2中,|PF 2|=b 2a ,|F 1F 2|=2c ,∠F 1PF 2=45°,所以|F 1F 2|=|PF 2|,所以b 2a =2c ,又b 2=a 2-c 2,代入整理得c 2+2ac -a 2=0,所以e 2+2e -1=0,即e =-1±2,又0<e <1,所以e =2-1.[答案] D2.(2017·贵阳监测)已知点P 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)左支上一点,F 1、F 2分别是双曲线的左、右焦点,且PF 1⊥PF 2,PF 2与两条渐近线相交于M 、N 两点(如图),点N 恰好平分线段PF 2,则双曲线的离心率是________.[解析] 由题意可知,ON 为△PF 1F 2的中位线,∴PF 1∥ON , ∴tan ∠PF 1F 2=tan ∠NOF 2=k ON =ba ,∴⎩⎨⎧|PF 2||PF 1|=b a,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,解得⎩⎪⎨⎪⎧|PF 1|=2a ,|PF 2|=2b .又|PF 2|-|PF 1|=2a ,∴2b -2a =2a ,b =2a ,c =a 2+b 2=5a , e =ca = 5. [答案]5。
2018学高考理科数学通用版练酷专题二轮复习教学案:第三板块 稳心态分步解
高考第20题⎪⎪圆锥曲线题型一 定值问题——巧妙消参定值问题就是证明一个量与其中的变化因素无关,这些变化的因素可能是直线的斜率、截距,也可能是动点的坐标等,这类问题的一般解法是使用变化的量表达求证目标,通过运算求证目标的取值与变化的量无关.当使用直线的斜率和截距表达直线方程时,在解题过程中要注意建立斜率和截距之间的关系,把双参数问题化为单参数问题解决.[典例] (2016·北京高考)(本题满分12分)已知椭圆C :x 2a 2+y 2b 2=1过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.[思路提示]第(1)问由a =2,b =1,c =3,解第一问;第(2)问画草图可知AN ⊥BM ,四边形ABNM 的面积为12|AN |·|BM |,设点P (x 0,y 0),得出PA ,PB 的方程,进而得出M ,N 的坐标,得出|AN |,|BM |,只需证明12|AN |·|BM |是一个与点P 的坐标无关的量即可.[解] (1)由题意得a =2,b =1, 所以椭圆C 的方程为x 24+y 2=1.2分又c =a 2-b 2=3,所以离心率e =ca =32.3分 (2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4.又A (2,0),B (0,1),[解题关键点]待定系数法求曲线方程.[障碍提醒]1.想不到设出P (x 0,y 0)后,利用点斜式写出直线PA ,PB 的方程.不会由直线PA ,PB 的方程求解|BM |,|AN |.所以直线PA 的方程为y =y 0x 0-2(x -2).5分令x =0,得y M =-2y 0x 0-2,6分从而|BM |=1-y M =1+2y 0x 0-2.直线PB 的方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1, 从而|AN |=2-x N =2+x 0y 0-1.9分选用变量表达直线、线段长度、面积等几何元素.2.不知道四边形的面积可用S =12| AN |·|BM |表示.所以四边形ABNM 的面积S =12|AN |·|BM | =12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-23.四边形ABNM 的面积用x0,y 0表示后,不会变形、化简,用整体消参来求值.=x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2.11分 从而四边形ABNM 的面积为定值.12分定值问题基本思想:求解目标与选用的变量无关.题型对点练见课堂练习第1题题型二 定点问题——确定方程证明直线过定点的基本思想是使用一个参数表示直线方程,根据方程的成立与参数值无关得出x ,y 的方程组,以方程组的解为坐标的点就是直线所过的定点;如果直线系是使用双参数表达的,要根据其它已知条件建立两个参数之间的关系,把双参数直线系方程化为单参数直线系方程.[典例] (2017·全国卷Ⅰ)(本题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[障碍提醒] 1.观察不出P 3,P 4对称,忽视对称性导致判[解] (1)因为P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32, [思路提示] 第(1)问利用椭圆的性质,易排除点P 1(1,1)断失误.所以P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点.不在椭圆上,从而求椭圆方程;2.不会用点的坐标代入方程判断P 1,P 2是否在椭圆上而滞做.又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,2分故椭圆C 的方程为x 24+y 2=1.5分(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.第(2)问分类讨论斜率是否存在,若存在,设l :y =kx +m ,利用条件建立k ,m 的等量关系,消参后再表示出直线l 的方程可证明. [解题关键点].如果l 与x 轴垂直,设l :x =t ,6分由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22.7分注意直线的斜率是否存在问题.则k 1+k 2=4-t 2-22t -4-t 2+22t=-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1).3.联立直线l与椭圆C 的方程,计算化简失误而滞做.将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.8分 由题设可知Δ=16(4k 2-m 2+1)>0.9分设A (x 1,y 1),B (x 2,y 2),而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.10分解析几何解题关化为代数条件.4.利用k 1+k 2=-1运算变形不明确变形目标,导致化简不出k ,m 的关系.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0.即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得k =-m +12.11分当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1). 12分动直线过定点的一般方法是将y =kx +m 的两参消去一个后,利用直线系的思想可得定点.题型对点练见课堂练习第2题题型三 求最值、解范围问题——构造函数(一)构造函数求最值最值问题的基本解法有几何法和代数法:几何法是根据已知的几何量之间的相互关系、平面几何和解析几何知识加以解决的(如抛物线上的点到某个定点和焦点的距离之和、光线反射问题等);代数法是建立求解目标关于某个(或两个)变量的函数,通过求解函数的最值(普通方法、基本不等式方法、导数方法等)解决的.[典例] (2016·山东高考)(本题满分12分)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,焦距为2 2.(1)求椭圆C 的方程.(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .①设直线PM ,QM 的斜率分别为k ,k ′,证明k ′k 为定值; ②求直线AB 的斜率的最小值.[障碍提醒] 1.不会用坐标设而不求法表示出k ,k ′,从而得不出定值.[解] (1)设椭圆的半焦距为c .由题意知2a =4,2c =22, 所以a =2,c =2,b =a 2-c 2= 2.2分所以椭圆C 的方程为x 24+y 22=1.4分(2)①证明:设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ). 所以直线PM 的斜率k =2m -m x 0=mx 0,直线QM 的斜率[思路提示] 第(1)问待定系数法求解;第(2)问①设点P (x 0,y 0),M 为PN 的中点,可得y 0=2m ,根据对称性得出点Q 的坐标,只需证明k ′k与x 0,m 无关;k ′=-2m -m x 0=-3mx 0.6分此时k ′k =-3,所以k ′k 为定值-3.7分②设PA 的方程,结合①的结论,得QB 的方程,联立直线与椭圆方程得A ,B 坐标,再由斜率公式表示AB②设A (x 1,y 1),B (x 2,y 2).直线PA 的方程为y =kx +m ,则直线QB 的方程为y =-3kx +m .联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 22=1的斜率,并求最小值.2.由直线PA 的方程与x 24+y 22=1联立表示出A (x 1,y 1)坐标后,没有类比意识,直接将x 1k 换为-3k B (x 2,y 2)因运算复杂或做错整理得(2k 2+1)x 2+4mkx +2m 2-4=0.由x 0x 1=2m 2-42k 2+1,可得[解题关键点] .3.化简x 2-x 1,y 2-y 1失误,不能把k AB 表示为k 的函数所以x 2-x 1=(18k 2+1)x 0-(2k 2+1)x 0=-32k 2(m 2-2)(18k 2+1)(2k 2+1)x 0, 当得出一个方程组的解时,使用代换法直接得出另一个方程组的解.而滞做.y2-y1=-6k(m2-2)(18k 2+1)x0+m-2k(m2-2)(2k2+1)x0-m=-8k(6k2+1)(m2-2)(18k2+1)(2k2+1)x0,10分4.求AB斜率的最小值不明确,不会将斜率表示为一个变量的函数,从而无法求最值.所以k AB=y2-y1x2-x1=6k2+14k=14⎝⎛⎭⎫6k+1k.由m>0,x0>0,可知k>0,所以6k+1k≥26,等号当且仅当k=66时取得.11分此时m4-8m2=66,即m=147,符合题意.所以直线AB的斜率的最小值为62.12分最值问题的关键:使变量表达求解目标.题型对点练见课堂练习第3题(二)构造函数解范围产生范围有如下几个因素:直线与曲线相交、曲线上点的坐标的范围、题目中要求的限制条件,这些产生范围的因素可能同时出现在一个问题中,在解题时要注意全面把握范围的产生原因.[典例](2016·浙江高考)(本题满分12分)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.(1)求p的值;(2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.[障碍提醒]1.因忘记抛物线定义,不会转化条件导出,求不出p 值.[解](1)由题意可得,抛物线上点A到焦点F的距离等于点A到直线x=-1的距离,由抛物线的定义得p2=1,即p=2.3分(2)由(1)得,抛物线方程为y2=4x,F(1,0),可设A(t2,2t),t≠0,t≠±1.4分因为AF不垂直于y轴,[思路提示]第(1)问由抛物线定义即得;第(2)问设A(t2,2t),可以根据抛物线焦点弦两端点坐标之间的关系,用t表达点B的坐标,得出BN,FN的方程,进而得出点N的坐标,结合点A,M,N三点共线,即可使用t表达M的横坐标,确定取值范围.2.不会设出抛物线的动点坐标用一个参数表示,从而使运算复杂而滞做.可设直线AF的方程为x=sy +1(s≠0),5分由⎩⎪⎨⎪⎧y2=4x,x=sy+1消去x得y2-4sy-4=0,故y1y2=-4,分 又直线AB 的斜率为2tt 2-1,故直线FN 的斜率为-t 2-12t,从而得直线FN 的方程为y =-t 2-12t (x -1),7分直线BN 的方程为y =-2t,[解题关键点]点参数法:抛物线中可以以一个点的横坐标或者纵坐标表达曲线上点.3.不会挖掘题目中隐含条件A ,M ,N 三点共线来建立等量关系,从而无法表示出M 的横坐标的函数关系式,导致无从下手.所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .8分 设M (m,0),由A ,M ,N 三点共线得2tt 2-m =2t +2tt 2-t 2+3t 2-1,9分4.将m 表示为t 的函数结构后,不会用分离常数法分离常数,然后再用单调性求2t 2t 2-1的范围而滞做. 于是m 分所以m <0或m >2.经检验,m <0或m >2满足题意.11分建立求解不等式或研究函数性质.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞). 12分题型对点练见课堂练习第4题题型四 探索性问题——肯定结论1.探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.,(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径. 2.探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.一般步骤为: (1)假设满足条件的曲线(或直线、点等)存在,用待定系数法设出;(2)列出关于待定系数的方程(组);,(3)若方程(组)有实数解,则曲线(或直线、点等)存在,否则不存在.[典例] (2018届高三·湘中名校联考)(本题满分12分)如图,曲线C由上半椭圆C 1:y 2a 2+x 2b 2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32. (1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),是否存在直线l ,使得以PQ 为直径的圆恰好过点A ,若存在,求出直线l 的方程;若不存在,请说明理由.[思路提示]第(1)问在C 2的方程中,令y =0可得b ,再由c a =32,a 2-c 2=b 2可得a ;第(2)问设出过点B 的直线l 的方程,分别与曲线C 1,C 2联立.用直线l 的斜率k 表示出点P ,Q 的坐标后,要使以PQ 为直径的圆过点A ,则有AP ―→·AQ ―→=0,从而解得k ,求出直线l 的方程.[解] (1)在C 2的方程中,令y =0,可得b =1.1分且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1可得a =2,2分∴a =2,b =1.3分(2)存在直线l ,理由如下:由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).4分由题易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0).5分代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*)6分设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根.[解题关键点]假设存在直线l ,分析斜率存在情况,设出直线方程.[障碍提醒]1.不会求P点坐标、Q点坐标导致无从下手.由求根公式,得x P=k2-4k2+4,从而y P=-8kk2+4,∴点P的坐标为⎝⎛⎭⎪⎫k2-4k2+4,-8kk2+4.7分同理,由⎩⎪⎨⎪⎧y=k(x-1)(k≠0),y=-x2+1(y≤0)得点Q的坐标为(-k-1,-k2-2k).8分2.不会将以PQ为直径的圆恰好过点A这一几何条件转化,从而求不出直线l的斜率.∴AP―→=2kk2+4(k,-4),AQ―→=-k(1,k+2).9分依题意可知AP⊥AQ,∴AP―→·AQ―→=0,即-2k2k2+4[k-4(k+2)]=0.10分条件坐标化的关键是转化几何性质.3.由条件得出AP⊥AQ∵k≠0,∴k-4(k+2)=0,解得k=-83.后利用AP ―→·AQ ―→=0变形求解,因运算过程不细心而出现计算失误而滞做.经检验,k =-83符合题意,故存在直线l 的方程为y =-83(x -1),11分即8x +3y -8=0,使得以PQ 为直径的圆恰好过点A .12分题型对点练见课堂练习第5题[课堂练习] 1.(2018届高三·西安八校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过(1,1)与⎝⎛⎭⎫62,32两点.(1)求椭圆C 的方程;(2)过原点的直线l 与椭圆C 交于A ,B 两点,椭圆C 上一点M 满足|MA |=|MB |.求证:1|OA |2+1|OB |2+2|OM |2为定值. 解:(1)将(1,1)与⎝⎛⎭⎫62,32两点代入椭圆C 的方程,得⎩⎨⎧1a 2+1b 2=1,32a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=3,b 2=32.∴椭圆C 的方程为x 23+2y 23=1.(2)证明:由|MA |=|MB |,知M 在线段AB 的垂直平分线上,由椭圆的对称性知A ,B 关于原点对称.①若点A ,B 是椭圆的短轴顶点, 则点M 是椭圆的一个长轴顶点,此时1|OA |2+1|OB |2+2|OM |2=1b 2+1b 2+2a 2=2⎝⎛⎭⎫1a 2+1b 2=2. 同理,若点A ,B 是椭圆的长轴顶点, 则点M 在椭圆的一个短轴顶点,此时1|OA |2+1|OB |2+2|OM |2=1a 2+1a 2+2b 2=2⎝⎛⎭⎫1a 2+1b 2=2. ②若点A ,B ,M 不是椭圆的顶点,设直线l 的方程为y =kx (k ≠0), 则直线OM 的方程为y =-1k x ,设A (x 1,y 1),则B (-x 1,-y 1),由⎩⎪⎨⎪⎧y =kx ,x 23+2y 23=1,解得x 21=31+2k 2,y 21=3k 21+2k 2, ∴|OA |2=|OB |2=x 21+y 21=3(1+k 2)1+2k 2,同理|OM |2=3(1+k 2)2+k 2,∴1|OA |2+1|OB |2+2|OM |2=2×1+2k 23(1+k 2)+2(2+k 2)3(1+k 2)=2,故1|OA |2+1|OB |2+2|OM |2=2为定值. 2.(2017·宜昌模拟)已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,它的一个焦点F 恰好与抛物线y 2=4x 的焦点重合.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否恒过一定点?若经过,求出该定点坐标;若不经过,请说明理由.解:(1)由题意知椭圆的焦点F (1,0),即c =1.由e =22得a =2,b =2-1=1,∴椭圆C 的方程为x 22+y 2=1.(2)由(1)知A (0,1),当直线BC 的斜率不存在时, 设BC :x =x 0,设B (x 0,y 0),则C (x 0,-y 0), k AB ·k AC =y 0-1x 0·-y 0-1x 0=1-y 20x 20=12x 20x 20=12≠14,不合题意.故直线BC 的斜率存在. 设直线BC 的方程为:y =kx +m (m ≠1), 代入椭圆方程,得:(1+2k 2)x 2+4kmx +2(m 2-1)=0, 由Δ=(4km )2-8(1+2k 2)(m 2-1)>0, 得2k 2-m 2+1>0. 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=-4km1+2k 2,x 1x 2=2(m 2-1)1+2k 2.①由k AB ·k AC =y 1-1x 1·y 2-1x 2=14,得4y 1y 2-4(y 1+y 2)+4=x 1x 2,即(4k 2-1)x 1x 2+4k (m -1)(x 1+x 2)+4(m -1)2=0, 将①代入上式,整理得(m -1)(m -3)=0. 又因为m ≠1,所以m =3,此时直线BC 的方程为y =kx +3. 所以直线BC 恒过一定点(0,3).3.(2017·合肥模拟)如图,已知抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求抛物线E 的方程;(2)求点M 到直线CD 距离的最大值.解:(1)把x A =2代入x 2+y 2=8,得y 2A =4,故2px A =4,p =1.于是,抛物线E 的方程为y 2=2x .(2)设C ⎝⎛⎭⎫y 212,y 1,D ⎝⎛⎭⎫y 222,y 2,切线l 1:y -y 1=k ⎝⎛⎭⎫x -y 212,代入y 2=2x 得ky 2-2y +2y 1-ky 21=0,由Δ=0,解得k =1y 1.∴l 1的方程为y =1y 1x +y 12,同理,l 2的方程为y =1y 2x +y 22.联立⎩⎨⎧y =1y 1x +y 12,y =1y 2x +y 22,解得⎩⎪⎨⎪⎧x =y 1y 22,y =y 1+y22.易得直线CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,2 2 ].联立⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0,则⎩⎨⎧y 1+y 2=-2y 0x 0,y 1y 2=-16x.∴M (x ,y )满足⎩⎨⎧x =-8x 0,y =-y0x 0,即点M 为⎝⎛⎭⎫-8x,-y 0x 0.点M 到直线CD :x 0x +y 0y =8的距离d =⎪⎪⎪⎪-8-y 20x 0-8x 20+y 20=y 20x 0+1622=8-x 20x 0+1622=8x 0-x 0+1622,令f (x )=8x -x +1622,x ∈[2,2 2 ],则f (x )在[2,2 2 ]上单调递减,当且仅当x =2时,f (x )取得最大值922,故d max =922. 4.(2017·广西五校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x +y +1=0与以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)过点M (2,0) 的直线l 与椭圆C 相交于不同的两点S 和T ,若椭圆C 上存在点P 满足OS ―→+OT ―→=t OP ―→(其中O 为坐标原点),求实数t 的取值范围.解:(1)由题意,以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆的方程为(x -c )2+y 2=a 2,∴圆心到直线x +y +1=0的距离d =c +12=a .(*)∵椭圆C 的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b =c ,a =2c ,代入(*)式得b =c =1,∴a =2,故所求椭圆方程为x 22+y 2=1.(2)由题意知,直线l 的斜率存在,设P (x 0,y 0),直线l 的方程为y =k (x -2),将直线l 的方程代入椭圆方程得(1+2k 2)x 2-8k 2x +8k 2-2=0,∴Δ=64k 4-4(1+2k 2)(8k 2-2)>0,解得k 2<12.设S (x 1,y 1),T (x 2,y 2),则x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2,∴y 1+y 2=k (x 1+x 2-4)=-4k1+2k 2.由OS ―→+OT ―→=t OP ―→,得tx 0=x 1+x 2,ty 0=y 1+y 2, 当t =0时,直线l 为x 轴,则椭圆上任意一点P 满足OS ―→+OT ―→=t OP ―→,符合题意;当t ≠0时,⎩⎨⎧tx 0=8k 21+2k 2,ty 0=-4k1+2k 2,∴x 0=1t ·8k 21+2k 2,y 0=1t ·-4k 1+2k2.将上式代入椭圆方程得32k 4t 2(1+2k 2)2+16k 2t 2(1+2k 2)2=1,整理得t 2=16k 21+2k 2=161k2+2,由k 2<12知,0<t 2<4,所以t ∈(-2,0)∪(0,2),综上可得,实数t 的取值范围是(-2,2).5.(2017·湖南东部五校联考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c,0),且b>c .设短轴的一个端点为D ,原点O 到直线DF 的距离为32,过原点和x 轴不重合的直线与椭圆E 相交于C ,G 两点,且|GF ―→ |+| CF ―→|=4.(1)求椭圆E 的方程;(2)是否存在过点P (2,1)的直线l 与椭圆E 相交于不同的两点A ,B 且使得OP ―→2=4PA ―→·PB ―→成立?若存在,试求出直线l 的方程;若不存在,请说明理由.解:(1)由椭圆的对称性知|GF ―→|+|CF ―→|=2a =4,∴a =2.又原点O 到直线DF 的距离为32, ∴bc a =32,∴bc = 3. 又a 2=b 2+c 2=4,b >c , ∴b =3,c =1.故椭圆E 的方程为x 24+y 23=1.(2)当直线l 与x 轴垂直时不满足条件.故可设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =k (x -2)+1,代入椭圆方程得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0,∴x 1+x 2=8k (2k -1)3+4k 2,x 1x 2=16k 2-16k -83+4k 2,Δ=32(6k +3)>0, ∴k >-12.∵OP ―→2=4PA ―→·PB ―→,即4[(x 1-2)(x 2-2)+(y 1-1)(y 2-1)]=5, ∴4(x 1-2)(x 2-2)(1+k 2)=5,即4[x 1x 2-2(x 1+x 2)+4](1+k 2)=5,∴4⎣⎢⎡⎦⎥⎤16k 2-16k -83+4k 2-2×8k (2k -1)3+4k 2+4(1+k 2) =4×4+4k 23+4k 2=5,解得k =±12,k =-12不符合题意,舍去.∴存在满足条件的直线l ,其方程为y =12x .1.(2018届高三·石家庄摸底)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T 为椭圆上任意一点,直线TA ,TB 的斜率之积为-34.(1)求椭圆C 的方程;(2)设O 为坐标原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP ―→·OQ ―→+MP ―→·MQ ―→的取值范围.解:(1)设T (x ,y ),由题意知A (-4,0),B (4,0),设直线TA 的斜率为k 1,直线TB 的斜率为k 2,则k 1=yx +4,k 2=yx -4. 由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y 212=1.故椭圆C 的方程为x 216+y 212=1.(2)当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2),联立方程⎩⎪⎨⎪⎧x 216+y 212=1,y =kx +2消去y ,得(4k 2+3)x 2+16kx -32=0.所以x 1+x 2=-16k 4k 2+3,x 1x 2=-324k 2+3.从而,OP ―→·OQ ―→+MP ―→·MQ ―→=x 1x 2+y 1y 2+x 1x 2+(y 1-2)(y 2-2)=2(1+k 2)x 1x 2+2k (x 1+x 2)+4=-80k 2-524k 2+3=-20+84k 2+3.所以-20<OP ―→·OQ ―→+MP ―→·MQ ―→≤-523.当直线PQ 的斜率不存在时,OP ―→·OQ ―→+MP ―→·MQ ―→的值为-20. 综上,OP ―→·OQ ―→+MP ―→·MQ ―→的取值范围为⎣⎡⎦⎤-20,-523. 2.(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→= 2 NM ―→.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP ―→·PQ ―→=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP ―→=(x -x 0,y ),NM ―→=(0,y 0). 由NP ―→= 2 NM ―→,得x 0=x ,y 0=22y .因为M (x 0,y 0)在椭圆C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q (-3,t ),P (m ,n ), 则OQ ―→=(-3,t ),PF ―→=(-1-m ,-n ), OQ ―→·PF ―→=3+3m -tn ,OP ―→=(m ,n ),PQ ―→=(-3-m ,t -n ). 由OP ―→·PQ ―→=1,得-3m -m 2+tn -n 2=1, 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ ―→·PF ―→=0,即OQ ―→⊥PF ―→. 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .3.(2018届高三·西安八校联考)设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上的点T (2,2)到点F 1,F 2的距离之和等于4 2.(1)求椭圆C 的方程;(2)若直线y =kx (k ≠0)与椭圆C 交于E ,F 两点,A 为椭圆C 的左顶点,直线AE ,AF 分别与y 轴交于点M ,N .问:以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.解:(1)由椭圆上的点T (2,2)到点F 1,F 2的距离之和是42,可得2a =42,a =2 2. 又T (2,2)在椭圆上,因此4a 2+2b 2=1,所以b =2,所以椭圆C 的方程为x 28+y 24=1.(2)因为椭圆C 的左顶点为A , 所以点A 的坐标为(-22,0).因为直线y =kx (k ≠0)与椭圆x 28+y 24=1交于E ,F 两点,设点E (x 0,y 0)(不妨设x 0>0),则点F (-x 0,-y 0).由⎩⎪⎨⎪⎧y =kx ,x 28+y 24=1消去y ,得x 2=81+2k 2, 所以x 0=221+2k2,则y 0=22k 1+2k 2,所以直线AE 的方程为y =k1+1+2k2(x +22).因为直线AE ,AF 分别与y 轴交于点M ,N ,令x =0,得y =22k 1+1+2k2,即点M 0,22k 1+1+2k2.同理可得点N ⎝ ⎛⎭⎪⎫0,22k 1-1+2k 2. 所以|MN |=⎪⎪⎪⎪⎪⎪22k 1+1+2k 2-22k 1-1+2k 2 =22(1+2k 2)|k |.设MN 的中点为P ,则点P 的坐标为P ⎝⎛⎭⎫0,-2k . 则以MN 为直径的圆的方程为x 2+⎝⎛⎭⎫y +2k 2=⎝ ⎛⎭⎪⎫2(1+2k 2)|k |2,即x 2+y 2+22k y =4. 令y =0,得x 2=4,即x =2或x =-2.故以MN 为直径的圆经过两定点P 1(2,0),P 2(-2,0).4.(2017·安徽二校联考)已知焦点为F 的抛物线C1:x 2=2py (p >0),圆C 2:x 2+y 2=1,直线l 与抛物线相切于点P ,与圆相切于点Q .(1)当直线l 的方程为x -y -2=0时,求抛物线C 1的方程; (2)记S 1,S 2分别为△FPQ ,△FOQ 的面积,求S 1S 2的最小值.解:(1)设点P ⎝⎛⎭⎫x 0,x 22p ,由x 2=2py (p >0)得,y =x 22p ,求得y ′=xp ,因为直线PQ 的斜率为1,所以x 0p =1且x 0-x 202p -2=0,解得p =2 2.所以抛物线C 1的方程为x 2=42y . (2)点P 处的切线方程为y -x 202p =x 0p (x -x 0),即2x 0x -2py -x 20=0,OQ 的方程为y =-px 0x . 根据切线与圆相切,得|-x 20|4x 20+4p2=1,化简得x 40=4x 20+4p 2,由方程组⎩⎪⎨⎪⎧2x 0x -2py -x 20=0,y =-px 0x ,解得Q ⎝ ⎛⎭⎪⎫2x 0,4-x 202p .所以|PQ |=1+k 2|x P -x Q |=1+x 2p 2⎪⎪⎪⎪x 0-2x 0= p 2+x 20p ·⎪⎪⎪⎪⎪⎪x 20-2x 0, 又点F ⎝⎛⎭⎫0,p2到切线PQ 的距离 d 1=|-p 2-x 20|4x 20+4p2=12x 20+p 2,所以S 1=12|PQ |d 1=12·p 2+x 20p ·⎪⎪⎪⎪⎪⎪x 20-2x 0·12x 20+p 2=x 20+p 24p ⎪⎪⎪⎪⎪⎪x 20-2x 0, S 2=12|OF ||x Q |=p 2|x 0|,而由x 40=4x 20+4p 2知,4p 2=x 40-4x 20>0,得|x 0|>2,所以S 1S 2=x 20+p 24p ⎪⎪⎪⎪⎪⎪x 20-2x 0·2|x 0|p=(x 20+p 2)(x 20-2)2p 2=(4x 20+x 40-4x 20)(x 20-2)2(x 40-4x 2) =x 20(x 20-2)2(x 20-4)=x 20-42+4x 20-4+3≥22+3,当且仅当x 20-42=4x 20-4时取等号,即x 20=4+22时取等号,此时p =2+2 2.所以S 1S 2的最小值为22+3.高考第21题⎪⎪函数与导数题型一 函数单调性、极值问题——分类讨论思想利用导数研究含参数的函数单调性、极值问题时,常用到分类讨论思想,其分类讨论点一般步骤[典例](2017·全国卷Ⅰ)(本题满分12分)已知函数f(x)=a e2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[障碍提醒]1.对f(x)求导计算错或求导后不会分解而滞做.[解](1)f(x)的定义域为(-∞,+∞),f′(x)=2a e2x+(a-2)e x-1=(a e x-1)(2e x+1).2分[思路提示]第(1)问求函数f(x)的导数,分类讨论确定导函数的符号来判断f(x)的单调性;2.对含参数的单调性问题无分类讨论意识而导致解题错误.(ⅰ)若a≤0,❶则f′(x)<0,所以f(x)在(-∞,+∞)上单调递减.3分(ⅱ)若a>0,❶则由f′(x)=0,得x=-ln a.当x∈(-∞,-ln a)时,f′(x)<0;当x∈(-ln a,+∞)时,f′(x)>0.所以f(x)在(-∞,-ln a)上单调递减,在(-ln a,+∞)上单调递增.5分(2)(ⅰ)若a≤0,❷由(1)知,第(2)问结合第(1)问函数的单调性,判断函数存在两个零点的条件,从而确定a的取值范围.f(x)至多有一个零点.6分3.函数有零点的条件是什么不清楚,导致不会求解.(ⅱ)若a>0,❷由(1)知,当x=-ln a时,f(x)取得最小值,最小值为f(-ln a)=1-1a+ln a.7分[解题关键点]①处分解变形后得分类点1.当a=1时,❸由于f(-ln a)=0,故f(x)只有一个零点;8分当a∈(1,+∞)时,❸由于1-1a+ln a>0,即f(-ln a)>0,故f(x)没有零点;9分当a∈(0,1)时,❸1-1a+ln a<0,即f(-ln a)<0.又f(-2)=a e-4+(a-2)e-2+2>-2e -2+2>0,②处由(1)的单调性得分类点2.③处由f(-ln a)=0得分类点3.4.当0<a<1时,易判断出f(x)在(-∞,-ln a)上有一个零点,而在判断f(x)在(-ln a,+∞)上也有一个零点时,不会寻求某正整数n0,且判断f(n0)>0而滞做.故f(x)在(-∞,-ln a)有一个零点.10分设正整数n0满足n0>ln⎝⎛⎭⎫3a-1,则f(n0)=e n0(a e n0+a-2)-n0>e n0-n0>2n0-n0>0.11分由于ln ⎝⎛⎭⎫3a -1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点.综上,a 的取值范围为(0,1).12分题型对点练见课堂练习第1题题型二 讨论函数零点的个数或已知方程根求参数问题——数形结合思想 研究方程根的情况,可以通过导数研究函数的单调性、最值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.[典例] (本题满分12分)已知函数f (x )=(x +a )e x ,其中e 是自然对数的底数,a ∈R. (1)求函数f (x )的单调区间;(2)当a <1时,试确定函数g (x )=f (x -a )-x 2的零点个数,并说明理由. [障碍提醒]1.对函数f (x )求导计算错而导致解题错误.[解] (1)因为f (x )=(x +a )e x ,x ∈R ,所以f ′(x )=(x +a +1)e x.1分令f ′(x )=0,得x =-a -1.2分当x 变化时,f ′(x )和f (x )的变化情况如下: [思路提示]第(1)问求函数f (x )的导数并讨论函数的单调性;2.不会利用导数求解函数的单调区间.第(2)问把函数g(x)转化为方程来判断方程解的个数,即为函数g(x)的零点个数;若不能直接判断出零点个数的,可构造函数F(x),故f(x)的单调递减区间为(-∞,-a-1),单调递增区间为(-a-1,+∞).4分(2)结论:当a<1时,函数g(x)有且仅有一个零点.5分理由如下:由g(x)=f(x-a)-x2=0,通过讨论函数F(x)的单调性并结合函数零点存在性定理确定函数g(x)的零点个数.3.对于函数零点个数的判断,不会转化构造函数而无从下手.得方程x e x-a=x2,显然x=0为此方程的一个实数解,所以x=0是函数g(x)的一个零点.6分当x≠0时,方程可化简为e x-a=x.设函数F(x)=e x-a-x,7分[解题关键点]使用函数与方程思想进行转化.由方程再次构造函数.则F′(x)=e x-a-1,令F′(x)=0,得x=a.当x变化时,F′(x)和F(x)的变化情况如下:4.在判断方程e x-a=x(x≠0)无零点时不会构造转化,利用单调性及最值做出判断.即F(x)的单调递增区间为(a,+∞),单调递减区间为(-∞,a).9分所以F(x)min=F(a)=1-a.10分因为a<1,所以F(x)min=F(a)=1-a>0,所以对于任意x∈R,F(x)>0,11分因此方程e x-a=x无实数解.所以当x≠0时,函数g(x)不存在零点.综上,函数g(x)有且仅有一个零点.12分可数形结合作出分析.题型对点练见课堂练习第2题题型三不等式的证明问题——函数与方程思想利用导数证明不等式问题,多数利用函数与方程思想结合不等式构造函数,转化为利用构造函数的性质来完成,其一般思路是:[典例] (2017·安庆二模)(本题满分12分)已知函数f (x )=ln x +ax ,a ∈R. (1)讨论函数f (x )的单调性;(2)若函数f (x )的两个零点为x 1,x 2,且x 2x 1≥e 2,求证:(x 1-x 2)f ′(x 1+x 2)>65.[障碍提醒] 1.忽视求定义域导致单调性判断失误.[解] (1)函数f (x )=ln x +ax ,a ∈R 的定义域为(0,+∞),1分 f ′(x )=1x +a =ax +1x .2分[思路提示] 第(1)问先求出f ′(x ),对f ′(x )中的字母参数分类讨论确定f ′(x )的符号,从而得出f (x )的单调性;第(2)问把要证不等式的左边变形、整理、换元,构造一新的函数φ(t ),对φ(t )求导后,判断在新元范围下的单调性,求其最小值从而得解.2.对含参数的函数单调性不会分类讨论而导致解题错误或滞做.当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.3分 当a <0时,由f ′(x )=0得x =-1a,当0<x <-1a 时,f ′(x )>0;当x >-1a 时,f ′(x )<0.所以f (x )在⎝⎛⎭⎫0,-1a 上单调递增; 在⎝⎛⎭⎫-1a ,+∞上单调递减.4分 综上,当a ≥0时,f (x )在(0,+∞)上单调递增, 当a <0时,f (x )在⎝⎛⎭⎫0,-1a 上单调递增, 在⎝⎛⎭⎫-1a ,+∞上单调递减.5分 3.由f (x 1)=0,(2)证明:若函数f (x )的两个零点为x 1,x 2,f (x 2)=0不会转化x 1与x 2的关系而导致滞做.由(1)得a <0.因为ln x 1+ax 1=0,ln x 2+ax 2=0,所以ln x 2-ln x 1=a (x 1-x 2),6分所以(x 1-x 2)f ′(x 1+x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫1x 1+x 2+a =x 1-x 2x 1+x 2+a (x 1-x 2) 4.对要证明的不等式无思路,不会构造变形导致无从下手.=x 1-x 2x 1+x 2+ln x 2x 1=分[解题关键点] 变形整理为换元做好准备.5.想不到利用换元法构造函数,利用函数的单调性求最小值.令x 2x 1=t ≥e 2, 分 因为φ′(t )=t 2+1t (1+t )2>0,所以φ(t )在[e 2,+∞)上单调递增,分故(x 1-x 2)f ′(x 1+x 2)>65得证.12分换元转化为更简洁的问题.构造函数,用函数最值证明不等式.题型对点练见课堂练习第3题题型四不等式恒成立、存在性问题——转化与化归思想利用导数研究不等式恒成立、存在性问题时,常用到转化与化归思想,其一般思路是:[典例](2017·广州二模)(本题满分12分)已知函数f(x)=e-x-ax(x∈R).(1)当a=-1时,求函数f(x)的最小值;(2)若x≥0时,f(-x)+ln(x+1)≥1恒成立,求实数a的取值范围.[思路提示][障碍提醒][解](1)当a=-1时,f(x)=e-x+x,1.计算错f ′(x )或判断错单调性,导致求错最值.则f ′(x )=-1e x +1=e x -1ex .1分令f ′(x )=0,得x =0.第(1)问当a =-1时,利用导数f ′(x )的符号判断f (x )的单调性;第(2)问把不等式f (-x )+ln(x +1)≥1恒成立问题,通过构造新函数g (x ),转化为证明g (x )≥0恒成立,从而利用函数g (x )的端点值分类讨论a 的取值来进行证明.当x <0时,f ′(x )<0;当x >0时,f ′(x )>0. 所以函数f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.3分所以当x =0时,函数f (x )取得最小值,且最小值为f (0)=1.4分(2)因为x ≥0时,f (-x )+ln(x +1)≥1恒成立,即e x +ax +ln(x +1)-1≥0.(*)5分2.不等式恒成立问题不会构造函数,即f (-x )+ln(x +1)≥0恒成立,不会构造g (x )=e x +ax +ln(x +1)-1.令g (x )=e x +ax +ln(x +1)-1,6分则[解题关键点].3.判断g ′(x )的符号时,不会利用二次求导做出判断.当导数g ′(x )有参数时,易忘记讨又g ″(x )=e x-1(x +1)2≥0,当且仅当x =0时取等号,所以g ′(x )=e x +1x +1+a 在[0,+∞)上单调递论而致误.增.8分①若a≥-2,则g′(x)≥g′(0)=2+a≥0,抓住端点值展开讨论.当且仅当x=0,a=-2时取等号,所以g(x)在[0,+∞)上单调递增,有g(x)≥g(0)=0,(*)式恒成立.9分②若a<-2,由于g′(0)=2+a<0,x→+∞时,g′(x)→+∞,所以必存在唯一的x0∈(0,+∞),使得g′(x0)=0,当0<x<x0时,g′(x)<0,g(x)单调递减;当x>x0时,g′(x)>0,g(x)单调递增.所以当x∈(0,x0)时,g(x)<g(0)=0,(*)式不恒成立.11分综上所述,实数a的取值范围是[-2,+∞).12分分析端点值,明确函数图象走势.题型对点练见课堂练习第4题[课堂练习] 1.已知函数f (x )=x -1+a ex (a ∈R ,e 为自然对数的底数). (1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)求函数f (x )的极值.解:(1)由f (x )=x -1+a e x ,得f ′(x )=1-a ex . 又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,得f ′(1)=0,即1-a e=0,解得a =e. (2)f ′(x )=1-a ex , ①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x =a ,即x =ln a .x ∈(-∞,ln a )时,f ′(x )<0;x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.2.(2017·西安一模)已知函数f (x )=x +1+a x-a ln x .若函数y =f (x )的图象在x =1处的切线与直线2x +y -1=0平行.(1)求a 的值;(2)若方程f (x )=b 的区间[1,e]上有两个不同的实数根,求实数b 的取值范围.解:(1)函数f (x )=x +1+a x -a ln x 的导数f ′(x )=1-1+a x 2-a x , ∴y =f (x )的图象在x =1处的切线斜率为k =f ′(1)=1-(1+a )-a =-2a ,由题意可得-2a =-2,解得a =1.(2)由(1)知f (x )=x +2x -ln x ,f ′(x )=1-2x 2-1x =(x +1)(x -2)x 2, 当1<x <2时,f ′(x )<0,f (x )单调递减;当2<x <e 时,f ′(x )>0,f (x )单调递增. ∴当x =2时,f (x )取得极小值f (2)=3-ln 2.又∵f (1)=3,f (e)=e -1+2e,即有f (1)>f (e), ∴方程f (x )=b 在区间[1,e]上有两个不同的实数根,则有f (2)<b ≤f (e),即3-ln 2<b ≤e -1+2e. 故实数b 的取值范围为⎝⎛⎦⎤3-ln 2,e -1+2e . 3.(2017·全国卷Ⅱ)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0.(1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2. 解:(1)f (x )的定义域为(0,+∞).设g (x )=ax -a -ln x ,则f (x )=xg (x ),f (x )≥0等价于g (x )≥0.因为g (1)=0,g (x )≥0,。
2018届高考数学(理)二轮复习教师用书:第二部分 板块(一) 系统思想方法——融会贯通
(一)小题小做 巧妙选择高考数学选择题历来都是兵家必争之地,因其涵盖的知识面较宽,既有基础性,又有综合性,解题方法灵活多变,分值又高,既考查了同学们掌握基础知识的熟练程度,又考查了一定的数学能力和数学思想,试题区分度极佳.这就要求同学们掌握迅速、准确地解答选择题的方法与技巧,为全卷得到高分打下坚实的基础.一般来说,对于运算量较小的简单选择题,都是采用直接法来解题,即从题干条件出发,利用基本定义、性质、公式等进行简单分析、推理、运算,直接得到结果,与选项对比得出正确答案;对于运算量较大的较复杂的选择题,往往采用间接法来解题,即根据选项的特点、求解的要求,灵活选用数形结合、验证法、排除法、割补法、极端值法、估值法等不同方法技巧,通过快速判断、简单运算即可求解.下面就解选择题的常见方法分别举例说明.一、直接法直接从题目条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,得出正确的结论.涉及概念、性质的辨析或运算较简单的题目常用直接法.[典例] (2017·全国卷Ⅱ)若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A .2B . 3C . 2D .233[技法演示] 由圆截得渐近线的弦长求出圆心到渐近线的距离,利用点到直线的距离公式得出a 2,b 2的关系求解.依题意,双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程为bx -ay =0.因为直线bx-ay =0被圆(x -2)2+y 2=4所截得的弦长为2,所以|2b |b 2+a2=4-1,所以3a 2+3b 2=4b 2,所以3a 2=b 2,所以e =1+b 2a2=1+3=2. [答案] A[应用体验]1.(2016·全国卷Ⅲ)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=( )A.[2,3] B.(-∞,2]∪[3,+∞)C.[3,+∞) D.(0,2]∪[3,+∞)解析:选D 由题意知S={x|x≤2或x≥3},则S∩T={x|0<x≤2或x≥3}.故选D.2.(2017·全国卷Ⅱ)执行如图所示的程序框图,如果输入的a=-1,则输出的S=( )A.2 B.3C.4 D.5解析:选B 运行程序框图,a=-1,S=0,K=1,K≤6成立;S=0+(-1)×1=-1,a=1,K=2,K≤6成立;S=-1+1×2=1,a=-1,K=3,K≤6成立;S=1+(-1)×3=-2,a=1,K=4,K≤6成立;S=-2+1×4=2,a=-1,K=5,K≤6成立;S=2+(-1)×5=-3,a=1,K=6,K≤6成立;S =-3+1×6=3,a =-1,K =7,K ≤6不成立,输出S =3.二、数形结合法根据题目条件作出所研究问题的有关图形,借助几何图形的直观性作出正确的判断.[典例] (2013·全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,x +,x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0][技法演示]作出函数图象,数形结合求解.当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D.[答案] D[应用体验]3.(2016·全国卷Ⅱ)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A . 2B .32C . 3D .2解析:选A 作出示意图,如图,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2.故选A .4.(2014·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤03x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2解析:选B 作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点B (5,2)时,对应的z 值最大.故z max =2×5-2=8.三、验证法将选项或特殊值,代入题干逐一去验证是否满足题目条件,然后选择符合题目条件的选项的一种方法.在运用验证法解题时,若能根据题意确定代入顺序,则能提高解题速度.[典例] (2016·全国卷Ⅰ)若a >b >1,0<c <1,则( ) A .a c<b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c[技法演示] 法一:(特殊值验证法)根据a ,b ,c 满足的条件,取特殊值求解. ∵a >b >1,0<c <1,∴不妨取a =4,b =2,c =12,对于A,412=2,212=2,2>2,∴选项A 不正确.对于B,4×212=42,2×412=4,42>4,∴选项B不正确.对于C,4×log212=-4,2×log412=-1,-4<-1,∴选项C正确.对于D,log412=-12,log212=-1,-12>-1,∴选项D不正确.故选C.法二:(直接法)根据待比较式的特征构造函数,直接利用函数单调性及不等式的性质进行比较.∵y=xα,α∈(0,1)在(0,+∞)上是增函数,∴当a>b>1,0<c<1时,a c>b c,选项A不正确.∵y=xα,α∈(-1,0)在(0,+∞)上是减函数,∴当a>b>1,0<c<1,即-1<c-1<0时,a c-1<b c-1,即ab c>ba c,选项B不正确.∵a>b>1,∴lg a>lg b>0,∴a lg a>b lg b>0,∴alg b>blg a.又∵0<c<1,∴lg c<0.∴a lg clg b<b lg clg a,∴a log b c<b log a c,选项C正确.同理可证log a c>log b c,选项D不正确.[答案] C[应用体验]5.(2016·全国卷Ⅰ)若函数f(x)=x-13sin 2x+a sin x在(-∞,+∞)单调递增,则a的取值范围是( )A .[-1,1]B .⎣⎢⎡⎦⎥⎤-1,13C .⎣⎢⎡⎦⎥⎤-13,13D .⎣⎢⎡⎦⎥⎤-1,-13 解析:选C 法一:(特殊值验证法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C .法二:(直接法)函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以错误!解得-错误!≤a ≤错误!.故选C .四、排除法排除法也叫筛选法或淘汰法,使用排除法的前提是答案唯一,具体的做法是从条件出发,运用定理、性质、公式推演,根据“四选一”的指令,对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰项逐一排除,从而获得正确结论.[典例] (2017·全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )[技法演示] 根据函数的性质研究函数图象,利用排除法求解.令函数f (x )=sin 2x1-cos x ,其定义域为{x |x ≠2k π,k ∈Z},又f (-x )=-2x 1--x =-sin 2x1-cos x=-f (x ),所以f (x )=sin 2x1-cos x为奇函数,其图象关于原点对称,故排除B;因为f(1)=sin 21-cos 1>0,f(π)=sin 2π1-cos π=0,故排除A、D,选C.[答案] C[应用体验]6.(2016·全国卷Ⅰ)函数y=2x2-e|x|在[-2,2]的图象大致为( )解析:选D ∵f(x)=2x2-e|x|,x∈[-2,2]是偶函数,又f(2)=8-e2∈(0,1),故排除A,B.设g(x)=2x2-e x,则g′(x)=4x-e x.又g′(0)<0,g′(2)>0,∴g(x)在(0,2)内至少存在一个极值点,∴f(x)=2x2-e|x|在(0,2)内至少存在一个极值点,排除C.故选D.7.(2015·全国卷Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB 的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为( )解析:选B 当x ∈⎣⎢⎡⎦⎥⎤0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A 、C .当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫3π4=1+5,f ⎝ ⎛⎭⎪⎫π2=2 2.∵22<1+5,∴f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫3π4,从而排除D ,故选B.五、割补法“能割善补”是解决几何问题常用的方法,巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题时间.[典例] (2016·全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π[技法演示] 由三视图还原为直观图后计算求解.由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR2=17π.故选A .[答案] A[应用体验]8.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A .18 B .17C .16D .15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D.六、极端值法选择运动变化中的极端值,往往是动静转换的关键点,可以起到降低解题难度的作用,因此是一种较高层次的思维方法.从有限到无限,从近似到精确,从量变到质变,运用极端值法解决某些问题,可以避开抽象、复杂的运算,降低难度,优化解题过程.[典例] (2016·全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3[技法演示] 根据直三棱柱的性质找出最大球的半径,再求球的体积.由题意得,要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝ ⎛⎭⎪⎫323=9π2.故选B.[答案] B[应用体验]9.如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q 满足A 1P =BQ ,过P ,Q ,C 三点的截面把棱柱分成两部分,则其体积之比为( )A .3∶1B .2∶1C .4∶1D .3∶1解析:选B 将P ,Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有VC AA 1B =VA 1ABC =VABC A 1B 1C 13.故过P ,Q ,C 三点的截面把棱柱分成的两部分体积之比为2∶1(或1∶2).七、估值法由于选择题提供了唯一正确的选择项,解答又无需过程,因此可通过猜测、合情推理、估算而获得答案,这样往往可以减少运算量,避免“小题大做”.[典例] (2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π[技法演示] 由题意,知12V 圆柱<V 几何体<V 圆柱.又V 圆柱=π×32×10=90π, ∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B. [答案] B[应用体验]10.若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A .73B .54C .43D .53解析:选D 因为双曲线的一条渐近线经过点(3,-4),所以b a =43.因为e =c a >b a ,所以e >43.故选D.(二)快稳细活 填空稳夺绝大多数的填空题都是依据公式推理计算型和依据定义、定理等进行分析判断型,解答时必须按规则进行切实的计算或者合乎逻辑的推理和判断.求解填空题的基本策略是要在“准”“巧”“快”上下功夫.常用的方法有直接法、特殊值法、数形结合法、等价转化法、构造法、分析法等.解答填空题时,由于不反映过程,只要求结果,故对正确性的要求更高、更严格.解答时应遵循“快”“细”“稳”“活”“全”5个原则.填空题解答“五字诀” 快——运算要快,力戒小题大做 细——审题要细,不能粗心大意 稳——变形要稳,不可操之过急 活——解题要活,不要生搬硬套 全——答案要全,避免残缺不齐 一、直接法直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等得出正确的结论.[典例] (2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________. [技法演示] 先求出sin A ,sin C 的值,进而求出sin B 的值,再利用正弦定理求b 的值.因为A ,C 为△ABC 的内角,且cos A =45,cos C =513,所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又a =1,所以由正弦定理得b =a sin B sin A =6365×53=2113. [答案]2113[应用体验]1.(2015·全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )为偶函数,∴f (-x )-f (x )=0恒成立,∴-x ln(-x +a +x 2)-x ln(x +a +x 2)=0恒成立,∴x ln a =0恒成立,∴ln a =0,即a =1.答案:12.(2014·全国卷Ⅰ)(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)解析:(x +y )8中,T r +1=C r 8x 8-r y r,令r =7,再令r =6,得x 2y 7的系数为C 78-C 68=8-28=-20.答案:-20 二、特殊值法当填空结论唯一或题设条件中提供的信息暗示答案是一个定值时,我们只需把题材中的参变量用特殊值代替即可得到结论.[典例] (2016·山东高考)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.[技法演示] 法一:(特殊值法)利用双曲线的性质,设特殊值求解. 如图,由题意知|AB |=2b2a,|BC |=2c ,又2|AB |=3|BC |,∴设|AB |=6,|BC |=4,则|AF 1|=3,|F 1F 2|=4,∴|AF 2|=5.由双曲线的定义可知,a =1,c =2,∴e =c a=2.故填2. 法二:(直接法)利用双曲线的性质,建立关于a ,b ,c 的等式求解. 如图,由题意知|AB |=2b2a,|BC |=2C .又2|AB |=3|BC |,∴2×2b2a=3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理得2e 2-3e -2=0,解得e =2(负值舍去). [答案] 2[应用体验]3.(2014·安徽高考)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.解析:法一:(特殊值法)由题意知a 1,a 3,a 5成等差数列,a 1+1,a 3+3,a 5+5成等比数列,所以观察可设a 1=5,a 3=3,a 5=1,所以q =1.故填1.法二:(直接法)因为数列{a n }是等差数列,所以可设a 1=t -d ,a 3=t ,a 5=t +d ,故由已知得(t +3)2=(t -d +1)(t +d +5),得d 2+4d +4=0,即d =-2,所以a 3+3=a 1+1,即q =1.答案:1 三、数形结合法根据题目条件,画出符合题意的图形,以形助数,通过对图形的直观分析、判断,往往可以快速简捷地得出正确的结果,它既是方法,也是技巧,更是基本的数学思想.[典例] (2016· 全国卷Ⅲ)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.[技法演示] 根据直线与圆的位置关系先求出m 的值,再结合图象求|CD |.由直线l :mx +y +3m -3=0知其过定点(-3,3),圆心O 到直线l 的距离为d =|3m -3|m 2+1.由|AB |=23得⎝ ⎛⎭⎪⎫3m -3m 2+12+(3)2=12,解得m =-33. 又直线l 的斜率为-m =33, 所以直线l 的倾斜角α=π6.画出符合题意的图形如图所示,过点C 作CE ⊥BD ,则∠DCE =π6.在Rt △CDE 中,可得|CD |=|AB |cos π6=23×23=4. [答案] 4[应用体验]4.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y +1≤0,2x -y +2≥0,则z =3x +y 的最大值为________.解析:画出可行域(如图所示). ∵z =3x +y , ∴y =-3x +z .∴直线y =-3x +z 在y 轴上截距最大时,即直线过点B 时,z 取得最大值.由⎩⎪⎨⎪⎧x +y -2=0,x -2y +1=0,解得⎩⎪⎨⎪⎧x =1,y =1,即B (1,1),∴z max =3×1+1=4. 答案:45.(2014·全国卷Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.解析:∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)上单调递减,则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3.答案:(-1,3) 四、等价转化法通过“化复杂为简单,化陌生为熟悉”将问题等价转化为便于解决的问题,从而得到正确的结果.[典例] (2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.[技法演示] 利用等比数列通项公式求出首项a 1与公比q ,再将a 1a 2…a n 的最值问题利用指数幂的运算法则转化为二次函数最值问题.设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12n -n2=23n -n 22+n2=2-n 22+72n .记t =-n 22+7n2=-12(n 2-7n )=-12⎝ ⎛⎭⎪⎫n -722+498,结合n ∈N *可知n =3或4时,t 有最大值6.又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. [答案] 64[应用体验]6.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.解析:∵f (x )是偶函数,且在(-∞,0)上单调递增, ∴f (x )在(0,+∞)上单调递减,f (-2)=f (2),∴f (2|a -1|)>f (2),∴2|a -1|<2=212,∴|a -1|<12,即-12<a -1<12,即12<a <32.答案:⎝ ⎛⎭⎪⎫12,32 7.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解析:画出可行域如图阴影部分所示,∵yx表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时y x最大.由⎩⎪⎨⎪⎧x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3).∴y x的最大值为3.答案:3 五、构造法根据题设条件与结论的特殊性,构造出一些新的数学形式,并借助它来认识和解决问题.[典例] (2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.[技法演示] 先构造等比数列,再进一步利用通项公式求解. ∵a n +1=2S n +1,∴S n +1-S n =2S n +1, ∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎪⎫S n +12,∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1, ∴S 5+12=⎝ ⎛⎭⎪⎫S 1+12×34=32×34=2432,∴S 5=121. [答案] 1 121[应用体验]8.(2016·浙江高考)已知向量a ,b ,|a|=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由于e 是任意单位向量,可设e =a +b|a +b |,则|a ·e |+|b ·e |=⎪⎪⎪⎪⎪⎪aa +b |a +b |+⎪⎪⎪⎪⎪⎪b a +b |a +b |≥⎪⎪⎪⎪⎪⎪a a +b |a +b |+b a +b |a +b |=⎪⎪⎪⎪⎪⎪a +b ·a +b |a +b |=|a +b |. ∵|a ·e |+|b ·e |≤6,∴|a +b |≤6, ∴(a +b )2≤6,∴|a |2+|b |2+2a ·b ≤6. ∵|a |=1,|b |=2,∴1+4+2a ·b ≤6, ∴a ·b ≤12,∴a ·b 的最大值为12.答案:12六、分析法根据题设条件的特征进行观察、分析,从而得出正确的结论.[典例] (2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.[技法演示] 先确定丙的卡片上的数字,再确定乙的卡片上的数字,进而确定甲的卡片上的数字.因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.[答案] 1和3[应用体验]9.(2014·全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为________.解析:由甲、丙的回答易知甲去过A 城市和C 城市,乙去过A 城市或C 城市,结合乙的回答可得乙去过A 城市.答案:A[考前热身训练] “12+4”小题提速练共3套“12+4”小题提速练(一) (限时:40分钟 满分:80分)一、选择题1.集合A ={1,3,5,7},B ={x |x 2-4x ≤0},则A ∩B =( ) A .(1,3) B .{1,3} C .(5,7)D .{5,7}解析:选B 因为集合A ={1,3,5,7},B ={x |x 2-4x ≤0}={x |0≤x ≤4},所以A ∩B ={1,3}.2.已知z =1-3i3+i (i 为虚数单位),则z 的共轭复数的虚部为( )A .-iB .iC .-1D .1 解析:选D ∵z =1-3i3+i =--3+i3-i=-10i 10=-i ,∴z 的共轭复数z -=i ,其虚部为1.3.已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,|x |≤1,-10|x |+3,|x |>1,若f (0)=2,则a +f (-2)=( )A .-2B .0C .2D .4解析:选C ∵函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,|x |≤1,-10|x |+3,|x |>1,由f (0)=2,可得log 2(0+a )=2,∴a =4.∴a +f (-2)=4-105=2.4.如图,圆C 内切于扇形AOB ,∠AOB =π3,若向扇形AOB 内随机投掷600个点,则落入圆内的点的个数估计值为( )A .100B .200C .400D .450解析:选C 如图所示,作CD ⊥OA 于点D ,连接OC 并延长交扇形于点E ,设扇形半径为R ,圆C 半径为r ,∴R =r +2r =3r ,∴落入圆内的点的个数估计值为600·πr216πr2=400.5.双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与圆(x -3)2+(y -1)2=1相切,则此双曲线的离心率为( )A .2B . 5C . 3D . 2解析:选A 由题可知双曲线的渐近线方程为bx ±ay =0,与圆相切,∴圆心(3,1)到渐近线的距离为|3b -a |a 2+b 2=1或|3b +a |a 2+b2=1,又a >0,b >0,解得3a =b ,∴c 2=a 2+b 2=4a 2,即c =2a ,∴e =ca=2.6.某程序框图如图所示,该程序运行后输出S 的值是( )A .-3B .-12C .13D .2解析:选A 模拟程序框图的运算结果如下: 开始S =2,i =1.第一次循环,S =-3,i =2;第二次循环,S =-12,i =3;第三次循环,S =13,i =4;第四次循环,S =2,i =5;第五次循环,S =-3,i =6;……,可知S 的取值呈周期性出现,且周期为4,∵跳出循环的i 值2 018=504×4+2,∴输出的S =-3.7.在△ABC 中,|AB ―→+AC ―→|=3|AB ―→-AC ―→|,|AB ―→|=|AC ―→|=3,则CB ―→·CA ―→的值为( )A .3B .-3C .-92D .92解析:选 D 由|AB ―→+AC ―→|=3|AB ―→-AC ―→|,两边平方可得|AB ―→|2+|AC ―→|2+2AB ―→·AC ―→=3|AB ―→|2+3|AC ―→|2-6AB ―→·AC ―→,又|AB ―→|=|AC ―→|=3,∴AB ―→·AC ―→=92,∴CB ―→·CA ―→=(CA ―→+AB ―→)·CA ―→=CA ―→2+AB ―→·CA ―→=CA ―→2-AB ―→·AC ―→=9-92=92.8.设{a n }是公差不为0的等差数列,满足a 24+a 25=a 26+a 27,则{a n }的前10项和S 10=( ) A .-10 B .-5 C .0D .5解析:选C 由a 24+a 25=a 26+a 27,可得(a 26-a 24)+(a 27-a 25)=0,即2d (a 6+a 4)+2d (a 7+a 5)=0,∵d ≠0,∴a 6+a 4+a 7+a 5=0,∵a 5+a 6=a 4+a 7,∴a 5+a 6=0,∴S 10=a 1+a 102=5(a 5+a 6)=0.9.函数f (x )=⎝ ⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:选B ∵f (x )=⎝ ⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=⎝ ⎛⎭⎪⎫2e x1+e x -1cos x =-⎝ ⎛⎭⎪⎫21+e x -1cos x =-f (x ),故函数f (x )为奇函数,函数图象关于原点对称,可排除A ,C ;又由当x ∈⎝⎛⎭⎪⎫0,π2时,f (x )<0,函数图象位于第四象限,可排除D ,故选B. 10.已知过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点(点A 在第一象限),若AF ―→=3FB ―→,则直线AB 的斜率为( )A .B .12C .32D . 3解析:选D 作出抛物线的准线l :x =-1, 设A ,B 在l 上的投影分别是C ,D ,连接AC ,BD ,过B 作BE ⊥AC 于E ,如图所示.∵AF ―→=3FB ―→,∴设|AF |=3m , |BF |=m ,则|AB |=4m ,由点A ,B 分别在抛物线上,结合抛物线的定义,得|AC |=|AF |=3m ,|BD |=|BF |=m ,则|AE |=2m .因此在Rt △ABE 中,cos ∠BAE =|AE ||AB |=2m 4m =12,得∠BAE =60°.所以直线AB 的倾斜角∠AFx =60°,故直线AB 的斜率为k =tan 60°= 3. 11.某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为( )A .4πB .28π3C .44π3D .20π解析:选B 由三视图知,该几何体是一个三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,则三棱柱的两个底面的中心连线的中点到三棱柱的顶点的距离就是其外接球的半径r ,所以r =⎝ ⎛⎭⎪⎫23×32+12=73,则球面的表面积为4πr 2=4π×73=28π3. 12.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当xy z 取得最大值时,2x +1y -2z的最大值为( )A .0B .1C .94D .3解析:选B ∵x 2-3xy +4y 2-z =0,∴z =x 2-3xy +4y 2,又x ,y ,z 均为正实数,∴xy z=xy x 2-3xy +4y 2=1x y +4yx-3≤12x y ×4y x-3=1(当且仅当x =2y 时等号成立),∴⎝ ⎛⎭⎪⎫xy z max =1,此时x =2y ,则z =x 2-3xy +4y 2=(2y )2-3×2y ×y +4y 2=2y 2, ∴2x +1y -2z =1y +1y -1y2=-⎝ ⎛⎭⎪⎫1y -12+1≤1,当且仅当y =1时等号成立,满足题意. ∴2x +1y -2z的最大值为1.二、填空题13.已知等比数列{a n }中,a 1+a 3=52,a 2+a 4=54,则a 6=________.解析:∵a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52,a 1q +a 1q 3=54,解得⎩⎪⎨⎪⎧q =12,a 1=2,∴a 6=2×⎝ ⎛⎭⎪⎫125=116.答案:11614.已知sin ⎝ ⎛⎭⎪⎫θ-π6=33,则cos ⎝ ⎛⎭⎪⎫π3-2θ=________. 解析:cos ⎝ ⎛⎭⎪⎫π3-2θ=cos ⎝ ⎛⎭⎪⎫2θ-π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫θ-π6 =1-2sin 2⎝ ⎛⎭⎪⎫θ-π6=1-2×⎝⎛⎭⎪⎫332=13. 答案:1315.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________.解析:由z =ax +by (a >0,b >0)得y =-ab x +z b ,∵a >0,b >0,∴直线y =-ab x +z b的斜率为负.作出不等式组表示的可行域如图,平移直线y =-ab x +z b ,由图象可知当y =-a b x +z b经过点A 时,直线在y 轴上的截距最大,此时z 也最大.由⎩⎪⎨⎪⎧3x -y -6=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =4,y =6,即A (4,6).此时z =4a +6b =10,即2a +3b -5=0,即点(a ,b )在直线2x +3y -5=0上,因为a 2+b 2的几何意义为直线上的点到原点距离的平方,又原点到直线的距离d =|-5|22+32=513,故a 2+b 2的最小值为d 2=2513.答案:251316.已知函数f (x )=|x e x|-m (m ∈R)有三个零点,则m 的取值范围为________. 解析:函数f (x )=|x e x|-m (m ∈R)有三个零点,即y =|x e x|与y =m 的图象有三个交点.令g (x )=x e x,则g ′(x )=(1+x )e x,当x <-1时,g ′(x )<0,当x >-1时,g ′(x )>0,故g (x )=x e x在(-∞,-1)上为减函数,在(-1,+∞)上是增函数,g (-1)=-1e ,又由x <0时,g (x )<0,当x >0时,g (x )>0,故函数y =|x e x|的图象如图所示:由图象可知y =m 与函数y =|x e x|的图象有三个交点时,m ∈⎝ ⎛⎭⎪⎫0,1e ,故m 的取值范围是⎝ ⎛⎭⎪⎫0,1e . 答案:⎝ ⎛⎭⎪⎫0,1e “12+4”小题提速练(二) (限时:40分钟 满分:80分)一、选择题1.(2017·西安模拟)已知集合A ={x |log 2x ≥1},B ={x |x 2-x -6<0},则A ∩B =( ) A .∅ B .{x |2<x <3} C .{x |2≤x <3}D .{x |-1<x ≤2}解析:选C 化简集合得A ={x |x ≥2},B ={x |-2<x <3},则A ∩B ={x |2≤x <3}.2.(2017·福州模拟)已知复数z =2+i ,则zz=( )A .35-45iB .-35+45iC .53-43i D .-53+43i解析:选A 因为z =2+i ,所以zz =2-i2+i=-25=35-45i. 3.设a =log 32,b =ln 2,c =5-12,则a ,b ,c 的大小关系为( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a解析:选C 因为a =log 32=1log 23,b =ln 2=1log 2e,而log 23>log 2e >1,所以a <b ,又c =5-12=15,5>2=log 24>log 23,所以c <a ,故c <a <b .4.(2018届高三·兰州一中月考)在电视台举办的一次智力答题中,规定闯关者从图中任选一题开始,必须连续答对能连成一条线的3道题目,闯关才能成功,则闯关成功的答题方法有( )A .3种B .8种C .30种D .48种解析:选D 能连成横着的一条线的有123,456,789,共3种,能连成竖着的一条线的有147,258,369,共3种,能连成对角线的有159,357,共2种,故共有8种.又因为每种选择的答题顺序是任意的,故每种选择都有6种答题方法:如答题为1,2,3时,答题方法有:1→2→3,1→3→2,2→1→3,2→3→1,3→1→2,3→2→1.所以共有8×6=48(种)答题方法.5.(2017·合肥模拟)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤4,y ≥2,则目标函数z =x+2y 的最大值为( )A .5B .6C .132D .7解析:选C 作出不等式组表示的可区域如图中阴影部分所示,由图易知,当直线z =x +2y 经过直线x -y =-1与x +y =4的交点,即A ⎝ ⎛⎭⎪⎫32,52时,z 取得最大值,z max =x +2y =132.6.(2018届高三·宝鸡调研)阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出S 的值为( )A .64B .73C .512D .585解析:选B 依题意,执行题中的程序框图,当输入x 的值为1时,进行第一次循环,S =1<50,x =2;进行第二次循环,S =1+23=9<50,x =4;进行第三次循环,S =9+43=73>50,此时结束循环,输出S 的值为73.7.(2017·衡阳三模)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( )A .2n +1-2 B .3n C .2nD .3n-1解析:选C 因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n +2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n .8.点A ,B ,C ,D 在同一个球的球面上,AB =BC =AC =3,若四面体ABCD 体积的最大值为3,则这个球的表面积为( )A .16916π B .8πC .28916π D .2516π 解析:选C 如图所示,当点D 位于球的正顶部时四面体的体积最大,设球的半径为R ,则四面体的高为h =R +R 2-1,四面体的体积为V =13×12×(3)2×sin 60°×(R +R 2-1)=34×(R +R 2-1)=3,解得R =178, 所以球的表面积S =4πR 2=4π⎝ ⎛⎭⎪⎫1782=289π16,故选C . 9.(2018届高三·湖北七校联考)已知圆C :(x -1)2+y 2=r 2(r >0).设条件p :0<r <3,条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选 C 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|12+-32=2.当0<r <1时,直线在圆外,圆上没有点到直线的距离为1; 当r =1时,直线在圆外,圆上只有1个点到直线的距离为1; 当1<r <2时,直线在圆外,此时圆上有2个点到直线的距离为1; 当r =2时,直线与圆相切,此时圆上有2个点到直线的距离为1; 当2<r <3时,直线与圆相交,此时圆上有2个点到直线的距离为1.综上,当0<r <3时,圆C 上至多有2个点到直线x -3y +3=0的距离为1,由圆C 上至多有2个点到直线x -3y +3=0的距离为1可得0<r <3,故p 是q 的充要条件,故选C .10.(2017·合肥模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e .P 是椭圆上一点,满足PF 2⊥F 1F 2,点Q 在线段PF 1上,且F 1Q ―→=2 QP ―→.若F 1P ―→·F 2Q ―→=0,则e 2=( )A .2-1B .2- 2C .2- 3D .5-2解析:选C 由题意可知,在Rt △PF 1F 2中,F 2Q ⊥PF 1,所以|F 1Q |·|F 1P |=|F 1F 2|2,又|F 1Q |=23|F 1P |,所以有23|F 1P |2=|F 1F 2|2=4c 2,即|F 1P |=6c ,进而得出|PF 2|=2C .又由椭圆定义可知,|PF 1|+|PF 2|=6c +2c =2a ,解得e =c a=26+2=6-22,所以e 2=2- 3.11.(2017·广州模拟)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝⎛⎭⎪⎫0,π4上单调递减 B .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f (x )在⎝⎛⎭⎪⎫0,π4上单调递增 D .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增解析:选D f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin ωx +φ+π4,因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,即k π2+π8≤x ≤k π2+3π8,k ∈Z ,令k =0,得π8≤x ≤3π8,此时f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.12.(2017·贵阳模拟)已知函数f (x )=ln(x 2-4x -a ),若对任意的m ∈R ,均存在x 0使得f (x 0)=m ,则实数a 的取值范围是( )A .(-∞,-4)B .(-4,+∞)C .(-∞,-4]D .[-4,+∞)解析:选D 依题意得,函数f (x )的值域为R ,令函数g (x )=x 2-4x -a ,其值域A 包含(0,+∞),因此对方程x 2-4x -a =0,有Δ=16+4a ≥0,解得a ≥-4,即实数a 的取值范围是[-4,+∞).二、填空题13.(2017·兰州模拟)已知菱形ABCD 的边长为a ,∠ABC =π3,则BD ―→·CD ―→=________. 解析:由菱形的性质知|BD ―→|=3a ,|CD ―→|=a ,且〈BD ―→,CD ―→〉=π6,∴BD ―→·CD―→=3a ×a ×cos π6=32a 2.答案:32a 214.(2017·石家庄模拟)若⎝⎛⎭⎪⎫x 2+1x n 的展开式的二项式系数之和为64,则含x 3项的系数为________.解析:由题意,得2n=64,所以n =6,所以⎝⎛⎭⎪⎫x 2+1x n =⎝ ⎛⎭⎪⎫x 2+1x 6,其展开式的通项公式为T r +1=C r 6(x 2)6-r⎝ ⎛⎭⎪⎫1x r =C r 6x 12-3r . 令12-3r =3,得r =3,所以展开式中含x 3项的系数为C 36=20. 答案:2015.某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出三箱,再从每箱中任意抽取2件产品进行检验,设取出的三箱中分别有0件、1件、2件二等品,其余为一等品.用ξ表示抽检的6件产品中二等品的件数,则ξ的数学期望E (ξ)=________.解析:由题意知,ξ的所有可能取值为0,1,2,3, P (ξ=0)=C 24C 25·C 23C 25=950,P (ξ=1)=C 14C 25·C 23C 25+C 24C 25·C 13C 12C 25=1225,P (ξ=2)=C 14C 25·C 13C 12C 25+C 24C 25·C 22C 25=310,P (ξ=3)=C 14C 25·C 22C 25=125,所以ξ的数学期望为E (ξ)=0×950+1×1225+2×310+3×125=65.答案:6516.(2018届高三·云南调研)已知三棱锥P ABC 的所有顶点都在表面积为289π16的球面上,底面ABC 是边长为3的等边三角形,则三棱锥P ABC 体积的最大值为________.解析:依题意,设球的半径为R ,则有4πR 2=289π16,R =178,△ABC 的外接圆半径为r=32sin 60°=1,球心到截 面ABC 的距离h =R 2-r 2=⎝ ⎛⎭⎪⎫1782-12=158,因此点P 到截面ABC 的距离的最大值等于h +R =178+158=4,因此三棱锥P ABC 体积的最大值为13×⎣⎢⎡⎦⎥⎤3432×4= 3. 答案: 3“12+4”小题提速练(三)(限时:40分钟 满分:80分)一、选择题1.已知集合M ={x |16-x 2≥0},集合N ={y |y =|x |+1},则M ∩N =( ) A .{x |-2≤x ≤4} B .{x |x ≥1} C .{x |1≤x ≤4}D .{x |x ≥-2}解析:选C 由M 中16-x 2≥0,即(x -4)(x +4)≤0,解得-4≤x ≤4,所以M ={x |-4≤x ≤4},集合N ={y |y =|x |+1}=[1,+∞),则M ∩N ={x |1≤x ≤4}.2.若复数z 满足z (4-i)=5+3i(i 为虚数单位),则复数z 的共轭复数为( ) A .1-i B .-1+i C .1+iD .-1-i解析:选A 由z (4-i)=5+3i ,得z =5+3i4-i=++4-i4+i=17+17i 17=1+i ,则复数z 的共轭复数为 1-i. 3.由变量x 与y 的一组数据:得到的线性回归方程为y =2x +45,则y =( ) A .135 B .90 C .67D .63解析:选D 根据表中数据得x -=15×(1+5+7+13+19)=9,线性回归方程y ^=2x +45过点(x -,y -),则y -=2×9+45=63.4.如图给出一个算法的程序框图,该程序框图的功能是( )A .输出a ,b ,c 三个数中的最大数B .输出a ,b ,c 三个数中的最小数C .将a ,b ,c 按从小到大排列D .将a ,b ,c 按从大到小排列解析:选B 由程序框图知:第一个判断框是比较a ,b 大小,a 的值是a ,b 之间的较小数;第二个判断框是比较a ,c 大小,输出的a 是a ,c 之间的较小数.∴该程序框图的功能是输出a ,b ,c 三个数中的最小数.故选B.5.函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象经过下列平移,可以得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π6图象的是( )A .向右平移π6个单位B .向左平移π6个单位C .向右平移π3个单位D .向左平移π3个单位解析:选B 把函数y =sin ⎝⎛⎭⎪⎫2x +π3=cos π2-⎝ ⎛⎭⎪⎫2x +π3=cos ⎝⎛⎭⎪⎫2x -π6的图象向左平移π6个单位,可得y =cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6-π6=cos ⎝ ⎛⎭⎪⎫2x +π6的图象. 6.已知f (x )是定义在R 上的偶函数且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C ∵f (x )是定义在R 上的偶函数,∴若f (x )为[0,1]上的增函数,则f (x )在[-1,0]上是减函数,又∵f (x )是定义在R 上的以2为周期的函数,且[3,4]与[-1,0]相差两个周期, ∴两区间上的单调性一致,所以可以得出f (x )为[3,4]上的减函数,故充分性成立. 若f (x )为[3,4]上的减函数,同样由函数周期性可得出f (x )在[-1,0]上是减函数, 再由函数是偶函数可得出f (x )为[0,1]上的增函数,故必要性成立.综上,“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件. 7.某三棱锥的三视图如图所示,其三个视图都是直角三角形,则该三棱锥的体积为( )A .13B .23C .1D .6解析:选A 由已知中的三视图可得,该三棱锥的底面面积S =12×2×1=1,高h =1,故体积V =13Sh =13.8.已知向量a 与b 的夹角为60°,|a |=4,|b |=1,且b ⊥(a -xb ),则实数x 为( ) A .4B .2C .1D .12。
2018年高三数学(理科)二轮复习完整版
专题限时集训 (一)A
基础演练
[ 第 1 讲 集合与常用逻辑用语 ] (时间: 5 分钟+ 30 分钟 )
1.设 U= {1 , 2, 3, 4, 5} , A= {1 , 5} , B={2 , 4} ,则 B∩ (?UA)= ( )
A . {2 , 3, 4}
B . { 2}
C. {2 , 4}
专题限时集训 (一 )B
[ 第 1 讲 集合与常用逻辑用语 ] (时间: 5 分钟+ 30 分钟 )
基础演练
1.已知全集 U= R ,A= { x|x≤ 0} ,B= { x|x≥ 1} ,则集合 ?U(A∪ B) =( )
A . { x|x≥ 0}
B . { x|x≤ 1}
C. { x|0≤ x≤ 1}
A .充分不必要条件 B .必要不充分条件
C .充要条件 D .既不充分也不必要条件
4.已知集合 M = { x|- 2≤ x<2} ,N={ x|y= log 2(x- 1)} ,则 M ∩ N= ( )
A . { x|- 2≤ x<0}
B . { x|- 1< x<0}
C. { x|1<x<2}
形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度 适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法. 二、时间安排:
1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段, 月 30 日。
时间为 3 月 10—— 4
2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为
7.试卷讲评随意,对答案式的讲评。对答案式的讲评是影响讲评课效益的大敌。评讲的较好 做法应该为,讲评前认真阅卷,讲评时将归类、纠错、变式、辩论等方式相结合,抓错误点、 失分点、模糊点,剖析根源,彻底矫正。 四、在第二轮复习过程中,我们安排如下: 1. 继续抓好集体备课。 每周一次的集体备课必须抓落实, 发挥集体智慧的力量研究数学高考 的动向,学习与研究《考试大纲》 ,注意哪些内容降低要求,哪些内容成为新的高考热点,每 周一次研究课。 2.安排好复习内容。 3.精选试题,命题审核。 4.测试评讲,滚动训练。 5.精讲精练:以中等题为主。
【金版教程】2018届高三数学二轮复习 完整版Word版
8 9 合计
[14,16) [16,18) 200Fra bibliotek4 4
(1)从该校高一年级学生中随机选取一名学生,试估计这名学生该 月参加社团活动的时间少于 14 小时的概率; (2)求统计表中的 x 的值和频率分布直方图中的 b 的值; (3)假设同一组中的每个数据可用该组区间的中点值代替,试估计 样本中的 200 名学生该月活动时间的平均数在第几组(只需写出结论). [审题导引] 观察 计算不少于14 得数据 审表格 ――→ ――→ 求概率 ―→ 审图形 找数据 ――→ 小时学生数 计算b 审图表 ――→ 得出结论 [规范解题] (1)根据频数分布表可知,200 名学生参加社团活动的时间不少于 14 小时的学生人数为 4+4=8,所以样本中学生参加社团活动的时间 8 24 少于 14 小时的频率是 1-200=25,用频率估计概率可得所求概率大 24 约为25. (2)依据频率分布直方图可知 x=200×0.085×2=34. 50 200 依据频数分布表和频率分布直方图可知 b= 2 =0.125. (3)估计样本中的 200 名学生活动时间的平均数在第 4 组.
→ 1 即|AD|=2 [答案] D
1 → → → → 2 2= |AB| +2AB· AC+|AC| 2 36=3.故选 D.
审结论逆向推 结论是解题的最终目标。解决问题的思维,很多情形下都是在目 标意识下启动和定向的,审视结论要探究已知条件和结论间的联系和 转化规律,善于从结论中捕捉解题信息,确定解题方向. 例2 已知数列{an}中,a1=1,an+1=2an+2n. an (1)设 bn= n-1,证明:数列{bn}是等差数列; 2 (2)求数列{an}的通项公式. [审题导引]
专题一 集合、常用逻辑用语、函数与导数、不等式 第一讲 集合、常用逻辑用语(选择、填空题型) 命题全解密 MINGTIQUANJIEMI 1.命题点 集合间的关系、集合的基本运算;四种命题之间的
2018届高三理科数学二轮复习讲义:模块二 专题一 第二讲 函数图象与性质
专题一 集合、常用逻辑用语、不等式、函数与导数第二讲 函数图象与性质高考导航对于函数性质的考查往往综合多个性质,一般借助的载体为二次函数、指数函数、对数函数或者由基本的初等函数复合而成,尤其在函数单调性、奇偶性和周期性等性质的综合问题上应重点加强训练.2.对于函数图象的考查比较灵活,涉及知识点较多,且每年均有创新,试题的考查突出表现在三方面,一是在解决与性质相关的问题中使用函数图象,体现数形结合思想方法;二是给出一个较复杂函数的解析式求其对应的图象;三是根据所给的图象来判断函数的内在信息.4-x21.(2017·山东卷)设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)[解析] 由4-x2≥0得-2≤x≤2,由1-x>0得x<1,故A∩B={x|-2≤x≤2}∩{x|x<1}={x|-2≤x<1},故选D.[答案] D2.(2015·福建卷)下列函数为奇函数的是( )xA.y=B.y=|sin x|C.y=cos x D.y=e x-e-x[解析] A项中的函数为非奇非偶函数,B项和C项中的函数是偶函数,D项中的函数满足奇函数的定义,故选D.[答案] D3.(2017·全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( ) A.[-2,2] B.[-1,1]C.[0,4] D.[1,3][解析] ∵f(x)为奇函数,∴f(-1)=-f(1)=1.于是-1≤f(x-2)≤1等价于f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)上单调递减,∴-1≤x-2≤1,∴1≤x≤3.故选D.[答案] D4.(2016·全国卷Ⅰ)函数y=2x2-e|x|在[-2,2]的图象大致为( )[解析] f (2)=2×22-e 2=8-e 2,因为0<8-e 2<1,所以0<f (2)<1,排除选项A ,B.当0≤x ≤2时,y ′=4x -e x ,在平面直角坐标系中分别作出当0≤x ≤2时函数y 1=4x ,y 2=e x的图象,如图所示.可知,当0≤x ≤x 0时,e x >4x ,y ′<0,即y =2x 2-e |x |单调递减;当x 0<x ≤2时,4x >e x ,y ′>0,即y =2x 2-e |x |单调递增,故选D.[答案] D5.(2016·四川卷)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f +f (1)=________.(-52)[解析] 因为f (x )是定义在R 上的奇函数,所以f (0)=0,f (x )=-f (-x ),又f (x +2)=f (x ),所以f (-1)=-f (1)=f (1),因此f (1)=0.又f =f =-f =-2,故f +f (1)=-2.(-52)(-12)(12)(-52)[答案] -2考点一 函数及其表示1.函数的三要素定义域、值域和对应关系是确定函数的三要素,是一个整体,研究函数问题务必遵循“定义域优先”的原则.2.分段函数若函数在其定义域内,对于自变量的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[对点训练]1.(2017·广东深圳一模)函数y =的定义域为( )-x 2-x +2ln x A .(-2,1)B .[-2,1]C .(0,1)D .(0,1][解析] 由题意得Error!解得0<x <1,故选C.[答案] C2.已知函数y =f (x +2)的定义域是[-2,5),则y =f (3x -1)的定义域为( )A .[-7,14)B .(-7,14]C. D.(13,83][13,83)[解析] 因为函数y =f (x +2)的定义域是[-2,5),所以-2≤x <5,所以0≤x +2<7,所以函数f (x )的定义域为[0,7),对于函数y =f (3x -1),0≤3x -1<7,解得≤x <,故y =f (3x -1)的定义域1383是,故选D.[13,83)[答案] D3.(2017·赣中南五校联考)函数f (x )=x +的值域为2x -1________.[解析] 由题意得2x -1≥0,解得x ≥,12又∵f (x )=x +在上为增函数,2x -1[12,+∞)∴当x =时,f (x )取最小值,f (x )min =f =,且f (x )无最大值.12(12)12∴f (x )的值域为.[12,+∞)[答案] [12,+∞)4.(2017·福建厦门一模)已知函数f (x )=Error!的值域为R ,则实数a 的取值范围是________.[解析] 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=Error!的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则Error!解得0≤a <.12[答案] [0,12)(1)函数定义域问题的3种类型①已知函数的解析式:定义域是使解析式有意义的自变量的取值范围,只需构建不等式(组)求解即可.②抽象函数:根据f [g (x )]中g (x )的范围与f (x )中x 的范围相同求解.③实际问题或几何问题:除要考虑解析式有意义外,还应使实际问题有意义.(2)函数值域问题的4种常用方法公式法、分离常数法、图象法、换元法.考点二 函数的图象及其应用1.作图常用描点法和图象变换法,图象变换法常用的有平移变换、伸缩变换和对称变换.2.识图从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.3.用图在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.但是,在利用图象求交点个数或解的个数时,作图要十分准确,否则容易出错.角度1:以具体函数的解析式选择图象或知图象选解析式【例1-1】 (2017·全国卷Ⅰ)函数y =的部分图象大致sin2x1-cos x 为( )[思维流程] 看条件――→奇偶性 单调性析选项――→特殊点、线 得结果[解析] 由题意,令函数f (x )=,其定义域为sin2x1-cos x {x |x ≠2k π,k ∈Z },又f (-x )===-f (x ),所以sin (-2x )1-cos (-x )-sin2x1-cos x f (x )=为奇函数,其图象关于原点对称,故排除B ;因为sin2x1-cos x f ==0,f ==<0,所以排除A ;f (π)=(π2)sin π1-cos π2(3π4)sin 3π21-cos 3π4-11+22=0,排除D.故选C.sin2π1-cos π[答案] C角度2:利用函数的图象研究函数的性质(特别是单调性、最值、零点)、方程解的问题及解不等式、比较大小等【例1-2】 (2017·杭州五校联盟诊断)若直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )看作同一个“伙伴点组”).已知函数f (x )=Error!有两个“伙伴点组”,则实数k 的取值范围是( )A .(-∞,0)B .(0,1)C. D .(0,+∞)(0,12)[思维流程] →→理解伙伴点组当x <0时,作y =f (x )的对称图形→画y =kx -1与y =ln x (x >0)图象由相切时的k 值求范围[解析] 依题意,“伙伴点组”的点满足:都在y =f (x )的图象上,且关于坐标原点对称.可作出函数y =-ln(-x )(x <0)关于原点对称的函数y =ln x (x >0)的图象,使它与直线y =kx -1(x >0)的交点个数为2.当直线y =kx -1与y =ln x 的图象相切时,设切点为(m ,ln m ),又y =ln x 的导数为y ′=,1x 则km -1=ln m ,k =,解得m =1,k =1,1m 可得函数y =ln x (x >0)的图象过(0,-1)点的切线的斜率为1,结合图象可知k ∈(0,1)时两函数图象有两个交点.[答案] B识别函数图象应关注的5点(1)根据函数的定义域判断图象的左右位置,根据函数的值域判断图象的上下位置.(2)根据函数的单调性判断图象的变化趋势.(3)根据函数的奇偶性判断图象的对称性.(4)根据函数的周期性判断图象的循环往复.(5)取特殊值代入进行检验.[对点训练]1.[角度1](2017·贵州七校联考)已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=B .f (x )=ln|x |x e x xC .f (x )=-1D .f (x )=x -1x 21x[解析] 由函数图象可知,函数f (x )为奇函数,应排除B 、C.若函数为f (x )=x -,则x →+∞时,f (x )→+∞,排除D ,故选A.1x [答案] A2.[角度2](2017·福建漳州八校联考)已知函数f (x )=Error!若函数g (x )=f (x )-m 有三个零点,则实数m 的取值范围是________.[解析] 令g (x )=f (x )-m =0,得f (x )=m ,则函数g (x )=f (x )-m 有三个零点等价于函数f (x )与y =m 的图象有三个不同的交点,作出函数f (x )的图象如图:当x ≤0时,f (x )=x 2+x =2-≥-,若函数f (x )与y =m (x +12)1414的图象有三个不同的交点,则-<m ≤0,即实数m 的取值范围是14.(-14,0][答案] (-14,0]考点三 函数的性质及其应用1.函数的单调性单调性是函数的一个局部性质,一个函数在不同的区间上可以有不同的单调性.判定函数的单调性常用定义法、图象法及导数法.2.函数的奇偶性(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.(2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.函数的周期性对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a ;(2)若f (x +a )=,则T =2a ;1f (x )(3)若f (x +a )=-,则T =2a .(a >0)1f (x )4.函数的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.(2)若函数y =f (x )满足f (a +x )=-f (a -x ),即f (x )=-f (2a -x ),则f (x )的图象关于点(a,0)对称.(3)若函数y =f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =对称.a +b 2角度1:确认函数的单调性、奇偶性、周期性、对称性及最值【例2-1】 (2017·北京卷)已知函数f (x )=3x -x ,则f (x )( )(13)A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数[解析] 易知函数f (x )的定义域关于原点对称.∵f (-x )=3-x --x =x -3x =-f (x ),(13)(13)∴f (x )为奇函数.又∵y =3x 在R 上是增函数,y =-x 在R 上是增函数,(13)∴f (x )=3x -x 在R 上是增函数.故选A.(13)[答案] A 角度2:综合应用函数的性质求值(取值范围)、比较大小等,常与不等式相结合[思维流程] f (x )是R 上的偶函数且在(-∞,0)上单调递增――→对称性 →→f (x )在(0,+∞)上单调递减脱去“f ”解关于a的不等式[解析] 解法一:因为f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,所以f (x )在区间(0,+∞)上单调递减.又f (2|a -1|)>f (-),f (-)=f (),故0<2|a -1|<,则|a -1|<,所以222212<a <.1232解法二:依题意,令f (x )=-|x |,由f (2|a -1|)>f (-),得-|2|a -1||>-|-|,22则|a -1|<,解得<a <.121232[答案] (12,32)函数3个性质的应用要领(1)奇偶性:具有奇偶性的函数在关于原点对称的区间上其图象、函数值、解析式和单调性联系密切,研究问题时可转化到只研究部分(一半)区间上,这是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ).(2)单调性:可以比较大小,求函数最值,解不等式,证明方程根的唯一性.(3)周期性:利用周期性可以转化函数的解析式、图象和性质,把不在已知区间上的问题,转化到已知区间上求解.【易错提醒】 在确定函数的奇偶性和单调性时,不能忽略函数的定义域.[对点训练]1.[角度1]下列函数在其定义域内既是奇函数,又是增函数的是( )A .y =x 2+2B .y =-4x 3C .y =-x +D .y =x |x |1x [解析] ∵函数y =x 2+2是偶函数,∴选项A 不满足题意;∵x 增大时,-4x 3减小,即y 减小,∴y =-4x 3为减函数,∴选项B 不满足题意;y =-x +在定义域内不单调,∴选项C 不满足题意;1x y =x |x |为奇函数,且y =x |x |=Error!∵y =x 2在[0,+∞)上单调递增,y =-x 2在(-∞,0)上单调递增,且y =x 2与y =-x 2在x =0处的函数值都为0,∴y =x |x |在定义域内是增函数.故选D.[答案] D2.[角度2](2016·山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >时,f=f 12(x +12).则f (6)=( )(x -12)A .-2 B .-1 C .0 D .2[解析] 由题意可知,当-1≤x ≤1时,f (x )为奇函数,且当x >时,f (x +1)=f (x ),所以f (6)=f (5×1+1)=f (1).而f (1)=-f (-1)12=-[(-1)3-1]=2,所以f (6)=2.故选D.[答案] D热点课题2 函数图象辨析[感悟体验]1.(2017·长沙模拟)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P 作直线OA的垂线,垂足为M.将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]的图象大致为( )[解析] 由题意知,f (x )=|cos x |·sin x ,当x ∈时,f (x )[0,π2]=cos x ·sin x =sin2x ;当x ∈时,f (x )=-cos x ·sin x =-sin2x ,12(π2,π]12故选B.[答案] B2.(2017·南昌二模)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱A 1B 1,CD 的中点,点M 是EF 上的动点(不与E ,F 重合),FM =x ,过点M 、直线AB 的平面将正方体分成上下两部分,记下面那部分的体积为V (x ),则函数V (x )的大致图象是( )[解析] 当x ∈时,V (x )增长的速度越来越快,即变化率(0,22]越来越大;当x ∈时,V (x )增长的速度越来越慢,即变化率[22,2)越来越小,故选C.[答案] C。
2018学高考理科数学通用版练酷专题二轮复习教学案:第二板块保分题全争取含解析
高考第17题之(一)错误!三角函数与解三角形[说明]高考第17题主要集中在“三角函数与解三角形”与“数列”两个知识点命题,每年选其一进行考查.年份卷别考题位置考查内容命题规律分析201 7全国卷Ⅰ解答题第17题正、余弦定理、三角形的面积公式以及两角和的余弦公式三角函数与解三角形在解答题中一般与三角恒等变换、平面向量等知识进行综合考查.题目难度中等偏下,多为201 7全国卷Ⅱ解答题第17题诱导公式、二倍角公式、余弦定理以及三角形的面积公式201 7全国卷Ⅲ解答题第17题余弦定理、三角形的面积公式201 6全国卷Ⅰ解答题第17题正、余弦定理及应用201 5全国卷Ⅱ解答题第17题正弦定理、余弦定理、三角形的面积公式解答题第一题.1.(2017·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c。
已知△ABC的面积为错误!。
(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.解:(1)由题设得错误!ac sin B=错误!,即错误!c sin B=错误!.由正弦定理得错误!sin C sin B=错误!。
故sin B sin C=错误!.(2)由题设及(1)得cos B cos C-sin B sin C=-错误!,即cos(B+C)=-错误!.所以B+C=2π3,故A=错误!.由题设得错误!bc sin A=错误!,即bc=8.由余弦定理得b2+c2-bc=9,即(b+c)2-3bc=9,得b+c=错误!。
故△ABC的周长为3+错误!.2.(2016·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c。
(1)求C;(2)若c=错误!,△ABC的面积为错误!,求△ABC的周长.解:(1)由已知及正弦定理得2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sin(A+B)=sin C,故2sin C cos C=sin C。
2018学高考理科数学通用版练酷专题二轮复习教学案:第三板块 稳心态分步解
高考第20题⎪⎪圆锥曲线题型一 定值问题——巧妙消参定值问题就是证明一个量与其中的变化因素无关,这些变化的因素可能是直线的斜率、截距,也可能是动点的坐标等,这类问题的一般解法是使用变化的量表达求证目标,通过运算求证目标的取值与变化的量无关.当使用直线的斜率和截距表达直线方程时,在解题过程中要注意建立斜率和截距之间的关系,把双参数问题化为单参数问题解决.[典例] (2016·北京高考)(本题满分12分)已知椭圆C :x 2a 2+y 2b 2=1过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.[思路提示]第(1)问由a =2,b =1,c =3,解第一问;第(2)问画草图可知AN ⊥BM ,四边形ABNM 的面积为12|AN |·|BM |,设点P (x 0,y 0),得出PA ,PB 的方程,进而得出M ,N 的坐标,得出|AN |,|BM |,只需证明12|AN |·|BM |是一个与点P 的坐标无关的量即可.[解] (1)由题意得a =2,b =1, 所以椭圆C 的方程为x 24+y 2=1.2分又c =a 2-b 2=3,所以离心率e =ca =32.3分 (2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4.又A (2,0),B (0,1),[解题关键点]待定系数法求曲线方程.[障碍提醒]1.想不到设出P (x 0,y 0)后,利用点斜式写出直线PA ,PB 的方程.不会由直线PA ,PB 的方程求解|BM |,|AN |.所以直线PA 的方程为y =y 0x 0-2(x -2).5分令x =0,得y M =-2y 0x 0-2,6分从而|BM |=1-y M =1+2y 0x 0-2.直线PB 的方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1.9分选用变量表达直线、线段长度、面积等几何元素.2.不知道四边形的面积可用S =12| AN |·|BM |表示.所以四边形ABNM 的面积S =12|AN |·|BM | =12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-23.四边形ABNM 的面积用x 0,y 0表示后,不会变形、化简,用整体消参来求值.=x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2.11分从而四边形ABNM 的面积为定值.12分定值问题基本思想:求解目标与选用的变量无关.题型对点练见课堂练习第1题题型二 定点问题——确定方程证明直线过定点的基本思想是使用一个参数表示直线方程,根据方程的成立与参数值无关得出x ,y 的方程组,以方程组的解为坐标的点就是直线所过的定点;如果直线系是使用双参数表达的,要根据其它已知条件建立两个参数之间的关系,把双参数直线系方程化为单参数直线系方程.[典例] (2017·全国卷Ⅰ)(本题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[障碍提醒] 1.观察不出P 3,P 4对称,忽视对称性导致判断失误.[解] (1)因为P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32, 所以P 3,P 4两点关于y 轴对称, 故由题设知椭圆C 经过P 3,P 4两点.[思路提示] 第(1)问利用椭圆的性质,易排除点P 1(1,1)不在椭圆上,从而求椭圆方程;2.不会用点的坐标代入方程判断P 1,P 2是否在椭圆上而滞做.又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,2分所以点P 2在椭圆C 上.3分因此⎩⎨⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.4分故椭圆C 的方程为x 24+y 2=1.5分(2)证明:设直线P 2A 与直线P 2B 的斜第(2)问分类讨论斜率是否存在,若存在,设l :y =kx +m ,利用条件建立k ,m 的等量关系,消参l 的方程 解题关键点].率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,6分 由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22.7分则k 1+k 2=4-t 2-22t-4-t 2+22t=-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1).注意直线的斜率是否存在问题.3.联立直线l 与椭圆C 的方程,计算化简失误而滞做.将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.8分 由题设可知Δ=16(4k 2-m 2+1)>0.9分 设A (x 1,y 1),B (x 2,y 2),而k 1+k 2=1x 1+2x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.10分解析几何解题关化为代数条件.4.利用k 1+k 2=-1运算变形不明确变形目标,导致化简不出k ,m 的关系.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0.即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得k =-m +12.11分当且仅当m >-1时,Δ>0,于是 l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1). 12分动直线过定点的一般方y =kx +m 的两参利用直线系.题型对点练见课堂练习第2题题型三 求最值、解范围问题——构造函数(一)构造函数求最值最值问题的基本解法有几何法和代数法:几何法是根据已知的几何量之间的相互关系、平面几何和解析几何知识加以解决的(如抛物线上的点到某个定点和焦点的距离之和、光线反射问题等);代数法是建立求解目标关于某个(或两个)变量的函数,通过求解函数的最值(普通方法、基本不等式方法、导数方法等)解决的.[典例] (2016·山东高考)(本题满分12分)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,焦距为2 2.(1)求椭圆C 的方程.(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .①设直线PM ,QM 的斜率分别为k ,k ′,证明k ′k 为定值;②求直线AB 的斜率的最小值.[障碍提醒] 1.不会用坐标[解] (1)设椭圆的半焦距为c .[思路提示]设而不求法表示出k,k′,从而得不出定值.由题意知2a=4,2c=22,所以a=2,c=2,b=a2-c2= 2.2分所以椭圆C的方程为x24+y22=1.4分(2)①证明:设P(x0,y0)(x0>0,y0>0).由M(0,m),可得P(x0,2m),Q(x0,-2m).所以直线PM的斜率k=2m-mx0=mx0,直线QM的斜率第(1)问待定系数法求解;第(2)问①设点P(x0,y0),M为PN的中点,可得y0=2m,根据对称性得出点Q的坐标,只需证明k′k与x0,m无关;k′=-2m-mx0=-3mx0.6分此时k′k=-3,所以k′k为定值-3.7分②设A(x1,y1),B(x2,y2).直线PA的方程为y=kx+m,则直线QB的方程为y=-3kx+m.联立⎩⎪⎨⎪⎧y=kx+m,x24+y22=1②设PA的方程,结合①的结论,得QB的方程,联立直线与椭圆方程得A,B坐标,再由斜率公式表示AB的斜率,并求最小值.2.由直线PA的方程与x24+y22=1联立表示出A(x1,y1)坐标后,没有类比意识,直接将x1,y1中k换为-3k化简可得整理得(2k2+1)x2+42由x0x1=2m2-42k2+1,可得所以y1=kx1+m=2k(m2-2)(2k2+1)x0+m.[解题关键点]一交点的坐标.B(x2,y2)坐标,导致因运算复杂而滞做或做错同理x2=2(m2-2)(18k2+1)x0,y2=-6k(m2-2)(18k2+1)x0+m.9分3.化简x2-x1,y2-y1失误,不能把k AB表示为k的函数而滞做.所以x2-x1=2(m2-2)(18k2+1)x0-2(m2-2)(2k2+1)x0=-32k2(m2-2)(18k2+1)(2k2+1)x0,y2-y1=-6k(m2-2)(18k2+1)x0+m-2k(m2-2)(2k2+1)x0-m=-8k(6k2+1)(m2-2)(18k2+1)(2k2+1)x0,10分结构相同的方程组,解时,使用代换法直接得出另一个方程组的解.4.求AB斜率的最小值不明确,不会将斜率表示为一个变量的函数,从而无法求最值.所以k AB=y2-y1x2-x1=6k2+14k=14⎝⎛⎭⎫6k+1k.由m>0,x0>0,可知k>0,所以6k+1k≥26,等号当且仅当k=66时取得.11分此时m4-8m2=66,即m=147,符合题意.所以直线AB的斜率的最小值为62.12分最值问题的关键:使用变量表达求解目标.题型对点练见课堂练习第3题(二)构造函数解范围产生范围有如下几个因素:直线与曲线相交、曲线上点的坐标的范围、题目中要求的限制条件,这些产生范围的因素可能同时出现在一个问题中,在解题时要注意全面把握范围的产生原因.[典例] (2016·浙江高考)(本题满分12分)如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.[障碍提醒]1.因忘记抛物线定义,不会转化条件导出,求不出p 值.[解] (1)由题意可得, 抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的 距离,由抛物线的定义得p2=1,即p =2.3分(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1.4分因为AF 不垂直于y 轴,[思路提示]第(1)问由抛物线定义即得;第(2)问设A (t 2,2t ),可以根据抛物线焦点弦两端点坐标之间的关系,用t 表达点B 的坐标,得出BN ,FN 的方程,进而得出点N 的坐标,结合点A ,M ,N 三点共线,即可使用t 表达M 的横坐标,确定取值范围.2.不会设出抛物线的动点坐标用一个参数表示,从而使运算复杂而滞做.可设直线AF 的方程为x =sy +1(s ≠0),5分由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0, 故y 1y 2=-4,又直线AB 故直线FN 的斜率为-t 2-12t , 从而得直线FN 的方程为y =-t 2-12t (x -1),7分直线BN 的方程为y =-2t ,[解题关键点]抛物线中可以以一个点的横坐标或者纵坐标表达曲线上点.3.不会挖掘题目中隐含条件A ,M ,N 三点共线来建立等量关系,从而无法表示出M 的横坐标的函数关系式,导致无从下手.所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .8分设M (m,0),由A ,M ,N 三点共线得2tt 2-m =2t +2tt 2-t 2+3t 2-1,9分4.将m 表示为t 的函数结构后,不会用分离常数法分离常数,然后再用单调性求2t 2t 2-1的范围而滞做. 于是m 分所以m <0或m >2. 经检验,m <0或m >2满足题意.11分综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞). 12分建立求解不等式或研究函数性质.题型对点练见课堂练习第4题题型四 探索性问题——肯定结论1.探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.,(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径. 2.探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.一般步骤为: (1)假设满足条件的曲线(或直线、点等)存在,用待定系数法设出;(2)列出关于待定系数的方程(组);,(3)若方程(组)有实数解,则曲线(或直线、点等)存在,否则不存在.[典例] (2018届高三·湘中名校联考)(本题满分12分)如图,曲线C 由上半椭圆C 1:y 2a 2+x 2b 2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32. (1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),是否存在直线l ,使得以PQ 为直径的圆恰好过点A ,若存在,求出直线l 的方程;若不存在,请说明理由.[思路提示]第(1)问在C 2的方程中,令y =0可得b ,再由c a =32,a 2-c 2=b 2可得a ;第(2)问设出过点B 的直线l 的方程,分别与曲线C 1,C 2联立.用直线l 的斜率k 表示出点P ,Q 的坐标后,要使以PQ 为直径的圆过点A ,则[解] (1)在C 2的方程中,令y =0,可得b =1.1分且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1可得a =2,2分∴a =2,b =1.3分 (2)存在直线l ,理由如下:有AP ―→·AQ ―→=0,从而解得k ,求出直线l 的方程.由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).4分由题易知,直线l 与x轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0).5分代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*)6分 设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根.[解题关键点] 假设存在直线l ,分析斜率存在情况,设出直线方程.[障碍提醒]1.不会求P Qx P =k 2-4k 2+4,从而y P =的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4.7分⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0)得点Q 的坐标为(-k -1,-k 2-2k ).8分2.不会将以PQ 为直径的圆恰好过点A 这一几何条∴AP ―→=2k k 2+4(k ,-4),AQ ―→=-k (1,k件转化,从而求不出直线l 的斜率.+2).9分依题意可知AP ⊥AQ , ∴AP ―→·AQ ―→=0,即-2k 2k 2+4[k -4(k +2)]=0.10分条件坐标化的关键是转化几何性质.3.由条件得出AP ⊥AQ 后利用AP ―→·AQ ―→=0变形求解,因运算过程不细心而出现计算失误而滞做.∵k ≠0,∴k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意,故存在直线l 的方程为y =-83(x -1),11分即8x +3y -8=0,使得以PQ 为直径的圆恰好过点A .12分题型对点练见课堂练习第5题[课堂练习] 1.(2018届高三·西安八校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过(1,1)与⎝⎛⎭⎫62,32两点.(1)求椭圆C 的方程;(2)过原点的直线l 与椭圆C 交于A ,B 两点,椭圆C 上一点M 满足|MA |=|MB |.求证:1|OA |2+1|OB |2+2|OM |2为定值. 解:(1)将(1,1)与⎝⎛⎭⎫62,32两点代入椭圆C 的方程,得⎩⎨⎧1a 2+1b 2=1,32a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=3,b 2=32.∴椭圆C 的方程为x 23+2y 23=1.(2)证明:由|MA |=|MB |,知M 在线段AB 的垂直平分线上,由椭圆的对称性知A ,B 关于原点对称.①若点A ,B 是椭圆的短轴顶点, 则点M 是椭圆的一个长轴顶点,此时1|OA |2+1|OB |2+2|OM |2=1b 2+1b 2+2a 2=2⎝⎛⎭⎫1a 2+1b 2=2. 同理,若点A ,B 是椭圆的长轴顶点, 则点M 在椭圆的一个短轴顶点,此时1|OA |2+1|OB |2+2|OM |2=1a 2+1a 2+2b 2=2⎝⎛⎭⎫1a 2+1b 2=2. ②若点A ,B ,M 不是椭圆的顶点, 设直线l 的方程为y =kx (k ≠0), 则直线OM 的方程为y =-1k x , 设A (x 1,y 1),则B (-x 1,-y 1),由⎩⎪⎨⎪⎧y =kx ,x 23+2y 23=1,解得x 21=31+2k 2,y 21=3k 21+2k 2,∴|OA |2=|OB |2=x 21+y 21=3(1+k 2)1+2k 2,同理|OM |2=3(1+k 2)2+k 2,∴1|OA |2+1|OB |2+2|OM |2=2×1+2k 23(1+k 2)+2(2+k 2)3(1+k 2)=2, 故1|OA |2+1|OB |2+2|OM |2=2为定值. 2.(2017·宜昌模拟)已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,它的一个焦点F 恰好与抛物线y 2=4x 的焦点重合.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否恒过一定点?若经过,求出该定点坐标;若不经过,请说明理由.解:(1)由题意知椭圆的焦点F (1,0),即c =1. 由e =22得a =2,b =2-1=1,∴椭圆C 的方程为x 22+y 2=1.(2)由(1)知A (0,1),当直线BC 的斜率不存在时, 设BC :x =x 0,设B (x 0,y 0),则C (x 0,-y 0), k AB ·k AC =y 0-1x 0·-y 0-1x 0=1-y 20x 20=12x 20x 20=12≠14,不合题意.故直线BC 的斜率存在. 设直线BC 的方程为:y =kx +m (m ≠1), 代入椭圆方程,得:(1+2k 2)x 2+4kmx +2(m 2-1)=0, 由Δ=(4km )2-8(1+2k 2)(m 2-1)>0, 得2k 2-m 2+1>0.设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=-4km1+2k 2,x 1x 2=2(m 2-1)1+2k 2.①由k AB ·k AC =y 1-1x 1·y 2-1x 2=14,得4y 1y 2-4(y 1+y 2)+4=x 1x 2,即(4k 2-1)x 1x 2+4k (m -1)(x 1+x 2)+4(m -1)2=0, 将①代入上式,整理得(m -1)(m -3)=0. 又因为m ≠1,所以m =3, 此时直线BC 的方程为y =kx +3. 所以直线BC 恒过一定点(0,3).3.(2017·合肥模拟)如图,已知抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求抛物线E 的方程;(2)求点M 到直线CD 距离的最大值. 解:(1)把x A =2代入x 2+y 2=8,得y 2A =4, 故2px A =4,p =1.于是,抛物线E 的方程为y 2=2x .(2)设C ⎝⎛⎭⎫y 212,y 1,D ⎝⎛⎭⎫y 222,y 2,切线l 1:y -y 1=k ⎝⎛⎭⎫x -y 212,代入y 2=2x 得ky 2-2y +2y 1-ky 21=0,由Δ=0,解得k =1y 1.∴l 1的方程为y =1y 1x +y 12,同理,l 2的方程为y =1y 2x +y 22.联立⎩⎨⎧y =1y 1x +y 12,y =1y 2x +y 22,解得⎩⎪⎨⎪⎧x =y 1y 22,y =y 1+y22.易得直线CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,2 2 ]. 联立⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0,则⎩⎨⎧y 1+y 2=-2y 0x 0,y 1y 2=-16x0.∴M (x ,y )满足⎩⎨⎧x =-8x 0,y =-y0x 0,即点M 为⎝⎛⎭⎫-8x 0,-y 0x 0.点M 到直线CD :x 0x +y 0y =8的距离d =⎪⎪⎪⎪-8-y 20x 0-8x 20+y 20=y 20x 0+1622=8-x 20x 0+1622=8x 0-x 0+1622,令f (x )=8x -x +1622,x ∈[2,2 2 ],则f (x )在[2,2 2 ]上单调递减,当且仅当x =2时,f (x )取得最大值922,故d max =922. 4.(2017·广西五校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x +y +1=0与以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)过点M (2,0) 的直线l 与椭圆C 相交于不同的两点S 和T ,若椭圆C 上存在点P 满足OS ―→+OT ―→=t OP ―→(其中O 为坐标原点),求实数t 的取值范围.解:(1)由题意,以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆的方程为(x -c )2+y 2=a 2,∴圆心到直线x +y +1=0的距离d =c +12=a .(*)∵椭圆C 的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b =c ,a =2c ,代入(*)式得b =c =1,∴a =2,故所求椭圆方程为x 22+y 2=1.(2)由题意知,直线l 的斜率存在,设P (x 0,y 0),直线l 的方程为y =k (x -2),将直线l 的方程代入椭圆方程得(1+2k 2)x 2-8k 2x +8k 2-2=0,∴Δ=64k 4-4(1+2k 2)(8k 2-2)>0,解得k 2<12.设S (x 1,y 1),T (x 2,y 2),则x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2,∴y 1+y 2=k (x 1+x 2-4)=-4k1+2k 2.由OS ―→+OT ―→=t OP ―→,得tx 0=x 1+x 2,ty 0=y 1+y 2, 当t =0时,直线l 为x 轴,则椭圆上任意一点P 满足OS ―→+OT ―→=t OP ―→,符合题意;当t ≠0时,⎩⎪⎨⎪⎧tx 0=8k 21+2k 2,ty 0=-4k1+2k2,∴x 0=1t ·8k 21+2k 2,y 0=1t ·-4k 1+2k 2.将上式代入椭圆方程得32k 4t 2(1+2k 2)2+16k 2t 2(1+2k 2)2=1,整理得t 2=16k 21+2k 2=161k 2+2,由k 2<12知,0<t 2<4,所以t ∈(-2,0)∪(0,2),综上可得,实数t 的取值范围是(-2,2).5.(2017·湖南东部五校联考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c,0),且b>c .设短轴的一个端点为D ,原点O 到直线DF 的距离为32,过原点和x 轴不重合的直线与椭圆E 相交于C ,G 两点,且|GF ―→ |+| CF ―→|=4.(1)求椭圆E 的方程;(2)是否存在过点P (2,1)的直线l 与椭圆E 相交于不同的两点A ,B 且使得OP ―→2=4PA ―→·PB ―→成立?若存在,试求出直线l 的方程;若不存在,请说明理由.解:(1)由椭圆的对称性知|GF ―→|+|CF ―→|=2a =4, ∴a =2.又原点O 到直线DF 的距离为32, ∴bc a =32,∴bc = 3. 又a 2=b 2+c 2=4,b >c , ∴b =3,c =1.故椭圆E 的方程为x 24+y 23=1.(2)当直线l 与x 轴垂直时不满足条件.故可设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =k (x -2)+1,代入椭圆方程得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0,∴x 1+x 2=8k (2k -1)3+4k 2,x 1x 2=16k 2-16k -83+4k 2,Δ=32(6k +3)>0, ∴k >-12.∵OP ―→2=4PA ―→·PB ―→,即4[(x 1-2)(x 2-2)+(y 1-1)(y 2-1)]=5, ∴4(x 1-2)(x 2-2)(1+k 2)=5, 即4[x 1x 2-2(x 1+x 2)+4](1+k 2)=5,∴4⎣⎢⎡⎦⎥⎤16k 2-16k -83+4k 2-2×8k (2k -1)3+4k 2+4(1+k 2)=4×4+4k 23+4k 2=5,解得k =±12,k =-12不符合题意,舍去.∴存在满足条件的直线l ,其方程为y =12x .1.(2018届高三·石家庄摸底)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T 为椭圆上任意一点,直线TA ,TB 的斜率之积为-34.(1)求椭圆C 的方程;(2)设O 为坐标原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP ―→·OQ ―→+MP ―→·MQ ―→的取值范围.解:(1)设T (x ,y ),由题意知A (-4,0),B (4,0), 设直线TA 的斜率为k 1,直线TB 的斜率为k 2, 则k 1=y x +4,k 2=yx -4.由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y 212=1.故椭圆C 的方程为x 216+y 212=1.(2)当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2),联立方程⎩⎪⎨⎪⎧x 216+y 212=1,y =kx +2消去y ,得(4k 2+3)x 2+16kx -32=0.所以x 1+x 2=-16k 4k 2+3,x 1x 2=-324k 2+3.从而,OP ―→·OQ ―→+MP ―→·MQ ―→=x 1x 2+y 1y 2+x 1x 2+(y 1-2)(y 2-2)=2(1+k 2)x 1x 2+2k (x 1+x 2)+4=-80k 2-524k 2+3=-20+84k 2+3.所以-20<OP ―→·OQ ―→+MP ―→·MQ ―→≤-523.当直线PQ 的斜率不存在时,OP ―→·OQ ―→+MP ―→·MQ ―→的值为-20. 综上,OP ―→·OQ ―→+MP ―→·MQ ―→的取值范围为⎣⎡⎦⎤-20,-523. 2.(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→= 2 NM ―→.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP ―→·PQ ―→=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP ―→=(x -x 0,y ),NM ―→=(0,y 0). 由NP ―→= 2 NM ―→,得x 0=x ,y 0=22y .因为M (x 0,y 0)在椭圆C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q (-3,t ),P (m ,n ), 则OQ ―→=(-3,t ),PF ―→=(-1-m ,-n ), OQ ―→·PF ―→=3+3m -tn ,OP ―→=(m ,n ),PQ ―→=(-3-m ,t -n ). 由OP ―→·PQ ―→=1,得-3m -m 2+tn -n 2=1, 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ ―→·PF ―→=0,即OQ ―→⊥PF ―→. 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .3.(2018届高三·西安八校联考)设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上的点T (2,2)到点F 1,F 2的距离之和等于4 2.(1)求椭圆C 的方程;(2)若直线y =kx (k ≠0)与椭圆C 交于E ,F 两点,A 为椭圆C 的左顶点,直线AE ,AF 分别与y 轴交于点M ,N .问:以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.解:(1)由椭圆上的点T (2,2)到点F 1,F 2的距离之和是42,可得2a =42,a =2 2. 又T (2,2)在椭圆上,因此4a 2+2b 2=1,所以b =2,所以椭圆C 的方程为x 28+y 24=1.(2)因为椭圆C 的左顶点为A , 所以点A 的坐标为(-22,0).因为直线y =kx (k ≠0)与椭圆x 28+y 24=1交于E ,F 两点,设点E (x 0,y 0)(不妨设x 0>0),则点F (-x 0,-y 0).由⎩⎪⎨⎪⎧y =kx ,x 28+y 24=1消去y ,得x 2=81+2k 2, 所以x 0=221+2k2,则y 0=22k 1+2k 2,所以直线AE 的方程为y =k1+1+2k2(x +22).因为直线AE ,AF 分别与y 轴交于点M ,N , 令x =0,得y =22k 1+1+2k 2,即点M 0,22k 1+1+2k 2.同理可得点N ⎝ ⎛⎭⎪⎫0,22k1-1+2k 2.所以|MN |=⎪⎪⎪⎪⎪⎪22k 1+1+2k 2-22k 1-1+2k 2 =22(1+2k 2)|k |.设MN 的中点为P ,则点P 的坐标为P ⎝⎛⎭⎫0,-2k .则以MN 为直径的圆的方程为x 2+⎝⎛⎭⎫y +2k 2=⎝ ⎛⎭⎪⎫2(1+2k 2)|k |2,即x 2+y 2+22k y =4. 令y =0,得x 2=4,即x =2或x =-2.故以MN 为直径的圆经过两定点P 1(2,0),P 2(-2,0).4.(2017·安徽二校联考)已知焦点为F 的抛物线C1:x 2=2py (p >0),圆C 2:x 2+y 2=1,直线l 与抛物线相切于点P ,与圆相切于点Q .(1)当直线l 的方程为x -y -2=0时,求抛物线C 1的方程; (2)记S 1,S 2分别为△FPQ ,△FOQ 的面积,求S 1S 2的最小值.解:(1)设点P ⎝⎛⎭⎫x 0,x 22p ,由x 2=2py (p >0)得, y =x 22p ,求得y ′=xp ,因为直线PQ 的斜率为1,所以x 0p =1且x 0-x 202p -2=0,解得p =2 2.所以抛物线C 1的方程为x 2=42y . (2)点P 处的切线方程为y -x 202p =x 0p (x -x 0),即2x 0x -2py -x 20=0,OQ 的方程为y =-px 0x . 根据切线与圆相切,得|-x 20|4x 20+4p2=1,化简得x 40=4x 20+4p 2,由方程组⎩⎪⎨⎪⎧2x 0x -2py -x 20=0,y =-px 0x ,解得Q ⎝ ⎛⎭⎪⎫2x 0,4-x 202p .所以|PQ |=1+k 2|x P -x Q |=1+x 20p 2⎪⎪⎪⎪x 0-2x 0= p 2+x 20p ·⎪⎪⎪⎪⎪⎪x 20-2x 0,又点F ⎝⎛⎭⎫0,p2到切线PQ 的距离 d 1=|-p 2-x 20|4x 20+4p2=12x 20+p 2,所以S 1=12|PQ |d 1=12·p 2+x 20p ·⎪⎪⎪⎪⎪⎪x 20-2x 0·12 x 20+p 2=x 20+p 24p ⎪⎪⎪⎪⎪⎪x 20-2x 0, S 2=12|OF ||x Q |=p 2|x 0|,而由x 40=4x 20+4p 2知,4p 2=x 40-4x 20>0,得|x 0|>2, 所以S 1S 2=x 20+p 24p ⎪⎪⎪⎪⎪⎪x 2-2x 0·2|x 0|p =(x 20+p 2)(x 20-2)2p 2=(4x 20+x 40-4x 20)(x 20-2)2(x 40-4x 2) =x 20(x 20-2)2(x 20-4)=x 20-42+4x 20-4+3≥22+3,当且仅当x 20-42=4x 20-4时取等号,即x 20=4+22时取等号,此时p =2+2 2.所以S 1S 2的最小值为22+3.高考第21题⎪⎪函数与导数题型一函数单调性、极值问题——分类讨论思想利用导数研究含参数的函数单调性、极值问题时,常用到分类讨论思想,其分类讨论点一般步骤[典例](2017·全国卷Ⅰ)(本题满分12分)已知函数f(x)=a e2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[障碍提醒]1.对f(x)求导计算错或求导后不会分解而滞做.[解](1)f(x)的定义域为(-∞,+∞),f′(x)=2a e2x+(a-2)e x-1=(a e x-1)(2e x+1).2分[思路提示]第(1)问求函数f(x)的导数,分类讨论确定导函数的符号来判断f(x)的单调性;2.对含参数的单调性问题无分类讨论意识而导致解题错误.(ⅰ)若a≤0,❶则f′(x)<0,所以f(x)在(-∞,+∞)上单调递减.3分(ⅱ)若a>0,❶则由f′(x)=0,得x=-ln a.当x∈(-∞,-ln a)时,f′(x)<0;当x∈(-ln a,+∞)时,f′(x)>0.所以f(x)在(-∞,-ln a)上单调递减,在(-ln a,+∞)上单调递增.5分(2)(ⅰ)若a≤0,❷由(1)知,第(2)问结合第(1)问函数的单调性,判断函数存在两个零点的条件,从而确定a的取值范围.f(x)至多有一个零点.6分3.函数有零点的条件是什么不清楚,导致不会求解.(ⅱ)若a>0,❷由(1)知,当x=-ln a时,f(x)取得最小值,最小值为f(-ln a)=1-1a+ln a.7分[解题关键点]①处分解变形后得分类点1.当a=1时,❸由于f(-ln a)=0,故f(x)只有一个零点;8分当a∈(1,+∞)时,❸由于1-1a+lna>0,即f(-ln a)>0,故f(x)没有零点;9分当a∈(0,1)时,❸1-1a+ln a<0,即f(-ln a)<0.又f(-2)=a e-4+(a-2)e-2+2>-2e-2+2>0,②处由(1)的单调性得分类点2.③处由f(-ln a)=0得分类点3.4.当0<a<1时,易判断出f(x)在(-∞,-ln a)上有一个零点,而在判断f(x)在(-ln a,+∞)上也有一个零点时,不会寻求某正整数n0,且判断f(n0)>0而滞做.故f(x)在(-∞,-ln a)有一个零点.10分设正整数n0满足n0>ln⎝⎛⎭⎫3a-1,则f(n0)=e n0(a e n0+a-2)-n0>e n0-n0>2n0-n0>0.11分由于ln⎝⎛⎭⎫3a-1>-ln a,因此f(x)在(-ln a,+∞)有一个零点.综上,a 的取值范围为(0,1).12分题型对点练见课堂练习第1题题型二 讨论函数零点的个数或已知方程根求参数问题——数形结合思想 研究方程根的情况,可以通过导数研究函数的单调性、最值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.[典例] (本题满分12分)已知函数f (x )=(x +a )e x ,其中e 是自然对数的底数,a ∈R. (1)求函数f (x )的单调区间;(2)当a <1时,试确定函数g (x )=f (x -a )-x 2的零点个数,并说明理由. [障碍提醒]1.对函数f (x )求导计算错而导致解题错误. [解] (1)因为f (x )=(x +a )e x ,x ∈R , 所以f ′(x )=(x +a +1)e x .1分 令f ′(x )=0,得x =-a -1.2分当x 变化时,f ′(x )和f (x )的变化情况如下:[思路提示]第(1)问求函数f (x )的导数并讨论函数的单调性;2.不会利用导数求解函数的单调区间.第(2)问把函数g (x )转化为方程来判断方程解的个数,即为函数g (x )的零点个数;若不能直接判断出零点个数的,可构造函数F (x ),故f (x )的单调递减区间为(-∞,-a -1), 单调递增区间为(-a -1,+∞).4分(2)结论:当a <1时,函数g (x )有且仅有一个零点.5分通过讨论函数F (x )的单调性并结合函数零点存在性定理确定函数g (x )的零点个数.理由如下:由g (x )=f (x -a )-x 2=0,3函数零会转化函数而下手.(x )的一个零点.6分 e x -a =x . 设函数F (x )=e x -a -x ,7分[解题关键点]使用函数与方程思想进行转化.由方程再次构造函数.则F ′(x )=e x -a -1, 令F ′(x )=0,得x =a .当x 变化时,F ′(x )和F (x )的变化情况如下:4断方程=x (x ≠零点时用单调性及最值做出判断.所以对于任意x ∈R ,F (x )>0,11分 因此方程e x -a =x 无实数解.所以当x ≠0时,函数g (x )不存在零点. 综上,函数g (x )有且仅有一个零点.12分.题型对点练见课堂练习第2题题型三 不等式的证明问题——函数与方程思想利用导数证明不等式问题,多数利用函数与方程思想结合不等式构造函数,转化为利用构造函数的性质来完成,其一般思路是:[典例] (2017·安庆二模)(本题满分12分)已知函数f (x )=ln x +ax ,a ∈R. (1)讨论函数f (x )的单调性;(2)若函数f (x )的两个零点为x 1,x 2,且x 2x 1≥e 2,求证:(x 1-x 2)f ′(x 1+x 2)>65.[障碍提醒] 1.忽视求定义域导致单调性判断失误.[解] (1)函数f (x )=ln x +ax ,a ∈R 的定义域为(0,+∞),1分f ′(x )=1x +a =ax +1x .2分 [思路提示] 第(1)问先求出f ′(x ),对f ′(x )中的字母参数分类讨论确定f ′(x )的符号,从而得出f (x )的单调性; 第(2)问把要证不等式的左边变形、整理、换元,构造一新的函数φ(t ),对φ(t )求导后,判断在新元范围下的单调性,求其最小值从而得解.2函数单调性不会类讨论而导致解错误或滞做.a ≥0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.3分 当a <0时,由f ′(x )=0得x =-1a ,当0<x <-1a 时,f ′(x )>0;当x >-1a 时,f ′(x )<0.所以f (x )在⎝⎛⎭⎫0,-1a 上单调递增; 在⎝⎛⎭⎫-1a ,+∞上单调递减.4分 综上,当a ≥0时,f (x )在(0,+∞)上单调递增, 当a <0时,f (x )在⎝⎛⎭⎫0,-1a 上单调递增, 在⎝⎛⎭⎫-1a ,+∞上单调递减.5分3.由f (x 1)=0,f (x 2)=0不会转化x 1与x 2的关系而导致滞做.(2)证明:若函数f (x )的两个零点为x 1,x 2,由(1)得a <0.因为ln x 1+ax 1=0,ln x 2+ax 2=0, 所以ln x 2-ln x 1=a (x 1-x 2),6分 所以(x 1-x 2)f ′(x 1+x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫1x 1+x 2+a =x 1-x 2x 1+x 2+a (x 1-x 2)4.对要证明的不等式无思路,不会构造变形导致无从下手.=x 1-x 2x 1+x 2+ln x 2x 1=分[解题关键点] 变形整理为换元做好准备.5用函数的单调最小值.故(x 1-x 2)f ′(x 1+x 2)>65得证.12分. 用函数最.题型对点练见课堂练习第3题题型四 不等式恒成立、存在性问题——转化与化归思想利用导数研究不等式恒成立、存在性问题时,常用到转化与化归思想,其一般思路是:[典例](2017·广州二模)(本题满分12分)已知函数f(x)=e-x-ax(x∈R).(1)当a=-1时,求函数f(x)的最小值;(2)若x≥0时,f(-x)+ln(x+1)≥1恒成立,求实数a的取值范围.[障碍提醒]1.计算错f′(x)或判断错单调性,导致求错最值.[解](1)当a=-1时,f(x)=e-x+x,则f′(x)=-1e x+1=e x-1e x.1分令f′(x)=0,得x=0.[思路提示]第(1)问当a=-1时,利用导数f′(x)的符号判断f(x)的单调性;第(2)问把不等式f(-x)+ln(x+1)≥1恒成立问题,通过构造新函数g(x),转化为证明g(x)≥0恒成立,从而利用函数g(x)的端点值分类讨论a的取值来进行当x<0时,f′(x)<0;当x>0时,f′(x)>0.所以函数f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.3分所以当x=0时,函数f(x)取得最小值,且最小值为f(0)=1.4分(2)因为x≥0时,f(-x)+ln(x+1)≥1恒成立,即e x+ax+ln(x+1)-1≥0.(*)5分证明.2.不等式恒成立问题不会构造函数,即f (-x )+ln(x +1)≥0恒成立,不会构造g (x )=e x +ax +ln(x +1)-1.令g (x )=e x +ax +ln(x +1)-1,6分 [解题关键点].3.判断g ′(x )的符号时,不会利用二次求导做出判断.当导数g ′(x )有参数时,易忘记讨论而致误.又g ″(x )=e x -1(x +1)2≥0,当且仅当x =0时取等号,所以g ′(x )=e x +1x +1+a 在[0,+∞)上单调递增.8分①若a ≥-2,则g ′(x )≥g ′(0)=2+a ≥0,抓住端点值展开讨论.当且仅当x =0,a =-2时取等号, 所以g (x )在[0,+∞)上单调递增, 有g (x )≥g (0)=0,(*)式恒成立.9分 ②若a <-2,.当x >x 0时,g ′(x )>0,g (x )单调递增. 所以当x ∈(0,x 0)时,g (x )<g (0)=0,(*)式不恒成立.11分综上所述,实数a 的取值范围是[-2,+∞).12分题型对点练见课堂练习第4题[课堂练习] 1.已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值.解:(1)由f (x )=x -1+a e x ,得f ′(x )=1-ae x .又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴, 得f ′(1)=0,即1-ae =0,解得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x =a ,即x =ln a .x ∈(-∞,ln a )时,f ′(x )<0;x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.2.(2017·西安一模)已知函数f (x )=x +1+ax -a ln x .若函数y =f (x )的图象在x =1处的切线与直线2x +y -1=0平行.(1)求a 的值;(2)若方程f (x )=b 的区间[1,e]上有两个不同的实数根,求实数b 的取值范围.解:(1)函数f (x )=x +1+a x -a ln x 的导数f ′(x )=1-1+a x2-ax ,∴y =f (x )的图象在x =1处的切线斜率为k =f ′(1)=1-(1+a )-a =-2a , 由题意可得-2a =-2,解得a =1. (2)由(1)知f (x )=x +2x -ln x , f ′(x )=1-2x 2-1x =(x +1)(x -2)x 2,当1<x <2时,f ′(x )<0,f (x )单调递减;当2<x <e 时,f ′(x )>0,f (x )单调递增. ∴当x =2时,f (x )取得极小值f (2)=3-ln 2. 又∵f (1)=3,f (e)=e -1+2e,即有f (1)>f (e),∴方程f (x )=b 在区间[1,e]上有两个不同的实数根,则有f (2)<b ≤f (e),即3-ln 2<b ≤e -1+2e.故实数b 的取值范围为⎝⎛⎦⎤3-ln 2,e -1+2e . 3.(2017·全国卷Ⅱ)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0. (1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2.解:(1)f (x )的定义域为(0,+∞). 设g (x )=ax -a -ln x ,则f (x )=xg (x ),f (x )≥0等价于g (x )≥0. 因为g (1)=0,g (x )≥0, 故g ′(1)=0,而g ′(x )=a -1x , 故g ′(1)=a -1=0,得a =1. 若a =1,则g ′(x )=1-1x .当0<x <1时,g ′(x )<0,g (x )单调递减; 当x >1时,g ′(x )>0,g (x )单调递增.所以x =1是g (x )的极小值点,故g (x )≥g (1)=0.综上,a =1.(2)证明:由(1)知f (x )=x 2-x -x ln x (x >0), f ′(x )=2x -2-ln x .设h (x )=2x -2-ln x ,则h ′(x )=2-1x . 当x ∈⎝⎛⎭⎫0,12时,h ′(x )<0; 当x ∈⎝⎛⎭⎫12,+∞时,h ′(x )>0. 所以h (x )在⎝⎛⎭⎫0,12上单调递减, 在⎝⎛⎭⎫12,+∞上单调递增. 又h (e -2)>0,h ⎝⎛⎭⎫12<0,h (1)=0, 所以h (x )在⎝⎛⎭⎫0,12上有唯一零点x 0, 在⎣⎡⎭⎫12,+∞上有唯一零点1, 且当x ∈(0,x 0)时,h (x )>0;当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0. 因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点. 由f ′(x 0)=0得ln x 0=2(x 0-1), 故f (x 0)=x 0(1-x 0). 由x 0∈⎝⎛⎭⎫0,12,得f (x 0)<14. 因为x =x 0是f (x )在(0,1)的最大值点,由e -1∈(0,1),f ′(e -1)≠0,得f (x 0)>f (e -1)=e -2. 所以e -2<f (x 0)<2-2.4.(2018届高三·广西三市联考)已知函数f (x )=x -a ln x ,g (x )=-1+ax ,其中a ∈R. (1)设函数h (x )=f (x )-g (x ),求函数h (x )的单调区间;(2)若存在x 0∈[1,e],使得f (x 0)<g (x 0)成立,求a 的取值范围. 解:(1)h (x )=x +1+ax -a ln x (x >0), h ′(x )=1-1+a x 2-a x =x 2-ax -(1+a )x 2=(x +1)[x -(1+a )]x 2,①当a +1>0,即a >-1时,在(0,1+a )上h ′(x )<0,在(1+a ,+∞)上h ′(x )>0, 所以h (x )在(0,1+a )上单调递减,在(1+a ,+∞)上单调递增. ②当1+a ≤0,即a ≤-1时,在(0,+∞)上h ′(x )>0, 所以函数h (x )在(0,+∞)上单调递增.(2)若存在x 0∈[1,e],使得f (x 0)<g (x 0)成立,即存在x 0∈[1,e],使得h (x 0)=f (x 0)-g (x 0)<0成立,即函数h (x )=x +1+ax-a ln x 在[1,e]上的最小值小于零. 由(1)可知:①当1+a ≥e ,即a ≥e -1时,h ′(x )<0,h (x )在[1,e]上单调递减, 所以h (x )在[1,e]上的最小值为h (e), 由h (e)=e +1+a e -a <0可得a >e 2+1e -1,因为e 2+1e -1>e -1,所以a >e 2+1e -1.②当1+a ≤1,即a ≤0时,h (x )在[1,e]上单调递增, 所以h (x )的最小值为h (1),由h (1)=1+1+a <0可得a <-2.③当1<1+a <e ,即0<a <e -1时,可得h (x )的最小值为h (1+a ),因为0<ln(1+a )<1,所以0<a ln(1+a )<a ,故h (1+a )=2+a -a ln(1+a )>2>0,不合题意.综上可得,a 的取值范围是(-∞,-2)∪⎝ ⎛⎭⎪⎫e 2+1e -1,+∞.1.(2017·兰州模拟)已知函数f (x )=-x 3+x 2+b ,g (x )=a ln x .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.函数的奇偶性 (1)判断函数的奇偶性有时可以用定义的等价形式: fx f(x)± f(-x)=0, =± 1; f-x (2)设f(x),g(x)的定义域分别是D1,D2,那么在它们的 公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶 ×偶=偶,奇×偶=奇.
的图象关于直线 x=1 对称. 由于奇函数 f(x)在[0,1]上是增函数, 故 f(x)在[-1,0]上也是增 函数, 综上,函数 f(x)在[-1,1]上是增函数,在[1,3]上是减函数. 又f
3 1 3 =f 2- =f , 2 2 2 1 1 1 3 - <f <f =f . 4 4 2 2
[经典好题——练一手]
1.已知定义在R上的函数f(x)满足f(2+x)=-f(2-x),当x<2 时,f(x)单调递增,如果x1+x2<4,且(x1-2)· (x2-2)<0, 则f(x1)+f(x2)的值为 A.可正可负 C.恒大于0 B.可能为0 D.恒小于0 ( )
解析:由f(2+x)=-f(2-x)可知,函数图象关于点(2,0)中心 对称.因为x<2时,f(x)单调递增,所以x>2时,f(x)单调递 增.因为x1+x2<4且(x1-2)· (x2-2)<0,设x1<2<x2,则x2<4- x1,所以f(x2)<f(4-x1).又因为f(4-x1)=-f(x1),所以f(x2)< -f(x1),即f(x1)+f(x2)<0.
答案:C
ห้องสมุดไป่ตู้
3.已知y=f(x)+x2是奇函数,且f(1)=1.若g(x)=f(x)+2, 则g(-1)=________.
解析:由题意得g(-1)=f(-1)+2.又f(-1)+(-1)2= -[f(1)+12]=-2,所以f(-1)=-3. 故f(-1)+2=-3+2=-1,即g(-1)=-1.
答案:-1
板块(二) 系统热门考点——以点带面
(一)巧用性质 妙解函数
[速解技法——学一招]
函数性质主要指函数的单调性、奇偶性、周期性、对称 性,要深刻理解并加以巧妙地运用. 以对称性为例,若函数f(x)满足f(a+x)=f(b-x),则函 a+b 数图象关于直线x= 对称;若函数f(x)满足f(a+x)+f(b- 2
所以 f
[答案]
B
[例 2] 已知函数 f(x)=x3+sin x 的定义域为[-1,1],若 f(log2m)<f(log4(m+2))成立,则实数 m 的取值范围为_______. [解析] 由 f(x)=x3+sin x 的定义域为[-1,1],
易知 f(x)在[-1,1]上单调递增, 由 f(log2m)<f(log4(m+2)),
4.函数f(x)是定义在R上的偶函数,且满足f(x+2)=f(x).当 x∈[0,1]时,f(x)=2x.若在区间[-2,3]上方程ax+2a-f(x) =0恰有四个不相等的实数根,则实数a的取值范围是 ________.
解析:由f(x+2)=f(x),得函数的周期是2. 由ax+2a-f(x)=0, 得f(x)=ax+2A. 设y=f(x),则y=ax+2a,作出函数y =f(x),y=ax+2a的图象,如图.
要使方程ax+2a-f(x)=0恰有四个不相等的实数根,则直线 y=ax+2a=a(x+2)的斜率满足kAH<a<kAG, 由题意可知,G(1,2),H(3,2),A(-2,0), 2 2 2 2 所以kAH= ,kAG= ,所以 <a< . 5 3 5 3
2 2 答案:5,3
[常用结论——记一番] 1.函数的单调性
1≤m≤2, 2 -1≤log2m≤1, 7 -1≤log4m+2≤1, -4≤m≤2, 可得log2m<log4m+2, 解得 0<m<2, m >0 , m>0, m+2>0, m>-2,1 1 故 ≤m<2. 综上可知,实数 m 的取值范围为2,2. 2 1 [答案] 2,2
答案:D
2.已知定义在R上的函数f(x)=2|x
-m|
-1(m为实数)为偶函
数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c 的大小关系为 A.a<b<c C.c<a<b B.a<c<b D.c<b<a ( )
解析:由函数f(x)=2|x-m|-1为偶函数可知,m=0, 故f(x)=2|x|-1.当x>0时,f(x)为增函数,log0.53=-log23, ∴log25>|-log0.53|>0. ∴b=f(log25)>a=f(log0.53)>c=f(2m).
1 - 4 1 4
<f <f
1 - 4 1 4
<f
<f
3 2
<f
1 - 4 1 4
1 - 4
<f
3 2
<f
[解析]
由题设知 f(x)=-f(x-2)=f(2-x),所以函数 f(x)
a+b c x)=c,则函数图象关于点 , 2 对称. 2
[例 1]
定义在 R 上的奇函数 f(x)满足 f(x-2)=-f(x), (
3 2 3 2
且在[0,1]上是增函数,则有 A.f B. f C.f D.f
1 4
)
<f
在公共定义域内: (1)若函数 f(x)是增函数,函数 g(x)是增函数,则 f(x)+g(x) 是增函数; (2)若函数 f(x)是减函数,函数 g(x)是减函数,则 f(x)+g(x) 是减函数; (3)若函数 f(x)是增函数,函数 g(x)是减函数,则 f(x)-g(x) 是增函数; (4)若函数 f(x)是减函数,函数 g(x)是增函数,则 f(x)-g(x) 是减函数. [提示] 在利用函数单调性解不等式时, 易忽略函数定义域 这一限制条件.