LM2576S-3.3 3A降压稳压器应用方案-奥伟斯
稳压管大全)
3.3V简易开关电源稳压器(1A)
LM1575T-5.0
5V简易开关电源稳压器(1A)
LM1575T-12
12V简易开关电源稳压器(1A)
LM1575T-15
15V简易开关电源稳压器(1A)
LM1575T-ADJ
简易开关电源稳压器(1A可调1.23 to 37)
LM1575HVT-3.3
LM2575HVT-ADJ
简易开关电源稳压器(1A可调1.23 to 37)
LM2576T-3.3
3.3V简易开关电源稳压器(3A)
LM2576T-5.0
5.0V简易开关电源稳压器(3A)
LM2576T-12
12V简易开关电源稳压器(3A)
LM2576T-15
15V简易开关电源稳压器(3A)
LM2576T-ADJ
79L08
-8V稳压器(100ma)
KA1L0380RB
Power Switch
KA5L0380R
Power Switch
KA78R05
Low Dropout Voltage Regulator(1A)
PQ05RD11
ASO保护功能低功耗稳压器(1A)[四端稳压]
PQ05RD21
ASO保护功能低功耗稳压器(2A)[四端稳压]
型号(规格)
功能简介
兼容型号
CA3130
高输入阻抗运算放大器
Intersil[DATA]
CA3140
高输入阻抗运算放大器
CD4573
四可编程运算放大器
MC14573
ICL7650
斩波稳零放大器
LF347(NS[DATA])
带宽四运算放大器
LM2576HVS-ADJ系列 TI高压三端稳压器
IL2576HV/LM2576HV系列稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动3A负载。
这些设备提供3.3 V,5 V,12 V,15 V的固定输出电压,以及可调输出版本。
这些稳压器需要最少的外部组件,易于使用,并包括故障保护和固定频率振荡器。
IL2576HV/LM2576HV系列可为流行的三端线性稳压器提供高效替代。
它大大减小了散热器的尺寸,并且在某些情况下不需要散热器。
几个不同的制造商都提供了针对IL2576HV/LM2576HV系列使用而优化的标准系列电感器。
此功能极大地简化了开关电源的设计。
其他功能包括在规定的输入电压和输出负载条件下,输出电压的容差为±4%,在振荡器频率上的容差为±10%。
包括外部关机功能,待机电流典型值为50 µA。
输出开关包括逐周期限流以及热关断功能,可在故障情况下提供全面保护。
IL2576HV LM2576HVR-12 LM2576HVSX-12 LM2576HVS-ADJ LM2576HVR-12 LM2576HVT1Features•LMR33630 36V,3A,400kHz同步转换器• 3.3V,5V,12V,15V和可调输出版本•可调版本输出电压范围:1.23 V至37 V(对于HV 版本为57 V)在整个线路和负载条件下最大±4%•指定的3A输出电流•宽输入电压范围:40 V,最高为HV 60 V•仅需四个外部组件•52kHz固定频率内部振荡器•TTL关机功能,低功耗待机模式•高效率•使用现成的标准电感器•热关断和限流保护•使用WEBENCH工具创建自定义设计2Applications•马达驱动•商家网络和服务器PSU•家电类•测试测量设备3DescriptionLM2576HVR-12 LM2576HVSX-12 LM2576HVS-ADJ LM2576HVR-12 LM2576HVT稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动3A负载。
2023年全国大学生电子设计竞赛C题
目录摘要 (3)1.设计任务及规定 (4)1.1设计任务 (4)1.2设计规定 (4)2.系统方案 (5)2.1控制模块旳论证与选择 (5)2.2电源模块旳论证与选择 (5)2.3小车车体旳论证与选择 (6)2.4电机模块旳论证与选择 (6)2.5电机驱动模块旳论证与选择 (6)2.6寻迹模块旳论证与选择 (7)2.7避障模块旳论证与选择 (7)2.8显示模块旳论证与选择 (7)2.9按键模块旳论证与选择 (8)2.10通信模块旳论证与选择 (8)2.11方案选定 (9)3.系统旳理论分析与计算 (10)3.1系统旳信号检测与控制 (10)3.1.1 系统旳信号检测 (10)3.1.2 系统旳信号控制 (10)3.2 两车之间旳通信措施 (11)3.3 节能 (11)4.电路与程序设计 (12)4.1电路旳设计 (12)4.1.1 系统总体框图 (12)4.1.2 控制器旳电路设计 (13)4.1.3 稳压电源旳电路设计 (13)4.1.4 电机驱动电路旳设计 (14)4.2程序旳设计 (15)4.2.1 程序功能描述与设计 (15)4.2.2 程序流程图 (16)5.测试措施与测试成果 (19)5.1测试方案 (19)5.2测试条件与仪器 (19)5.3测试成果及分析 (19)5.3.1 测试数据 (19)5.3.2测试分析与结论 (19)参照文献 (17)附录1 (18)附录2 (19)附录3 (20)智能小车旳设计摘要: 本作品以低功耗旳ATmega16单片机为控制关键;MP2307稳压电路供电;使用光电传感器寻线和避障;LN298N驱动电机;以光电传感器来实现甲乙两车之间旳通信;结合了PWM调速等技术, 设计了一组智能小车。
该小车旳车体由控制、电源、按键、小车硬件、电机、电机驱动、寻迹、避障、显示和光电传感通信等十个模块构成, 可用于无人驾驶、自动探测等人工智能领域。
关键字: ATmega16.MP2307、光电、LN298N1.设计任务及规定1.1设计任务甲车车头紧靠起点标志线,乙车车尾紧靠边界,甲、乙两辆小车同步起动, 先后通过起点标志线, 在行车道同向而行, 实现两车交替超车领跑功能。
奥伟斯科技为您提供3PEAK零漂运算放大器TP5591_TP5592_T5594
TP5591、TP5592、TP5594放大器是单,双和四斩波稳定的零漂移运算放大器,针对1.8V至5.5V或±0.9V至±2.75V的单电源或双电源供电进行了优化。
TP559x运算放大器具有非常低的输入失调电压和低噪声,且1 / f噪声角低至0.1Hz。
TP559x放大器设计为具有低失调电压和失调温度漂移,宽增益带宽以及轨至轨输入和输出摆幅,同时将功耗降至最低。
TP559x运算放大器可提供低失调电压(最大20μV)和接近具有出色的CMRR和PSRR,可在时间和温度范围内实现零漂移.TP5591(单个版本)采用SC70-5,SOT23-5和SO-8封装。
TP5592(双版本)以MSOP-8,SO-8封装提供。
TP5594(四版本)以TSSOP-14和SO-14封装提供。
所有版本的额定工作温度范围均为-40°C至125°C。
特点:低失调电压:20μV(最大值)零漂:0.01 µV /°C超低噪声:-输入噪声电压:1 kHz时为17 nV /√Hz-0.1Hz至10Hz噪声电压:370 nVPP-1 / f噪声角低至0.1Hz3.3 MHz带宽,2.5 V /μs压摆率低电源电流:每个放大器470μA单电源工作电压低至+ 1.8V低输入偏置电流:60 pA高增益,127 dB高CMRR和PSRR过载恢复时间:35 µs轨到轨输入和输出摆幅–40°C至125°C的工作范围应用:医疗仪器温度测量精密电流感应精密低漂移,低频ADC驱动器过程控制系统精密基准电压缓冲器Pin Configuration (Top View)Order InformationModel Name Order Number Package Transport Media, QuantityMarking InformationTP5591-TR SOT23-5 Tape and Reel, 3,000 E91T TP5591 TP5591-CR SC70-5 Tape and Reel, 3,000 91C TP5591-SR SOIC-8 Tape and Reel, 4,000 TP5591TP5591U TP5591U-CR SC70-5 Tape and Reel, 3,000 91V TP5591U-TR SOT23-5 Tape and Reel, 3,000 E91UTP5592 TP5592-SR SOIC-8 Tape and Reel, 4,000 TP5592 TP5592-VR MSOP-8 Tape and Reel, 3,000 TP5592TP5594 TP5594-SR SOIC-14 Tape and Reel, 2,500 TP5594 TP5594-TR TSSOP-14 Tape and Reel, 3,000 TP5594Absolute Maximum RatingsNote 1Supply Voltage: .....................................................6V Current at Supply Pins……………............... ±50mAInput Voltage: ....................... ……V–– 0.1 to V+ + 0.1 Operating Temperature Range.......–40°C to 125°CInput Current: +IN, –IN Note2........................... ±20mA Maximum Junction Temperature................... 150°C Output Current: OUT...................................... ±60mA Storage Temperature Range.......... –65°C to 150°COutput Short-Circuit Duration Note3…....... Indefinite Lead Temperature (Soldering, 10 sec) ......... 260°CNote 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure toany Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.Note 2: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500mV beyond the power supply, the input current should be limited to less than 10mA.Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected tothe package. The specified values are for short traces connected to the leads.ESD, Electrostatic Discharge ProtectionSymbol Parameter Condition Minimum Level Unit HBM Human Body Model ESD ANSI/ESDA/JEDEC JS-001 7 kV CDM Charged Device Model ESD ANSI/ESDA/JEDEC JS-002 2Electrical CharacteristicsAt T A = 27°C, V S = 5V, R L = 10kΩ, V CM = V DD/2, unless otherwise noted.SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS V S Supply voltage range 1.8 5.5 VI Q Quiescent current per amplifier TP5591 1200 1400 μA TP5592/4 550 950 μAV OS Input offset voltage V CM = 0.05V to 4.95V ±5 ±20 μV V S = 1.8V, V CM = 0.9V ±5 ±20 μVdV OS/dT vs. Temperature 0.01 μV/°C PSRR vs power supply Vs = 3V to 5V 95 130 dBV n Input voltage noise, f=0.01Hz to 1Hz 0.1 μV pp Input voltage noise, f=0.1Hz to 10Hz 0.37 μV ppe n Input voltage noise density, f=1kHz 17 nV/√HzC IN Input capacitor differential 3 pF Input capacitor common-mode 2 pFI B Input current ±60 ±200 pA Over temperature ±800 pAI OS Input offset current ±100 ±400 pAV CM Common-mode voltage range (V-)-0.1 (V+)+0.1 V CMRR Common-mode rejection ratio V CM = 0.5V to 4.5V 110 127 dB Output voltage swing from rail R L=10kΩ 5 25 mV I SC Short-circuit current ±60 mA GBWP Unity gain bandwidth C L=100pF 3.3 MHz SR Slew rate G=+1, C L=100pF 2.5 V/μs t OR Overload recovery time G=-10 35 μs t S Settling time to 0.01% C L=100pF 20 μsA VOL Open-loop voltage gain (V-)+100mV<V O<(V+)-100mV,R L = 100kΩ100 130 dB SOT23-5 200MSOP-8 210θJA Thermal resistance junction toambientSO-8 158SC70-5 250SO-14 83°C/WTSSOP-14 100Typical Performance CharacteristicsQuiesent C urrent v s TemperatureVoltage Noise Spectral Density vs Frequency 100010090080070060010500400300200100-50 -25 0 25 50 75 100 125 150 10.01 0.1 1 10 100 1k 10kTemperature(°C)Frequency (Hz)CMRR vs FREQUENCY OPEN-LOOPGAIN vs FREQUENCY120 100 140100908012080 70 1006060508040406020 30 40201020-20 010 100 1k 10k 100k 1M 10MFrequency(Hz) 1 10 100 1k 10k 100k 1MFrequency(Hz) Small-Scale Step Response Positive Over-Voltage RecoveryG=+1R L=10KΩInputOutputTime (5μs/div) Time (50μs/div)Negative Over-Voltage Recovery Large-Scale Step ResponseG=+1R L=10KΩInputOutputTime (50μs/div)Time (10μs/div)Offset Voltage Distribution18161412108642Offset Voltage (μV)Typical ApplicationsSingle Supply, High Gain Amplifier, A V = 10,000 V/V-TP5591+Thermistor Measurement-TP5591+Pin Functions-IN:放大器的反相输入。
开关型稳压芯片LM2576中文资料
开关型稳压芯片LM2576中文资料LM2576系列开关稳压集成电路是线性三端稳压器件(如78xx系列端稳压集成电路)的替代品,它具有靠得住的工作性能、较高的工作效率和较强的输出电流驱动能力,从而为MCU的稳固、靠得住工作提供了强有力的保证。
LM2576简介LM2576系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压电路,它内含固定频率振荡器(52kHz)和基准稳压器,并具有完善的爱惜电路,包括电流限制及热关断电路等,利用该器件只需极少的外围器件即可组成高效稳压电路。
LM2576系列包括LM2576(最高输入电压40V)及LM2576HV(最高输入电压60V)二个系列。
各系列产品均提供有、5V、12V(-12)、15V(-15)及可调(-ADJ)等多个电压档次产品。
另外,该芯片还提供了工作状态的外部操纵引脚。
LM2576系列开关稳压集成电路的要紧特性如下[2]:●最大输出电流:3A;●最高输入电压:LM2576为40V,LM2576HV为60V;●输出电压:、5V、12V、15V和ADJ(可调)等可选;●振东频率:52kHz;●转换效率:75%~88%(不同电压输出时的效率不同);●操纵方式:PWM;●工作温度范围:-40℃~+125℃●工作模式:低功耗/正常两种模式可外部操纵;●工作模式操纵:TTL电平兼容;●所需外部元件:仅四个(不可调)或六个(可调);●器件爱惜:热关断及电流限制;●封装形式:TO-220或TO-263。
LM2576的内部框图如图1所示,该框图的引脚概念对应于五脚TO-220封装形式。
LM2576内部包括52kHz振荡器、基准稳压电路、热关断电路、电流限制电路、放大器、比较器及内部稳压电路等。
为了产生不同的输出电压,通常将比较器的负端接基准电压,正端接分压电阻网络,如此可依照输出电压的不同选定不同的阻值,其中R1=1k Ω(可调-ADJ时开路),R2别离为kΩ、kΩ(5V)、kΩ(12V)、kΩ(15V)和0(-ADJ),上述电阻依据型号不同已在芯片内部做了精准调整,因此无需利用者考虑。
LM2596S-ADJ DCDC电源管理芯片应用资料-奥伟斯
Switching Voltage RegulatorsFeatures∙ 3.3V, 5V, 12V, and adjustable output versions ∙ Adjustable version output voltage range, 1.2V to 37V ± 4% max over line and load conditions ∙ Guaranteed 3A output load current ∙ Input voltage range up to 40V ∙ Requires only 4 external components ∙ Excellent line and load regulation specifications ∙ 150kHz fixed frequency internal oscillator ∙ TTL shutdown capability ∙ Low power standby mode, I Q typically 100μA∙ Thermal shutdown and current limit protectionJM2596-xxTO-220-5LJM2596T-XXTO-263-5LJM2596S-XXORDERING INFORMATIONJM2596S-12 JM2596S-3.3 JM2596S-5.0 JM2596S-ADJ JM2596T-12 JM2596T-3.0 JM2596T-5.0 JM2596T-ADJFunctions∙ Simple high-efficiency step-down regulator ∙ On-card switching regulators ∙ Positive to negative converterDescriptionThe JM2596 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down switching regulator, capable of driving a 3A load with excellent line and load regulation. These devices are available in fixed output voltages of 3.3V, 5V, 12V and an adjustable output version.Requiring a minimum number of external components, these regulators are simple to use.The JM2596 series operates at a switching frequency of 150kHz. Available in standard 5-lead TO-220 package.Other features include a guaranteed ± 4% tolerance on output voltage under specified input voltage and output load conditions, and ± 15% on the oscillator frequency. External shutdown is included, featuring typically 100μA standby current. Self protection features include a two stage frequency reducing current limit for output switch and an over temperature shutdown for completeprotection under fault conditions. The over temperature shutdown level is about 145o C with 5oC hysteresis.说明JM2596系列稳压器是单片集成电路,为降压开关稳压器提供所有的有源功能,能够以优良的线路和负载调节驱动3A负载。
LM2576_datasheet
单位 (极限))
系统参数 (注 3) 测试电路 图 2 VOUT 输出电压 输出电压 LM2576 输出电压 LM2576HV 效率 VIN = 25V, I负载 = 0.5A 电路图 2 18V ≤VIN ≤ 40V, 0.5A ≤ I负载 ≤ 3A 电路图 2 18V ≤VIN ≤ 60V, 0.5A ≤ I负载 ≤ 3A 电路图 2 VIN = 18V, I负载 = 3A V V(最小) V(最大) V V(最小) V(最大) V V(最小) V(最大) %
地址: 南京市珠江路 88 号,新世界中心 B 座 4004 室, 邮编:210008
ADD.: RM. 4004, BLOCK B, NEW WORLD CENTRE,
电话(TEL.): (86)-25-68853600
传真(FAX): (86)-25-68853600-810
WEB-SITE:
VOUT = 5V (只对可调节型号) (注 11) IOUT = 3A (注 4) (注 5) (注 4, 11) (注 6, 7): 输出 = 0V 输出 = -1V 输出 = -1V
管脚定义
直脚 5 脚 TO-220 (T) 上视图 弯曲 错位脚 5 脚 TO-220 (T) 上视图
TO-263 (S) 5 脚 贴片封装 上视图
LM2576T-XX 或 LM2576HVT-XX
LM2576S-XX 或 LM2576HVS-XX LM2576T-XX 或 LM2576HVT-XX
VOUT
VOUT η
LM2576-ADJ, LM2576HV-ADJ 电气特性
标准字体的指标值是在 TJ = 25°C, 粗体字适用于整个工作结温范围.
符号
特性
LM2576HVSX-12 TI高压三端稳压器
IL2576HV/LM2576HV系列稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动3A负载。
这些设备提供3.3 V,5 V,12 V,15 V的固定输出电压,以及可调输出版本。
这些稳压器需要最少的外部组件,易于使用,并包括故障保护和固定频率振荡器。
IL2576HV/LM2576HV系列可为流行的三端线性稳压器提供高效替代。
它大大减小了散热器的尺寸,并且在某些情况下不需要散热器。
几个不同的制造商都提供了针对IL2576HV/LM2576HV系列使用而优化的标准系列电感器。
此功能极大地简化了开关电源的设计。
其他功能包括在规定的输入电压和输出负载条件下,输出电压的容差为±4%,在振荡器频率上的容差为±10%。
包括外部关机功能,待机电流典型值为50 µA。
输出开关包括逐周期限流以及热关断功能,可在故障情况下提供全面保护。
IL2576HV LM2576HVR-12 LM2576HVSX-12 LM2576HVS-ADJ LM2576HVR-12 LM2576HVT1Features•LMR33630 36V,3A,400kHz同步转换器• 3.3V,5V,12V,15V和可调输出版本•可调版本输出电压范围:1.23 V至37 V(对于HV 版本为57 V)在整个线路和负载条件下最大±4%•指定的3A输出电流•宽输入电压范围:40 V,最高为HV 60 V•仅需四个外部组件•52kHz固定频率内部振荡器•TTL关机功能,低功耗待机模式•高效率•使用现成的标准电感器•热关断和限流保护•使用WEBENCH工具创建自定义设计2Applications•马达驱动•商家网络和服务器PSU•家电类•测试测量设备3DescriptionLM2576HVR-12 LM2576HVSX-12 LM2576HVS-ADJ LM2576HVR-12 LM2576HVT稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动3A负载。
奥伟斯科技为您提供HOLTEK合泰触控按键芯片应用方案
Holtek合泰新一代Touch Key Flash MCU,整合触控、通讯、显示于一体且外部零件少;高信噪比的触控架构及自动抑制电源波动、环境干扰等特点,大幅提升 Touch Key 的稳定性,能解决传统的机械式按键方式易磨损、不易设计制造等问题,有效、快速完成产品开发,适用于各种家电按键或控制开关产品。
Holtek合泰触摸按键IC主要特色:Touch Key Flash MCU及Touch Key 全方位产品方案触控按键不需外加零件内建高精准度系统频率內建 SPI/I2C串行通信內建 LED与LCD驱动电路具备Timer/UART/RTC功能內建EEPROMHoltek合泰触摸按键IC主要热销型号:BS801B BS801C BS802B BS802C BS804B BS804C BS806B BS806C BS808B BS808C BS812A-1 BS813A-1 BS814A-1 BS814A-2 BS816A-1BS818A-2 BS8116A-3BS8112A-3 BS82B12A-3 BS82C16A-3 BS82D20A-3 BS85C20-3BS85C20-5 BS86B12A-3 BS86C16A-3 BS86D20A-3 BS83A02A-4BS83A04A-3 BS83A04A-4 BS83B04A-4 BS83B08A-3 BS83B08A-4BS83B12A-3 BS83B12A-4 BS83B16A-3 BS83B16A-4 BS83B08-3BS83B12-3 BS83B16-3触摸芯片是一款能够触摸感应控制开关IC,可以替代传统的机械式开关的一种芯片。
随着电子信息技术的发展,芯片的发展越来越智能化,多样化。
芯片功能的作用也越来越强大,应用的也越来越广泛。
深圳市奥伟斯科技有限公司是一家专注触摸芯片,单片机,电源管理芯片,语音芯片,场效应管,显示驱动芯片,网络接收芯片,运算放大器,红外线接收头及其它半导体产品的研发,代理销售推广的高新技术企业。
LM2576数据手册翻译
LM2576/LM2576HV系列3A 开关型降压稳压器摘要稳压器LM2576系列单片集成电路,主动提供各种功能的降压(Buck)开关稳压器,能够驱动3A的负载和出色的线路和负载调节。
能够固定输出电压3.3V,5V,12V的,15V还有可以调整输出电压的型号。
只需少量的外部组件,使用简单,包括部频率补偿器和一个固定频率振荡器。
LM2576系列是流行的三端线性稳压器的理想替代。
它一般不需要或只要一块尺寸很小的散热片。
已经经过优化,LM2576可以配合几个不同的电感生产厂商生产的标准系列的电感而使用。
此特性大大简化了开关模式的设计电源供应。
其他特征包括:在规定的输入电压和输出负载电压条件下,保证输出电压的±4%误差,振荡器频率的±10%的误差,外部的关断电路,还有50μA的待机电流。
输出开关包括期电流限制,以及在故障条件下提供完全保护热关断的功能。
特征:3.3V,5V,12V的,15V,和可调输出型号可调版本输出电压围,在规定的输入电压和输出负载电压条件下,在1.23v至37V(57v高压版)±最大超过4%保证3A输出电流输入电压围宽,最高为60V的40V只需要4个外部组件52千赫固定频率部振荡器TTL关断能力,低功耗待机模式效率高使用现成的标准电感器热关断和电流限制保护P +产品增强测试应用:简单的高效率降压(Buck)稳压器线性调节器的高效预稳压器卡片开关稳压器正-负转换器(Buck Boost)经典应用电路:(固定输出电压型号)部电路框图订购信息绝对最大额定值(注1)如果用于军事/航空航天指定的设备,请联系the National Semiconductor (半导体)销售办公室或有可用和符合规格的产品的分销商。
最大输入电压:LM 2576 45VLM 2576 HV 63VON /OFF引脚的输入电压−0.3V ≤V ≤+VIN对地电压:(稳定状态) -1V功率耗散部限制存储温度围−65˚C to +150˚C最高结和温150˚C最小的ESD额定值(C = 100 pF,R = 1.5 KΩ) 2 kV引线温度:(焊接,10秒)260˚C工作额定值:工作结温围:−40˚C ≤TJ ≤+125˚C 输入电压:LM 2576 40V LM 2576 HV 60VLM2576-3.3, LM2576HV-3.3电气特性与标准型面规格为t = 25˚C,并与黑体的申请在整个工作温度LM2576-5.0,LM2576HV-5.0电气特性:与标准型面规格为TJ = 25˚C,与黑体的申请在整个工作温度围。
IKSEMI高压三端稳压器IL2576HV-12D2T-P-奥伟斯
IL2576HV-12D2T-P稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动3A负载。
这些设备提供3.3 V,5 V,12 V,15 V的固定输出电压,以及可调输出版本。
这些稳压器需要最少的外部组件,易于使用,并包括故障保护和固定频率振荡器。
IL2576HV-12D2T-P高压三端稳压器可为流行的三端线性稳压器提供高效替代。
它大大减小了散热器的尺寸,并且在某些情况下不需要散热器。
几个不同的制造商都提供了针对IL2576HV/LM2576HV系列使用而优化的标准系列电感器。
此功能极大地简化了开关电源的设计。
其他功能包括在规定的输入电压和输出负载条件下,输出电压的容差为±4%,在振荡器频率上的容差为±10%。
包括外部关机功能,待机电流典型值为50 µA。
输出开关包括逐周期限流以及热关断功能,可在故障情况下提供全面保护。
IL2576HV LM2576HVR-12 LM2576HVSX-12 LM2576HVS-ADJ LM2576HVR-12 LM2576HVT1Features•LMR33630 36V,3A,400kHz同步转换器• 3.3V,5V,12V,15V和可调输出版本•可调版本输出电压范围:1.23 V至37 V(对于HV 版本为57 V)在整个线路和负载条件下最大±4%•指定的3A输出电流•宽输入电压范围:40 V,最高为HV 60 V•仅需四个外部组件•52kHz固定频率内部振荡器•TTL关机功能,低功耗待机模式•高效率•使用现成的标准电感器•热关断和限流保护•使用WEBENCH工具创建自定义设计2Applications•马达驱动•商家网络和服务器PSU•家电类•测试测量设备3DescriptionLM2576HVR-12 LM2576HVSX-12 LM2576HVS-ADJ LM2576HVR-12 LM2576HVT稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动3A负载。
LM2576HVS-ADJ
Requiring a minimum number of external components, these
HV version
regulators are simple to use and include internal frequency n Requires only 4 external components
01147602
Ordering Information
Temperature
Output Voltage
NS Package Package
Range
3.3
5.0
12
15
ADJ
Number
Type
−40˚C ≤ TA LM2576HVS-3.3 LM2576HVS-5.0 LM2576HVS-12 LM2576HVS-15 LM2576HVS-ADJ
鸿 309 30 Typical Application (Fixed Output Voltage 杰 QQ:05755-61 Versions)
FIGURE 1.
01147601
SIMPLE SWITCHER® is a registered trademark of National Semiconductor Corporation.
3.3
V
3.234
V(Min)
3.366
V(Max)
VOUT
Output Voltage LM2576
6V ≤ VIN ≤ 40V, 0.5A ≤ ILOAD ≤ 3A Circuit of Figure 2
3.3
V
3.168/3.135
V(Min)
3.432/3.465
LM2576中文资料
LM2576中文资料———————————————————————————目录概述 (3)1.LM2576简介 (3)1.1 性能 (3)1.2 外形图 (6)1.3 订购信息 (6)1.4 管脚定义 (7)2.LM2576应用举例 (7)2.1 基本应用设计 (7)2.1.1 应用分析 (7)2.1.2 外围元件的选择 (9)2.1.3应用注意事项 (10)2.2 工作模式可控应用设计 (10)2.3 1.2V至55V的可调3A低输出纹波电源 (10)页脚内容12.4 输入欠压锁定电源 (11)3.LM2576测试电路和PCB布局原则 (11)页脚内容2概述LM2576系列开关稳压集成电路是线性三端稳压器件(如78xx系列端稳压集成电路)的替代品,它具有可靠的工作性能、较高的工作效率和较强的输出电流驱动能力,从而为MCU的稳定、可靠工作提供了强有力的保证。
1.LM2576简介1.1 性能LM2576系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压电路,它内含固定频率振荡器(52kHz)和基准稳压器(1.23V),并具有完善的保护电路,包括电流限制及热关断电路等,利用该器件只需极少的外围器件便可构成高效稳压电路。
LM2576系列包括LM2576(最高输入电压40V)及LM2576HV(最高输入电压60V)二个系列。
各系列产品均提供有3.3V(-3.3)、5V(-5.0)、12V(-12)、15V(-15)及可调(-ADJ)等多个电压档次产品。
此外,该芯片还提供了工作状态的外部控制引脚。
图1LM2576系列开关稳压集成电路的主要特性如下[2]:●最大输出电流:3A;页脚内容3●最高输入电压:LM2576为40V,LM2576HV为60V;●输出电压:3.3V、5V、12V、15V和ADJ(可调)等可选;●振东频率:52kHz;●转换效率:75%~88%(不同电压输出时的效率不同);●控制方式:PWM;●工作温度范围:-40℃~+125℃●工作模式:低功耗/正常两种模式可外部控制;●工作模式控制:TTL电平兼容;●所需外部元件:仅四个(不可调)或六个(可调);●器件保护:热关断及电流限制;●封装形式:TO-220或TO-263。
LM2596S-3.3-3A降压电压稳压器应用方案
随着科学技术的发展进步,电子元器逐渐智能化,多样化,应用的范围也越来越广泛。
LM2596系列:3A电流输出降压开关型集成稳压芯片,它内含固定频率振荡器(150KHZ),和基准稳压器(1.23v),并具有完善的保护电路:电流限制、热关断电路等。
利用该器件只需极少的外围器件便可构成高效稳压电路。
提供有:3.3V、5V、12V及可调(-ADJ)等多个电压档次产品。
深圳市奥伟斯科技有限公司是一家专注触摸芯片,单片机,电源管理芯片,语音芯片,场效应管,显示驱动芯片,网络接收芯片,运算放大器,红外线接收头及其它半导体产品的研发,代理销售推广的高新技术企业.奥伟斯科技自成立以来一直致力于新半导体产品在国内的推广与销售,年销售额超过壹亿人民币是一家具有综合竞争优势的专业电子元器件代理商.本公司代理推广的一系列优秀触摸芯片及语音芯片,现以大批量应用到智能电子锁、饮水机、电饭煲、LED台灯等控制器为顾客提供最佳解决方案,受到广大客户的一致赞誉。
奥伟斯科技优势行业集中在家用电器和汽车电子领域,包括:智能电子锁、饮水机、抽烟机、空调、洗衣机、冰箱、洗碗机、电饭煲、电磁炉、微波炉、电动自行车、汽车仪表、汽车音响、汽车空调等。
销售网络覆盖华东、华南及华北地区。
奥伟斯科技已为众多世界著名企业提供服务如:美的、小米、云米、长虹、创维、三星、LG、飞利浦、TCL、海尔、美菱、沁园、等众多中国一流品牌电家厂商奥伟斯科技提供专业的智能电子锁触摸解决方案,并提供电子锁整套的芯片配套:低功耗触摸芯片低功耗单片机马达驱动芯片显示驱动芯片刷卡芯片时针芯片存储芯片语音芯片低压MOS管 TVS二极管主要品牌产品:OWEIS-TECHOWEIS触摸芯片 OWEIS接口芯片 OWEIS电源芯片 OWEIS语音芯片 OWEIS场效应管一.电容式触摸芯片ADSEMI触摸芯片代理芯邦科技触控芯片万代科技触摸按键芯片博晶微触摸控制芯片海栎创触摸感应芯片启攀微触摸IC 融和微触摸感应IC 合泰触摸按键IC 通泰触摸芯片二.汽车电子/电源管理/接口芯片/逻辑芯片:IKSEMICON一级代理 ILN2003ADT IK62783DT IL2596 IL2576 ILX485 ILX3485ILX232 ILX3232三.功率器件/接收头/光电开关:KODENSHI AUK SMK系列MOS管SMK0260F SMK0460F SMK0760F SMK1260F SMK1820F SMK18T50F四. LED显示驱动芯片:中微爱芯AIP系列 AIP1668 AIP1628 AIP1629 AIP1616天微电子TM系列 TM1628 TM1668 TM1621五.电源管理芯片:Power Integrations LNK364PN LNK564PN 芯朋微PN8012 PN8015 AP5054 AP5056 力生美晶源微友达天钰电子FR9886 FR9888六.语音芯片:APLUS巨华电子AP23085 AP23170 AP23341 AP23682 AP89085 AP89170 AP89341 AP89341K AP89682七.运算放大器:3PEAK运算放大器聚洵运算放大器圣邦微运算放大器八.发光二极管:OSRAM欧司朗发光二极管 Lite-On光宝发光二极管 Everlight亿光发光二极管Kingbright今台发光二极管九. CAN收发器:NXP恩智浦CAN收发器 Microchip微芯CAN收发器十.分销产品线:ONSEMI安森美 TI德州仪器 ADI TOSHIBA东芝 AVAGO安华高十一 MCU单片机ABOV现代单片机MC96F系列 Microchip微芯单片机PIC12F PIC16F PIC18F系列FUJITSU富仕通单片机MB95F系列 STM单片机STM32F STM32L系列 CKS中科芯单片机CKS32F系列 TI单片机MSP430系列 TMS320F系列 NXP单片机LPC系列LM2596SNVS124C – NOVEMBER 1999 – REVISED APRIL 2013LM2596 SIMPLE SWITCHER ® Power Converter 150 kHz3A Step-Down Voltage RegulatorCheck for Samples: LM2596FEATURESDESCRIPTION• 3.3V, 5V, 12V, and Adjustable Output Versions • Adjustable Version Output Voltage Range,1.2V to 37V ±4% Max Over Line and Load The LM2596 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 3A load with excellent line and loadConditionsregulation. These devices are available in fixed output • Available in TO-220 and TO-263 Packages • Ensured 3A Output Load Current • Input Voltage Range Up to 40V• Requires Only 4 External Components voltages of 3.3V, 5V, 12V, and an adjustable output version.Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation , and a • Excellent Line and Load Regulationfixed-frequency oscillator.Specifications• 150 kHz Fixed Frequency Internal Oscillator The LM2596 series operates at a switching frequency of 150 kHz thus allowing smaller sized filter • TTL Shutdown Capabilitycomponents than what would be needed with lower • Low Power Standby Mode, I Q Typically 80 μA • High Efficiencyfrequency switching regulators. Available in a standard 5-lead TO-220 package with several different lead bend options, and a 5-lead TO-263 • Uses Readily Available Standard Inductors surface mount package.• Thermal Shutdown and Current Limit A standard series of inductors are available from Protectionseveral different manufacturers optimized for use with the LM2596 series. This feature greatly simplifies the APPLICATIONSdesign of switch-mode power supplies.• Simple High-Efficiency Step-Down (Buck)Other features include a ensured ±4% tolerance on Regulatoroutput voltage under specified input voltage and • On-Card Switching Regulators • Positive to Negative ConverterTypical Application(Fixed Output Voltage Versions)output load conditions, and ±15% on the oscillator frequency. External shutdown is included, featuring typically 80 μA standby current. Self protection features include a two stage frequency reducing current limit for the output switch and an over temperature shutdown for complete protection under fault conditions. (1)(1) † Patent Number 5,382,918.Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.SIMPLE SWITCHER is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.PRODUCTION DATA information is current as of publication date. Copyright © 1999–2013, Texas Instruments IncorporatedProducts conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does notnecessarily include testing of all parameters.Connection DiagramsFigure 1. 5-Lead Bent and Staggered Leads, Figure 2. 5-Lead DDPAK/TO-263 (S) Package Through Hole TO-220 (T) Package See Package Number KTT0005BSee Package Number NDH0005DThese devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.(1)(2)(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions forwhich the device is intended to be functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics.(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability andspecifications.(3) The human body model is a 100 pF capacitor discharged through a 1.5k resistor into each pin.Specifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating(1) Typical numbers are at 25°C and represent the most likely norm.(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affectswitching regulator system performance. When the LM2596 is used as shown in the Figure 20 test circuit, system performance will be as shown in system parameters of Electrical Characteristics section.LM2596-5.0 Electrical CharacteristicsSpecifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating(1) Typical numbers are at 25°C and represent the most likely norm.(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affectswitching regulator system performance. When the LM2596 is used as shown in the Figure 20 test circuit, system performance will be as shown in system parameters of Electrical Characteristics section.LM2596-12 Electrical CharacteristicsSpecifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating(1) Typical numbers are at 25°C and represent the most likely norm.(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affectswitching regulator system performance. When the LM2596 is used as shown in the Figure 20 test circuit, system performance will be as shown in system parameters of Electrical Characteristics section.Specifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating(1) Typical numbers are at 25°C and represent the most likely norm.(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affectswitching regulator system performance. When the LM2596 is used as shown in the Figure 20 test circuit, system performance will be as shown in system parameters of Electrical Characteristics section.All Output Voltage Versions Electrical CharacteristicsSpecifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, V IN = 12V for the 3.3V, 5V, and Adjustable version and V IN = 24V for the(1) Typical numbers are at 25°C and represent the most likely norm.(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).(3) The switching frequency is reduced when the second stage current limit is activated.(4) No diode, inductor or capacitor connected to output pin.(5) Feedback pin removed from output and connected to 0V to force the output transistor switch ON.(6) Feedback pin removed from output and connected to 12V for the 3.3V, 5V, and the ADJ. version, and 15V for the 12V version, to forcethe output transistor switch OFF.(7) V IN = 40V.All Output Voltage Versions Electrical Characteristics (continued)Specifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, V IN = 12V for the 3.3V, 5V, and Adjustable version and V IN = 24V for the(8) Junction to ambient thermal resistance (no external heat sink) for the TO-220 package mounted vertically, with the leads soldered to aprinted circuit board with (1 oz.) copper area of approximately 1 in2.(9) Junction to ambient thermal resistance with the TO-263 package tab soldered to a single printed circuit board with 0.5 in2 of (1 oz.)copper area.(10) Junction to ambient thermal resistance with the TO-263 package tab soldered to a single sided printed circuit board with 2.5 in2 of (1oz.) copper area.(11) Junction to ambient thermal resistance with the TO-263 package tab soldered to a double sided printed circuit board with 3 in2 of (1 oz.)copper area on the LM2596S side of the board, and approximately 16 in2 of copper on the other side of the p-c board. See Application Information in this data sheet and the thermal model in Switchers Made Simple™ version 4.3 software.Typical Performance Characteristics(Circuit of Figure 20)NormalizedOutput Voltage Line RegulationFigure 3. Figure 4.Switch Saturation Efficiency VoltageFigure 5. Figure 6.Switch Current Limit Dropout VoltageFigure 7. Figure 8.(Circuit of Figure 20)Operating ShutdownQuiescent Current Quiescent CurrentFigure 9. Figure 10.Minimum Operating ON /OFF ThresholdSupply Voltage VoltageFigure 11. Figure 12.ON /OFF PinCurrent (Sinking) Switching FrequencyFigure 13. Figure 14.(Circuit of Figure 20)Continuous Mode Switching WaveformsFeedback Pin V IN = 20V, V OUT = 5V, I LOAD = 2ABias CurrentL = 32 μH, C OUT = 220 μF, C OUT ESR = 50 mΩA: Output Pin Voltage, 10V/div. B: Inductor Current 1A/div.C: Output Ripple Voltage, 50 mV/div.Figure 15.Figure 16. Horizontal Time Base: 2 μs/div.Discontinuous Mode Switching WaveformsLoad Transient Response for Continuous Mode V IN = 20V, V OUT = 5V, I LOAD = 500 mAV IN = 20V, V OUT = 5V, I LOAD = 500 mA to 2A L = 10 μH, C OUT = 330 μF, C OUT ESR = 45 mΩL = 32 μH, C OUT = 220 μF, C OUT ESR = 50 mΩA: Output Pin Voltage, 10V/div. B: Inductor Current 0.5A/div.C: Output Ripple Voltage, 100 mV/div.A: Output Voltage, 100 mV/div. (AC) B: 500 mA to 2A Load PulseFigure 17. Horizontal Time Base: 2 μs/div.Figure 18. Horizontal Time Base: 100 μs/div.Load Transient Response for Discontinuous ModeV IN = 20V, V OUT = 5V, I LOAD = 500 mA to 2A L = 10 μH, C OUT = 330 μF, C OUT ESR = 45 mΩA: Output Voltage, 100 mV/div. (AC) B: 500 mA to 2A Load PulseFigure 19. Horizontal Time Base: 200 μs/div.Test Circuit and Layout GuidelinesFixed Output Voltage VersionsC IN —470 μF, 50V, Aluminum Electrolytic Nichicon “PL Series” C OUT —220 μF, 25V Aluminum Electrolytic, Nichicon “PL Series” D1 —5A, 40V Schottky Rectifier, 1N5825 L1 —68 μH, L38where V REF = 1.23VAdjustable Output Voltage VersionsSelect R 1 to be approximately 1 kΩ, use a 1% resistor for best stability. C IN —470 μF, 50V, Aluminum Electrolytic Nichicon “PL Series” C OUT —220 μF, 35V Aluminum Electrolytic, Nichicon “PL Series” D1 —5A, 40V Schottky Rectifier, 1N5825 L1 —68 μH, L38 R1 —1 kΩ, 1%C FF —See Application Information SectionFigure 20. Standard Test Circuits and Layout GuidesAs in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines should be wide printed circuit traces and should be kept as short as possible. For best results, external components should be located as close to the switcher lC as possible using ground plane construction or single point grounding.If open core inductors are used, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, lC groundpath and C OUT wiring can cause problems.When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor. (See Application Information section for moreinformation.)LM2596 Series Buck Regulator Design Procedure (Fixed Output)Table 1. LM2596 Fixed Voltage Quick Design Component Selection TableTable 1. LM2596 Fixed Voltage Quick Design Component Selection Table (continued)LM2596 Series Buck Regulator Design Procedure (Adjustable Output)= 1k (16.26 − 1) = 15.26k, closest 1% value is 15.4 kΩ. = 15.4 kΩ. Select a value for R 1 between 240Ω and 1.5 kΩ. The lower resistor values minimize noise pickup in the sensitive feedback pin. (For the temperature coefficient and the best stability 1% metal film resistors.)(2)2. Inductor Selection (L1)A. Calculate the inductor Volt • microsecond constant E • T (V • μs), from the following formula:where•V SAT = internal switch saturation voltage =1.16V•V D = diode forward voltage drop = 0.5V (4) B. Use the E • T value from the previous formula and match it with the E • T number on the vertical axis of the Inductor Value Selection Guide shown in Figure 24.C. on the horizontal axis, select the maximum load current.D. Identify the inductance region intersected by the E • T value and the Maximum Load Current value. Each region is identified by an inductance value and an inductor code (LXX).E. Select an appropriate inductor from the four manufacturer's part numbers listed in Table 3.E • T = 34.2 (V • μs)LOAD(max) = 3AFrom the inductor value selection guide shown ininductance region intersected by the 34 (V • μs) horizontalthe 3A vertical line is 47 μH, and the inductor code isFrom the table in Table 3, locate line L39, and select an inductor part number from the list of manufacturers part numbers.3. Output Capacitor SeIection (C OUT)See section on C OUT in Application Information section.From the quick design table shown in Table 2, locatevoltage column. From that column, locate the output voltage closest4. Feedforward Capacitor (C FF) (See Figure 20)For output voltages greater than approximately 10V, an additional capacitor is required. The compensation capacitor is typically between 100 pF and 33 nF, and is wired in parallel with the output voltage setting resistor, R2. It provides additional stability for high output voltages, low input-output voltages, and/or very low ESR output capacitors, such as solid tantalum capacitors.(6) This capacitor type can be ceramic, plastic, silver mica, etc. (Because of the unstable characteristics of ceramic capacitors made with Z5U material, they are not recommended.)LM2596 Series Buck Regulator Design Procedure (Adjustable Output)Table 2. Output Capacitor and Feedforward Capacitor Selection TableTable 2. Output Capacitor and Feedforward Capacitor Selection Table (continued)LM2596 Series Buck Regulator Design ProcedureINDUCTOR VALUE SELECTION GUIDES(For Continuous Mode Operation)Figure 21. LM2596-3.3 Figure 22. LM2596-5.0Figure 23. LM2596-12 Figure 24. LM2596-ADJTable 3. Inductor Manufacturers Part NumbersTable 4. Inductor Manufacturers Phone NumbersTable 5. Capacitor Manufacturers Phone NumbersTable 5. Capacitor Manufacturers Phone Numbers (continued)Table 6. Diode Selection TableBlock DiagramAPPLICATION INFORMATIONTable 7. PIN DESCRIPTIONSEXTERNAL COMPONENTSINPUT CAPACITORC IN—A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground pin. It must be located near the regulator using short leads. This capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current needed each time the switch turns on.The important parameters for the Input capacitor are the voltage rating and the RMS current rating. Because of the relatively high RMS currents flowing in a buck regulator's input capacitor, this capacitor should be chosen for its RMS current rating rather than its capacitance or voltage ratings, although the capacitance value and voltage rating are directly related to the RMS current rating.The RMS current rating of a capacitor could be viewed as a capacitor's power rating. The RMS current flowing through the capacitors internal ESR produces power which causes the internal temperature of the capacitor to rise. The RMS current rating of a capacitor is determined by the amount of current required to raise the internal temperature approximately 10°C above an ambient temperature of 105°C. The ability of the capacitor to dissipate this heat to the surrounding air will determine the amount of current the capacitor can safely sustain. Capacitors that are physically large and have a large surface area will typically have higher RMS current ratings. For a given capacitor value, a higher voltage electrolytic capacitor will be physically larger than a lower voltage capacitor, and thus be able to dissipate more heat to the surrounding air, and therefore will have a higher RMS current rating. The consequences of operating an electrolytic capacitor above the RMS current rating is a shortened operating life. The higher temperature speeds up the evaporation of the capacitor's electrolyte, resulting in eventual failure. Selecting an input capacitor requires consulting the manufacturers data sheet for maximum allowable RMS ripple current. For a maximum ambient temperature of 40°C, a general guideline would be to select a capacitor with a ripple current rating of approximately 50% of the DC load current. For ambient temperatures up to 70°C, a current rating of 75% of the DC load current would be a good choice for a conservative design. The capacitor voltage rating must be at least 1.25 times greater than the maximum input voltage, and often a much higher voltage capacitor is needed to satisfy the RMS current requirements.A graph shown in Figure 25 shows the relationship between an electrolytic capacitor value, its voltage rating, and the RMS c urrent it is rated for. These curves were obtained from the Nichicon “PL” series of low ESR, high reliability electrolytic capacitors designed for switching regulator applications. Other capacitor manufacturers offer similar types of capacitors, but always check the capacitor data sheet.“Standard” electrolytic capacitors typically have much higher ESR numbers, lower RMS current ratings and typically have a shorter operating lifetime.Because of their small size and excellent performance, surface mount solid tantalum capacitors are often used for input bypassing, but several precautions must be observed. A small percentage of solid tantalum capacitors can short if the inrush current rating is exceeded. This can happen at turn on when the input voltage is suddenly applied, and of course, higher input voltages produce higher inrush currents. Several capacitor manufacturers do a 100% surge current testing on their products to minimize this potential problem. If high turn on currents are expected, it may be necessary to limit this current by adding either some resistance or inductance before the tantalum capacitor, or select a higher voltage capacitor. As with aluminum electrolytic capacitors, the RMS ripple current rating must be sized to the load current.FEEDFORWARD CAPACITOR(Adjustable Output Voltage Version)C FF— A Feedforward Capacitor C FF, shown across R2 in Figure 20 is used when the ouput voltage is greater than 10V or when C OUT has a very low ESR. This capacitor adds lead compensation to the feedback loop and increases the phase margin for better loop stability. For C FF selection, see the Design Procedure section.Figure 25. RMS Current Ratings for Low ESR Electrolytic Capacitors (Typical)OUTPUT CAPACITORC OUT— An output capacitor is required to filter the output and provide regulator loop stability. Low impedance or low ESR Electrolytic or solid tantalum capacitors designed for switching regulator applications must be used. When selecting an output capacitor, the important capacitor parameters are; the 100 kHz Equivalent Series Resistance (ESR), the RMS ripple current rating, voltage rating, and capacitance value. For the output capacitor, the ESR value is the most important parameter.The output capacitor requires an ESR value that has an upper and lower limit. For low output ripple voltage, a low ESR value is needed. This value is determined by the maximum allowable output ripple voltage, typically 1% to 2% of the output voltage. But if the selected capacitor's ESR is extremely low, there is a possibility of an unstable feedback loop, resulting in an oscillation at the output. Using the capacitors listed in the tables, or similar types, will provide design solutions under all conditions.If very low output ripple voltage (less than 15 mV) is required, refer to the section on OUTPUT VOLTAGE RIPPLE AND TRANSIENTS for a post ripple filter.An aluminum electrolytic capacitor's ESR value is related to the capacitance value and its voltage rating. In most cases, higher voltage electrolytic capacitors have lower ESR values (see Figure 26 ). Often, capacitors with much higher voltage ratings may be needed to provide the low ESR values required for low output ripple voltage. The output capacitor for many different switcher designs often can be satisfied with only three or four different capacitor values and several different voltage ratings. See the quick design component selection tables in Table 1 and 4 for typical capacitor values, voltage ratings, and manufacturers capacitor types.Electrolytic ca pacitors are not recommended for temperatures below −25°C. The ESR rises dramatically at cold temperatures and typically rises 3X @ −25°C and as much as 10X at −40°C. See curve shown in Figure 27.Solid tantalum capacitors have a much better ESR spec for cold temperatures and are recommended for temperatures below −25°C.Figure 26. Capacitor ESR vs Capacitor Voltage Rating (Typical Low ESR Electrolytic Capacitor)CATCH DIODEBuck regulators require a diode to provide a return path for the inductor current when the switch turns off. This must be a fast diode and must be located close to the LM2596 using short leads and short printed circuit traces. Because of their very fast switching speed and low forward voltage drop, Schottky diodes provide the best performance, especially in low output voltage applications (5V and lower). Ultra-fast recovery, or High-Efficiency rectifiers are also a good choice, but some types with an abrupt turnoff characteristic may cause instability or EMI problems. Ultra-fast recovery diodes typically have reverse recovery times of 50 ns or less. Rectifiers such as the 1N5400 series are much too slow and should not be used.Figure 27. Capacitor ESR Change vs TemperatureINDUCTOR SELECTIONAll switching regulators have two basic modes of operation; continuous and discontinuous. The difference between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a period of time in the normal switching cycle. Each mode has distinctively different operating characteristics, which can affect the regulators performance and requirements. Most switcher designs will operate in the discontinuous mode when the load current is low.The LM2596 (or any of the Simple Switcher family) can be used for both continuous or discontinuous modes of operation.In many cases the preferred mode of operation is the continuous mode. It offers greater output power, lower peak switch, inductor and diode currents, and can have lower output ripple voltage. But it does require larger inductor values to keep the inductor current flowing continuously, especially at low output load currents and/or high input voltages.To simplify the inductor selection process, an inductor selection guide (nomograph) was designed (see Figure 21 through 8). This guide assumes that the regulator is operating in the continuous mode, and selects an inductor that will allow a peak-to-peak inductor ripple current to be a certain percentage of the maximum design load current. This peak-to-peak inductor ripple current percentage is not fixed, but is allowed to change as different design load currents are selected. (See Figure 28.)Figure 28. (ΔI IND) Peak-to-Peak InductorRipple Current (as a Percentage of the Load Current)vs Load CurrentBy allowing the percentage of inductor ripple current to increase for low load currents, the inductor value and size can be kept relatively low.When operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage), with the average value of this current waveform equal to the DC output load current.Inductors are available in different styles such as pot core, toroid, E-core, bobbin core, etc., as well as different core materials, such as ferrites and powdered iron. The least expensive, the bobbin, rod or stick core, consists of wire wound on a ferrite bobbin. This type of construction makes for an inexpensive inductor, but since the magnetic flux is not completely contained within the core, it generates more Electro-Magnetic Interference (EMl). This magnetic flux can induce voltages into nearby printed circuit traces, thus causing problems with both the switching regulator operation and nearby sensitive circuitry, and can give incorrect scope readings because of induced voltages in the scope probe. Also see section on OPEN CORE INDUCTORS.When multiple switching regulators are located on the same PC board, open core magnetics can cause interference between two or more of the regulator circuits, especially at high currents. A torroid or E-core inductor (closed magnetic structure) should be used in these situations.The inductors listed in the selection chart include ferrite E-core construction for Schott, ferrite bobbin core for Renco and Coilcraft, and powdered iron toroid for Pulse Engineering.Exceeding an inductor's maximum current rating may cause the inductor to overheat because of the copper wire losses, or the core may saturate. If the inductor begins to saturate, the inductance decreases rapidly and the inductor begins to look mainly resistive (the DC resistance of the winding). This can cause the switch current to rise very rapidly and force the switch into a cycle-by-cycle current limit, thus reducing the DC output load current. This can also result in overheating of the inductor and/or the LM2596. Different inductor types have different saturation characteristics, and this should be kept in mind when selecting an inductor.The inductor manufacturer's data sheets include current and energy limits to avoid inductor saturation.。
20V降压5V,3.3V的3A电源芯片和LDO规格书
4. 成分 R1 和 R2,以及轨迹连接到 FB 引 脚不得靠近 PCB 布局上的 SW 网络为了 避免噪音问题。
5. 如果系统芯片与 EN 接口引脚在关机模 式,IN 引脚为直接连接到电源作为锂离 子电池,最好添加下拉 EN 之间的 1 欧 姆电阻器和 GND 引脚,以防止噪音错 误地打开调节器关机模式
输出电流 250mA
100MA 150MA 150MA
静态功耗 封装
2uA
SOT23-3
3uA 4.2uA 2 uA
Sot23-3 Sot23/89 Sot23-3
PIN 分配/说明
数量 1
2
名称 BS
SW
功能 行李箱带销。供应高压侧闸门驱动器。将此引脚与带 0.1uF 陶瓷盖的 SW 销。 感应器引脚。将此WM 控制的同步降压调节器集成电路在同一个芯片上进行开关,以 使开关转换损耗和传导损耗最小化。带着 ultra 低 Rds(on)功率开关和专有的 PWM 控制, 这种调节器 IC 可以达到最高效率和最高开关频率同时最小化外部电感和电容器尺寸,从而 实现最小的解决方案占地面积。PW2330 提供保护循环限流和热关机保护等功能。PW2330 将感测故障保护的输出电压条件。
输出电容器:
选择输出电容器来处理输出纹波噪声要求。两种稳态选择此电容器时,必须考虑纹波和瞬态 要求。为了获得最佳性能,建议使用 X5R 或更高等级的陶瓷电容器大于 47uF 电容。
输出电感器 L:
在选择这个电感器时有几个考虑因素。 1. 选择电感以提供所需的纹波电流。建议选择纹波电流约为最大输出电流的 40%。电感计
输入电压
2.0V~6.0V 2.5V~5.5V 2.5V~5.5V 2.5V~5.5V 4.5V~16V 4.5V~16V 4.5V~20V 4.0V~30V 4.5V~30V 4.5V~40V 4.5V~55V 5.5V~60V 4.5V~80V 12V~90V 8V~90V 8V~140V
LM2576HVTLM2576HVR系列TI高压三端稳压器
LM2576HVTLM2576HVR系列TI高压三端稳压器IL2576HV/LM2576HV系列稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动3A 负载。
这些设备提供3.3 V,5 V,12 V,15 V的固定输出电压,以及可调输出版本。
这些稳压器需要最少的外部组件,易于使用,并包括故障保护和固定频率振荡器。
IL2576HV/LM2576HV系列可为流行的三端线性稳压器提供高效替代。
它大大减小了散热器的尺寸,并且在某些情况下不需要散热器。
几个不同的制造商都提供了针对IL2576HV/LM2576HV系列使用而优化的标准系列电感器。
此功能极大地简化了开关电源的设计。
其他功能包括在规定的输入电压和输出负载条件下,输出电压的容差为±4%,在振荡器频率上的容差为±10%。
包括外部关机功能,待机电流典型值为50 μA。
输出开关包括逐周期限流以及热关断功能,可在故障情况下提供全面保护。
IL2576HV LM2576HVR-12 LM2576HVSX-12 LM2576HVS-ADJ LM2576HVR-12 LM2576HVT1FeaturesLMR33630 36V,3A,400kHz同步转换器3.3V,5V,12V,15V和可调输出版本可调版本输出电压范围:1.23 V至37 V(对于HV 版本为57 V)在整个线路和负载条件下最大±4%?指定的3A输出电流宽输入电压范围:40 V,最高为HV 60 V仅需四个外部组件52kHz固定频率内部振荡器TTL关机功能,低功耗待机模式高效率使用现成的标准电感器热关断和限流保护使用WEBENCH工具创建自定义设计2Applications马达驱动商家网络和服务器PSU家电类测试测量设备3DescriptionLM2576HVR-12 LM2576HVSX-12 LM2576HVS-ADJ LM2576HVR-12 LM2576HVT稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动3A 负载。
3.3v稳压芯片 大功率
3.3v稳压芯片大功率1.引言1.1 概述在现代电子设备中,稳定的电压供应是确保电路正常运行的关键因素之一。
3.3V稳压芯片作为一种常用的电源管理器件,被广泛应用于各种电子设备中。
它能够将不稳定的输入电压稳定地转换为稳定的3.3V输出电压,以满足电路对稳定电源的需求。
3.3V稳压芯片通过内部的反馈控制回路,将输入电压调整到目标电压并保持在一定范围内。
它具有高稳定性、高精度和高效率的特点,能够有效地提供稳定的3.3V电压给其他电路模块供电。
大功率是指芯片能够提供的最大输出功率。
3.3V稳压芯片的大功率特性对于一些功率要求较高的应用场景非常重要。
大功率意味着芯片能够提供更强大的输出电流,使得电子设备能够正常工作并满足功率需求。
本篇文章将主要介绍3.3V稳压芯片的工作原理、特点和应用领域,并重点探讨其在大功率应用中的优势和应用案例。
通过深入了解3.3V稳压芯片的相关知识,读者能够更好地理解其在电子设备中的重要性,并在实际应用中合理选用和使用3.3V稳压芯片,提高电路系统的可靠性和稳定性。
下一节将详细介绍3.3V稳压芯片的工作原理和结构,以便读者对其有一个更全面的认识。
1.2 文章结构本文主要分为引言、正文和结论三个部分。
引言部分首先概述了本文的主题——3.3V稳压芯片大功率的研究。
介绍了该领域的重要性及研究的意义。
接着对整篇文章的结构做了简要的说明,以便读者能够更好地理解文章的内容。
最后阐述了本研究的目的,即为了解3.3V稳压芯片在大功率下的性能表现。
正文部分将分为两个小节进行论述。
首先,在第2.1节中,我们将详细介绍3.3V稳压芯片的基本原理、工作方式以及其在电子设备中的应用。
我们将从芯片的结构、特点、主要功能等方面进行阐述,同时还将讨论其在实际应用中的一些关键性问题。
在第2.2节中,我们将探讨3.3V稳压芯片在大功率下的特性。
我们将研究其承受大功率时的可靠性、稳定性以及效果等方面。
同时会介绍一些相关的挑战和解决方案。
LM2576HVT-15
LM2576-3.3 LM2576HV-3.3
Units (Limits)
Typ
Limit
(Note 2)
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2
VOUT
Output Voltage
VIN = 12V, ILOAD = 0.5A Circuit of Figure 2
Other features include a guaranteed ±4% tolerance on output voltage within specified input voltages and output load conditions, and ±10% on the oscillator frequency. External shutdown is included, featuring 50 µA (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.
The LM2576 series offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in some cases no heat sink is required.
Absolute Maximum Ratings (Note 1)
3.7V降压3.3V芯片,5V降压3.3V的升降压IC
3.7V降压3.3V芯⽚,5V降压3.3V的升降压IC
3.7V降压3.3V,5V降压3.3V降压IC,3A降压芯⽚,降压芯⽚和LDO,⾼效率稳压芯⽚,低功耗LDO和DC芯⽚,稳压固定3.3V芯⽚,升降压3.3V芯⽚,芯⽚选型说明,
3.7V降压3.3V,5V降压3.3V可选择:1升降压芯⽚,2单降压芯⽚,3LDO稳压芯⽚。
1,升降压芯⽚:
3.7V电压⼀般都是锂电池多,锂电池的标称电压是3.7V,锂电池满电电压是达到
4.2V,⼀般带保护板的话,最低放电电压是3V,所以锂电池的输⼊电压是3V-4.2V直接。
如何将3V-4.2V的电压稳压成固定3.3V呢?⾥⾯包含了升压3V降压3.3V和降压3.3V-4.2V 降压3.3V.
1-1:PW5410B,输⼊电压1.8V-5V之间,宽于并可满⾜3V-4.2V的输⼊电压。
PW5410是电荷升压芯⽚,外围仅3个电容,使⽤于200MA以下电流应⽤。
1-2:PW2228A和PW2224,输⼊电压1.8V-5V之间,宽于并可满⾜3V-4.2V的输⼊电压,可以调节输出电压2.8V-5V的范围之间。
PW2228A是1.5A最⼤规格,PW2224
是3A最⼤规格。
2单降压芯⽚
5V作为⼀个常见和常⽤的电压值,他并⽆固定在那个电池或者产品等。
5V输⼊,降⾄到 3.3V⽐较简单,不需要⽤到升降压芯⽚,选择也是很多。
上⼀页下⼀页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下面奥伟斯科技为您介绍LM2576 / LM2576HV系列SIMPLESWITCHER®3A降压稳压器●内容导航:●公司简介●TI 3A降压稳压器LM2576-3.3 LM2576S-3.3 LM2576SX-3.3产品规格书●产品图片●主营产品及优势产品简介●公司简介深圳市奥伟斯科技有限公司是一家专注触摸芯片,单片机,电源管理芯片,语音芯片,场效应管,显示驱动芯片,网络接收芯片,运算放大器,红外线接收头及其它半导体产品的研发,代理销售推广的高新技术企业.奥伟斯科技自成立以来一直致力于新半导体产品在国内的推广与销售,年销售额超过壹亿人民币是一家具有综合竞争优势的专业电子元器件代理商.本公司代理推广的一系列优秀触摸芯片及语音芯片,现以大批量应用到智能电子锁、饮水机、电饭煲、LED台灯等控制器为顾客提供最佳解决方案,受到广大客户的一致赞誉。
奥伟斯科技优势行业集中在家用电器和汽车电子领域,包括:智能电子锁、饮水机、抽烟机、空调、洗衣机、冰箱、洗碗机、电饭煲、电磁炉、微波炉、电动自行车、汽车仪表、汽车音响、汽车空调等。
销售网络覆盖华东、华南及华北地区。
奥伟斯科技已为众多世界著名企业提供服务如:美的、小米、云米、长虹、创维、三星、LG、飞利浦、TCL、海尔、美菱、沁园、等众多中国一流品牌电家厂商奥伟斯科技提供专业的智能电子锁触摸解决方案,并提供电子锁整套的芯片配套:低功耗触摸芯片低功耗单片机马达驱动芯片显示驱动芯片刷卡芯片时针芯片存储芯片语音芯片低压MOS管TVS二极管OWEIS触摸芯片 OWEIS接口芯片 OWEIS电源芯片 OWEIS语音芯片 OWEIS场效应管一.电容式触摸芯片ADSEMI触摸芯片代理芯邦科技触控芯片万代科技触摸按键芯片博晶微触摸控制芯片海栎创触摸感应芯片启攀微触摸IC 融和微触摸感应IC 合泰触摸按键IC 通泰触摸芯片二.汽车电子/电源管理/接口芯片/逻辑芯片:IKSEMICON一级代理 ILN2003ADT IK62783DT IL2596 IL2576 ILX485 ILX3485 ILX232 ILX3232三.功率器件/接收头/光电开关:KODENSHI AUK SMK系列MOS管SMK0260F SMK0460F SMK0760F SMK1260FSMK1820F SMK18T50F四. LED显示驱动芯片:中微爱芯AIP系列 AIP1668 AIP1628 AIP1629 AIP1616天微电子TM系列 TM1628 TM1668 TM1621五.电源管理芯片:Power Integrations LNK364PN LNK564PN 芯朋微PN8012 PN8015 AP5054 AP5056 力生美晶源微友达天钰电子FR9886 FR9888六.语音芯片:APLUS巨华电子AP23085 AP23170 AP23341 AP23682 AP89085 AP89170 AP89341 AP89341K AP89682七.运算放大器:3PEAK运算放大器聚洵运算放大器圣邦微运算放大器八.发光二极管:OSRAM欧司朗发光二极管 Lite-On光宝发光二极管 Everlight亿光发光二极管 Kingbright今台发光二极管九. CAN收发器:NXP恩智浦CAN收发器 Microchip微芯CAN收发器十.分销产品线:ONSEMI安森美 TI德州仪器 ADI TOSHIBA东芝 AVAGO安华高十一 MCU单片机ABOV现代单片机MC96F系列 Microchip微芯单片机PIC12F PIC16F PIC18F系列FUJITSU富仕通单片机MB95F系列 STM单片机STM32F STM32L系列 CKS中科芯单片机CKS32F系列 TI单片机MSP430系列 TMS320F系列 NXP单片机LPC系列LM2576, LM2576HVSNVS107C – JUNE 1999 – REVISED APRIL 2013LM2576/LM2576HV Series SIMPLE SWITCHER ® 3A Step-Down Voltage RegulatorCheck for Samples: LM2576, LM2576HVFEATURESDESCRIPTION• 3.3V, 5V, 12V, 15V, and Adjustable Output Versions• Adjustable Version Output VoltageThe LM2576 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving 3A load with excellent line and load regulation. Range,1.23V to 37V (57V for HV Version) ±4% These devices are available in fixed output voltages Max Over Line and Load Conditions of 3.3V, 5V, 12V, 15V, and an adjustable output • Specified 3A Output Currentversion.• Wide Input Voltage Range, 40V Up to 60V forRequiring a minimum number of external HV Versioncomponents, these regulators are simple to use and • Requires Only 4 External Components • 52 kHz Fixed Frequency Internal Oscillator • TTL Shutdown Capability, Low Power StandbyModeinclude internal frequency compensation and a fixed- frequency oscillator.The LM2576 series offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the • High Efficiencyheat sink, and in some cases no heat sink is • Uses Readily Available Standard Inductors required.• Thermal Shutdown and Current Limit A standard series of inductors optimized for use with Protectionthe LM2576 are available from several different • P+ Product Enhancement Testedmanufacturers. This feature greatly simplifies the design of switch-mode power supplies.APPLICATIONSOther features include a specified ±4% tolerance on • Simple High-Efficiency Step-Down (Buck)Regulatoroutput voltage within specified input voltages and output load conditions, and ±10% on the oscillator frequency. External shutdown is included, featuring • Efficient Pre-Regulator for Linear Regulators 50 μA (typical) standby current. The output switch • On-Card Switching Regulators• Positive to Negative Converter (Buck-Boost)TYPICAL APPLICATION(Fixed Output Voltage Versions)includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.Figure 1.Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.SIMPLE SWITCHER is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.PRODUCTION DATA information is current as of publication date. Copyright © 1999–2013, Texas Instruments IncorporatedProducts conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does notnecessarily include testing of all parameters.Block Diagram3.3V R2 = 1.7k5V, R2 = 3.1k12V, R2 = 8.84k15V, R2 = 11.3kFor ADJ. VersionR1 = Open, R2 = 0ΩPatent PendingThese devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.(1)(2)(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions forwhich the device is intended to be functional, but do not ensured specific performance limits. For ensured specifications and test conditions, see ELECTRICAL CHARACTERISTICS ALL OUTPUT VOLTAGE VERSIONS.(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.ELECTRICAL CHARACTERISTICS LM2576-3.3, LM2576HV-3.3Specifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating Temperature(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.(2) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.When the LM2576/LM2576HV is used as shown in Figure 21 and Figure 22, system performance will be as shown in ELECTRICAL CHARACTERISTICS ALL OUTPUT VOLTAGE VERSIONS.ELECTRICAL CHARACTERISTICS LM2576-5.0, LM2576HV-5.0Specifications with standard type face are for T J = 25°C, and those with Figure 21 and Figure 22 boldface type apply over(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.(2) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.When the LM2576/LM2576HV is used as shown in Figure 21 and Figure 22, system performance will be as shown in ELECTRICAL CHARACTERISTICS ALL OUTPUT VOLTAGE VERSIONS.ELECTRICAL CHARACTERISTICS LM2576-12, LM2576HV-12Specifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating Temperature(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.(2) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.When the LM2576/LM2576HV is used as shown in Figure 21 and Figure 22, system performance will be as shown in ELECTRICAL CHARACTERISTICS ALL OUTPUT VOLTAGE VERSIONS.ELECTRICAL CHARACTERISTICS LM2576-15, LM2576HV-15Specifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating Temperature(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.(2) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.When the LM2576/LM2576HV is used as shown in Figure 21 and Figure 22, system performance will be as shown in ELECTRICAL CHARACTERISTICS ALL OUTPUT VOLTAGE VERSIONS.ELECTRICAL CHARACTERISTICS LM2576-ADJ, LM2576HV-ADJSpecifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating Temperature(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.(2) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.When the LM2576/LM2576HV is used as shown in Figure 21 and Figure 22, system performance will be as shown in ELECTRICAL CHARACTERISTICS ALL OUTPUT VOLTAGE VERSIONS.ELECTRICAL CHARACTERISTICS ALL OUTPUT VOLTAGE VERSIONSSpecifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, V IN = 12V for the 3.3V, 5V, and Adjustable version, V IN = 25V for the 12V version, and V IN(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.(2) The oscillator frequency reduces to approximately 11 kHz in the event of an output short or an overload which causes the regulatedoutput voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.(3) Output pin sourcing current. No diode, inductor or capacitor connected to output.(4) Feedback pin removed from output and connected to 0V.(5) Feedback pin removed from output and connected to +12V for the Adjustable, 3.3V, and 5V versions, and +25V for the 12V and 15Vversions, to force the output transistor OFF.(6) V IN = 40V (60V for high voltage version).(7) Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with ½ inch leads in asocket, or on a PC board with minimum copper area.(8) Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with ¼ inch leadssoldered to a PC board containing approximately 4 square inches of copper area surrounding the leads.(9) If the DDPAK/TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area thermallyconnected to the package. Using 0.5 square inches of copper area, θJA is 50°C/W, with 1 square inch of copper area, θJA is 37°C/W, and with 1.6 or more square inches of copper area, θJA is 32°C/W.TYPICAL PERFORMANCE CHARACTERISTICS(Circuit of Figure 21 and Figure 22)Normalized Output Voltage Line RegulationFigure 2. Figure 3.Dropout Voltage Current LimitFigure 4. Figure 5.Standby Quiescent Current Quiescent CurrentFigure 6. Figure 7.TYPICAL PERFORMANCE CHARACTERISTICS (continued) (Circuit of Figure 21 and Figure 22)Switch SaturationOscillator Frequency VoltageFigure 8. Figure 9.Efficiency Minimum Operating VoltageFigure 10. Figure 11.Quiescent Current Feedback Voltagevs Duty Cycle vs Duty CycleFigure 12. Figure 13.(Circuit of Figure 21 and Figure 22)Quiescent Current Minimum Operating Voltage vs Duty CycleFigure 14. Figure 15.Feedback Voltagevs Duty Cycle Feedback Pin CurrentFigure 16. Figure 17.(Circuit of Figure 21 and Figure 22)Maximum Power Dissipation(DDPAK/TO-263)Switching WaveformsIf the DDPAK/TO-263 package is used, the thermal resistance can be V OUT = 15V reduced by increasing the PC board copper area thermally connected to the package. Using 0.5 square inches of copper area, θJA is 50°C/W, with 1 square inch of copp er area, θJA is 37°C/W, and with 1.6 or more square inches of copper area, θJA is 32°C/W.A: Output Pin Voltage, 50V/divB: Output Pin Current, 2A/div C: Inductor Current, 2A/divD: Output Ripple Voltage, 50 mV/div, AC-CoupledHorizontal Time Base: 5 μs /divFigure 18.Figure 19.Load Transient ResponseFigure 20.TEST CIRCUIT AND LAYOUT GUIDELINESAs in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible. Single-point grounding (as indicated) or ground plane construction should be used for best results. When using the Adjustable version, physically locate the programming resistors near the regulator, to keep the sensitive feedback wiring short.C IN—100 μF, 75V, Aluminum ElectrolyticC OUT— 1000 μF, 25V, Aluminum ElectrolyticD1— Schottky, MBR360L1—100 μH, Pulse Eng. PE-92108R1— 2k, 0.1%R2— 6.12k, 0.1%Figure 21. Fixed Output Voltage VersionswhereV REF = 1.23V, R1 between 1k and 5kFigure 22. Adjustable Output Voltage VersionLM2576 Series Buck Regulator Design ProcedureINDUCTOR VALUE SELECTION GUIDES(For Continuous Mode Operation)Figure 23. LM2576(HV)-3.3 Figure 24. LM2576(HV)-5.0Figure 25. LM2576(HV)-12 Figure 26. LM2576(HV)-15Figure 27. LM2576(HV)-ADJF = Switching Frequency (Fixed at 52 kHz)F = 52 kHz1. Programming Output Voltage (Selecting R1 and R2, as shown in Figure 21 and Figure 22)Use the following formula to select the appropriate resistor values.R 1 can be between 1k and 5k. (For best temperature coefficient and stability with time, use 1% metal film resistors)1. Programming Output Voltage (Selecting R1 and R2)R 2 = 1k (8.13 − 1) = 7.13k, closest 1% value is 7.15kPROCEDURE (Adjustable Output Voltage Versions) EXAMPLE (Adjustable Output Voltage Versions)2. Inductor Selection (L1)A. Calculate the inductor Volt • microsecond constant, E • T (V • μs), from the following formula:B. Use the E • T value from the previous formula and match it with the E • T number on the vertical axis of the Inductor Value Selection Guide shown in Figure 27.C. On the horizontal axis, select the maximum load current.D. Identify the inductance region intersected by the E • T value and the maximum load current value, and note the inductor code for that region.E. Identify the inductor value from the inductor code, and select an appropriate inductor from the table shown in Table 2. Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the LM2576 switching frequency (52 kHz) and for a current rating of 1.15 × I LOAD. For additional inductor information, see INDUCTOR SELECTION. 2. Inductor Selection (L1)A. Calculate E • T (V •μs)B. E • T = 115 V •μsC. I LOAD(Max) = 3AD. Inductance Region = H150E. Inductor Value = 150 μH Choose from AIE part #415-0936Pulse Engineering part #PE-531115, or Renco part #RL2445.3. Output Capacitor Selection (C OUT)A. The value of the output capacitor together with the inductor defines the dominate pole-pair of the switching regulator loop. For stable operation, the capacitor must satisfy the following requirement:The above formula yields capacitor values between 10 μF and 2200 μF that will satisfy the loop requirements for stable operation. But to achieve an acceptable output ripple voltage, (approximately 1% of the output voltage) and transient response, the output capacitor may need to be several times larger than the above formula yields.B. The capacitor's voltage rating should be at last 1.5 times greater than the output voltage. For a 10V regulator, a rating of at least 15V or more is recommended. Higher voltage electrolytic capacitors generally have lower ESR numbers, and for this reason it may be necessary to select a capacitor rate for a higher voltage than would normally be needed. 3. Output Capacitor Selection (C OUT)However, for acceptable output ripple voltage select C OUT≥ 680 μFC OUT= 680 μF electrolytic capacitorTo further simplify the buck regulator design procedure, TI is making available computer design software to be used with the SIMPLE SWITCHER line of switching regulators. Switchers Made Simple (Version 3.3) is available on a (3½″) diskette for IBM compatible computers from a TI office in your area.Table 1. Diode Selection GuideTable 2. Inductor Selection by Manufacturer's Part Number(1) Schott Corporation, (612) 475-1173, 1000 Parkers Lake Road, Wayzata, MN 55391.(2) Pulse Engineering, (619) 674-8100, P.O. Box 12235, San Diego, CA 92112.(3) Renco Electronics Incorporated, (516) 586-5566, 60 Jeffryn Blvd. East, Deer Park, NY 11729.INPUT CAPACITOR (C IN )APPLICATION HINTSTo maintain stability, the regulator input pin must be bypassed with at least a 100 μF electrolytic capacitor. The capacitor's leads must be kept short, and located near the regulator.If the operating temperature range includes temperatures below −25°C, the input capacitor value may need to be larger. With most electrolytic capacitors, the capacitance value decreases and the ESR increases with lower temperatures and age. Paralleling a ceramic or solid tantalum capacitor will increase the regulator stability at cold temperatures. For maximum capacitor operating lifetime, the capacitor's RMS ripple current rating should be greater thanINDUCTOR SELECTION(1)All switching regulators have two basic modes of operation: continuous and discontinuous. The difference between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a period of time in the normal switching cycle. Each mode has distinctively different operating characteristics, which can affect the regulator performance and requirements.The LM2576 (or any of the SIMPLE SWITCHER family) can be used for both continuous and discontinuous modes of operation.The inductor value selection guides in Figure 23 through Figure 27 were designed for buck regulator designs of the continuous inductor current type. When using inductor values shown in the inductor selection guide, the peak-to-peak inductor ripple current will be approximately 20% to 30% of the maximum DC current. With relatively heavy load currents, the circuit operates in the continuous mode (inductor current always flowing), but under light load conditions, the circuit will be forced to the discontinuous mode (inductor current falls to zero for a period of time). This discontinuous mode of operation is perfectly acceptable. For light loads (less than approximately 300 mA) it may be desirable to operate the regulator in the discontinuous mode, primarily because of the lower inductor values required for the discontinuous mode.The selection guide chooses inductor values suitable for continuous mode operation, but if the inductor value chosen is prohibitively high, the designer should investigate the possibility of discontinuous operation. The computer design software Switchers Made Simple will provide all component values for discontinuous (as well as continuous) mode of operation.Inductors are available in different styles such as pot core, toriod, E-frame, bobbin core, and so on, as well as different core materials, such as ferrites and powdered iron. The least expensive, the bobbin core type, consists of wire wrapped on a ferrite rod core. This type of construction makes for an inexpensive inductor, but since the magnetic flux is not completely contained within the core, it generates more electromagnetic interference (EMI). This EMI can cause problems in sensitive circuits, or can give incorrect scope readings because of induced voltages in the scope probe.The inductors listed in the selection chart include ferrite pot core construction for AIE, powdered iron toroid for Pulse Engineering, and ferrite bobbin core for Renco.An inductor should not be operated beyond its maximum rated current because it may saturate. When an inductor begins to saturate, the inductance decreases rapidly and the inductor begins to look mainly resistive (the DC resistance of the winding). This will cause the switch current to rise very rapidly. Different inductor types have different saturation characteristics, and this should be kept in mind when selecting an inductor. The inductor manufacturer's data sheets include current and energy limits to avoid inductorsaturation.INDUCTOR RIPPLE CURRENTWhen the switcher is operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage). For a given input voltage and output voltage, the peak-to-peak amplitude of this inductor current waveform remains constant. As the load current rises or falls, the entire sawtooth current waveform also rises or falls. The average DC value of this waveform is equal to the DC load current (in the buck regulator configuration).If the load current drops to a low enough level, the bottom of the sawtooth current waveform will reach zero, and the switcher will change to a discontinuous mode of operation. This is a perfectly acceptable mode of operation. Any buck switching regulator (no matter how large the inductor value is) will be forced to run discontinuous if the load current is light enough.OUTPUT CAPACITORAn output capacitor is required to filter the output voltage and is needed for loop stability. The capacitor should be located near the LM2576 using short pc board traces. Standard aluminum electrolytics are usually adequate, but low ESR types are recommended for low output ripple voltage and good stability. The ESR of a capacitor depends on many factors, some which are: the value, the voltage rating, physical size and the type of construction. In general, low value or low voltage (less than 12V) electrolytic capacitors usually have higher ESR numbers.The amount of output ripple voltage is primarily a function of the ESR (Equivalent Series Resistance) of the output capacitor and the amplitude of the inductor ripple current (ΔI IND). See INDUCTOR RIPPLE CURRENT.The lower capacitor values (220 μF–1000 μF) will allow typically 50 mV to 150 mV of output ripple voltage, while larger-value capacitors will reduce the ripple to approximately 20 mV to 50 mV.Output Ripple Voltage = (ΔI IND) (ESR of C OUT) (2) To further reduce the output ripple voltage, several standard electrolytic capacitors may be paralleled, or a higher-grade capacitor may be used. Such capacitors are often called “high-frequency,” “low-inductance,” or “low-ESR.” These will reduce the output ripple to 10 mV or 20 mV. However, when operating in the continuous mode, reducing the ESR below 0.03Ω can cause instability in the regulator.Tantalum capacitors can have a very low ESR, and should be carefully evaluated if it is the only output capacitor. Because of their good low temperature characteristics, a tantalum can be used in parallel with aluminum electrolytics, with the tantalum making up 10% or 20% of the total capacitance.The capacitor's ripple current rating at 52 kHz should be at least 50% higher than the peak-to-peak inductor ripple current.CATCH DIODEBuck regulators require a diode to provide a return path for the inductor current when the switch is off. This diode should be located close to the LM2576 using short leads and short printed circuit traces.Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best efficiency, especially in low output voltage switching regulators (less than 5V). Fast-Recovery, High-Efficiency, or Ultra-Fast Recovery diodes are also suitable, but some types with an abrupt turn-off characteristic may cause instability and EMI problems. A fast-recovery diode with soft recovery characteristics is a better choice. Standard 60 Hz diodes (e.g., 1N4001 or 1N5400, and so on) are also not suitable. See Table 1 for Schottky and “soft” fast-recovery diode selection guide.OUTPUT VOLTAGE RIPPLE AND TRANSIENTSThe output voltage of a switching power supply will contain a sawtooth ripple voltage at the switcher frequency, typically about 1% of the output voltage, and may also contain short voltage spikes at the peaks of the sawtooth waveform.The output ripple voltage is due mainly to the inductor sawtooth ripple current multiplied by the ESR of the output capacitor. (See INDUCTOR SELECTION)The voltage spikes are present because of the the fast switching action of the output switch, and the parasitic inductance of the output filter capacitor. To minimize these voltage spikes, special low inductance capacitors can be used, and their lead lengths must be kept short. Wiring inductance, stray capacitance, as well as the scope probe used to evaluate these transients, all contribute to the amplitude of these spikes.An addi tional small LC filter (20 μH & 100 μF) can be added to the output (as shown in Figure 33) to further reduce the amount of output ripple and transients. A 10 ×reduction in output ripple voltage and transients is possible with this filter.FEEDBACK CONNECTIONThe LM2576 (fixed voltage versions) feedback pin must be wired to the output voltage point of the switching power supply. When using the adjustable version, physically locate both output voltage programming resistors near the LM2576 to avoid picking up unwanted noise. Avoid using resistors greater than 100 kΩ because of the increased chance of noise pickup.ON /OFF INPUTFor normal operation, the ON /OFF pin should be grounded or driven with a low-level TTL voltage (typically below 1.6V). To put the regulator into standby mode, drive this pin with a high-level TTL or CMOS signal. The ON /OFF pin can be safely pulled up to +V IN without a resistor in series with it. The ON /OFF pin should not be left open.GROUNDINGTo maintain output voltage stability, the power ground connections must be low-impedance (see Figure 21 and Figure 22). For the 5-lead TO-220 and DDPAK/TO-263 style package, both the tab and pin 3 are ground and either connection may be used, as they are both part of the same copper lead frame.HEAT SINK/THERMAL CONSIDERATIONSIn many cases, only a small heat sink is required to keep the LM2576 junction temperature within the allowed operating range. For each application, to determine whether or not a heat sink will be required, the following must be identified:1. Maximum ambient temperature (in the application).2. Maximum regulator power dissipation (in application).3. Maximum allowed junction temperature (125°C for the LM2576). For a safe, conservative design, atemperature approximately 15°C cooler than the maximum temperatures should be selected.4. LM2576 package thermal resistances θJA and θJC.Total power dissipated by the LM2576 can be estimated as follows:P D = (V IN)(I Q) + (V O/V IN)(I LOAD)(V SAT)where•I Q (quiescent current) and V SAT can be found in TYPICAL PERFORMANCE CHARACTERISTICS shown previously,•V IN is the applied minimum input voltage, V O is the regulated output voltage,•and I LOAD is the load current. (3)The dynamic losses during turn-on and turn-off are negligible if a Schottky type catch diode is used.When no heat sink is used, the junction temperature rise can be determined by the following: ΔT J = (P D) (θJA) (4)To arrive at the actual operating junction temperature, add the junction temperature rise to the maximum ambient temperature.T J= ΔT J + T A(5)If the actual operating junction temperature is greater than the selected safe operating junction temperature determined in step 3, then a heat sink is required.。