二分法求函数零点教(学)案

合集下载

人教A版数学必修一2.4.2求函数零点近似解的一种计算方法——二分法

人教A版数学必修一2.4.2求函数零点近似解的一种计算方法——二分法

三、教与学的方法
(一)本节课贯彻的教育理念和教学思想
1、新课标强调要为学生提供开阔的探索空 间及合作体验的机会,并且倡导积极主动、 勇于探索的学习方式。 2、提倡利用信息技术来实现以往教学中难 以呈现的课程内容。 3、学生在利用函数的性质求解函数零点近 似解的过程中,认识函数与方程的联系,能 初步感悟数值逼近中所蕴含的极限思想。
五、教学反思
谢谢!
灿若寒星整理制作
高中数学课件
人教版高中必修一数学全册(新课标)
学校:北京市首都师大附中 教师:数学科组
人教B版必修一
第二章函数
说课
2.4.2求函数零点近似解的一种计算
方法——二分法
a
b
一、教学内容 二、学情分析 三、教与学的方法 四、教学过程设计 五、教学反思
(二)本节内容的知识结构体系
函数与方程
三、教与学的方法
(三)教学媒体的选择和学案的设计
动画课堂、几何画板、动画
四、教学过程设计
(一)引入阶段:
猜一猜刻有中国文化名村 爨底下的“爨”字的一块瓦 片的市场价格。
中国历史文化名村
—爨底下
(二)由具体到一般的探究认知过程:
1、复习发现新问题阶段:
通过一组求解函数零点的问题,发现有 些高次函数不能分解因式,求不出零点 ,从而产生认知冲突,激起学生了解、 探究、获取新知的欲望。同时给学生展 示三次方程的求根公式,介绍解方程的 历史。
2、过程与方法目标:
体验二分法的形成过程,感受函数与 方程的内在联系,体会近似思想和逼 近思想的应用;
(三)本节课的教学目标、重点与难点分析
3、情感、态度与价值观目标:
通过二分法的学习培养归纳概括的能 力,了解有关解方程的历史;在探究 解决问题的过程中,培养学生与他人 合作的态度、表达与交流的意识;培 养认真、耐心、严谨的数学品质。

二分法求函数零点教案

二分法求函数零点教案

二分法求函数零点教案一、教学目标1.知识与技能:(1)掌握二分法求函数零点的基本原理。

(2)理解二分法求函数零点的步骤和流程。

(3)能够应用二分法求解实际问题中的函数零点。

2.过程与方法:(1)通过理论解释和示例演示,引导学生了解二分法求函数零点的思路和方法。

(2)通过实际问题的练习和解答,培养学生运用二分法求解函数零点的能力。

3.情感态度价值观:(1)培养学生对数学问题的钻研精神和解决问题的能力。

(2)发展学生的逻辑思维能力和数学建模能力。

二、教学重点与难点1.教学重点:(1)二分法求函数零点的基本原理和步骤。

(2)能够应用二分法求解函数零点的实际问题。

2.教学难点:(1)如何将实际问题转化为数学模型。

(2)如何合理运用二分法求解函数零点。

三、教学过程1.导入新课(5分钟)引入二分法求函数零点的概念和应用,让学生了解二分法的作用和重要性。

2.二分法求函数零点的基本原理(10分钟)(1)根据函数零点的定义,介绍二分法求函数零点的基本思路:通过对函数值的正负性判断,将区间逐步缩小,最终确定零点的位置。

(2)引导学生思考:如何判断函数值的正负性?如何确定区间的缩小方向?3.二分法求函数零点的步骤(15分钟)(1)步骤一:根据实际问题建立数学模型,确定需要求解零点的函数。

(2)步骤二:选择一个初始区间[a,b],其中f(a)和f(b)有一个为正,一个为负。

(3)步骤三:计算区间的中点c=(a+b)/2,并计算函数值f(c)。

(4)步骤四:判断f(c)的正负性,并根据结果调整区间的上限和下限:如果f(c)为正,则将a设置为c;如果f(c)为负,则将b设置为c。

(5)步骤五:根据收敛性要求,重复步骤三和步骤四,直到区间的长度小于给定的阈值,此时区间的中点c就是函数的零点。

4.示例演示(15分钟)选择一个简单的函数和初始区间,进行示例演示,并详细解释每个步骤的操作和原理。

5.实际问题练习(25分钟)(1)选择一些实际问题,将其转化为数学模型并应用二分法求解函数零点。

二分法求函数零点教案(可编辑修改word版)

二分法求函数零点教案(可编辑修改word版)

1、二分法的概念用二分法求方程的近似解对于在区间[a, b]上连续不断且 f (a ) · f (b ) < 0 的函数 y = f (x ) , 通过不断把函数f (x ) 的零点所在的区间一分为二, 使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫二分法。

2、用二分法求函数 f (x ) 的零点的近似值的步骤:(1)确定区间[a, b], 验证: f (a ) · f (b ) < 0,确定精确度(2)求区间(a , b)的中点 x 1(3)计算 f (x 1 )若 f (x 1 ) =0, 则就 x 1 是函数的零点若 f (a ) · f (x 1 ) <0,则令 b = x 1 (此时零点 x 0∈(a,x 1 ))若 f (x 1 ) · f (b ) <0,则令 a = x 1 (此时零点 x 0∈( x 1 , b)) (4)判断是否达到精确度即若 | a – b | <, 则得到零点的近似值为 a (或 b ),否则重复(2)~(4) 3、用二分法求函数零点的条件:若函数零点左右两侧函数值符号相反,则此零点为函数的变号零点,从图象来看,若图象穿过零点,则此零点为变号零点。

否则为不变号零点。

二分法只能求函数的变号零点。

例题讲解:例 1:下列函数图象与 x 轴均有交点,其中不能用二分法求图中函数零点的是( )解:应选 B ,利用二分法求函数零点必须满足零点两侧函数值异号。

1 例 2、 利用二分法求方程 x= 3 - x 的一个近似解(精确到 0.1)。

解:设 f (x ) = 1 + x - 3 ,则求方程 1= 3 - x 的一个近似解,即求函数 f (x ) 的一个近似零x x点。

∵ f (2) = - 1 < 0 , f (3) = 1> 0 ,∴取区间[2,3]作为计算的初始区间。

高中数学《二分法求零点》导学案

高中数学《二分法求零点》导学案

[教学难点]
知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的思想.
[教学设计]
一、知识要点要点一二分法概念的理解
例1下列图象与x轴均有交点,其中不能用二分法求函数零点的是()
规律方法 1.准确理解“二分法”的含义.二分就是平均分成两部分.二分法就是通过不断地将所选区间一分为二,逐步逼近零点的方法,找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点.
2.“二分法”与判定函数零点的定义密切相关,只有满足函数图象在零点附近连续且在该零点左右函数值异号才能应用“二分法”求函数零点.
跟踪演练1(1)下列函数中,能用二分法求零点的为()。

数学2.4.2《二分法》教案(新人教B版必修1)

数学2.4.2《二分法》教案(新人教B版必修1)

2.4.2求函数零点近似解的一种计算方法——二分法教案
教学目标:
1.通过具体实例理解二分法的概念及其适用条件;
2.了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.
3.能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.重点,难点:
重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系.
难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.
教学过程。

高中数学第二章函数2.4.2求函数零点近似解的一种计算方法_二分法学案新人教B版必修1

高中数学第二章函数2.4.2求函数零点近似解的一种计算方法_二分法学案新人教B版必修1

2.4.2 求函数零点近似解的一种计算方法——二分法1.了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.(重点) 2.会用二分法求函数变号零点的近似值,并能对二分法的过程作出程式化的步骤.(难点)[基础·初探]教材整理1 变号零点与不变号零点阅读教材P72~P73“第一行”以上部分内容,完成下列问题.1.零点存在的判定条件:y=f(x)在[a,b]上的图象不间断,f(a)·f(b)<0.结论:y=f(x)在[a,b]上至少有一个零点,即x0∈(a,b)使f(x0)=0.2.变号零点如果函数图象通过零点时穿过x轴,则称这样的零点为变号零点.3.不变号零点如果函数图象通过零点时没有穿过x轴,则称这样的零点为不变号零点.函数f(x)的图象如图2­4­1所示,则函数f(x)的变号零点的个数为( )图2­4­ 1A.0 B.1C.2 D.3【解析】函数f(x)的图象通过零点时穿过x轴,则必存在变号零点,根据图象得函数f(x)有3个变号零点.【答案】 D教材整理2 二分法阅读教材P73“第三行”以下~P73“例”以上的内容,完成下列问题.1.定义对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点的方法叫做二分法.2.求函数零点的一般步骤已知函数y=f(x)定义在区间D上,求它在D上的一个零点x0的近似值x,使它满足给定的精确度.用二分法求此函数零点的一般步骤为:①在D内取一个闭区间[a0,b0]⊆D,使f(a0)与f(b0)异号,即f(a0)·f(b0)<0,零点位于区间[a0,b0]中.②取区间[a0,b0]的中点,则此中点对应的坐标为x0=a0+b02.计算f(x0)和f(a0),并判断:a.如果f(x0)=0,则x0就是f(x)的零点,计算终止.b.如果f(a0)·f(x0)<0,则零点位于区间[a0,x0]中,令a1=a0,b1=x0. c.如果f(a0)·f(x0)>0,则零点位于区间[x0,b0]中,令a1=x0,b1=b0.③取区间[a1,b1]的中点,则此中点对应的坐标为x1=a1+b12.计算f(x1)和f(a1),并判断:a.如果f(x1)=0,则x1就是f(x)的零点,计算终止.b.如果f(a1)·f(x1)<0,则零点位于区间[a1,x1]上,令a2=a1,b2=x1.c.如果f(a1)·f(x1)>0,则零点位于区间[x1,b1]上,令a2=x1,b2=b1.……继续实施上述步骤,直到区间[a n,b n],函数的零点总位于区间[a n,b n]上,当区间的长度b n-a n不大于给定的精确度时,这个区间[a n,b n]中的任何一个数都可以作为函数y=f(x)的近似零点,计算终止.判断(正确的打“√”,错误的打“×”)(1)二分法所求出的方程的解都是近似解.( )(2)函数f(x)=|x|可以用二分法求零点.( )(3)用二分法求函数零点的近似值时,每次等分区间后,零点必定在右侧区间内.( )【解析】(1)×.如函数x-2=0用二分法求出的解就是精确解.(2)×.对于函数f(x)=|x|,不存在区间(a,b),使f(a)·f(b)<0,所以不能用二分法求其零点.(3)×.函数的零点也可能是区间的中点或在左侧区间内.【答案】(1)×(2)×(3)×[小组合作型]二分法的概念(1)图2­4­ 2已知函数f(x)的图象如图2­4­2所示,其中零点的个数与可以用二分法求解的个数分别为( )A.4,4 B.3,4C.5,4 D.4,3(2)用二分法求方程x3-2x-5=0在区间[1,3]内的根,取区间的中点为x0=2,那么下一个有根的区间是________.【导学号:60210063】【精彩点拨】(1)可以用二分法求出的零点左右函数值异号;(2)方程的实根就是对应函数f(x)的零点,判断f(2)的符号,在2的左右两边寻找函数值与f(2)异号的自变量.【自主解答】(1)图象与x轴有4个交点,所以解的个数为4;左、右函数值异号的有3个零点,所以可以用二分法求解的个数为3.(2)设f(x)=x3-2x-5,f(1)=1-2-5=-6<0,f(2)=23-4-5=-1<0,f(3)=33-6-5=16>0,f(x)零点所在的区间为(2,3),∴方程x3-2x-5=0有根的区间是(2,3).【答案】(1)D (2)(2,3)二分法求函数零点的依据:其图象在零点附近是连续不断的,且该零点为变号零点,因此,用二分法求函数零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.[再练一题]1.下面关于二分法的叙述,正确的是( )A.用二分法可求所有函数零点的近似值B.用二分法求方程的近似解时,可以精确到小数点后的任一位C.二分法无规律可循D.只有在求函数零点时才用二分法【解析】只有函数的图象在零点附近是连续不断且在该零点左右函数值异号,才可以用二分法求函数的零点的近似值,故A错.二分法有规律可循,可以通过计算机来进行,故C错.求方程的近似解也可以用二分法,故D错.【答案】 B变号零点与不变号零点的判断(1)f(x)=3x-6;(2)f(x)=x2-x-12;(3)f(x)=x2-2x+1;(4)f(x)=(x-2)2(x+1)x.【精彩点拨】(1)是一次函数,(2)、(3)均是二次函数,(4)虽然是高次函数,但给出因式积的形式,所以容易分别求得.【解】(1)零点是2,是变号零点.(2)零点是-3和4,都是变号零点.(3)零点是1,是不变号零点.(4)零点是-1,0和2,其中变号零点是0和-1,不变号零点是2.图象连续不间断的函数f x在[a,b]上,若f a·f b<0,则函数f x在该区间上至少有一个变号零点,也就是可能有多个变号零点,还可能有不变号零点,但至少有一个变号零点是肯定的.这一结论可直接应用于函数变号零点判定之中.[再练一题]2.判断下列函数是否有变号零点.(1)y=x2-5x-14;(2)y=x2+x+1;(3)y=x4-18x2+81.【解】(1)零点是-2,7,是变号零点.(2)无零点.(3)零点是-3,3,都不是变号零点.[探究共研型]用二分法求方程的近似解探究1 函数y =f (x )的零点与方程f (x )=0的解有何关系? 【提示】 函数y =f (x )的零点就是方程f (x )=0的解. 探究2 如何把求方程的近似解转化为求函数零点的近似解?【提示】 设方程为f (x )=g (x ),构造函数F (x )=f (x )-g (x ),求方程f (x )=g (x )的近似解问题就可转化为求函数F (x )=f (x )-g (x )零点的近似解问题.用二分法求方程2x 3+3x -3=0的一个正实数近似解(精确度为0.1). 【精彩点拨】 构造函数f (x )=2x 3+3x -3→确定初始区间(a ,b )→二分法求方程的近似解→验证|a -b |<0.1是否成立→下结论.【自主解答】 令f (x )=2x 3+3x -3,经计算,f (0)=-3<0,f (1)=2>0,f (0)·f (1)<0, 所以函数f (x )在(0,1)内存在零点, 即方程2x 3+3x =3在(0,1)内有解. 取(0,1)的中点0.5,经计算f (0.5)<0, 又f (1)>0,所以方程2x 3+3x -3=0在(0.5,1)内有解.如此继续下去,得到方程的正实数根所在的区间,如表:(a ,b ) 中点c f (a ) f (b ) f ⎝⎛⎭⎪⎫a +b 2(0,1) 0.5 f (0)<0 f (1)>0 f (0.5)<0 (0.5,1) 0.75 f (0.5)<0 f (1)>0 f (0.75)>0 (0.5,0.75) 0.625 f (0.5)<0 f (0.75)>0 f (0.625)<0 (0.625,0.75)0.687 5f (0.625)<0f (0.75)>0f (0.687 5)<0所以方程2x 3+3x -3=0的一个精确度为0.1的正实数近似解可取为0.687 5.1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f (x )=0的近似解,即按照用二分法求函数零点近似值的步骤求解.2.对于求形如f (x )=g (x )的方程的近似解,可以通过移项转化成求形如F (x )=f (x )-g (x )=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.[再练一题]3.用二分法求函数f(x)=x3+5的零点可以取的初始区间是( )A.[-2,1] B.[-1,0]C.[0,1] D.[1,2]【解析】由于f(-2)=-3<0,f(1)=6>0,故可以取区间[-2,1]作为计算的初始区间,用二分法逐次计算.【答案】 A1.下列函数中能用二分法求零点的是( )【解析】在A和D中,函数虽有零点,但它们均是不变号零点,因此它们都不能用二分法求零点.在B中,函数无零点.在C中,函数图象是连续不断的,且图象与x轴有交点,并且其零点为变号零点,所以C中的函数能用二分法求其零点.【答案】 C2.用二分法求函数f(x)在(a,b)内的唯一零点时,精确度为0.001,则结束计算的条件是( )A.|a-b|<0.1 B.|a-b|<0.001C.|a-b|>0.001 D.|a-b|=0.001【解析】据二分法的步骤知当区间长度|b-a|小于精确度ε时,便可结束计算.【答案】 B3.用“二分法”可求近似解,对于精确度ε说法正确的是( )A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关【解析】由“二分法”的具体步骤可知,ε越大,零点的精确度越低.【答案】 B4.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,参考数据如下:【导学号:97512033】【解析】 根据题意知函数的零点在1.406 25至1.437 5之间,因为此时|1.437 5-1.406 25|=0.031 25<0.1,故方程的一个近似根可以是1.4.【答案】 1.45.已知函数f (x )=3ax 2+2bx +c ,a +b +c =0,f (0)>0,f (1)>0,证明a >0,并利用二分法证明方程f (x )=0在[0,1]内有两个实根.【证明】 ∵f (1)>0, ∴3a +2b +c >0,即3(a +b +c )-b -2c >0, ∵a +b +c =0, ∴-b -2c >0, 则-b -c >c ,即a >c . ∵f (0)>0,∴c >0,则a >0. 在[0,1]内选取二等分点12,则f ⎝ ⎛⎭⎪⎫12=34a +b +c =34a +(-a )=-14a <0.∵f (0)>0,f (1)>0,∴f (x )在区间⎝ ⎛⎭⎪⎫0,12和⎝ ⎛⎭⎪⎫12,1上至少各有一个零点,又f (x )最多有两个零点,从而f (x )=0在[0,1]内有两个实根.。

人教版必修一:零点零点存在原理和二分法 学案

人教版必修一:零点零点存在原理和二分法 学案

零点专题复习过关一.零点概念和分类零点概念:零点分类: 和二、零点存在原理及二分法求零点零点存在原理: 零点存在原理适用的条件: 二分法求零点的原理: 二分法求零点条件:二分法求零点的步骤:三.零点的题型题型一:二次函数的零点1.若1)(2--=x ax x f 仅有一个零点,求a 范围。

2.m 为何值时,函数7)1(8)(2-+--=m x m x x f 的零点(1)均分布在原点的两侧?(2)均大于1?(3)一个大于2,另一个小于2?(4)均在(0,2)之间?题型二:判断零点是否存在以及零点个数1.判断下列函数在给定区间上是否存在零点(1)[]8,1,183)(2∈--=x x x x f (2)[]2,1,1)(3-∈--=x x x x f (3)[]3,1,)2(log )(2∈-+=x x x x f2.求下列函数零点的个数(数形结合法+单调性法)(1)x x x f ⎪⎭⎫ ⎝⎛-+=213log )(2 (2)32)(+-=-x e x f x(3)2-1lg2)()(++=x x f x题型三:奇函数偶函数的零点1.若奇函数)(x f 的定义域为R ,且在),0(+∞上单调增函数,若0)1(=f ,求)(x f 在)2,2(-内的零点个数。

2.求函数248)(x x x x f +-=的所有零点之和。

四.零点的应用1.m x m x x f 2)1()(2+--=在[]1,0上只有一个零点,求m 范围。

2.)1,0()(≠>--=a a a x a x f x 有两个零点,则a 的范围是?3.)0(12)(≠++=k k kx x f 在[]1,1-上存在一个零点,求k 的取值范围。

4.对于)(x f ,若存在R x ∈0,使00)(x x f =成立,则称0x 为)(x f 的不动点。

已知(1)当2,1-==b a 时,求)(x f 的不动点;(2)若对于任意实数b ,)(x f 恒有两个相异的不动点,求a 的取值范围。

二分法求零点的步骤二分法的定义用二分法求函数f(x)的零点的近似值的步骤

二分法求零点的步骤二分法的定义用二分法求函数f(x)的零点的近似值的步骤

一、给定精确度ξ,用二分法求函数f(x)的零点的近似值的步骤(1)确定区间[a,b],验证f(a)·f(b)<0,给定精确度ξ;(2)求区间(a,b)的中点x1;(3)计算f(x1),①若f(x1)=0,则就是函数的零点;②若f(a)·f(x1)<0,则令b=x1(此时零点x0∈(a,x1));③若f(x1)·f(b)<0,则令a=x1(此时零点x0∈(x1,b));(4)判断是否达到精确度ξ,即若|ab|<ξ,则达到零点近似值a (或b);否则重复(2)(4)。

二、二分法的定义:对于区间[a,b]上连续不断,且f(a)·f(b)<0的函数y=f(x),通过不断把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似解的方法叫做二分法。

三、利用二分法求方程的近似解的特点:(1)二分法的优点是思考方法非常简明,缺点是为了提高解的精确度,求解的过程比较长,有些计算不用计算工具甚至无法实施,往往需要借助于科学计算器.(2)二分法是求实根的近似计算中行之有效的最简单的方法,它只要求函数是连续的,因此它的使用范围很广,并便于在计算机上实现,但是它不能求重根,也不能求虚根。

四、关于用二分法求函数零点近似值的步骤应注意以下几点:①第一步中要使区间长度尽量小,f(a),f(b)的值比较容易计算,且f(a).f(b)<0;②根据函数的零点与相应方程根的关系,求函数的零点与求相应方程的根是等价的,对于求方程f(x)=g(x)的根,可以构造函数F(x)=f(x)g(x),函数F(x)的零点即为方程f(x)=g(x)的根;③设函数的零点为x0,则a<x0<b,作出数轴,在数轴上标出a,b,x0对应的点,如图,所以0<x0a<ba,a一b<x0b<0.由于|a b|<ε,所以|x0a|<ba<ε,|x0b|<|a b|<ε即a或b作为函数的零点x0的近似值都达到给定的精确度ε④我们可用二分法求方程的近似解.由于计算量大,而且是重复相同的步骤,因此,我们可以通过设计一定的计算程序,借助计算器或计算机完成计算.。

二分法(2)

二分法(2)

2.4.2求函数零点近似解的一种方法——二分法教学设计辽宁省鞍山一中周兴奎一、教学目标知识与技能:1、了解二分法是求函数零点近似解的常用方法.2、理解二分法求函数零点的适用范围,并能借助计算器或计算机用二分法求函数零点近似值.过程与方法:采用问题探究式的教学方法,从实例入手,引领学生理解“二分法”求方程近似解的过程和步骤,并得到相应结论.情感态度价值观:培养学生的数学思想。

包括数形结合和数学逼近思想,同时培养学生的数学文化,增强数学认同感,提高学习兴趣.二、教学重难点重点:用二分法求方程的近似解,体会函数与方程的思想.难点:正确理解二分法求函数零点的原理和思想;在利用二分法求方程的近似解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难;用二分法求方程的近似解时,初始区间的选择.三、学情分析和教学内容分析学情分析:知识上学生通过函数性质和上节课函数零点的学习,已经有了初步的函数思想,已有了函数与方程相联系的认知。

意识上学生对解方程非常熟悉,可以从解方程入手来进一步学习函数的零点.教材内容分析:本节课位于人教B版教材第二章2.4.2,本章的最后一节新课,本节内容是新教材为了体现注重思想和联系的宗旨,特别设计的一节探究课。

目的是通过教师引导、学生自主学习探究后增加对数学学习的兴趣,同时通过对数学文化的渗透和计算机可以来处理复杂数学计算问题等,让学生在数学修养上在上一个台阶.四、教学过程1. 数学史的引入和数学问题情境的创设由上节课学习的函数的零点入手,回顾函数零点和方程的关系。

得到求方程的根的问题就是求函数的零点,求函数与x轴交点横坐标的问题,进而过渡到事实上求方程的根的问题是19世纪之前数学研究的主要课题,进而教师给出一些重要的时间段,以及对应的方程的根的求解进展情况。

并让学生发现一元五次和五次以上的方程没有求根公式。

进而引出问题:一个一般的五次方程的根我们是没有办法求出去具体值的,那么我们能不能求这类方程的近似解呢?如:求方程x5+2x2-x-1=0的根2. 求函数近似零点下面进一步引导学生来求上述函数的一个零点,不妨求[0,1]上的零点,能否借助函数图像,找到一种方法可以使函数的零点和零点近似值之间可以任意接近?可以选择的给出一个具体实例:在一个风雨交加的夜里,某防洪指挥部的电话线路发生故障,线路长达10Km,问维修工人应该如何迅速找到故障所在?并采用动画的形式展示维修工人的操作过程,这就是二分法的思想,这是一个探究的环节。

二分法教案

二分法教案

求函数零点近似解的一种计算方法——二分法一、教学目标:1.知识与技能:通过实例的探究,使学生能理解二分法的概念,能够运用二分法求简单函数零点近似解。

2.过程与方法:⑴体验并理解函数的零点与方程的解相互转化的数学思想⑵学生能够初步了解近似逼近思想,培养学生能够探究问题的能力、严谨的科学态度和创新能力。

(3)了解二分法程序化思想。

3.用二分法解方程的近似解是新课程中新增内容。

为了帮助学生认识函数与方程的关系,分三个层面来展现:第一层面,从简单的一元二次方程和二次函数入手,建立起方程的解和函数的零点的联系。

第二层面,通过二分法求方程近似解,体现函数与方程的关系。

第三层面,通过建立函数模型以及运用模型解决问题,进一步体现函数与方程的关系。

二、教学重点与难点:教学重点: 对二分法的理论的理解与应用;教学难点:对二分法的理论的理解与应用。

三、教学过程引入:有12个大小相同的小球,其中有11个小球质量相等,另有一个小球稍重,用天平称至少称几次就一定可以找出这个稍重的球?在现实生活中有很多这样的类似情况需要我们寻找到某些特殊时刻,相应地,数学中研究各种量的变化时也会非常关注某些特殊时刻,比如我们现在学习的函数,寻求函数y=f(x)的零点(也就是方程f(x)=0的解)也是一个重要的课题。

我们知道,求一次函数或二次函数的零点,我们可以用熟知的公式解法。

对于三次函数和四次函数,虽然有求根公式不过很复杂,所以对于高次的多项式函数及其他的一些函数怎样找到他们的零点呢?——下面我们一起来探索一种能找到函数的零点的可操作的办法。

(例题探究)例一:一次函数f(x)=(k-1)x+2在区间(1,2)上有零点,求系数k的范围。

分析一次函数有且只有一个零点,要使一次函数f(x)=(k-1)x+1在区间(1,2)上有零点只需要f(1).f(2)异号。

解出k的范围是-1&lt;k&lt;0例二:图象不间断的函数f(x)的部分对应值如下表:试判断函数f(x)在哪几个区间内一定有零点?函数f(x)在(2,3)、(3,4),(6,7)、(8,9)内一定有零点。

函数的零点与二分法(优质课)教案

函数的零点与二分法(优质课)教案

函数的零点与二分法(优质课)教案教学目标:1、 掌握函数的零点和二分法的定义.2、 会用二分法求函数零点的近似值。

教学过程:一、函数的零点:定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。

对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。

特别提醒:函数零点个数的确定方法:1、判断二次函数的零点个数一般由判别式的情况完成;2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行;3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a)∙f (b )<0,还必须结合函数的图像和性质才能确定。

函数有多少个零点就是其对应的方程有多少个实数解。

二、二分法:定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。

特别提醒:用二分法求函数零点的近似值第一步:确定区间[],a b ,验证:f(a)∙f (b )<0,给定精确度; 第二步:求区间[],a b 得中点1x ;第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)∙f (x 1)<0,则令1b x =;若f(x 1)∙f (b )<0,则令1a x =第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则重复第二、 三、四步。

类型一求函数的零点例1:求函数y =x -1的零点: 解析:令y =x -1=0,得x =1, ∴函数y =x -1的零点是1. 答案:1练习1:求函数y =x 3-x 2-4x +4的零点. 答案:-2,1,2.练习2:函数f (x )=2x +7的零点为( ) A .7 B .72 C .-72D .-7答案:C类型二 零点个数的判断例2:判断函数f (x )=x 2-7x +12的零点个数解析:由f (x )=0,即x 2-7x +12=0得Δ=49-4×12=1>0,∴方程x 2-7x +12=0有两个不相等的实数根3,4, ∴函数f (x )有两个零点,分别是3,4. 答案:2个练习1:二次函数y =ax 2+bx +c 中,a ·c <0,则函数的零点个数是( ) A .1个 B .2个 C .0个 D .无法确定答案:B练习2:已知二次函数f (x )=ax 2+6x -1有两个不同的零点,则实数a 的取值范围是( ) A .a >-9且a ≠0 B .a >-9 C .a <-9 D .a >0或a <0答案:A类型三 函数零点的应用例3:若关于x 的方程x 2+(k -2)x +2k -1=0的两实数根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围.解析:设函数f(x)=x 2+(k -2)x +2k -1,先画出函数的简图,如图所示,函数f(x)=x 2+(k -2)x +2k -1的图象开口向上,零点x 1∈(0,1),x 2∈(1,2),由⎩⎪⎨⎪⎧f 0>0f 1<0f 2>0,即⎩⎪⎨⎪⎧2k -1>01+k -2+2k -1<04+2k -2+2k -1>0,解得,12<k <23,∴实数k 的取值范围是⎝ ⎛⎭⎪⎫12,23. 答案:⎝ ⎛⎭⎪⎫12,23. 练习1:已知方程x 2+2px +1=0有一个根大于1,有一个根小于1,则p 的取值范围为__________.答案:(-∞,-1)练习2:函数f (x )=2(m +1)x 2+4mx +2m -1的一个零点在原点,则m 的值为________. 答案:12类型四 二分法的概念例4:函数图象与x轴均有公共点,但不能用二分法求公共点横坐标的是( ).解析:选项B中的函数零点是不变号零点,不能用二分法求解.答案:B练习1:函数y=f(x)在区间[a,b]上的图象不间断,并且f(a)·f(b)<0,则这个函数在这个区间上( )A.只有一个变号零点B.有一个不变号零点C.至少有一个变号零点D.不一定有零点答案:C练习2:用二分法求函数f(x)=x3-2的零点时,初始区间可选为( )A.(0,1) B.(1,2)C.(2,3) D.(3,4)答案:B类型五用二分法求函数零点的近似值例5: 求函数f(x)=x3+2x2-3x-6的一个为正数的零点(精确到0.1).解析:由于f(1)=-6<0,f(2)=4>0,可取区间[1,2]作为计算的初始区间.用二分法逐次计算,列表如下:求函数精确到0.1的实数解.答案:1.7练习1: 试用计算器求出函数f (x )=x 2,g (x )=2x +2的图象交点的横坐标(精确到0.1). 答案:-0.7.练习2: (2014~2015学年度四川省中学高一月考)用二分法求方程x 3+3x -7=0在(1,2)内近似解的过程中,设函数f (x )=x 3+3x -7,算得f (1)<0,f (1.25)<0,f (1.5)>0,f (1.75)>0,则该方程的根落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,1.75)D .(1.75,2)答案:B1、(2014·湖北文)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x .则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}答案: D2、已知x =-1是函数f (x )=ax+b (a ≠0)的一个零点,则函数g (x )=ax 2-bx 的零点是( ) A .-1或1 B .0或-1 C .1或0 D .2或1答案: C3、三次方程x 3+x 2-2x -1=0的根不可能所在的区间为( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案: C4、(2014~2015学年度黑龙江省哈尔滨市第三十二中学高一期中测试)若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:为( ) A .1.2 B .1.3 C .1.4 D .1.5答案:C5、已知函数y =f (x )的图象是连续不断的,有如下的对应值表:A .2个B .3个C .4个D .5个答案:B_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.若函数f (x )在定义域{x |x ≠0}上是偶函数,且在(0,+∞)上是减函数,f (2)=0,则函数f (x )的零点有( )A .一个B .两个C .至少两个D .无法判断答案: B2.若关于x 的方程ax 2+bx +c =0(a ≠0)有两个实根1、2,则实数f (x )=cx 2+bx +a 的零点为( )A .1,2B .-1,-2C .1,12D .-1,-12答案: C3.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内 答案: A4.下列命题中正确的是( )A .方程(x -2)(x -5)=1有两个相异实根,且一个大于5,一个小于2B .函数y =f (x )的图象与直线x =1的交点个数是1C .零点存在性定理能用来判断函数零点的存在性,也能用来判断函数零点的个数D .利用二分法所得方程的近似解是惟一的 答案: A5.在用二分法求函数f (x )的一个正实数零点时,经计算, f (0.64)<0, f (0.72)>0, f (0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )A .0.68B .0.72C .0.7D .0.6答案: C能力提升6.二次函数y =ax 2+bx +c (x ∈R )的部分对应值如下表,则使ax 2+bx +c >0成立的x 的取值范围是______.x -3 -2 -1 0 1 2 3 4 y6-4-6-6-46答案: (7.已知函数f (x )=x 2+ax +b (a 、b ∈R )的值域为[0,+∞),若关于x 的方程f (x )=c (c ∈R )有两个实根m 、m +6,则实数c 的值为________.答案:98.给出以下结论,其中正确结论的序号是________. ①函数图象通过零点时,函数值一定变号; ②相邻两个零点之间的所有函数值保持同号;③函数f (x )在区间[a ,b ]上连续,若满足f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上一定有实根;④“二分法”对连续不断的函数的所有零点都有效. 答案: ②③9. 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +cx ≤02 x >0,若f (-4)=2, f (-2)=-2,则关于x 的方程f (x )=x 的解的个数是________. 答案:310. 已知函数f (x )=ax 3-2ax +3a -4在区间(-1,1)上有一个零点. (1)求实数a 的取值范围;(2)若a =3217,用二分法求方程f (x )=0在区间(-1,1)上的根.答案:(1)1<a <2.(2)若a =3217,则f (x )=3217x 3-6417x +2817,∴f (-1)=6017>0, f (0)=2817>0, f (1)=-417<0,∴函数零点在(0,1),又f (12)=0,1 2.∴方程f(x)=0在区间(-1,1)上的根为。

函数的零点学习案

函数的零点学习案

函数的零点学习案学习目标1.能利用二次函数的图像与判别式的正负,判断一元二次方程根的存在性及根的个数,了解函数零点与方程根的联系.并理解函数零点存在的判定定理.2.并理解二分法的实质.3.体验并理解函数与方程的相互转化的数学思想方法.重点难点函数零点的概念及用“二分法”求方程的近似解,使学生初步形成用函数观点处理问题的意识.※探究任务一:函数零点与方程的根的关系问题:① 方程2230x x --=的解为 ,函数223y x x =--的图象与x 轴有 个交点,坐标为 .② 方程2210x x -+=的解为 ,函数221y x x =-+的图象与x 轴有 个交点,坐标为 .③ 方程2230x x -+=的解为 ,函数223y x x =-+的图象与x 轴有 个交点,坐标为 .根据以上结论,可以得到:一元二次方程20(0)ax bx c a ++=≠的根就是相应二次函数()()02≠++=a c bx ax x f 的图象与x 轴交点的 . 函数零点的概念:对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).反思:函数()y f x =的零点、方程()0f x =的实数根、函数()y f x = 的图象与x 轴交点的横坐标,三者有什么关系?试一试:(1)函数244y x x =-+的零点为 (2)函数243y x x =-+的零点为 (3)函数x x x y --=232的零点为小结:方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.※探究任务二:零点存在性定理问题:① 作出243y x x =-+的图象,求(2),(1),(0)f f f 的值,观察(2)f 和(0)f 的符号② 观察下面函数()y f x =的图象,在区间[,]a b 上 零点;()()b f a f ∙ 0; 在区间[,]b c 上 零点;()()b f a f ∙ 0;在区间[,]c d 上 零点;()()b f a f ∙ 0.结论:如果函数()y f x =在区间[,]a b 上的图象是连续不断的一条曲线,并且有()()b f a f ∙<0,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在()b a x ,0∈,使得()00=x f .如果函数图像通过零点x 0时穿过x 轴,则称x 0为变号零点。

教学设计4:2.4.2 求函数零点近似解的一种计算方法——二分法

教学设计4:2.4.2 求函数零点近似解的一种计算方法——二分法

2.4.2 求函数零点近似解的一种计算方法——二分法数零点求解三法我们知道,如果函数y =f (x )在x =a 处的函数值等于零,即f (a )=0,则称a 为函数的零点.本文现介绍函数零点求解三法.一、代数法例1 求函数f (x )=x 2+2x -3的零点.解 令x 2+2x -3=0,Δ=22-4×(-3)=16>0, 方程有两个不相等实数根. 方法一 因式分解法或试根法x 2+2x -3=(x +3)(x -1)或由f (x )=x 2+2x -3, 试一试f (1)=12+2×1-3=0, f (-3)=(-3)2+2×(-3)-3=0. 所以f (x )的零点为x 1=1,x 2=-3. 方法二 配方法x 2+2x -3=(x +1)2-4=0,所以x +1=±2.所以零点x 1=1,x 2=-3. 方法三 公式法x 1,2=-b ±b 2-4ac 2a =-2±42.所以零点x 1=1,x 2=-3.点评 本题用了由求函数f (x )的零点转化为求方程f (x )=0的实数根的办法.运用因式分解法或试根法、配方法、公式法,以上统称为代数法.二、图象法求函数y =g (x )-h (x )的零点,实际上是求曲线y =g (x )与y =h (x )的交点的横坐标,即求方程g (x )-h (x )=0的实数解.三、用二分法求函数近似零点例2 用二分法求函数f (x )=x 3-3的一个正零点(精确到0.01). 解 由于f (1)=-2<0,f (2)=5>0,因此区间[1,2]作为计算的初始区间,用二分法逐次计算,如下表:因为1.445 312 5-1.437 5=0.007 812 5<0.01,所以x 8=1.437 5+1.445 312 52≈1.44为函数的一个近似解.点评 首先确定正零点所在的大致区间,区间长度尽量小,否则会增加运算次数和运算量,应注意运算的准确性,也应注意对精确度的要求.分法在经济和科学技术中的应用 应用问题1:市场的供需平衡问题.详释:市场经济价格自行调整,若供过于求,价格会跌落,若供不应求,价格会上涨,找一个价格平衡点,应怎样找?不妨试着求一下.例 3 某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表1 市场供给表表2 )应在区间()A.(2.3,2.4)内B.(2.4,2.6)内C.(2.6,2.8)内D.(2.8,2.9)内解析由图表分析比较知,市场供需平衡点应在中间某个值,又供给量与需求量均为70×1 000 kg时,供给单价和需求单价相差最小为0.2,其他的均大于0.2,所以价格在(2.6,2.8)时最有可能达到供需平衡.答案C点评充分阅读题目,理解题意,把两表中的信息与题目要求结合起来,可找到答案.分法在日常生活中的应用应用问题2:运用二分法查线路故障.详释:在日常生活中,经常遇到电线或电话线、网线等出现故障.我们不妨用二分法排查一下.例 4 在一个风雨交加的夜晚,从某水库闸房到防洪指挥部的电话线路发生了故障,这是一条10 km长的线路,每隔50 m有一根电线杆,维修工人需爬上电线杆测试,你能帮他找到一个简便易行的方法吗?解如图所示,他首先从中点C查.用随身带的话机向两端测试时,发现AC段正常,断定故障在BC段,再到BC段中点D,这次发现BD段正常,可见故障在CD段,再到CD中点E来查.每查一次,可以把待查的线路长度缩减一半,算一算,要把故障可能发生的范围缩小到50~100 m左右,即一两根电线杆附近,这样只需查7次就可以了.点评有步骤地缩小解所在的区间,是二分法的重要数学思想,本题的实际问题也体现着这种思想.函数的零点错例剖析一、忽略了概念例5 设函数y=f(x)在区间(a,b)上连续,且f(a)·f(b)>0,则有结论:函数y=f(x)在区间(a,b)上不存在零点.判断该命题是否正确.错解正确.剖析对区间(a,b)上的连续函数y=f(x),若f(a)·f(b)<0,则必存在零点;反之,则不然.正解无法判断是否存在零点及零点个数问题.如函数f(x)=x2,f(-1)=f(1)=1>0,而在区间(-1,1)上显然存在零点.故该命题不正确.点评 (1)函数y =f (x )的图象在区间(a ,b )上连续且有f (a )·f (b )<0,所得在(a ,b )上存在的零点叫做变号零点;有时曲线经过零点时不变号,称这样的零点为不变号零点;(2)零点定理仅能判断当函数y =f (x )在区间(a ,b )上是连续曲线,并且f (a )·f (b )<0时,在(a ,b )上至少存在一个零点,而无法确定零点个数.二、忽略了分类讨论例6 若函数y =ax 2-2x +1只有一个零点,求实数a 的取值范围. 错解 由题意可得,实数a 所满足的条件为Δ=4-4a =0,∴a =1.剖析 没有对系数a 进行分类讨论,单从表象而误认为已知函数为二次函数. 正解 (1)当a =0时,y =-2x +1,有唯一零点; (2)当a ≠0时,由题意可得Δ=4-4a =0,解得a =1. 综上,实数a 的取值范围为a =0或a =1.点评 对最高项字母系数分类讨论是重要且常见的题型,是分类讨论思想的主要体现之一.三、忽略了区间端点值例7 已知f (x )=3mx -4,若在[-2,0]上存在x 0,使f (x 0)=0,求实数m 的取值范围. 错解 因为在[-2,0]上存在x 0,使f (x 0)=0, 则f (-2)·f (0)<0,所以(-6m -4)·(-4)<0, 解得m <-23.故实数m 的取值范围为(-∞,-23).剖析 本题的x 0在[-2,0]上可取到端点, 即f (-2)·f (0)≤0.正解 由f (-2)·f (0)≤0,解得m ≤-23.故实数m 的取值范围为(-∞,-23].点评 区间值要全部考虑到,做到不重不漏. 四、图象应用例8 已知函数y =x (x -1)(x +1)的图象如图所示,今考虑f (x )=x (x -1)(x +1)+0.01,则方程f (x )=0( )A.有三个实根B.当x<-1时恰有一实根C.当-1<x<0时恰有一实根D.当0<x<1时恰有一实根E.当x>1时恰有一实根错解将已知函数图象向上平移0.01个单位(如图所示),即得f(x)=x(x-1)(x+1)+0.01的图象.故选B项.剖析肉眼观察无法替代严密的计算与推理,容易“走眼”.正解∵f(-2)<0,f(-1)>0,∴f(-2)·f(-1)<0,∴B项正确.又f(0)>0,∴C项错误.而f(0.5)<0,f(1)>0,∴f(x)=0在区间(0,1)上有两个实根,则D项错误,E项也错,并且由此可知A项正确.故选A、B两项.点评应用数形结合思想处理方程问题,直观易懂,注意图象要力求精确;解答多项选择题,需逐项验证才可选出答案,解单选题时所用的排除法已无法奏效.函数与方程,唇齿相依函数的思想,是用运动和变化的观点、集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系式或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.方程的思想,就是分析数学问题中变量间的等量关系,从而建立方程或方程组或构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程思想与函数思想密切相关,对于函数y=f(x)(如果y=ax2+bx+c可以写成f(x)=ax2+bx+c,即y=f(x)的形式),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看作二元方程y-f(x)=0,函数与方程这种相互转化的关系很重要,我们应牢牢掌握.下面我们就具体看一下函数与方程的应用举例.一、判断方程解的存在性例1 已知函数f(x)=3x3-2x2+1,判断方程f(x)=0在区间[-1,0]内有没有实数解?分析可通过研究函数f(x)在[-1,0]上函数的变化情况判断函数是否有零点,从而判定方程是否有解.解因为f(-1)=3×(-1)3-2(-1)2+1=-4<0,f(0)=3×03-2×02+1=1>0,所以f(-1)·f(0)<0.又因为函数f(x)=3x3-2x2+1的图象是连续的曲线,所以f(x)在[-1,0]内有零点,即方程f(x)=0在区间[-1,0]内有实数解.点评要判断f(x)=0是否存在实根,即判断对应的连续函数y=f(x)的图象是否与x轴有交点.因此,只要找到图象上的两点,满足一点在x轴上方,另一点在x轴下方即可.二、确定方程根的个数例2 若f(x)=ax3+ax+2(a≠0)在[-6,6]上满足f(-6)>1,f(6)<1,则方程f(x)=1在[-6,6]内的解的个数为()A.1个B.2个C.3个D.4个分析利用等价转化将方程根的问题化为函数的零点问题,再结合函数零点的性质进行判断.解析设g(x)=f(x)-1,则由f(-6)>1,f(6)<1得[f(-6)-1][f(6)-1]<0,即g(-6)g(6)<0.因此g(x)=f(x)-1在(-6,6)有一个零点.由于g(x)=ax3+ax+1(a≠0),易知当a>0时g(x)单调递增;当a<0时,g(x)单调递减,即函数g(x)为单调函数,故g(x)仅有一个零点.因此方程f(x)=1仅有一个根.故选A.答案A点评在区间[a,b]上单调且图象连续的函数y=f(x),若f(a)·f(b)<0,则函数y=f(x)的图象在(a,b)内有惟一的零点.三、求参数的取值范围例3 已知一次函数y=2mx+4,若在[-2,0]上存在x0使f(x0)=0,则实数m的取值范围是________.分析将方程解的问题,转化为一次函数在区间上有零点的问题,最后通过不等式求得m的范围.解析因为一次函数f(x)在[-2,0]上存在x0使f(x0)=0,即函数f(x)在[-2,0]内有一个零点,所以f(-2)f(0)≤0.即(-4m+4)(0+4)≤0,解得m≥1.答案m≥1点评 本题对方程实根的研究转化为对一次函数f (x )在[-2,0]上有一个零点的研究,最后建立关于m 的不等式求出m 的取值范围.整个解题过程充满了对函数、方程、不等式的研究和转化,充分体现了函数与方程的相互作用.巧用零点与方程根的关系求系数范围例4 已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则( )A .b ∈(-∞,0)B .b ∈(0,1)C .b ∈(1,2)D .b ∈(2,+∞)分析 本题主要考查函数的零点及待定系数法,解答时从图中获取正确信息是解答的关键.解析 方法一 从图中可以得f (0)=0,∴d =0,由图可知f (x )有三个零点,故可设函数的解析式是f (x )=ax (x -1)(x -2)=ax 3-3ax 2+2ax .当x >2时,f (x )>0,因此a >0, ∵b =-3a ,∴b <0.方法二 由f (0)=0,得d =0, 又∵f (1)=0, ∴a +b +c =0① 又∵f (-1)<0,即-a +b -c <0 ②①+②得2b <0,∴b <0. 答案 A例5 已知关于x 的方程2kx 2-2x -3k -2=0的两实根一个小于1,另一个大于1,求实数k 的取值范围.分析 若直接利用求根公式解题,则要解复杂的无理不等式组.如果从函数观点出发,令f (x )=2kx 2-2x -3k -2,则由根的分布,函数f (x )的图象只能如图所示.对应的条件是⎩⎪⎨⎪⎧ k >0,f 1<0或⎩⎪⎨⎪⎧k <0,f 1>0,解出即可.解 令f (x )=2kx 2-2x -3k -2,为使方程f (x )=0的两实根一个小于1,另一个大于1,只需⎩⎪⎨⎪⎧ k >0,f 1<0或⎩⎪⎨⎪⎧k <0,f 1>0,即 ⎩⎪⎨⎪⎧ k >0,2k -2-3k -2<0或⎩⎪⎨⎪⎧k <0,2k -2-3k -2>0,解得k >0或k <-4.故k 的取值范围是k >0或k <-4.点评 本题是一个利用函数图象解方程根的分布问题的典例.一般的,关于根的分布问题,可引入函数,由函数图象的特征联想解决,使问题得到巧妙解决.二分法思想的应用“逐步逼近”是重要的数学思想,同学们现在学习的求方程近似解的“二分法”就充分运用了这一思想.“考察极端”、“化整为零”、“无限分割”等都是这一数学思想的具体体现.作为研究和解决问题的思想方法,“逐步逼近”渗透在中学数学的许多内容中,比如初中学习的圆面积公式,就是由正多边形“逐步逼近”圆推导的;又如两个集合相等,就是由集合间的子集关系“逼近”的(即A ⊆B 且B ⊆A ⇔A =B );再如,由“有理数逼近无理数”使我们认识了实数指数幂等,在以后的学习中,我们还会看到这一思想的运用(如球的表面积和体积公式的推导).下面通过“两边夹法则”的应用来体会和领悟“逐步逼近”思想的奥妙.两边夹法则:如果实数a ,b 满足a ≥b ,且b ≥a ,则a =b .例6 已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b .当a >0,-1≤x ≤1时,|f (x )|≤1且g (x )的最大值为2,求f (x ).解 ∵a >0,∴g (x )=ax +b 在[-1,1]上是增函数. 又g (x )在[-1,1]上的最大值为2, ∴g (1)=2,即a +b =2.①于是f (1)-f (0)=2.由题设有-1≤f (0)=f (1)-2≤1-2=-1, ∴f (0)=-1,从而c =-1. 又由题设知f (x )≥-1=f (0), ∴二次函数f (x )的对称轴为x =0,于是-b2a =0,得b =0,将其代入①,得a =2.∴f (x )=2x 2-1.山重水复疑无路,柳暗花明又一村探索解题方法对一个数学问题的分析与求解是有过程的,谁都无法保证“一顺百顺”,特别是面对一些综合题更是如此.分析时“条条是道”,求解时却“处处碰壁”这些都是正常的.当我们的思维受挫时,该怎样处置倒是十分关键的.本文告诉你:注意分析细节,就会柳暗花明的,请看:题目:已知二次函数f (x )=ax 2+bx +c (a ≠0),x 1<x 2且f (x 1)≠f (x 2),求证:方程f (x )=12[f (x 1)+f (x 2)]有两个不等的实根,且必有一根属于(x 1,x 2).分析一:数形结合,从图象分析入手,分别作出两函数y 1=ax 2+bx +c 与y 2=12[f (x 1)+f (x 2)]的图象,直观上可以看出两函数有两个不同的交点.方法一 由于f (x )=ax 2+bx +c 是二次函数,不妨设a >0,则函数y 1=ax 2+bx +c 的图象开口向上.而y 2=12[f (x 1)+f (x 2)]的图象呢?是一条平行于x 轴的直线.此直线与二次函数图象有两个不同的交点吗?由于f (x 1)与f (x 2)不是具体数值,无法肯定啊!思维受挫!分析细节:f (x 1)与f (x 2)是函数f (x )=ax 2+bx +c 分别在x 1,x 2处的函数值,这两个值与最小值有什么关系,由于f (x 1)≠f (x 2),说明12[f (x 1)+f (x 2)]一定比最小值大;若y 2的值就是最小值,此时,直线与抛物线相切于顶点,而12[f (x 1)+f (x 2)]大于最小值,则y 2=12[f (x 1)+f (x 2)]与二次函数图象一定有两个不同的交点.又因为min{f (x 1),f (x 2)}≤12[f (x 1)+f (x 2)]≤max{f (x 1),f (x 2)},故必有一根属于(x 1,x 2).分析二:通过方程的系数进行分析,计算方程f (x )=12[f (x 1)+f (x 2)]的“b 2-4ac ”,然后,再结合函数零点的存在定理.方法二 由f (x )=12[f (x 1)+f (x 2)],得2ax 2+2bx +2c -f (x 1)-f (x 2)=0. 那么Δ=(2b )2-4×(2a )·[2c -f (x 1)-f (x 2)] =4[b 2-4ac +2af (x 1)+2af (x 2)].此式大于零吗?不能判断它是否大于零,又如何产生根的范围呢?思维又受挫! 分析细节 在上式中存在f (x 1)与f (x 2),可否将其替换呢?于是Δ=4[b 2-4ac +2a (ax 21+bx 1+c )+2a (ax 22+bx 2+c )] =2(4a 2x 21+4abx 1+b 2)+2(4a 2x 22+4abx 2+b 2)=2(2ax 1+b )2+2(2ax 2+b )2≥0.又x 1<x 2,得Δ>0,因此方程有两个不等的实根. 又设g (x )=f (x )-12[f (x 1)+f (x 2)],则g (x 1)g (x 2)={f (x 1)-12[f (x 1)+f (x 2)]}·{f (x 2)-12[f (x 1)+f (x 2)]}=-14[f (x 1)-f (x 2)]2<0.说明g(x1)与g(x2)异号,即12[f(x1)+f(x2)]∈[f(x1),f(x2)].故方程必有一根属于(x1,x2).通过本例,我们可以看出:当思维受挫时,仔细去分析细节,通过细节使问题获解是重要的思维策略,有必要真正掌握.高考中的函数与方程函数与方程是高中数学的重要内容,尤其是二次函数与二次方程,它们有着密切的关系,函数可以看作方程,某些方程也可以看作是函数关系.在解决有关问题时,函数、方程常相互转化.本文精选历年高考试题为例加以说明.考点一函数转化为方程1.(上海高考)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+b-1 (a≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.分析抓住函数f(x)的不动点概念列出方程,即可解决问题(1);利用方程恒有一个实数解的条件可解决问题(2).解(1)当a=1,b=-2时,f(x)=x2-x-3.由题意知x=x2-x-3,得x1=-1,x2=3.故当a=1,b=-2时,f(x)的两个不动点为-1和3.(2)∵f(x)=ax2+(b+1)x+b-1 (a≠0)恒有两相异不动点,∴x=ax2+(b+1)x+b-1,即ax2+bx+b-1=0恒有两个相异的实数根,∴Δ=b2-4ab+4a>0 (b∈R)恒成立.于是Δ=(4a)2-16a<0,解得0<a<1.故当b∈R,f(x)恒有两个相异的不动点时,a的取值范围为0<a<1.点评本题中的新情境——不动点,它的实质就是方程f(x)=x的根.考点二方程转化为函数2.(聊城模拟)若关于x的方程x2-3x+a=0两根中有一根在(0,1)之间,求实数a的取值范围.分析本问题可转化为函数y=x2-3x+a有两个零点,其中有一个在(0,1)内.那么,我们就可以借助函数的图象,利用函数在(m,n)内有零点的条件f(m)·f(n)<0,求a的取值范围.解 根据题意,函数y =x 2-3x +a 有两个零点,其中有一个在(0,1)内,作函数y =x 2-3x +a 的大致图象,如图所示,则可得⎩⎪⎨⎪⎧Δ=9-4a >0,f 0>0,f 1<0.解得0<a <2.故a 的取值范围是(0,2).点评 利用二次方程的根的分布求参数取值范围常利用数形结合思想确定条件.需从三个方面考虑:①判别式;②对称轴直线x =-b 2a与区间端点的关系; ③区间端点函数值的正负. 考点三 函数与方程的循环转化3.(浙江高考)若f (x )和g (x )都是定义在实数集R 上的函数,且方程x -f [g (x )]=0有实数解,则g [f (x )]不可能是( )A .x 2+x -15B .x 2+x +15C .x 2-15D .x 2+15 分析 由于本题未知函数f (x )、g (x )的类型,试图用待定系数法去解决比较困难.故可采用较灵活的方法——逐一验证法.解析 若g [f (x )]=x 2+x -15,不妨设f (x )=x 2+x -15,g (x )=x ,由方程x -f [g (x )]=0即得x 2-15=0,显然,x 2-15=0有解.故函数g [f (x )]有可能为x 2+x -15. 若g [f (x )]=x 2+x +15,不妨设f (x )=x 2+x +15,g (x )=x ,由方程x -f [g (x )]=0,即得x 2+15=0.显然,x 2+15=0无解.故函数g [f (x )]不可能为x 2+x +15. 对于C 、D 两答案,同理可得可能为g [f (x )].答案 B点评 本例求解过程是先将函数分拆成两个具体的函数,再转化为具体的方程,然后,通过研究方程的根的存在性转化为判断函数的可能性. 考点四 创新题4.设函数y =f (x )的定义域为实数集R ,如果存在实数x 0,使得x 0=f (x 0),那么x 0为函数y =f (x )的不动点,下列图象表示有且只有两个不动点的函数图象是( )分析 函数的零点即为函数值为0时对应方程的解.因此求函数的零点常常等价于求函数图象交点的横坐标来解决.所以解决此类问题时首先要善于将问题转化到熟悉的情景中去.解析 使x 0=f (x 0)的解即为y =f (x )的图象和y =x 的交点的个数问题.观察图象易得结论.答案 B5.关于x 的方程(x 2-1)2-|x 2-1|+k =0,给出下列四个论断:①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有8个不同的实根其中正确的个数是( )A .0B .4C .2D .3分析 本题的命制立足函数与方程之间的内在联系,同时考察分类讨论和数形结合思想,要求同学们具有较强的分析问题和解决问题的能力.解题的突破口是从条件中等式的形式入手采用换元法将方程化为熟悉的一元二次方程,从而结合相应函数的图象进行处理.解析 据题意可令x 2-1=t (t ≥-1),则方程化为|t |2-|t |+k =0,即k =|t |-|t |2.作出y 1=|t |-|t |2的图象如右图,平移y 2=k 这一直线,结合函数的图象可知: ①当0<k <14时,t 有4个值,相应的x 有8个值. ②当k =14时,t 有2个值,相应的x 有4个值. ③当k =0时,t 有3个值,相应的x 有5个值.④当k <0时,t 有1个值,相应的x 有2个值.答案 B6.对于函数y =f (x )(x ∈D )其中D 为函数的定义域,若同时满足下列2个条件: ①y =f (x )在定义域内是单调函数;②存在区间[a ,b ]⊆D ,使f (x )在[a ,b ]上的值域是[a ,b ],那么把y =f (x )(x ∈D )称为闭函数.(1)求闭函数y =-x 3符合条件②的区间[a ,b ];(2)判断函数f (x )=-34x +1x,x ∈(0,+∞)是否为闭函数,说明理由. 分析 首先以定义形式给出函数的一项性质,然后围绕此性质进行命题,其实质是对函数单调性的应用考察,其次是函数与方程的转化,数形结合解决有关二次函数根的问题.解 (1)因为y =-x 3是R 上的单调递减函数, 所以有⎩⎪⎨⎪⎧ f a =b ,f b =a 且a <b ,即a =-b 3<b ,所以b >0.又-a 3=b 9=b ,故b =1,a =-1.所以该区间为[-1,1].(2)由函数单调性的定义知,该函数在x ∈(0,+∞)为单调减函数,若为闭函数,则存在x ∈[a ,b ],值域为[a ,b ].于是⎩⎪⎨⎪⎧f a =b ,f b =a , 即⎩⎨⎧ f a =-34a +1a =b ,f b =-34b +1b =a .所以ab =4,得-34a +1a =4a, 所以a 2=-4与任意实数的平方是非负数相矛盾,所以不存在满足性质②的区间,故该函数不是闭函数.。

计算函数零点的二分法

计算函数零点的二分法
问题 1:如果是你,你知道接下来该如何竞猜吗?
答案
应猜 400 与 800 的中间值 600.
问题 2:通过这种方法能猜到具体价格吗?
答案 能.
课前预学
课堂导学
如上所述,工人首先从线路的中点 C 查起,如果 CB 段正常,就选择 CA 的中点
D 测试;如果 DA 段正常,就选择 DC 的中点 E 继续测试……像检修线路所用的这
解.故选 A.
课前预学
方法总结
课堂导学
判断一个函数能否用二分法求其零点的依据:其图象在零点附近是连
续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函
数的变号零点适合,对函数的不变号零点不适合.
课堂导学
课前预学
【巩固训练】
已知函数 f(x)的图象如图所示,其中零点的个数与可以用二分法求解零点的个数
分别为(
D
A.4,4
解析
).
B.3,4
C.5,4
D.4,3
图象与 x 轴有 4 个交点,所以零点的个数为 4;左、右函数值异号的零点
有 3 个,所以可以用二分法求解零点的个数为 3,故选 D.
课前预学
课堂导学
任务 2: 用二分法求函数零点的近似值
我们已经知道 f(x)=ln x+2x-6 的零点在区间(2,3)内.
2
交点的横坐标在区间(0,1)内,另一个交点的横坐标大于 4.
故函数 f(x)=log 1 x+x-4 有两个零点.
2
课堂导学
课前预学
因为 f(6)=log1 6+6-4=log 1 6+2<log 1 4+2=0,
2
2

高一数学函数的零点与二分法教案5页

高一数学函数的零点与二分法教案5页

一. 教学内容:函数的零点与二分法 三. 知识要点 1、函数的零点一般地,如果函数()y f x =在实数a 处的值等于零,即()0f a =,则a 叫做这个函数的零点。

归纳:函数的零点并不是“点”,它不是以坐标的形式出现的。

(1)函数的零点是一个实数,即当函数的自变量取这一实数时函数值为零; (2)对于函数的零点问题我们只在实数范围内讨论;(3)方程的根、函数的图象与x 轴交点的横坐标以及函数的零点是同一个问题的三种不同的表现形式2、函数零点的意义:函数)x (f y =的零点就是方程0)x (f =的实数根,亦即函数)x (f y =的图象与x 轴交点的横坐标.归纳:方程0)x (f =有实数根⇔函数)x (f y =的图象与x 轴有交点⇔函数)x (f y =有零点. 3、函数零点存在性的判定方法如果函数)x (f y =在区间[]b ,a 上的图象是连续不断的一条曲线,并且有0)b (f )a (f <⋅,那么,函数)x (f y =在区间()b ,a 内有零点.即存在()b ,a c ∈,使得0)c (f =,这个c 也就是方程0)x (f =的根。

说明:(1)函数)x (f y =在区间[]b ,a 上有定义; (2)函数的图象是连续不断的一条曲线;(3)函数)x (f y =在区间[]b ,a 两端点的函数值必须满足0)b (f )a (f <⋅; (4)函数)x (f y =在区间()b ,a 内有零点,但不唯一;(5)用判定方法验证函数2x )x (f =,说明该方法仅是判断函数零点存在的一种方法,并不是唯一的方法。

4、函数零点的求法:Ⅰ:可以解方程0)x (f =而得到(代数法); Ⅱ:可以将它与函数)x (f y =的图象联系起来,并利用函数的性质找出零点.(几何法) 5、二次函数零点的判定二次函数2y ax bx c =++的零点个数,方程20ax bx c ++=的实根个数见下表。

《2.4.2 计算函数零点的二分法》教案

《2.4.2 计算函数零点的二分法》教案

《2.4.2 计算函数零点的二分法》教案【学习要求】1.理解变号零点的概念,掌握二分法求函数零点的步骤及原理;2.了解二分法的产生过程,会用二分法求方程近似解.【学法指导】通过借助计算器用二分法求方程的近似解,了解数学中逼近的思想和程序化地处理问题的思想;通过具体问题体会逼近过程,感受精确与近似的相对统一,体会“近似是普遍的,精确则是特殊的”辩证唯物主义观点.填一填:知识要点、记下疑难点如果函数y=f(x)在一个区间[a,b]上的图象不间断,并且在它的两个端点处的函数值,即,则这个函数在这个区间上,至少有,即存在一点x0∈(a,b),使f(x0)=0.如果函数图象通过零点时穿过x轴,则称这样的零点为零点,如果没有穿过x轴,则称这样的零点为零点.研一研:问题探究、课堂更高效[问题情境]一元二次方程可用判别式判定根的存在性,可用求根公式求方程的根.但对于一般的方程,虽然可用零点存在性定理判定根的存在性,但是没有公式求根,如何求得方程的根呢?探究点一变号零点与不变号零点问题函数y=3x+2,y=x2,y=x2-2x-3的图象,如下图所示,在图象上零点左右的函数值怎样变化?小结:如果函数f(x)在一个区间[a,b]上的图象不间断,并且在它的两个端点处的函数值异号,即f(a)f(b)<0,则这个函数在这个区间上至少有一个零点,即存在一点x0∈(a,b),使f(x0)=0.如果函数图象通过零点时穿过x轴,则称这样的零点为变号零点,如果没有穿过x轴,则称这样的零点为不变号零点.探究点二二分法的概念问题1由变号零点的概念我们知道,函数y=f(x)在一个区间[a,b]上的图象不间断,并且在它的两个端点处的函数值异号,即f(a)f(b)<0,则这个函数在这个区间上至少有一个零点,那么如何求出这个零点的近似值?例1利用计算器,求方程x2-2x-1=0的一个正实数零点的近似解(精确到0.1).问题2例1中求方程近似解的方法就是二分法,根据解题过程,你能归纳出什么是二分法吗?问题3给定精确度,用二分法求函数f(x)的零点近似值的步骤是怎样的?跟踪训练1借助计算器或计算机,用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点(精确到0.1).探究点三二分法的应用例2求函数f(x)=x3+x2-2x-2的一个正数零点的近似值(精确到0.1).小结:判定一个函数能否用二分法求其零点的近似值的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.跟踪训练2求32的近似值(精确到0.1).练一练:当堂检测、目标达成落实处1.已知函数f(x)的图象是不间断的,x、f(x)的对应法则见下表,则函数f(x)存在零点的区间有(),[4,5],[5,6]2.设函数y=f(x)在区间[a,b]上的图象是不间断的,且f(a)·f(b)<0,取x0=a+b2,若f(a)·f(x0)<0,则利用二分法求函数零点时,零点所在区间为__________.3.已知函数f(x)=mx+2m-7 (m≠0)在区间[-2,5]上有零点,求实数m的取值范围.课堂小结:1.理解二分法是一种求方程近似解的常用方法.2.能借助计算机(器)用二分法求方程的近似解,体会程序化的思想即算法思想.3.进一步认识数学来源于生活,又应用于生活.4.感悟重要的数学思想:等价转化、函数与方程、数形结合、分类讨论以及无限逼近的思想.。

「教案」零点二分法-佳漫

「教案」零点二分法-佳漫

「教案」零点二分法-佳漫一、教学目标1.让学生理解并掌握零点二分法的概念、原理和应用。

2.培养学生运用零点二分法解决实际问题的能力。

3.培养学生的逻辑思维能力和团队合作精神。

二、教学重点与难点1.教学重点:零点二分法的原理和应用。

2.教学难点:零点二分法在实际问题中的应用。

三、教学准备1.教学课件。

2.实际问题案例。

3.小组讨论材料。

四、教学过程第一环节:导入1.利用生活中的实例,如温度测量、物品重量估计等,引导学生思考如何确定一个未知数的范围。

2.提问:你们在生活中有没有遇到过需要确定一个未知数范围的情况?是如何解决的?第二环节:概念讲解1.介绍零点二分法的概念:零点二分法是一种在给定范围内寻找函数零点的方法,通过不断将区间一分为二,逐步缩小零点的范围,直至找到满足条件的零点。

2.讲解零点二分法的原理:设函数f(x)在区间[a,b]上连续,且f(a)与f(b)异号,即f(a)f(b)<0。

则存在至少一个x0∈(a,b),使得f(x0)=0。

通过将区间一分为二,计算中点处的函数值,判断零点所在的子区间,逐步缩小范围。

第三环节:案例分析1.选取一个实际问题,如求方程x^24=0在区间[1,5]内的根。

2.引导学生分析问题,确定函数f(x)=x^24,区间[a,b]=[1,5]。

3.按照零点二分法的步骤进行计算,引导学生观察函数值的变化,判断零点所在的子区间。

4.最终找到方程的根x0≈2。

第四环节:小组讨论1.将学生分成若干小组,每组选取一个实际问题,要求运用零点二分法求解。

2.学生在小组内展开讨论,互相交流解题思路和方法。

3.每组派代表分享讨论成果,展示解题过程。

2.引导学生思考:如何改进零点二分法,使其在求解过程中更加高效?3.拓展:介绍其他求解方程零点的方法,如牛顿法、弦截法等。

五、课后作业(1)x^36x+2=0,区间[-1,4];(2)e^x3x=0,区间[0,2]。

2.分析所求解的方程,讨论其收敛速度和精度。

高中数学《求函数零点近似解的一种计算方法—二分法》省级名师优质课教案比赛获奖教案示范课教案公开课教案

高中数学《求函数零点近似解的一种计算方法—二分法》省级名师优质课教案比赛获奖教案示范课教案公开课教案

高中数学人教B版必修一第二章《2.4.2求函数零点近似解的一种计算方法——二分法》省级名师优质课教案比赛获奖
教案示范课教案公开课教案
【省级名师教案】
1教学目标
通过具体实例理解二分法的概念,掌握运用二分法求简单方程近似解的方法,从中体会函数的零点与方程根之间的联系及其在实际问题中的应用;能借助计算器用二分法求方程的近似解,让学生能够初步了解逼近思想;体会数学逼近过程,感受精确与近似的相对统一;通过具体实例的探究,归纳概括所发现的结论或规律,体会从具体到一般的认知过程.
2学情分析
学生已经学习了函数,理解函数零点和方程根的关系, 初步掌握函数与方程的转化思想.但是对于求函数零点所在区间,只是比较熟悉求二次函数的零点,对于高次方程和超越方程对应函数零点的寻求会有困难.另外算法程序的模式化和求近似解对他们是一个全新的问题. 3重点难点
1.教学重点:用“二分法”求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.
2.教学难点:方程近似解所在初始区间的确定,恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.
4教学过程
4.1第一学时
教学活动
1【活动】(一)创设情境,提出问题
问题1:在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障.这是一条10km长的线路,如何迅速查出故障所在? 如果沿着线路一小段一小段查找,困难很多.每。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用二分法求方程的近似解1、二分法的概念对于在区间[a, b]上连续不断且)(a f ·)(b f < 0的函数)(x f y =, 通过不断把函数)(x f 的零点所在的区间一分为二, 使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫二分法。

2、用二分法求函数)(x f 的零点的近似值的步骤:(1)确定区间[a, b], 验证:)(a f ·)(b f < 0,确定精确度ε (2)求区间(a , b)的中点1x(3)计算)(1x f 若)(1x f =0, 则就1x 是函数的零点 若)(a f ·)(1x f <0,则令b =1x (此时零点x 0∈(a, 1x ))若)(1x f ·)(b f <0,则令a =1x (此时零点x 0∈(1x , b))(4)判断是否达到精确度ε即若 | a – b | <ε, 则得到零点的近似值为a (或b ),否则重复(2)~(4) 3、用二分法求函数零点的条件:若函数零点左右两侧函数值符号相反,则此零点为函数的变号零点,从图象来看,若图象穿过零点,则此零点为变号零点。

否则为不变号零点。

二分法只能求函数的变号零点。

例题讲解:例1:下列函数图象与x 轴均有交点,其中不能用二分法求图中函数零点的是( )解:应选B ,利用二分法求函数零点必须满足零点两侧函数值异号。

例2、 利用二分法求方程x x-=31的一个近似解(精确到0.1)。

解:设()31-+=x x x f ,则求方程x x -=31的一个近似解,即求函数()x f 的一个近似零点。

∵()0212<-=f ,()0313>=f ,∴取区间[]3,2作为计算的初始区间。

端点(中点)坐标计算中点的函数值 取区间[]3,25.2x 0=01.0)5.2(f <-=[]3,5.2 75.2x 0= 011.0)75.2(f >≈ []75.2,5.2 625.2x 0= 0006.0)625.2(f >≈ []625.2,5.2 5625.2x 0=0047.0)5625.2(f <-≈[]625.2,5625.2∵区间[]625.2,5625.2的左右端点精确到0.1所取的近似值都是2.6, ∴函数)x (f 满足题设的一个近似零点是2.6故方程x x-=31满足题设的一个近似解是2.6 例3、 二次函数)R x (c bx ax y 2∈++=的部分对应值如下表:解:由上表提供数值大于0的自变量的取值集合是),3()2,(+∞⋃--∞ 评析:开口方向是解题关键信息,零点是-2,3,且开口向上,例4、已知函数6x 5x 2x )x (f 23+--=的一个零点为1 (1)求函数的其他零点;(2)求函数值大于0时自变量x 的取值围。

解:(1)由题意,设n x )m n (x )1m (x )n mx x )(1x ()x (f 232--+-+=++-=,∴⎪⎩⎪⎨⎧=--=--=-6n 5m n 21m 解得⎩⎨⎧-=-=6n 1m 令0)x (f =,即0)6x x )(1x (2=---,解得=x 1,-2,3 ∴函数的其他零点是-2,3 (2)函数的三个零点将x 轴分成4个区间: ]2,(--∞,]1,2(-,]3,1(,],3(+∞作出函数的示意图,观察图象得函数值大于0时自变量x 的取值围是:),3()1,2(+∞⋃-例5、求函数f(x)=x 2-5的负零点(精确度0.1).【解析】 由于f(-2)=-1<0, f(-3)=4>0,故取区间(-3,-2)作为计算的初始区间,用二分法逐次计算,列表如图:所以函数的一个近似负零点可取-2.25. 达标练习:1.下列函数零点不宜用二分法的是( )A .f(x)=x 3-8 B .f(x)=lnx +3 【答案】 C C .f(x)=x 2+22x +2 D .f(x)=-x 2+4x +12.用二分法求方程f(x)=0在(1,2)近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根在区间( )A .(1.25,1.5)B .(1,1.25)C .(1.5,2)D .不能确定【解析】 由题意知f(1.25)·f(1.5)<0,∴方程的根在区间(1.25,1.5),故选A. 3.若函数f(x)=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法计算,参考数据如下:f(1)=-2, f(1.5)=0.625,f(1.25)=-0.984f(1.375)=-0.260,f(1.437 5)=0.16, f(1.406 25)=-0.0542,那么方程x 3+x 2-2x -2=0的一个近似根(精确度0.1)为________. 【解析】 根据题意知函数的零点在1.406 25至1.437 5之间,因为此时|1.437 5-1.406 25|=0.031 25<0.1,故方程的一个近似根可以是1.437 5.答案不唯一,可以是[1.437 5,1.406 25]之间的任意一个数.【答案】 1.437 54、方程⎝ ⎛⎭⎪⎫12x=ln x 的根的个数是( )A .0B .1C .2D .3【解析】 方法一:令f(x)=ln x -⎝ ⎛⎭⎪⎫12x, 则f(1)=-12<0,f(e)=1-12e >0,∴f(x)在(1,e)有零点.又f(x)在定义域(0,+∞)上为增函数,∴f(x)在定义域仅有1个零点.方法二:作出y =⎝ ⎛⎭⎪⎫12x与y =ln x 的图象观察可知只有一个交点.故选B.5、方程2x -1+x =5的解所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4) 【解析】 令f(x)=2x -1+x -5,则f(2)=2+2-5=-1<0,f(3)=22+3-5=2>0,从而方程在区间(2,3)有解.故选C.6、利用计算器,算出自变量和函数值的对应值如下表:A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0)【解】 设f(x)=2x-x 2,由表格观察出在x =1.8时,2x>x 2,即f(1.8)>0;在x =2.2时,2x<x 2,即f(2.2)<0.所以f(1.8)·f(2.2)<0,所以方程2x=x 2的一个根位于区间(1.8,2.2).故选C.7、函数f(x)=e x-1x的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫32,2 【解析】 f(12)=e -2<0, f(1)=e -1>0, ∵f(12)·f(1)<0, 故选B.二、填空题(每小题5分,共10分)8、用二分法求函数y =f(x)在区间(2,4)上的近似解,验证f(2)·f(4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f(2)·f(x 1)<0,则此时零点x 0∈________(填区间).【解析】 由f(2)·f(3)<0可知. 【答案】 (2,3)9、用二分法求方程x 3-2x -5=0在区间[2,3]的实数根时,取区间中间x 0=2.5,那么下一个有根区间是________.【解析】 ∵f(2)<0,f(2.5)>0, ∴下一个有根区间是 (2,2.5). 三、解答题(每小题10分,共20分)10、求方程2x 3+3x -3=0的一个近似解(精确度0.1).【解析】 设f(x)=2x 3+3x -3,经试算,f(0)=-3<0,f(1)=2>0,所以函数在(0,1)存在零点,即方程2x 3+3x -3=0在(0,1)有实数解,取(0,1)的中点0.5,经计算f(0.5)<0,又f(1)>0,所以方程2x 3+3x -3=0在(0.5,1)有解.如此继续下去,得到方程的一个实数解所在的区间,如下表:近似解可取为0.75.11、求方程ln x +x -3=0在(2,3)的根(精确到0.1).【解析】 令f(x)=ln x +x -3,即求函数f(x)在(2,3)的零点.用二分法逐步计算.列表如下:[2.187 5,2.25]似值2.2就是方程的根.下为学生卷用二分法求方程的近似解1、二分法的概念对于在区间[a, b]上连续不断且)(a f ·)(b f < 0的函数)(x f y =, 通过不断把函数)(x f 的零点所在的区间一分为二, 使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫二分法。

2、用二分法求函数)(x f 的零点的近似值的步骤:(1)确定区间[a, b], 验证:)(a f ·)(b f < 0,确定精确度ε (2)求区间(a , b)的中点1x(3)计算)(1x f 若)(1x f =0, 则就1x 是函数的零点 若)(a f ·)(1x f <0,则令b =1x (此时零点x 0∈(a, 1x ))若)(1x f ·)(b f <0,则令a =1x (此时零点x 0∈(1x , b))(4)判断是否达到精确度ε即若 | a – b | <ε, 则得到零点的近似值为a (或b ),否则重复(2)~(4) 3、用二分法求函数零点的条件:若函数零点左右两侧函数值符号相反,则此零点为函数的变号零点,从图象来看,若图象穿过零点,则此零点为变号零点。

否则为不变号零点。

二分法只能求函数的变号零点。

例题讲解:例1、下列函数图象与x 轴均有交点,其中不能用二分法求图中函数零点的是( )例2、 利用二分法求方程x x-=31的一个近似解(精确到0.1)。

例3、 二次函数)R x (c bx ax y 2∈++=的部分对应值如下表:例4、已知函数6x 5x 2x )x (f 23+--=的一个零点为1 (1)求函数的其他零点;(2)求函数值大于0时自变量x 的取值围。

例5、求函数f(x)=x 2-5的负零点(精确度0.1).达标练习:1.下列函数零点不宜用二分法的是( )A .f(x)=x 3-8 B .f(x)=lnx +3 C .f(x)=x 2+22x +2 D .f(x)=-x 2+4x +12.用二分法求方程f(x)=0在(1,2)近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根在区间( )A .(1.25,1.5)B .(1,1.25)C .(1.5,2)D .不能确定3.若函数f(x)=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法计算,参考数据如下:f(1)=-2, f(1.5)=0.625,f(1.25)=-0.984f(1.375)=-0.260,f(1.437 5)=0.16, f(1.406 25)=-0.0542,那么方程x 3+x 2-2x -2=0的一个近似根(精确度0.1)为________.4、方程⎝ ⎛⎭⎪⎫12x=ln x 的根的个数是( )A .0B .1C .2D .3 5、方程2x -1+x =5的解所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4) 6、利用计算器,算出自变量和函数值的对应值如下表:A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0)7、函数f(x)=e x-1x的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫32,2 二、填空题(每小题5分,共10分)8、用二分法求函数y =f(x)在区间(2,4)上的近似解,验证f(2)·f(4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f(2)·f(x 1)<0,则此时零点x0∈________(填区间).9、用二分法求方程x3-2x-5=0在区间[2,3]的实数根时,取区间中间x0=2.5,那么下一个有根区间是________.三、解答题(每小题10分,共20分)10、求方程2x3+3x-3=0的一个近似解(精确度0.1).11、求方程ln x+x-3=0在(2,3)的根(精确到0.1).。

相关文档
最新文档