2010年辽宁省高考理科试卷与答案
2010年普通高等学校招生全国统一考试(辽宁卷.理)答案
2010年普通高等学校招生全国统一考试(辽宁卷)数学试卷(理科)参考答案一、选择题(1)D (2)A (3)B (4)D (5)C (6)B (7)B (8)C (9)D (10)D (11)C (12)A 二、填空题(13)-5 (14)(3,8) (15) (16)21217.解:(Ⅰ)由已知,根据正弦定理得22(2)(2)a b c b c b c =+++ 即 222a b c b c=++ 由余弦定理得 2222cos a b c bc A =+- 故 1c o s 2A =-,A=120° ……6分 (Ⅱ)由(Ⅰ)得:)60sin(sin sin sin 0B B C B -+=+1sin 2sin(60)B BB =+=︒+ 故当B=30°时,sinB+sinC 取得最大值1。
……12分 18.解:(Ⅰ)甲、乙两只家兔分在不同组的概率为991981002002100199C P C ==……4分 (Ⅱ)(i )图Ⅰ注射药物A 后皮肤疱疹面积的频率分布直方图 图Ⅱ注射药物B 后皮肤疱疹面积的频率分布直方图可以看出注射药物A 后的疱疹面积的中位数在65至70之间,而注射药物B 后的疱疹面积的中位数在70至75之间,所以注射药物A 后疱疹面积的中位数小于注射药物B 后疱疹面积的中位数。
……8分(ii )表3:22200(70653530)24.5610010010595K ⨯⨯-⨯=≈⨯⨯⨯由于K 2>10.828,所以有99.9%的把握认为“注射药物A 后的疱疹面积于注射药物B 后的疱疹面积有差异”。
19.证明:设PA=1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系如图。
则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0,12),N (12,0,0),S (1,12,0).……4分 (Ⅰ)111(1,1,),(,,0)222CM SN =-=--,因为110022CM SN ∙=-++=,所以CM ⊥SN ……6分(Ⅱ)1(,1,0)2NC =-,设a=(x ,y ,z )为平面CMN 的一个法向量,则10,2210.2x y z x x y ⎧-+=⎪⎪=⎨⎪-+=⎪⎩令,得a=(2,1,-2). ……9分因为1cos ,2a SN -== 所以SN 与片面CMN 所成角为45°。
2010年普通高等学校招生全国统一考试(辽宁卷)数学试题 ( 理科).含详解
2010年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的,(1)已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},B)(C U ∩A={9},则A=( ) (A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} 【答案】D【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn 图解决集合问题的能力。
【解析】因为A ∩B={3},所以3∈A ,又因为B)(C U ∩A={9},所以9∈A ,所以选D 。
本题也可以用Venn 图的方法帮助理解。
(2)设a,b 为实数,若复数11+2ii a bi=++,则( ) (A )31,22a b == (B) 3,1a b == (C) 13,22a b == (D) 1,3a b == 【答案】A【命题立意】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力。
【解析】由121i i a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A 。
(3)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是( ) 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A )12 (B)512 (C)14 (D)16【答案】B【命题立意】本题考查了相互独立事件同时发生的概率,考查了有关概率的计算问题【解析】记两个零件中恰好有一个一等品的事件为A ,则 P(A)=P(A 1)+ P(A 2)=211335+=43412⨯⨯(4)如果执行右面的程序框图,输入正整数n ,m , 满足n ≥m ,那么输出的P 等于( ) (A )1m n C - (B) 1m n A - (C) m n C (D) mn A【答案】D【命题立意】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力【解析】第一次循环:k =1,p =1,p =n -m +1;第二次循环:k =2,p =(n -m +1)(n -m +2);第三次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3) ……第m 次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n此时结束循环,输出p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n =mn A(5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是( ) (A )23 (B)43 (C)32(D)3【答案】C【命题立意】本题考查了三角函数图像的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度。
2010年辽宁高考理科数学试题含答案
(ⅱ)完成下面 2×2 列 联表,并回答能否有 99.9%的把握认为“注射药物 A 后的疱疹面积与
注射药物 B 后的疱疹面积有差异”. 表 3:
(19)(本小题满分 12 分) 已知三棱锥 P-ABC 中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N 为 AB 上一点,AB=4AN,M,S
(A){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}
(2)设 a,b 为实数,若复数 1+2i 1 i ,则 a bi
(A) a 3 ,b 1 22
(B) a 3,b 1
(C) a 1 ,b 3 22
(D) a 1,b 3
23
(3)两个实习生每人加工一个零件.加工为一等品的概率分别为 和 ,两个零件是
x+
)+2
的图像向右平移
4
个单位后与原图像重合,则
的最小
3
3
值是
2
(A)
3
4
3
(B)
(C)
(D)3
3
2
(6)设{an}是有正数组成的等比数列, Sn 为其前 n 项和。已知 a2a4=1, S3 7 ,则 S5
15
(A)
2
31
33
(B)
(C)
4
4
17
(D)
2
(7)设抛物线 y2=8x 的焦点为 F,准线为 l,P 为抛物线上一点,PA⊥l,A 为垂足.如
二、填空题:本大题共 4 小题,每小题 5 分。
(13) (1 x x2 )(x 1 )6 的展开式中的常数项为_________. x
2010年辽宁省高考理综化学卷及答案
2010年普通高等学校招生全国统一考试化学部分一、选择题(共42分)7.下列各项表达中正确的是( ).A.Na2O2的电子式为B.106g的乙醇和丙醇混合液完全燃烧生成的CO2为112 L(标准状况)C.在氮原子中,质子数为7而中子数不一定为7D.Cl的结构示意图为8.分子式为C3H6Cl2的同分异构体共有(不考虑立体异构)( ).A.3种 B.4种 C.5种 D.6种9.下列各组中的反应,属于同一反应类型的是( ).A.由溴丙烷水解制丙醇;由丙烯与水反应制丙醇B.由甲苯硝化制对硝基甲苯;由甲苯氧化制苯甲酸C.由氯代环己烷消去制环己烯;由丙烯加溴制1,2二溴丙烷D.由乙酸和乙醇制乙酸乙酯;由苯甲酸乙酯水解制苯甲酸和乙醇10.把500 mL有BaCl2和KCl的混合溶液分成5等份,取一份加入含a mol硫酸钠的溶液,恰好使钡离子完全沉淀;另取一份加入含b mol硝酸银的溶液,恰好使氯离子完全沉淀。
则该混合溶液中钾离子浓度为( )A.0.1(b2a) mol/L B.10(2a b) mol/LC.10(b a) mol/L D.10(b2a) mol/L11.己知:HCN(aq)与NaOH(aq)反应的 H= 12.1 kJ/mol;HCl(aq)与NaOH(aq)反应的 H = 55.6 kJ/mol。
则HCN在水溶液中电离的 H等于( )A.67.7 kJ/mol B.43.5 kJ/molC.+43.5 kJ/mol D.+67.7 kJ/mol12.根据右图,可判断出下列离子方程式中错误的是( ).A .2Ag(s)+Cd 2+(aq)==2Ag +(aq)+Cd(s)B .Co 2+(aq)+Cd(s)==Co(s)+Cd 2+(aq)C .2Ag +(aq)+Cd(s)==2Ag(s)+Cd 2+(aq)D. 2Ag +(aq)+Co(s)==2Ag(s)+Co 2+(aq)13.下表中评价合理的选项是( )26.(14分)物质A ~G 有下图所示转化关系(部分反应物、生成物没有列出)。
2010年高考全国新课标理综卷(全)
2010年高考全国新课标理综卷 (宁夏、吉林、黑龙江、陕西、辽宁)化学部分解析第I卷一、选择题(共42分)7.下列各项表达中正确的是( ).A.Na2O2的电子式为B.106g的乙醇和丙醇混合液完全燃烧生成的CO2为112 L(标准状况)C.在氮原子中,质子数为7而中子数不一定为7D.Cl-的结构示意图为点评:该题考查的是化学用语、基本计算及基本概念,本题具有综合性,属于基础题。
8.分子式为C3H6Cl2的同分异构体共有(不考虑立体异构)( ).A.3种B.4种C.5种D.6种点评:该题考查的是卤代烃同分异构体的书写,属于基础题,因此化学复习要重视基础、抓好基础。
9.下列各组中的反应,属于同一反应类型的是( ).A.由溴丙烷水解制丙醇;由丙烯与水反应制丙醇B.由甲苯硝化制对硝基甲苯;由甲苯氧化制苯甲酸C.由氯代环己烷消去制环己烯;由丙烯加溴制1,2-二溴丙烷D.由乙酸和乙醇制乙酸乙酯;由苯甲酸乙酯水解制苯甲酸和乙醇点评:该题考查的是有机反应类型,仍然属于基础题,再次说明化学复习要重视基础、抓好基础,所以考前回归课本很必要。
10.把500 mL有BaCl2和KCl的混合溶液分成5等份,取一份加入含a mol硫酸钠的溶液,恰好使钡离子完全沉淀;另取一份加入含b mol硝酸银的溶液,恰好使氯离子完全沉淀。
则该混合溶液中钾离子浓度为( )A.0.1(b-2a) mol/L B.10(2a-b) mol/LC.10(b-a) mol/L D.10(b-2a) mol/L点评:该题考查的是学生的化学计算能力,化学计算解题方法很多,本题可用元素守恒法,还可以用方程式计算等方法解题。
化学计算常常涉及一些方法技巧的问题,因此在平时练习时要熟练掌握根据化学化学方程式的计算以及计算技巧等。
11.己知:HCN(aq)与NaOH(aq)反应的∆H = -12.1 kJ/mol;HCl(aq)与NaOH(aq)反应的∆H = -55.6 kJ/mol。
2010辽宁省高考试卷含解析理论考试试题及答案
1、下列词语中,没有错别字的一组是(3分)A.真谛睿智勤能补拙夙兴夜寐B.甘霖磨砺积腋成裘蔚为大观C.宵汉崔嵬中流砥柱沧海桑田D.韬略谙熟飒爽英姿风弛电掣2、下列语句中,标点符号使用不正确的一项是(3分)A.在远走他乡、辗转天涯时,他才明白为什么那些远离家乡的人们会那么怀念故乡?B.中国传统文化重视人生哲学,儒家坚持以修身为本,追求的是“齐家、治国、平天下”。
C.建立现代科学的三大基石是理论、实验和数学(包括计算、统计与建立在抽象模型基础上的演绎推理)。
D.2012年开始实施的新《标点符号用法》,我们要怎样贯彻:通知各校自行学习?组织骨干教师来培训?3、写作 70分27、根据以下材料,自选角度,自拟题目,写一篇不少于800字的文章(不要写成诗歌)。
你可以选择穿越沙漠的道路和方式,所以你是自由的;你必须穿越这片沙漠,所以你又是不自由的。
4、下列各组词语中,加点字的注音全都正确的一组是A.缜(shân)密感喟(kuì)紫蔷薇(wēi)暗香盈(yínɡ)袖B.镶(xiānɡ)嵌驰骋(chěnɡ)栀(zhī)子花逸兴遄(chuán)飞C.热忱(chãn)别(biã)扭康乃馨(xīn)积微成著(zhù)D.菜肴(yáo)酣(hān)畅蒲(pú)公英春风拂(fó)面5、在下面一段文字横线处填入语句,衔接最恰当的一项是(3分)自宋元至明清,清明节除了要祭扫家墓,还要在门楣、窗户上插上柳条。
,。
,,,。
①达到人丁兴旺、身体健康的目的②于是在郊游踏青时③它便成了人类文化中生命力的象征④人们企盼将这种生命力转移到自家门庭和家庭成员身上⑤不会忘记顺便折一些柳条回来⑥由于柳树最先送来春的消息并且具有旺盛的生殖力A.⑥③④①②⑤ B.②⑤①④⑥③ C.②④⑥③①⑤ D.⑥④②⑤③①A.风电属于绿色清洁能源,行业主管部门和相关企业不能墨守成规,应该把握机遇,发挥我们幅原辽阔、风能资源丰富的优势,大力发展风电。
2010年全国新课标地区高考真题(含答案+解析)理综(宁夏、吉林、黑龙江、陕西、湖南、辽宁)
2010年普通高等学校招生全国统一考试(新课标)可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 23 S 32 Cl35.5 K 39 Ca 40 Ni 59 Cu 64 Ba 137 La 139 一、选择题:本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目1.下列有关细胞的叙述,正确的是A.病毒是一类具有细胞结构的生物B.蓝藻细胞具有细胞核且DNA分子呈环状C.人全所有细胞的细胞周期持续时间相同D.内质网膜和高尔基膜都具有流动性2.下列关于呼吸作用的叙述,正确的是A.无氧呼吸的终产物是丙酮酸B.有氧呼吸产生的[H]在线粒体基质中与氧结合生成水C.无氧呼吸不需要O2的参与,该过程最终有[H]的积累D.质量相同时,脂肪比糖原有氧氧化释放的能量多3.若要在普通显微镜下观察到质壁分离、RNA和脂肪,下列四组材料中应选择的一组是A.水稻胚乳和花生子叶B.天竺葵叶和水稻胚乳C.紫色洋葱和花生子叶D.天竺葵叶和紫色洋葱4.水中氧含量随水温的升高而下降。
生活在寒温带湖泊中的某动物,其血液中的血红蛋白含量与其生活的水温有关。
右图中能正确表示一定温度范围内该动物血液中血红蛋白含量随水温变化趋势的曲线是A.甲B.乙C.丙D.丙5.将神经细胞置于相当于细胞外液的溶液(溶液S)中,可测得静息电位。
给予细胞一个适宜的刺激,膜两侧出现一个暂时性的电位变化,这种膜电位变化称为动作电位。
适当降低溶液S中的Na+浓度,测量该细胞的静息电位和动作电位,可观察到A.静息电位值减小B.静息电位值增大C.动作电位峰值升高D.动作电位峰值降低6.在白花豌豆品种栽培园中,偶然发现了一株开红花的豌豆植株,推测该红花表现型的出现是花色基因突变的结果。
为了确定该推测是否正确。
应检测和比较红花植株与白花植株中A.花色基因的碱基组合B.花色基因的DNA序列C.细胞的DNA含量D.细胞的RNA含量7.下列各项表达中正确的是A.Na2O2的电子式为B.106g的乙醇和丙醇混合液完全燃烧生成的CO2为112L(标准状况)C.在氮原子中,质子数为7而中子数不一定为7D.Cl-的结构示意图为8.分子式为C3H6Cl2的同分异构体共有(不考虑立体异构)A.3种B.4种C.5种D.6种9.下列各组中的反应,属于同一反应类型的是A.由溴丙烷水解制丙醇:由丙烯与水反应制丙醇B.由甲苯硝化制对硝基甲苯:由甲苯氧化制苯甲酸C.由氯代环已烷消去制环己烯:由丙烯加溴制1,2一二溴丙烷D.由乙酸和乙醇制乙酸乙酯:由苯甲酸乙酯水解制苯甲酸和乙醇10.把500mL含有BaCl2和KCl的混合溶液分成5等份,取一份加入含a mol硫酸钠的溶液,恰好使钡离子完全沉淀;另取一份加入含 b mol硝酸银的溶液,恰好使氯离子完全沉淀。
2010年辽宁高考物理卷
绝密★启封并使用完毕前2010年普通高等学校招生全国统一考试理科综合能力测试 物理本试题卷分选择题和非选择题两部分,共l5页。
时量150分钟,满分300分。
二、选择题:本题共8小题,每小题6分,共48分。
在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.在电磁学发展过程中,许多科学家做出了贡献。
下列说法正确的是A .奥斯特发现了电流磁效应;法拉第发现了电磁感应现象B .麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在C .库仑发现了点电荷的相互作用规律:密立根通过油滴实验测定了元电荷的数值D .安培发现了磁场对运动电荷的作用规律:洛仑兹发现了磁场对电流的作用规律【答案】AC【解析】赫兹用实验证实了电磁波的存在,B 错误。
洛仑磁发现了磁场对运动电荷作用的规律,D 错误。
15.一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2。
弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为A .2121F F l l -- B.2121F F l l ++ C.2121F F l l +- D.2121F F l l -+ 【答案】C【解析】根据胡克定律有:101()F k l l =-,220()F k l l =-,解得:k=2121F F l l +-,C 正确。
16.如图所示,在外力作用下某质点运动的t υ-图象为正弦曲线。
从图中可以判断A .在0~t 1时间内,外力做正功B .在0~t 1时间内,外力的功率逐渐增大C .在t 2时刻,外力的功率最大D .在t 1~t 2时间内,外力做的总功为零【答案】AD【解析】根据P=Fv 和图象斜率表示加速度,加速度对应合外力,外力的功率先减小后增大,B 错误。
t 2时刻外力的功率为零,C 错误。
17.静电除尘器是目前普遍采用的一种高效除尘器。
2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科)(解析版)
2010年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第(22)-(24)题为选考题,其他题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。
3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4、保持卷面清洁,不折叠,不破损。
5、做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
参考公式:样本数据n x x x ,,21的标准差锥体体积公式s =13V Sh=其中x 为样本平均数其中S 为底面面积,h 为高柱体体积公式球的表面积,体积公式V Sh=24S R π=343V R π=其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}2,R A x x x =≤∈,{}4,Z B x =≤∈,则A B = ()(A)()0,2(B)[]0,2(C){}0,2(D){}0,1,2【答案】D【解析】{22},{0,1,2,3,4}A B={0,1,2}A x x B =-≤≤=∴⋂,,选D 命题意图:考察集合的基本运算(2)已知复数z =,z 是z 的共轭复数,则z z ⋅=()(A)14(B)12(C)1(D)2【答案】A 命题意图:考察复数的四则运算【解析】2323244i iz ===-⨯4z =,14z z ⋅=(3)曲线2xy x =+在点()1,1--处的切线方程为()(A)21y x =+(B)21y x =-(C)23y x =--(D)22y x =--【答案】A【解析】''122,|2(2)x y k y x =-=∴==+ ,切线方程为[](1)2(1)y x --=--,即21y x =+.命题意图:考察导数的几何意义(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为()【答案】C【解析】当点P 在0P ,即0t =,P 到x。
20010年(辽宁.理)含详解(3)
2010年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的,(1) 已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u ðB ∩A={9},则A=(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}(2)设a,b 为实数,若复数11+2i i a bi=++,则 (A )31,22a b == (B) 3,1a b == (C) 13,22a b == (D) 1,3a b == (3)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A )12 (B)512(C)14 (D)16 (4)如果执行右面的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于(A )1m n C -(B) 1m n A -(C) m n C(D) m n A(5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是 (A )23 (B)43 (C)32(D)3 (6)设{a n }是有正数组成的等比数列,n S 为其前n 项和。
已知a 2a 4=1, 37S =,则5S =(A )152 (B)314 (C)334(D)172 (7)设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,PA ⊥l,A 为垂足.如果直线AF 的斜率为那么|PF|=(A) (B)8 (C) (D) 16(8)平面上O,A,B 三点不共线,设,OA=a OB b =,则△OAB 的面积等于(B)(C)(D) (9)设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐 近线垂直,那么此双曲线的离心率为(A) (D) (1O)已知点P 在曲线y=41x e +上,a 为曲线在点P 处的切线的倾斜角,则a 的取值 范围是(A)[0,4π) (B)[,)42ππ 3(,]24ππ (D) 3[,)4ππ (11)已知a>0,则x 0满足关于x 的方程ax=6的充要条件是(A)220011,22x R ax bx ax bx ∃∈-≥- (B) 220011,22x R ax bx ax bx ∃∈-≤- (C) 220011,22x R ax bx ax bx ∀∈-≥- (D) 220011,22x R ax bx ax bx ∀∈-≤- (12) (12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是(A)( (B)(1,-+ (D) (0,二、填空题:本大题共4小题,每小题5分。
2010理综答案
2010年普通高等学校招生全国统一考试理科综合能力测试参考答案选择题共21小题,每小题6分,共126分一、选择题1.C 2.C 3.D 4.B 5.C 6.B 7.B 8.D 9.D 10.A 11.C12.A 13.C二、选择题14.A 15.C 16.C 17.BD 18.D 19.BC 20.B 21.AD 非选择题共13小题,共174分22.(6分)(1)4.55 (2)1.4623.(12分)(1)实物连线图如下图所示(2)b (3)5.5I 2(4)3.00 mA ,0.660 mA ,6.05 mA(5)多次测量取平均(其他合理答案同样给分,如:测量时,电流表指针偏转大于满刻度的1/2)24.(15分)(1)设t =10,40,60 s 时刻的速度分别为v l ,v 2,v 3。
由图知0~10 s 内汽车以加速度2 m/s²匀加速行驶,由运动学公式褥v l = 2×10 =20 m/s ①由图知10~40 s 内汽车匀速行驶,因此v 2=20 m /s ②由圈知40~60 s 内汽车以加速度l m/s²匀减速行驶,由运动学公式得v 3 = (20一1×20) = 0 ③根据①②③式,可画出汽车在0~60 s 内的v 一t ,图线,如右图所示。
(2)由右图可知,在这60 s 内汽车行驶的路程为2026030⨯+=s = 900m ④25.(18分)(1)设两个星球A 和B 做匀速圆周运动的轨道半径分别为r 和R ,相互作用的引力大小为f ,运行周期为T 。
根据万有引力定律有2)(r R Mm G f +=① 由匀速圆周运动的规律得r T m f 22⎪⎭⎫ ⎝⎛=π② R T M f 22⎪⎭⎫ ⎝⎛=π③ 由题意有L = R + r ④联立①②③④式得 )(23m M G L T +=π⑤ (2)在地月系统中.由于地月系统旋转所围绕的中心O 不在地心,月球做圆周运动的周期可由⑤式得出)''('231m M G L T +=π⑥ 式中,M ’和m ’分别是地球与月球的质量,L ’是地心与月心之间的距离。
2010年辽宁省高考数学试卷(理科)
2010年辽宁省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知A、B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}2.(5分)设a,b为实数,若复数,则()A.B.a=3,b=1 C.D.a=1,b=33.(5分)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.B.C.D.4.(5分)如果执行右面的程序框图,输入正整数n,m,满足n≥m,那么输出的p等于()A.C n m﹣1B.A n m﹣1C.C n m D.A n m5.(5分)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.36.(5分)设{a n}是有正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.7.(5分)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A 为垂足.如果直线AF的斜率为,那么|PF|=()A.B.8 C.D.168.(5分)平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C. D.9.(5分)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.10.(5分)已知点P在曲线y=上,a为曲线在点P处的倾斜角,则a的取值范围是()A.[0,)B.[,) C.(,]D.[,π)11.(5分)已知a>0,则x0满足关于x的方程ax=b的充要条件是()A.B.C.D.12.(5分)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,)B.(1,)C.(,) D.(0,)二、填空题(共4小题,每小题5分,满分20分)13.(5分)的展开式中的常数项为.14.(5分)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是.(答案用区间表示)15.(5分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.16.(5分)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.三、解答题(共8小题,满分90分)17.(12分)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(Ⅱ)求sinB+sinC的最大值.18.(12分)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表表2:注射药物B后皮肤疱疹面积的频数分布表(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:附:K2=.19.(12分)已知三棱锥P﹣ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB 上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.20.(12分)设椭圆C:的左焦点为F,过点F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,.(1)求椭圆C的离心率;(2)如果|AB|=,求椭圆C的方程.21.(12分)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.22.(10分)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.23.(10分)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.24.(10分)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.2010年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知A、B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}【分析】由韦恩图可知,集合A=(A∩B)∪(C U B∩A),直接写出结果即可.【解答】解:因为A∩B={3},所以3∈A,又因为C U B∩A={9},所以9∈A,选D.本题也可以用Venn图的方法帮助理解.故选:D.【点评】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn图解决集合问题的能力.2.(5分)设a,b为实数,若复数,则()A.B.a=3,b=1 C.D.a=1,b=3【分析】先化简,然后用复数相等的条件,列方程组求解.【解答】解:由可得1+2i=(a﹣b)+(a+b)i,所以,解得,,故选:A.【点评】本题考查了复数相等的概念及有关运算,考查计算能力.是基础题.3.(5分)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.B.C.D.【分析】根据题意,分析可得,这两个零件中恰有一个一等品包含仅第一个实习生加工一等品与仅第二个实习生加工一等品两种互斥的事件,而两个零件是否加工为一等品相互独立,进而由互斥事件与独立事件的概率计算可得答案.【解答】解:记两个零件中恰好有一个一等品的事件为A,即仅第一个实习生加工一等品(A1)与仅第二个实习生加工一等品(A2)两种情况,则P(A)=P(A1)+P(A2)=,故选:B.【点评】本题考查了相互独立事件同时发生的概率与互斥事件的概率加法公式,解题前,注意区分事件之间的相互关系(对立,互斥,相互独立).4.(5分)如果执行右面的程序框图,输入正整数n,m,满足n≥m,那么输出的p等于()A.C n m﹣1B.A n m﹣1C.C n m D.A n m【分析】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量p的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:第一次循环:k=1,p=1,p=n﹣m+1;第二次循环:k=2,p=(n﹣m+1)(n﹣m+2);第三次循环:k=3,p=(n﹣m+1)(n﹣m+2)(n﹣m+3)…第m次循环:k=m,p=(n﹣m+1)(n﹣m+2)(n﹣m+3)(n﹣1)n此时结束循环,输出p=(n﹣m+1)(n﹣m+2)(n﹣m+3)(n﹣1)n=A n m故选:D.【点评】要注意对第m次循环结果的归纳,这是本题的关键.5.(5分)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.3【分析】求出图象平移后的函数表达式,与原函数对应,求出ω的最小值.【解答】解:将y=sin(ωx+)+2的图象向右平移个单位后为=,所以有=2kπ,即,又因为ω>0,所以k≥1,故≥,故选:C.【点评】本题考查了三角函数图象的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度.6.(5分)设{a n}是有正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.【分析】先由等比中项的性质求得a3,再利用等比数列的通项求出公比q及首项a1,最后根据等比数列前n项和公式求得S5.【解答】解:由a2a4=a32=1,得a3=1,所以S3==7,又q>0,解得=2,即q=.所以a1==4,所以=.故选:B.【点评】本题考查等比中项的性质、等比数列的通项公式及前n项和公式.7.(5分)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A 为垂足.如果直线AF的斜率为,那么|PF|=()A.B.8 C.D.16【分析】先根据抛物线方程求出焦点坐标,进而根据直线AF的斜率为求出直线AF的方程,然后联立准线和直线AF的方程可得点A的坐标,得到点P的坐标,根据抛物线的性质:抛物线上的点到焦点和准线的距离相等可得到答案.【解答】解:抛物线的焦点F(2,0),准线方程为x=﹣2,直线AF的方程为,所以点、,从而|PF|=6+2=8故选:B.【点评】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想.8.(5分)平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C. D.【分析】利用三角形的面积公式表示出面积;再利用三角函数的平方关系将正弦表示成余弦;再利用向量的数量积公式求出向量夹角的余弦化简即得.【解答】解:==•=;故选:C.【点评】本题考查三角形的面积公式;同角三角函数的平方关系,利用向量的数量积求向量的夹角.9.(5分)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.【分析】先设出双曲线方程,则F,B的坐标可得,根据直线FB与渐近线y=垂直,得出其斜率的乘积为﹣1,进而求得b和a,c的关系式,进而根据双曲线方程a,b和c的关系进而求得a和c的等式,则双曲线的离心率可得.【解答】解:设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy﹣bc=0与渐近线y=垂直,所以,即b2=ac所以c2﹣a2=ac,即e2﹣e﹣1=0,所以或(舍去)【点评】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想.10.(5分)已知点P在曲线y=上,a为曲线在点P处的倾斜角,则a的取值范围是()A.[0,)B.[,) C.(,]D.[,π)【分析】利用导数在切点处的值是曲线的切线斜率,再根据斜率等于倾斜角的正切值求出角的范围.【解答】解:因为y=上的导数为y′=﹣=﹣,∵e x+e﹣x≥2=2,∴e x+e﹣x+2≥4,∴y′∈[﹣1,0)即tanα∈[﹣1,0),∵0≤α<π∴π≤α<π.即α的取值范围是[π,π).故选:D.【点评】本题主要考查直线的斜率关系、导数的几何意义.属于基础题.11.(5分)已知a>0,则x0满足关于x的方程ax=b的充要条件是()A.B.C.D.【分析】初看本题,似乎无从下手,但从题目中寻求充要条件,再看选项会发现构造二次函数求最值.【解答】解:由于a>0,令函数,此时函数对应的开口向上,当x=时,取得最小值,而x0满足关于x的方程ax=b,那么x0═,y min=,那么对于任意的x∈R,都有≥=故选:C.【点评】本题考查了二次函数的性质、全称量词与充要条件知识,考查了学生构造二次函数解决问题的能力.12.(5分)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,)B.(1,)C.(,) D.(0,)【分析】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力.我们可以通过分析确定当底面是边长为2的正三角形,三条侧棱长为2,a,a此时a取最大值,当构成三棱锥的两条对角线长为a,其他各边长为2,a有最小值,易得a的取值范围【解答】解:根据条件,四根长为2的直铁条与两根长为a的直铁条要组成三棱镜形的铁架,有以下两种情况①底面是边长为2的正三角形,三条侧棱长为2,a,a,如图,此时a可以取最大值,可知AD=,SD=,则有2﹣<<2+,即,即有<a<②构成三棱锥的两条对角线长为a,其他各边长为2,如图所示,此时0<a<2;综上分析可知a∈(0,);故选:A.【点评】本题考查的知识点是空间想像能力,我们要结合分类讨论思想,数形结合思想,极限思想,求出a的最大值和最小值,进而得到a的取值范围二、填空题(共4小题,每小题5分,满分20分)13.(5分)的展开式中的常数项为﹣5.【分析】展开式的常数项为展开式的常数项与x﹣2的系数和;利用二项展开式的通项公式求出第r+1项,令x的指数分别为0,﹣2即得.【解答】解:的展开式的通项为T r=C6r(﹣1)r x6﹣2r,+1当r=3时,T4=﹣C63=﹣20,的展开式有常数项1×(﹣20)=﹣20,当r=4时,T5=﹣C64=15,的展开式有常数项x2×15x﹣2=15,因此常数项为﹣20+15=﹣5故答案为﹣5【点评】本题考查等价转化的能力;考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.14.(5分)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是(3,8).(答案用区间表示)【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值和最小值,再根据最值给出目标函数的取值范围.【解答】解:画出不等式组表示的可行域如下图示:在可行域内平移直线z=2x﹣3y,当直线经过x﹣y=2与x+y=4的交点A(3,1)时,目标函数有最小值z=2×3﹣3×1=3;当直线经过x+y=﹣1与x﹣y=3的交点B(1,﹣2)时,目标函数有最大值z=2×1+3×2=8.z=2x﹣3y的取值范围是(3,8).故答案为:(3,8).【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.15.(5分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.【分析】结合题意及图形,可知几何体为一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,还原几何体,求解即可.【解答】解:由三视图可知,此多面体是一个底面边长为2的正方形,且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为.【点评】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力.16.(5分)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.【分析】由累加法求出a n=33+n2﹣n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【解答】解:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=33+n2﹣n所以设f(n)=,令f′(n)=,则f(n)在上是单调递增,在上是递减的,因为n∈N,所以当n=5或6时f(n)有最小值.+又因为,,所以的最小值为【点评】本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力.三、解答题(共8小题,满分90分)17.(12分)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(Ⅱ)求sinB+sinC的最大值.【分析】(Ⅰ)根据正弦定理,设,把sinA,sinB,sinC代入2asinA=(2b+c)sinB+(2c+b)sinC求出a2=b2+c2+bc再与余弦定理联立方程,可求出cosA的值,进而求出A的值.(Ⅱ)根据(Ⅰ)中A的值,可知c=60°﹣B,化简得sin(60°+B)根据三角函数的性质,得出最大值.【解答】解:(Ⅰ)设则a=2RsinA,b=2RsinB,c=2RsinC∵2asinA=(2b+c)sinB+(2c+b)sinC方程两边同乘以2R∴2a2=(2b+c)b+(2c+b)c整理得a2=b2+c2+bc∵由余弦定理得a2=b2+c2﹣2bccosA故cosA=﹣,A=120°(Ⅱ)由(Ⅰ)得:sinB+sinC=sinB+sin(60°﹣B)=cosB+sinB=sin(60°+B)故当B=30°时,sinB+sinC取得最大值1.【点评】本题主要考查了余弦函数的应用.其主要用来解决三角形中边、角问题,故应熟练掌握.18.(12分)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表表2:注射药物B后皮肤疱疹面积的频数分布表(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:附:K2=.【分析】(1)利用组合数找出所有事件的个数n,基本事件的个数m,代入古典概率计算公式p=(2)由频数分布表中的频数求出每组的,画出频率分布直方图,完成2×2列联表,代入计算随机变量值后与临界点比较判断两变量的相关性的大小.【解答】解:(Ⅰ)从200选100的组合数C200100,记:“甲、乙两只家兔分在不同组”为事件A,则事件A包含的情况有2C19899∴(4分)(Ⅱ)(i)图Ⅰ注射药物A后皮肤疱疹面积的频率分布直方图图Ⅱ注射药物B后皮肤疱疹面积的频率分布直方图可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.(8分)(ii)表3:由于K2>10.828,所以有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.(12分)【点评】本题考查的内容为:利用组合数求古典概率,由频数分布表画频率分布直方图及2×2列联表,考查独立性检验的计算公式与临界值比较以判断两个变量的关联性.要注意频率分布直方图的纵轴是19.(12分)已知三棱锥P﹣ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB 上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.【分析】由PA=AC=AB,N为AB上一点,AB=4AN,我们不妨令PA=1,然后以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系.由此不难得到各点的坐标(1)要证明CM⊥SN,我们可要证明即可,根据向量数量积的运算,我们不难证明;(2)要求SN与平面CMN所成角的大小,我们只要利用求向量夹角的方法,求出SN和方向向量与平面CMN的法向量的夹角,再由它们之间的关系,易求出SN与平面CMN所成角的大小.【解答】证明:设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图.则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).(4分)(Ⅰ),因为,所以CM⊥SN(6分)(Ⅱ),设a=(x,y,z)为平面CMN的一个法向量,则令x=2,得a=(2,1,﹣2).因为,所以SN与平面CMN所成角为45°.【点评】如果已知向量的坐标,求向量的夹角,我们可以分别求出两个向量的坐标,进一步求出两个向量的模及他们的数量积,然后代入公式cosθ=即可求解20.(12分)设椭圆C:的左焦点为F,过点F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,.(1)求椭圆C的离心率;(2)如果|AB|=,求椭圆C的方程.【分析】(1)点斜式设出直线l的方程,代入椭圆,得到A、B的纵坐标,再由,求出离心率.(2)利用弦长公式和离心率的值,求出椭圆的长半轴、短半轴的值,从而写出标准方程.【解答】解:设A(x1,y1),B(x2,y2),由题意知y1>0,y2<0.(1)直线l的方程为,其中.联立得.解得,.因为,所以﹣y1=2y2.即﹣=2 ,解得离心率.(6分)(2)因为,∴•.由得,所以,解得a=3,.故椭圆C的方程为.(12分)【点评】本题考查椭圆的性质标和准方程,以及直线和圆锥曲线的位置关系,准确进行式子的变形和求值,是解题的难点,属于中档题.21.(12分)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.【分析】(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间.(2)根据第一问的单调性先对|f(x1)﹣f(x2)|≥4|x1﹣x2|进行化简整理,转化成研究g(x)=f(x)+4x在(0,+∞)单调减函数,再利用参数分离法求出a 的范围.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞)..当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调递增;当a≤﹣1时,f′(x)<0,故f(x)在(0,+∞)单调递减;当﹣1<a<0时,令f′(x)=0,解得.则当时,f'(x)>0;时,f'(x)<0.故f(x)在单调递增,在单调递减.(Ⅱ)不妨假设x1≥x2,而a<﹣1,由(Ⅰ)知在(0,+∞)单调递减,从而∀x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|等价于∀x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1①令g(x)=f(x)+4x,则①等价于g(x)在(0,+∞)单调递减,即.从而故a的取值范围为(﹣∞,﹣2].(12分)【点评】本小题主要考查函数的导数,单调性,极值,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.22.(10分)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.【分析】(1)要判断两个三角形相似,可以根据三角形相似判定定理进行证明,但注意观察已知条件中给出的是角的关系,故采用判定定理1更合适,故需要再找到一组对应角相等,由圆周角定理,易得满足条件的角.(2)根据(1)的结论,我们可得三角形对应对成比例,由此我们可以将△ABC的面积转化为S=AB•AC,再结合三角形面积公式,不难得到∠BAC 的大小.【解答】证明:(1)由已知△ABC的角平分线为AD,可得∠BAE=∠CAD因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD故△ABE∽△ADC.解:(2)因为△ABE∽△ADC,所以,即AB•AC=AD•AE.又S=AB•ACsin∠BAC,且S=AD•AE,故AB•ACsin∠BAC=AD•AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】相似三角形有三个判定定理:判定定理1:两角对应相等的两个三角形相似;判定定理2:三边对应成比例的两个三角形相似;判定定理3:两边对应成比例,并且夹角相等的两个三角形相似.在证明三角形相似时,要根据已知条件选择适当的定理.23.(10分)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.(1)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,【分析】进行代换即得.(2)先在直角坐标系中算出点M、A的坐标,再利用直角坐标的直线AM的参数方程求得参数方程即可.【解答】解:(Ⅰ)由已知,M点的极角为,且M点的极径等于,故点M的极坐标为(,).(5分)(Ⅱ)M点的直角坐标为(),A(1,0),故直线AM的参数方程为(t为参数)(10分)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.24.(10分)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.【分析】证法一:两次利用基本不等式放小,此处不用考虑等号成立的条件,因等号不成立不影响不等号的传递性.证法二:先用基本不等式推出a2+b2+c2≥ab+bc+ac与两者之和用基本不等式放小,整体上只用了一次放缩法.其本质与证法一同.【解答】证明:证法一:因为a,b,c均为正数,由平均值不等式得①所以②故.又③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立.当且仅当时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.证法二:因为a,b,c均为正数,由基本不等式得所以a2+b2+c2≥ab+bc+ac①同理②故③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.【点评】考查放缩法在证明不等式中的应用,本题在用缩法时多次用到基本不等式,请读者体会本题证明过程中不考虑等号是否成立的原理,并与利用基本不等式求最值再据最值成立的条件求参数题型比较.深入分析等号成立的条件什么时候必须考虑,什么时候可以不考虑.。
2010年高考数学(理)试题(新课标)参考答案
1 2
3 。 2
(Ⅱ) C1 的普通方程为 x sin α − y cos α − sin α = 0。 A 点坐标为 sin
(
2
α − cos α sin α ) ,
故当 α 变化时,P 点轨迹的参数方程为:
1 2 sin α x = 2 (α为参数 ) 1 y = − sin α cos α 2
1 1 2 x− + y = 4 16 。 P 点轨迹的普通方程为
2
0 ,半径为 故 P 点轨迹是圆心为 ,
(24) 解:
1 4
1 的圆。 4
−2 x + 5,x < 2 f ( x) = 2 x − 3,x ≥ 2 则 函 数 (Ⅰ)由于
y = f ( x) 的图像如图所示。
3 3
3 ,0,0) 3
D(0, −
3 1 3 , 0), E ( , − , 0), P(0, 0,1) 3 2 6
设 n = ( x, y, x) 为平面 PEH 的法向量
则
n ⋅ HE = o, o, n ⋅ HP =
1 x− 3 y= 2 6 0 即 z=0
因此可以取 n = (1, 3, 0) , 由= PA (1, 0, −1) ,
(Ⅱ)由函数 y = f ( x) 与函数 y = ax 的图像可知,当且仅当
a≥
1 2 或 a < −2 时,函数
-5-
天骄文化培训学校
y = f ( x) 与函数 y = ax 的图像有交点。故不等式 f ( x) ≤ ax 的解集非空时,a 的取值范围
为
− 2) ( −∞,,
1 + ∞ 2 。
2010年辽宁省高考数学试卷(理科)-菁优网
2010年辽宁省高考数学试卷(理科)2010年辽宁省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•辽宁)已知A、B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于()2.(5分)(2010•辽宁)设a,b为实数,若复数,则().D3.(5分)(2010•辽宁)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一.C D.4.(5分)(2010•辽宁)如果执行右面的程序框图,输入正整数n,m,满足n≥m,那么输出的P等于()5.(5分)(2010•辽宁)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是().C D.C D.7.(5分)(2010•辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF.D8.(5分)(2010•辽宁)平面上O,A,B三点不共线,设,则△OAB的面积等于()....9.(5分)(2010•辽宁)设双曲线的﹣个焦点为F;虚轴的﹣个端点为B,如果直线FB与该双曲线的一条渐近线垂.C D.10.(5分)(2010•辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()C D.,.12.(5分)(2010•辽宁)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够),,)二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•辽宁)的展开式中的常数项为_________.14.(5分)(2010•辽宁)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是_________.(答案用区间表示)15.(5分)(2010•辽宁)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为_________.16.(5分)(2010•辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为_________.三、解答题(共8小题,满分90分)17.(12分)(2010•辽宁)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(Ⅱ)求sinB+sinC的最大值.18.(12分)(2010•辽宁)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.附:K2=.19.(12分)(2010•辽宁)已知三棱锥P﹣ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.20.(12分)(2010•辽宁)设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60°,.(1)求椭圆C的离心率;(2)如果|AB|=,求椭圆C的方程.21.(12分)(2010•辽宁)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.22.(10分)(2010•辽宁)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.23.(10分)(2010•辽宁)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A的坐标为(1,0),O 为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.24.(10分)(2010•辽宁)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.2010年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•辽宁)已知A、B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于()2.(5分)(2010•辽宁)设a,b为实数,若复数,则().D可得,所以,解得,3.(5分)(2010•辽宁)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一.C D.,4.(5分)(2010•辽宁)如果执行右面的程序框图,输入正整数n,m,满足n≥m,那么输出的P等于()5.(5分)(2010•辽宁)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最.C D的图象向右平移,=2k,≥.C D.=,解得=2q==4=7.(5分)(2010•辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF.D的斜率为的方程为、8.(5分)(2010•辽宁)平面上O,A,B三点不共线,设,则△OAB的面积等于()....9.(5分)(2010•辽宁)设双曲线的﹣个焦点为F;虚轴的﹣个端点为B,如果直线FB与该双曲线的一条渐近线垂.C D.解:设双曲线方程为,y=,即10.(5分)(2010•辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()C D.,=∵∴.,令函数时,取得最小值═,=,都有≥12.(5分)(2010•辽宁)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够),,),则有2)二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•辽宁)的展开式中的常数项为﹣5.展开式的常数项为展开式的常数项与x﹣2的系数和;利用二项展开的展开式有常数项的展开式有常数项14.(5分)(2010•辽宁)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是(3,8).(答案用区间表示)解:画出不等式组15.(5分)(2010•辽宁)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为..16.(5分)(2010•辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.,所以,设=最小值.借此能得到,令)在上是单调递增,在,的最小值为三、解答题(共8小题,满分90分)17.(12分)(2010•辽宁)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(Ⅱ)求sinB+sinC的最大值.,把)设,cosB+18.(12分)(2010•辽宁)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.附:K2=.p=)由频数分布表中的频数求出每组的,画出频率分布直方图,完成∴(的计算公式19.(12分)(2010•辽宁)已知三棱锥P﹣ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.PA=AC=,,,,即可求解20.(12分)(2010•辽宁)设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60°,.(1)求椭圆C的离心率;(2)如果|AB|=,求椭圆C的方程.的纵坐标,再由的方程为,其中..,=2 ,解得离心率)因为,∴•.,所以,的方程为.21.(12分)(2010•辽宁)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围..,解得时,;)在单调增加,在,则.22.(10分)(2010•辽宁)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.的面积ABABAD23.(10分)(2010•辽宁)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A的坐标为(1,0),O 为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.点的极角为,的极坐标为(,点的直角坐标为()的参数方程为24.(10分)(2010•辽宁)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.与①②式等号成立.当且仅当时,原式等号成立.均为正数,由基本不等式得时,原式等号成立.参与本试卷答题和审题的老师有:qiss;wdnah;翔宇老师;zhwsd;wsj1012;caoqz;吕静;wzj123;yhx01248;zlzhan;danbo7801;minqi5;wdlxh;xintrl(排名不分先后)菁优网2014年8月31日。
2010年辽宁高考理综试题及答案
2010年普通高等学校招生全国统一考试理科综合能力测试(辽宁卷)一、选择题本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列有关细胞的叙述,正确的是(D)A.病毒是一类具有细胞结构的生物 B.海澡细胞具有细胞核且DNA 分子呈环状C.人体所有细胞的细胞周期持续时间相同 D.内质网膜和高尔基体膜都具有流动性2.下列关于呼吸作用的叙述,正确的是(D)A.无氧呼吸的终产物是丙酮酸B.有氧呼吸产生的在线粒体基质中与氧结合生成水C.无氧呼吸不需要的参与,该过程最终有的积累D.质量相同时,脂肪比糖原有氧氧化释放的能量多3.若要在普通显微镜下观察到质壁分离、RNA和脂肪,下列四组材料中应选择的一组是(C)A.水稻胚乳和花生子叶 B.天竹葵叶和水稻胚乳C. 紫色洋葱和花生子叶D.天竺葵叶和紫色洋葱4.水中氧含量随水温的升高而下降,生活在寒温带湖泊中的某动物,其血液中的血红蛋白含量与其生活的水温有关。
右图中能正确表示一定温度范围内动物血液中血红蛋白含量随水温变化趋势的曲线是【A】A 甲 B。
乙 C.丙 D.丁5..将神经细胞置于相当于细胞外液的溶液(溶液S)中,可测到静息电位。
给予细胞一个适宜的刺激,膜两侧出现一个暂时性的电位变化,这种膜电位变化称为动作电位。
适当降低溶液S中NA+浓度,测量该细胞的静息电位和动作电位,可观测到【D】A.静息电位值减小B.静息电位值增大C.动作电位峰值升高D.动作电位峰值降低6.在白花豌豆品种栽培园中,偶然发现了一株开红花的豌豆植株,推测该红花表现型的出现是花色基因突变的结果。
为了确定推测是否正确,应检测和比较红花植株与百花植株中【B】A 白花基因的碱基组成B 花色基因的DNA序列C.细胞的DNA含量D.细胞的RNA含量7.下列各项表达中正确的是【C】A. Na2O2的电子式为NaNaB.106g的乙醇和丙醇混合液完全燃烧生成的CO2为112L(标准状态)C.在氮原子中,质子数为7而种子数不一定为7D.CL-的结构示意图为8.分子式为C3H6CL2 的同分异构体共有(不考虑例题异构)【B】A.3中B.4种C.5种D.6种9.下列各组的反应,属于统一反应类型的是【D】A.由溴丙烷睡解制丙醇:由丙烯和水反应制丙醇B.由甲苯硝化制对硝基甲苯:由甲苯氧化制苯甲酸C.由苯乙烷消去制环乙烯:由丙烯加溴制1,2-二溴丙烷D.由乙酸和乙醇制乙酸乙酯:由苯甲酸乙酯水解制苯甲酸和乙醇10.把500ml含有BaCl2和KCl的混合溶液分成5等分,取一份加入含a mol 硫酸钠的溶液,恰好是钡离子完全沉淀:令取一份加入b mol硝酸银的溶液,恰好使卤离子完全沉淀,则该混合溶液中钾离子浓度为【D】A.0.1(b-2a)mol·L-1B.10(2a-b) mol·L-1C.10(b-a) mol·L-1D.10(b-2a) mol·L-111.已知:HCN(aq)与NaOH(aq)反应的△H等于【C】A.-67.7KJ·mol·L-1B.-43.5 KJ·mol·L-1C.+43.5 KJ·mol·L-1D.+67.7 KJ·mol·L-112.根据右图,可判断出下列离子方程式中错误的是(A)A.2Ag(s) + Cd2+(s) = 2Ag(s) + Cd(s)B. Co2+(aq)+ Cd(s) = Co(s)+ Cd2+(aq)C. 2Ag (aq) + Cd(s) = 2Ag(s) Cd2+(aq)D. 2Ag (aq) +Co(s)=2Ag(s)+Co2+(aq)13.下表中评价合理的是二.选择题:本体共8小题,每小题6分,在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分。
2010年辽宁高考理综试题及答案
2010年普通高等学校招生全国统一考试理科综合试题全解全析(辽宁卷)1. 下列过程中,不.直接依赖细胞膜的流动性就能完成的是A.植物体胞杂交中原生质体融合B.mRNA与游离核糖体的结合C.胰岛B细胞分泌胰岛素D.吞噬细胞对抗原的摄取【解析】本题主要考查细胞膜的结构特点—具有一定的流动性,考查学生的理解能力。
植物体细胞杂交中原生质体的融合依赖于细胞膜的流动性,胰岛B细胞分泌胰岛素的过程属于外排作用,吞噬细胞对抗原的摄取属于内吞作用,内吞和外排作用均与细胞膜的流动性有直接的关系;而mRNA与游离核糖体的结合与细胞膜的流动性无关。
【答案】B2.光照条件下,给C3植物和C4植物叶片提供14CO2,然后检测叶片中的14C。
下列有关检测结果的叙述,错误..的是A.从C3植物的淀粉和C4植物的葡萄糖中可检测到14CB.在C3植物和C4植物呼吸过程产生的中间产物中可检测到14CC.随光照强度增加,从C4植物叶片中可检测到含14C的C4大量积累D.在C3植物叶肉组织和C4植物维管束鞘的C3中可检测到14C【解析】本题主要考查C3植物和C4植物的光合作用及同位素标记法,考查学生的理解能力、实验与探究能力和综合运用能力。
根据C3植物和C4植物光合作用暗反应的场所、过程[C3植物:C5+14CO2→2C3(只有两个14C)→C5+(14CH2O);和C4植C4植物的光合作用:C3+14CO2→C4(只有一个14C)→C3+14CO2,C5+14CO2→2C3(只有两个14C)→C5+(14CH2O)]和呼吸作用的过程[C6H12O6+6O2+6H2O→6H2O+12CO2]可知,A、B和D三项均正确;C4途径中的C4为中间代谢产物,不可能大量的积累。
【答案】C3.下列四种现象中,可以用右图表示的是A.在适宜条件下光合作用强度随CO2含量的变化B.条件适宜、底物充足时反应速率随酶量的变化C.一个细胞周期中DNA含量随时间的变化D.理想条件下种群数量随时间的变化【解析】本题主要考查相关生理过程中的数量变化趋势,涉及到新陈代谢与细胞分裂的相关内容,考查学生的理解能力和获取信息的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年辽宁高考理科数学试题及答案
第I 卷
一、选择墨:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的,
(1) 已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},(CuB ∩A={9},则A=
(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} (2)设a,b 为实数,若复数
11+2i
i a bi =++,则 (A )31
,22a b == (B) 3,1a b ==
(C) 13
,22
a b == (D) 1,3a b ==
(3)两个实习生每人加工一个零件.加工为一等品的概率分别为23和3
4
,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为
(A )
12 (B)512
(C)14 (D)16 (4)如果执行右面的程序框图,输入正整数n ,m , 满足n ≥m ,那么输出的P 等于
(A )1
m n C - (B) 1m n A - (C) m n C (D) m n A
(5)设ω>0,函数y=sin(ωx+
3
π
)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是
(A )
23 (B)43 (C)3
2
(D)3 (6)设{a n }是有正数组成的等比数列,n S 为其前n 项和。
已知a 2a 4=1, 37S =,则5S =
(A )
152 (B)314 (C)334
(D)172
(7)设抛物线y 2
=8x 的焦点为F ,准线为l,P 为抛物线上一点,PA ⊥l,A 为垂足.如果直线AF 的斜率为,那么|PF|=
(A) (B)8 (C) (D) 16
(8)平面上O,A,B 三点不共线,设,OA =a OB b =,则△OAB 的面积等于
(B)
(C)
(D)
(9)设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为
(A)
(C)
1
2 (D) 1
2
(1O)已知点P 在曲线y=
4
1x
e +上,a 为曲线在点P 处的切线的倾斜角,则a 的取值范围是 (A)[0,4
π
) (B)[,)42ππ 3(,]24ππ (D) 3[,)4ππ
(11)已知a>0,则x 0满足关于x 的方程ax=6的充要条件是 (A)220011,
22x R ax bx ax bx ∃∈-≥- (B) 22
0011,22x R ax bx ax bx ∃∈-≤- (C) 220011,22x R ax bx ax bx ∀∈-≥- (D) 22
0011,22
x R ax bx ax bx ∀∈-≤-
(12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是
(A)( (B)(1,
(D) (0, 二、填空题:本大题共4小题,每小题5分。
(13)2
6
1(1)()x x x x
++-的展开式中的常数项为_________.
(14)已知14x y -<+<且23x y <-<,则23z x y =-的取值范围是_______(答案用区间表示)
(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.
(16)已知数列{}n a 满足1133,2,n n a a a n +=-=则
n
a n
的最小值为__________. 三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2sin (2)sin (2)sin .a A a c B c b C =+++ (Ⅰ)求A 的大小;
(Ⅱ)求sin sin B C +的最大值.
(18)(本小题满分12分)
为了比较注射A, B 两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A ,另一组注射药物B 。
(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;
(Ⅱ)下表1和表2分别是注射药物A 和B 后的试验结果.(疱疹面积单位:mm 2)
表1:注射药物A 后皮肤疱疹面积的频数分布表
(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(ⅱ)完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”.
表3:
(19)
(本小题满分12分)
已知三棱锥P -ABC 中,PA ⊥ABC ,AB ⊥AC ,PA=AC=½AB ,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点. (Ⅰ)证明:CM ⊥SN ;
(Ⅱ)求SN 与平面CMN 所成角的大小. (20)(本小题满分12分)
设椭圆C :22
221(0)x y a b a b
+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为
60o ,2AF FB =.
(I) 求椭圆C 的离心率; (II)
如果|AB|=
15
4
,求椭圆C 的方程. (21)(本小题满分12分)
已知函数1ln )1()(2+++=ax x a x f (I )讨论函数)(x f 的单调性;
(II )设1-<a .如果对任意),0(,21+∞∈x x ,||4)()(|2121x x x f x f -≥-,求a 的取值范围。
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所作的第一题记分。
作答时用2B 铅笔在答题卡上吧所选题目对应题号下方的方框涂黑。
(22)(本小题满分10分)选修4-1:几何证明选讲 如图,ABC ∆的角平分线AD 的延长线交它的外接圆于点E
(I )证明:ABE
∆ADC ∆
(II )若ABC ∆的面积AE AD S ⋅=
2
1
,求BAC ∠的大小。
(23)(本小题满分10分)选修4-4:坐标系与参数方程
(θ为参数,πθ≤≤0)上的点,点A 的坐标为(1,0), 已知P 为半圆C :
O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧
的长度均为
3
π。
(I )以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (II )求直线AM 的参数方程。
(24)(本小题满分10分)选修4-5:不等式选讲 已知c b a ,,均为正数,证明:36)111(
2
222≥+++++c
b a
c b a ,并确定c b a ,,为何值时,等号成立。
参考答案
一、选择题
(1)D (2)A (3)B (4)D (5)C (6)B (7)B (8)C (9)D (10)D (11)C (12)A 二、填空题
(13)-5 (14)(3,8) (15
) (16)212
(17)解:
(Ⅰ)由已知,根据正弦定理得22(2)(2)a b c b c b c =+++ 即 2
2
2
a b c bc =++ 由余弦定理得
2222c o s a b c b A =+- 故 1
c o s
2
A =-,A=120° ……6分 (Ⅱ)由(Ⅰ)得:
sin sin sin sin(60)B C B B +=+︒
-1sin 2
sin(60)
B B
B =+=︒+故当B=30时,sinB+sin
C 取得最大值1。
……12分 (18)解:
(Ⅰ)甲、乙两只家兔分在不同组的概率为 991981002002100
199
C P C == ……4分
(Ⅱ)(i )
图Ⅰ注射药物A 后皮肤疱疹面积的频率分布直方图 图Ⅱ注射药物B 后皮肤疱疹面积的频率分布直方图
可以看出注射药物A 后的疱疹面积的中位数在65至70之间,而注射药物B 后的疱疹面积的中位数在70至75之间,所以注射药物A 后疱疹面积的中位数小于注射药物B 后疱疹面积的中位数。
……8分
(ii )表3:
2
2
200(70653530)24.5610010010595
K ⨯⨯-⨯=≈⨯⨯⨯
由于K 2
>10.828,所以有99.9%的把握认为“注射药物A 后的疱疹面积于注射药物B 后的疱疹面积有差异”。