七年级探索规律探讨

合集下载

北师大初中七年级数学上册《探索规律》教案

北师大初中七年级数学上册《探索规律》教案

探索规律教学目标1.探索数量关系,运用符号表示规律,通过验算证明规律.2.会用代数式表示简单问题中的数量关系.3.提高学生分析问题, 解决问题的能力.教学重点:能探索发现数学规律.教学难点:学会探索发现数学规律.教具:日历纸两张,白纸一张自制日历挂图一张教学过程:一、设疑自探1、情境导入:活动1:数青蛙(教师先说,学生根据所听到的数的规律往下接)师:"一只青蛙一张嘴,两只眼睛四条腿,一声扑通跳下水.两只青蛙两张嘴,四只眼睛八条腿,两声扑通跳下水."学生接着往下说,三只﹑四只﹑五只…提问:"n只呢?"由此引入课题2、发现规律活动2:日历中的规律(在黑板上挂出自制挂图)二.解疑合探1. 方框中的9个数之和与最中间的数有什么关系?用自己准备的日历纸再圈一个3×3方框试试,结论相同吗?跟周围的同学交流一下,看这个关系对每一个月的日历都成立吗?2. 此方框中每行每列相邻两个数之间有什么关系?两条对角线上的相邻两个数之间有什么关系?如果设中间的一个数为a,则其他的几个数该如何表示呢?请填一填吧!试用代数式表示这9个数的和与最中间的数的关系吧!3. 仔细观察,你一定会发现此方框中9个数之间的其他关系的,请试一试吧!活动3:联系拓展(看我多棒)用自己准备的另一张日历纸,圈出其他形状的区域,找找数量之间的关系,每个小组圈一个形状探索,并试着用代数式表示你找到的关系.(小组讨论出来后,组间交流,展示自己的成果)活动4:类比提高(举一反三,我多能)前面我们曾研究过细胞分裂问题,一个细胞分裂一次,一个分裂成两个,分裂两次,一个分裂成四个…,那么分裂6次呢?分裂10次呢?分裂n次呢?与此类似我们来做一个折纸游戏:(拿出准备好的白纸)将一张长方形的纸对折,可得到一条折痕,继续对折,对折时每次折痕与上次的折痕保持平行,连续对折6次后,可得到几条折痕?如果对折10次呢?对折n次呢?把每次的结果记录在表格中研究研究吧!三.质疑再探:说说你还有什么疑惑或问题四.运用拓展:引导学生自编习题小结:这节课学到了什么1、用代数式表示问题中的数量关系.2、探索问题中的数量关系应仔细观察,由几组特殊数据找到数量间的一般规律.。

七年级数学探索与表达规律

七年级数学探索与表达规律




三 1
四 2
五 3
六 4
5
12 19 26
6
13 20 27
7
14 21 28
8
15 22 29
9
16 23 30
10
17 24 31
11
18 25
做题方法
探索规律的一般步骤:
观 察 特 例 猜 想 规 律 表 示 规 律 验 证 规 律
试一试
1、按左图方式摆放餐桌和椅子 6 人; (1) 1张餐桌可坐___
后面的数比前面的数多1
请用字母表示这一关系
勇往直前
日历中相邻三个日 期数的关系和变化 规律是什么?
下面的数比上面的数多7
请用字母表示这一关系
勇往直前
日历中相邻三个日 期数的关系和变化 规律是什么?
合作学习
(1) 日历中3×3方框内九数之和与方框中正中间 的数有何等量关系? 矩形方框中九数之和等于中间数的9倍
14 21 28
8
15 22 29
9
16 23 30
10
17 24 31
11
18 25
8 人. 2张餐桌可坐___ (2) 按照左图的方式继续排列 餐桌,完成下表:
桌子 张数 可坐 人数
1
2
3 4
5 …
n
6 8 1012 14 …
……
2 +2
+2 +2 +2
(4+2n) 人 n张餐桌可坐_______
试一试
1、按左图方式摆放餐桌和椅子 6 人; (1) 1张餐桌可坐___
10 人. 2张餐桌可坐___ (2) 按照左图的方式继续排列 餐桌,完,探索 由特殊到一 般的关系。

北师大版数学七年级上册探索与表达规律(第1课时探索规律)课件

北师大版数学七年级上册探索与表达规律(第1课时探索规律)课件

星期四 3 10 17 24
星期五 4 11 18 25
星期六 5 12 19 26
规律: 十字形中,五数之和=5×中间数
“H”形中的数字有何规律?
星ห้องสมุดไป่ตู้日
6 13 20 27
星期一
7 14 21 28
星期二 1 8 15 22 29
星期三 2 9 16 23 30
星期四 3 10 17 24
星期五 4 11 18 25
图案需要黑色棋子的个数为( C )
①② ③ ④
随堂训练
3. 下图被称为“杨辉三角”或“贾宪三角”,
其规律是:从第三行起,每行两端的数都是
“1”,其余各数都等于该数“两肩”上的数
之和.图中两平行线之间的一列数:1,3,6,
10,15,…,我们把第一个数记为a1,第二个
数记为a2,第三个数记为a3,…,第n个数记为
你们能很快地说出数字200落在哪个手指上吗?2 000呢?
知识讲解
1.数式的变化规律
探究:以小组为单位探究日历中的“十”字形、“M” 形、“H”形中的数字有何规律?并进行验证
“十”字形中的数字有何规律?
星期日
6 13 20 27
星期一
7 14 21 28
星期二 1 8 15 22 29
星期三 2 9 16 23 30
2.图形的变化规律 用棋子摆成以下图案,并填写表格:

(1) (2)
(3)
① 填写下表:
图案编号
(1) (2) (3) (4)
棋子个数
5
11
17
23
② 摆第n个图案需要 6n-1颗棋子.
(5) … 29 …
例2 将棱长为1的正方体层层叠放如图所示,问第(5)个、 第(6)个图形各需多少个正方体?

冀教版数学七上3.2.4探索规律 教案

冀教版数学七上3.2.4探索规律 教案

第三章代数式3.2 代数式第4课时探索规律教学目标1. 使学生会用代数式表示简单的数量关系,验证所探索的规律.2. 通过从特殊事例中抽象概括一般规律的过程,学会从不同角度分析和解决问题,学会转化思想和归纳思想.教学重难点重点:用代数式表示规律.难点:厘清数量关系,用运算验证规律.教学过程导入新课如图,这是一个由1~120的连续整数排成的“数阵”.如果用方框围住9个数,那么这9个数的和随方框位置的变化而变化.你发现这些数字有什么规律吗?学生独立思考每行每列数字之间的规律.探究新知探究一:1.如果设方框左上角的数为a,用含a的代数式表示这9个数的和.思考:(1)方框内每行的三个数之和,和中间的数有什么关系?(2)怎样表示这九个数的和比较简单?2.方框内9个数的和,与中间的数15有什么关系?3.如果方框下移一行,中间数变为21,此时9个数的和是多少?4.根据上述规律,你能直接写出中间数为m时这9个数的和吗?学生思考交流,教师点拨.答案:1.(1)三个数的和是中间数的三倍;(2)三行数的和依次为3(a+1),3(a+7),3(a+13),故九个数的和为9(a+7).2.九个数的和为135,为15的9倍.教学反思3.21的9倍.4.这九个数的和为9m .探究二:图1是由点组成的n 行n 列的方阵,图2是由每条边上n 个点围成的空心方阵.图1 图2 1. 图1中方阵的总点数为多少? 2. 图2中方阵的总点数是多少?你还有其他的计算方法吗?让学生分组讨论,自主探究,然后教师多媒体演示图2中总点数不同的计算方法. 答案:1. n 22.可以是22(2)n n --,4(n -1),2n +2(n −2),4n −4. 课堂练习1.一组按规律排列的数:137132149162536,,,,,… ,第7个数是________;第n 个数是_____________. 2.观察下列等式:1×3=221-;2×4=231-; 3×5=241-;( )×( 6)=( )2−( );填写第4个等式,第n 个等式为 .3.如图,第一排有 1 个三角形;第二排有 3 个三角形;第三排有 5 个三角形;第四排有 个三角形;第n 排有 个三角形;4.如图,按下列格式用火柴棒搭建正方形.1个正方形用4根火柴棒;2个正方形用 火柴棒;3个正方形用___火柴棒;10个正方形用 火柴棒;n 个正方形用 火柴棒 . 参考答案1. 4364 n 2−(n−1)(n+1)2 2. 4 6 5 1 n (n +2)=(n +1)2 −1教学反思3. 7 (2n-1)教学反思4. 7根10根31根(3n+1)根课堂小结用代数式表示规律:1.用代数式表示数的变化规律;2.用代数式表示图形的变化规律.布置作业教材第108页习题A组第1,2,3题.板书设计第三章代数式3.2 代数式第4课时探索规律探究一:探究二:。

七年级上册探索规律知识点

七年级上册探索规律知识点

七年级上册探索规律知识点在七年级上册数学中,我们学习了很多关于探索规律的知识点,掌握这些知识点不仅能够帮助我们更好地理解数学,更能提升我们的思维能力和解题能力。

接下来,就让我们一步步地来回顾这些知识点。

一、图形规律1.图形的对称性在数学中,我们常常会遇到一些图形,而对称性正是其中的一个重要概念。

在平面几何中,图形的对称性可以分为轴对称和中心对称两种类型。

轴对称是指图形具有对称轴,对称轴能够将图形分为两部分,两部分关于对称轴完全相同。

而中心对称是指图形具有中心点,对于任意一点,都存在且仅存在唯一一点,使得这两个点相互关于中心对称。

2.等腰三角形的对称性在等腰三角形中,如果将等腰边作为对称轴,那么三角形就是对称的。

我们可以利用这个性质来解决一些等腰三角形的问题。

二、数列规律1.等差数列在数列中,如果每个元素与它前一个元素之差等于同一个常数,那么这个数列就是等差数列。

等差数列的前n项和可以表示为(n/2)(首项+末项)。

2.等比数列如果数列中每个元素与它前一个元素的比等于同一个常数,那么这个数列就是等比数列。

等比数列的前n项和可以表示为(首项(1-公比^n))/(1-公比)。

三、函数规律在函数中,我们常常会遇到一些规律性问题。

掌握函数规律的关键是要对函数中的各个变量和常数进行逐一分析。

1.一次函数一次函数是一种简单的线性函数,形式为y=kx+b,其中k和b是常数,x和y分别代表自变量和因变量。

一次函数的图像是一条直线,斜率为k,截距为b。

2.二次函数二次函数是一种常见的二次多项式函数,形式为y=ax^2+bx+c,其中a、b、c是常数,x和y分别代表自变量和因变量。

二次函数的图像是一个抛物线,开口方向由二次系数a的正负决定。

以上就是七年级上册中一些常见的探索规律知识点。

我们希望大家在学习这些知识点的过程中,能够不断思考、不断探索,更好地理解数学知识,提升自己的数学素养。

七年级探索规律知识点

七年级探索规律知识点

七年级探索规律知识点在七年级数学课程中,探索规律是一项非常重要的知识点。

通过研究数据和图形,学生们可以发现和总结规律性的关系,并将其应用到解决各种数学问题的过程中。

本篇文章将简要介绍一些常见的探索规律知识点。

1. 数列和通项公式数列是由一串数按照一定次序排列而成的序列。

而数列的通项公式就是描述这个数列的模式和规律的公式。

在七年级课程中,学生们将会学习如何找到一些常见数列的通项公式,如斐波那契数列、等差数列和等比数列等。

同时,学生们将学习如何利用数列的通项公式来计算数列中的任意一项。

2. 图形规律图形规律涉及到由点、线和面组成的各种形状和图案。

在七年级课程中,学生们需要探究不同的图形之间的联系和规律。

例如,他们需要研究如何通过旋转、翻转和平移等操作来构建不同的图形,还需要了解几何图形的对称性和相似性等概念。

3. 平均数和中位数平均数和中位数是统计学中两个非常重要的概念。

平均数是指一组数据的所有数值之和除以数据个数,而中位数是指一组数据按大小排列后的中间数。

通过研究这些统计概念,学生们可以更有效地处理和分析数字数据。

4. 几何图形的面积和周长几何图形的面积和周长是七年级数学中的重要概念。

在课程中,学生们将会涉及到矩形、正方形、三角形和圆形等基本几何图形的面积和周长的计算。

同时,学生也会学习如何将这些计算应用到实际问题中。

5. 概率概率是指某个事件发生的可能性。

在七年级数学中,学生们将会学习如何计算简单的概率,例如掷硬币和抽卡片等。

除此之外,学生们也会学习到如何利用概率来评估不同效益的选择和决策。

总之,探索规律是七年级数学课程中的一个重要知识点。

通过研究这些常见的规律和模式,学生们可以更好地理解和应用数学知识。

同时,这些探索规律的知识也可以帮助学生们在解决实际问题时更有效地思考和分析。

初中图形探索规律教案

初中图形探索规律教案

初中图形探索规律教案教学目标:1. 让学生通过观察和操作图形,发现并总结图形的规律。

2. 培养学生的观察能力、操作能力和推理能力。

3. 引导学生运用数学语言表达和交流探索过程和结果。

教学内容:1. 图形的变化和规律2. 图形的对称性3. 图形的旋转和翻转教学过程:一、导入(5分钟)1. 引导学生观察教室里的图形,如窗户、桌子、椅子等,提问:你们能发现这些图形的什么特点?2. 学生回答后,教师总结:这些图形都有规律可循,今天我们就来学习图形的规律。

二、新课(20分钟)1. 图形的变化和规律a. 教师出示一些图形,如正方形、长方形、三角形等,引导学生观察它们的变化。

b. 学生观察后,教师提问:你们能发现这些图形的变化规律吗?c. 学生回答后,教师总结:图形的变换包括平移、旋转、翻转等,它们都会引起图形位置和形状的变化。

2. 图形的对称性a. 教师出示一些对称图形,如正方形、矩形、圆形等,引导学生观察它们的对称性。

b. 学生观察后,教师提问:你们能发现这些图形的对称性规律吗?c. 学生回答后,教师总结:对称图形是指图形沿着某条直线或点对折后,两部分完全重合的图形。

3. 图形的旋转和翻转a. 教师出示一些旋转和翻转的图形,引导学生观察它们的变换规律。

b. 学生观察后,教师提问:你们能发现这些图形的旋转和翻转规律吗?c. 学生回答后,教师总结:图形的旋转是指图形围绕某一点旋转一定的角度,而翻转是指图形沿着某条直线翻转。

三、练习(15分钟)1. 学生独立完成练习题,巩固所学知识。

2. 教师选取部分学生的作业进行点评,解答学生的疑问。

四、小结(5分钟)1. 教师引导学生回顾本节课所学内容,提问:你们能总结一下图形的规律吗?2. 学生回答后,教师总结:图形的规律包括变化规律、对称性规律和旋转翻转规律等,它们是数学中的重要概念,也是解决实际问题的有效方法。

教学评价:1. 学生能正确识别和运用图形的规律。

2. 学生能运用数学语言表达和交流探索过程和结果。

北师大版数学教材七年级上册《探索规律》教学课例分析

北师大版数学教材七年级上册《探索规律》教学课例分析

北师大版数学教材七年级上册《探索规律》教学课例分析一、教学设计:1、教学背景“探索规律”是北师大版数学教材七年级上册第三章的最后一节内容,它是在学生学习了“生活中的图形”和“用字母表示数”等两章知识的基础上,把“图形”和“代数式”有机结合在一起,是这两章内容的深化和延伸。

本课在兴义八中初一(1)班(中小学数学“情境——问题”教学实验班),珠海市前山中学初一(10)(非实验班)及澳门天主教海星中学初一年级综合班(非实验班)各上了一节,因各地区的教材,文化背景及是否参加情境教学实验各不相同,所以课后效果不尽相同。

2、教学设计本节课采用“情境—问题”教学模式,“活动一”是让学生亲自动手用火柴棒搭三角形,并观察火柴捧的根数与三角形的个数,猜想它们之间存在的关系,用代数式把它们表示出来,并验证其正确性。

“活动二”是提供一组算式,让学生根据算式中所提供的数字信息提出数学问题,在解答数学问题的过程中找出规律。

“活动三”是我们日常生活中最常见的“日历”,让学生探索出它的基本规律后,进一步去运用它,并设计一个与之相关的应用题,这样让学生既掌握了规律,又能与代数式、方程等相关知识联系起来,让学生体会到数学知识的内在联系。

这节课通过三个活动,以开放的课堂形式组织教学,让学生在数学情境中提出问题,再解决问题,并学会去运用;改变了过去接受式学习方式,学生不是等待知识的传递,而是积极主动地参与到学习活动中,成为学习的主体,通过操作、探索、研究,逐步培养学生处理信息、交流合作和解决问题的能力。

二、教学过程1.开门见山,引出课题:小时候我们都玩过搭积木的游戏,今天我们不妨重拾童年的乐趣,利用手中的火柴棒搭建一些常见图形,探索规律。

(引出课题)2. 合作交流,探索规律:活动一:探索常见图形的规律师:用火柴棒按下图的方式在同一平面上搭三角形, 其中,搭一个三角形需3根火柴棒.对此,你能提出些什么数学问题呢?……生(兴义八中):①能搭成几个三角形?②搭n个三角形需几根火柴?③可拼成哪些图形?生(前山中学):①可拼成哪些图形?②你这样问是什么意思?生(澳门海星中学):①可拼成正六边形、三角形、四边形。

七年级资料—规律探索

七年级资料—规律探索

七年级资料——规律探索1、将一串有理数按下列规律排列,回答下列问题-1 4 → -5 8 → -9 A → B …↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑2 → -3 6 → -7 10 →… C → D (1)在A处的数是正数还是-数?(2)负数排在A.B.C.D中的什么位置?(3)第2013个数是正数还是-数?排在对应于A.B.C.D中的什么位置?2、如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上:先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上数字a与数轴上的数5对应,则a=(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是(用含n的代数式表示))f(1)=2,f(2)=3,f(3)=4,…;),4、有依次排列的3个数:2,7,6.对相邻的两个数,都用右边的数减去左边的数,所得的差写在这两个数之间,可产生一个新数串:2,5,7,-1,6,这称为一次操作;做第二次操作后也可产生一个新数串:2,3,5,2,7,-8,-1,7,6,继续依次操作下去,则从2,7,6开始操作第100次以后所产生的那个新数串的所有数之和是5、先观察下列等式,然后用你发现的规律解答下列问题。

(1)计算=_________(2)探究(3)若的值为,求n的值6、请阅读下列材料: 计算:解法一:原式===解法二:原式=]===解法三:原式的倒数为(=﹣20+3﹣5+12=﹣10 故原式=(1)上述得出的结果不同,肯定有错误的解法,你认为解法_________,在正确的解法中,你认为解法_________最简捷. (2)请解答下列问题 计算:7、猜想、探索规律(1)某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒…即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第100组应该有种子数 粒;(2)已知(3)下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,那么第101个图案中由 个基础图形组成;(4)观察下列各式根据观察计算:8、阅读下面的材料并完成填空:你能比较20122013与20132012的大小吗?为了解决这个问题,先把问题一般化.即比较n n+1与(n+1)n 的大小(整数n ≥1).然后,从分析n=1,n=2,n=3,…这些简单情形入手,从中发现规律,经过归纳、猜想,得出结论.(1)通过计算,比较下列①到⑦各组中2个数的大小? ①12 21②23 32 ③34 43; ⑤45 54 ⑥56 65 ⑦67 76…(2)从第(1)小题的结果归纳,可以猜想n n+1与(n+1)n 的大小关系(3)根据上面归纳猜想得到的一般结论,可以得到20122013 20132012(填“>”、“=”或“<”).9、如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2013次输出的结果为10、在数学活动中,小明为了求的值(结果用n 表示).设计如图所示的几何图形.(1)请你利用这个几何图形求 的值 .(2)请你利用下图,再设计一个能求 的值的几何图形.11、质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点A 1处,第二次从A 1点跳动到O A 1的中点A 2处,第三次从A 2点跳动到O A 2的中点A 3处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为( )。

七年级数学(上)探索规律类_问题

七年级数学(上)探索规律类_问题

11条 2条 3条 图1 图2 图3七年级数学(上)探索规律类 问题班级 学号 姓名 成绩一、数字规律类:1、一组按规律排列的数:41,93,167,2513,3621,…… 请你推断第9个数是 . 2、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ;…………由此规律知,第⑤个等式是 .3、观察下列各式;①、12+1=1×2 ;②、22+2=2×3;③、32+3=3×4 ;………请把你猜想到的规律用自然数n 表示出来 。

4、观察下面的几个算式:①、1+2+1=4; ②、1+2+3+2+1=9;③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子 5、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ) A .1 B . 2 C .3 D .46、把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。

第1行 1第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10第5行 11 -12 13 -14 15 ………………7、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 . 二、图形规律类:8、一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为 。

9、如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴 根.……10、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○● ………… 从第1个球起到第2005个球止,共有实心球 个.11、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。

七年级数学上册《规律的探索》

七年级数学上册《规律的探索》

培养逻辑思维
探索规律有助于培养学生的逻 辑思维和推理能力,使他们能 够更好地理解和分析问题。
发现新知识
通过探索规律,学生可以发现 新的数学概念和定理,进一步
丰富数学知识体系。
解决实际问题
探索规律有助于学生解决实际 问题,如预测未来趋势、优化
资源配置等。
提高创新能力
探索规律有助于培养学生的创 新思维和创造力,为未来的科 技发展和社会进步做出贡献。
在科学实验中的应用
生物学实验
01
在生物学实验中,科学家经常使用周期性实验来研究生物的生
长和繁殖规律,如植物的光合作用、动物的繁殖周期等。
物理学实验
02
在物理学中,很多物理量都有一定的规律变化,如温度、压力、
电流等,科学家通过实验来研究这些规律。
环境监测
03
环境监测中需要定期采集数据,如空气质量、水质等,通过这
02
数的规律探索
数的排列规律
总结词
数的排列规律是指按照一定的顺序排列数字,形成特定的模 式或序列。
详细描述
在数的排列规律中,我们通常关注数字的顺序,以及它们如 何按照特定的模式或序列进行排列。例如,1、2、3、4、5 是一个递增的排列规律,而3、2、1则是一个递减的排列规 律。
数的增减规律
总结词
函数关系式
用函数关系式来表示规律,如 $f(x) = x^2$ 表示二次函数的规律。
方程式
方程式也可以用来表示规律,如 $x^2 - y^2 = (x + y)(x - y)$ 表 示差平方的规律。
用表格表示规律
01
表格可以清晰地展示数据和规律 ,通过表格可以直观地观察到数 据的变化趋势和规律。

七年级数学探索规律专题(教师版)

七年级数学探索规律专题(教师版)

探索规律【学习目标】1. 通过观察、分析、总结等一系列过程,经历探索数量关系,并运用代数式表示规律,通过运算验证规律是否正确的过程;2.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律是否正确;3.通过动手操作、观察、思考,体验数学活动是充满着探索性和创造性的过程.【要点梳理】要点一、规律探索型问题常见类型1、数式规律通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力.一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式.要点诠释:由于寻找规律并用字母表示这一规律体现了从特殊到一般和归纳、猜想的数学思想的运用.解题中应注意先从特殊的结果入手寻找规律,再用字母表示,最后加以验证. 2、图形规律根据一组相关图形的变化,从中总结图形变化所反映的规律.解决这类图形规律问题的方法有两种,一种是数图形,将图形转化成数字规律,再用数字规律的解决问题,一种是通过图形的直观性,从图形中直接寻找规律.要点诠释:图案、图表具有直观、形象、简明,包含的信息量多等特点,解决此类问题需要把“形”转化为“数”,考查数形结合的数学思想.3、数表规律解决本题的方法一般是先看行(或列)的规律,再以列(或行)为单位用数列找规律方法找规律.有时也需要看看有没有一个数是上面两数或下面两数的和或差等.有时还需要先局部看,再整体找规律.要点二、规律探索型问题解题技巧1、抓住条件中的变与不变找数学规律的题目,都会涉及到一个或者几个变化的量.所谓找规律,多数情况下,是指变量的变化规律. 所以,抓住了变量,就等于抓住了解决问题的关键.而这些变量通常按照一定的顺序给出,揭示的规律,常常包含着事物的序列号. 2、化繁为简,形转化为数有些题目看上去很大、图形很复杂,实际上,关键性的内容并不多.对题目做一番认真地分析,去粗取精,取伪存真,把其中主要的、关键的内容抽出来,题目的难度就会大幅度降低,问题也就容易解决了. 3、要进行计算尝试找规律,当然是找数学规律.而数学规律,多数是函数的解析式.函数的解析式里常常包含着数学运算.因此,找规律,在很大程度上是在找能够反映已知量的数学运算式子.所以,从运算入手,尝试着做一些计算,也是解答找规律题的好途径. 4、寻找事物的循环节有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解. 【典型例题1】 类型一、数式规律1.在下列数列里,写出后面两个数:(1)1,10,3,13,5,16,7,19, , ,… (2)2,5,6,10,18,20,54,40, , ,… (3)4,16,36,64, ,144,196, ,…, (4)0,1,2,3,6,11,20, , ,…(5), ,,,,,,, , ,….【对点演练1】观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为( ) A . B .C .D .【总结升华】(1)(2)(4)的第n 项不容易用一个代数式表示出来,(3)的第n 项为4n 2,(5)的第n 项为.1356-991312-17152118-25212924-143(1)3n n n+--【典型例题2】我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式:152=1×2×100+25=225,252=2×3×100+25=625,352=3×4×100+25=1225,…(1)根据上述格式反应出的规律填空:952= ;(2)设这类等式左边两位数的十位数字为a,请用一个含a的代数式表示其结果;(3)这种简便计算也可以推广应用:个位数字是5的三位数的平方,请写出1952的简便计算过程及结果.【对点演练2】观察下面组成的图案和算式,解答问题:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;(1)请猜想1+3+5+7+9+…+19= ;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= .【总结升华】本题考查了规律型中的数字的变化类,解题的关键是找出变化规律“(a5)2=a ×(a+1)×100+25=100a(a+1)+25”.解决该题型题目时,根据给定等式子的变化,找出变化规律是关键.【典型例题3】用火柴棒按图中的方式搭图:(1) 填写下表:(2) 第N个图形需要多少根火柴?【对点演练3】从一个三角形的一个顶点向它的对边引一条线段,此时图中共有3个三角形(如图2);若再向它的对边引一条线段,此时图中共有6个三角形(如图3);……依次类推,则第N个图中共有个三角形?【总结升华】在数图形的数量时,如能掌握:先单一、后2个复合、再3个复合……依次类推,数出相应所有的结论,这样做不易重复和遗漏.【典型例题4】将正整数按如图所示的规律排列下去.若用有序实数对(m,n)表示第m排、从左到右第n个数,如(3,2)表示实数5.(1)图中(7,3)位置上的数;数据45对应的有序实数对是.(2)第2n行的最后一个数为,并简要说明理由.【对点演练4】根据图中数字的规律,在最后一个空格中填上适当的数字.【总结升华】此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:每行数字的个数等于行数,而且奇数行的数字都是奇数,偶数行的数字都是偶数.【典型例题5】观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.【对点演练5】白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?2.如图,一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有颗.【总结升华】解决此题的关键是找到规律:每10个球一组;第1,4,5为实心球,第2,3,6,7,8,9,10个为空心球.【巩固练习】一、选择题1.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:n按照上面的规律,摆个“金鱼”需用火柴棒的根数为().A .B .C .D .2.请你观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、 c 的值分别为( ).A .20、29、30B .18、30、26C .18、20、26D .18、30、28 3.从1开始得到如下的一列数:1,2,4,8,16,22,24,28,…其中每一个数加上自己的个位数,成为下一个数,上述一列数中小于100的个数为( ) A .21 B .22C .23D .994.伸出你的左手,从大拇指开始如图示那样数数:1,2,3,4……数到2013时,你数到的手指是( ).A.小指B.无名指C.中指D.食指 5.下列数据具有一定的排列规律:若整数2016位于第a 行,从左数第b 个数,则a+b 的值是( ) A .63 B .126 C .2015 D .10026.已知整数,…满足下列条件:,,,,…,依此类推,则的值为( ).26n +86n +44n +8n 1234,,,a a a a 10a =211a a =-+322a a =-+433a a =-+2012a 1 2 3 4 5…2 4 6 810 …3 6 912 15 …4 812 16 20 …510 15 20 25… … … ……18 c3212 15 a 20 24 25 b表二表三表四 表一A.-1005B.-1006C.-1007D.-2012二、填空题7.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是,2016是第个三角形数.8.有数组:(1,1,1),(2,4,8),(3,9,27),…,则第100组的三个数之和 .9. 一个用数字1和0组成的2003位数码,其排列规律是:101101110101101110……则这个数码中数字“0”共有个.10.观察下列等式:2=2=1×22+4=6=2×32+4+6=12=3×42+4+6+8=20=4×5……(1)可以猜想,从2开始到第n(n为自然数)个连续偶数的和是__________;(2)当n=10时,从2开始到第10个连续偶数的和是_______________.11. 13+23=9=(1+2)2; 13+23+33=36=(1+2+3)2; 13+23+33+43=(1+2+3+4)2,…,则13+23+33+43+…+993+1003= .12. 在数学竞赛的颁奖会上,10位获奖者每位都相互握手祝贺,则他们共握了次手.如果有n位获奖者,则他们共握了次手.13.(2016•泉州)找出下列各图形中数的规律,依此,a的值为.三、解答题14.(2015•广东模拟)观察下列等式:第一个等式:a1 = = ﹣;第二个等式:a 2 == ﹣; 第三个等式:a 3 == ﹣; 第四个等式:a 4 ==﹣.按上述规律,回答以下问题:(1)用含n 的代数式表示第n 个等式:a n = = ﹣ ; (2)式子a 1+a 2+a 3+…+a 20= ﹣ .15. 观察下面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:⑴ 写出第五个等式,并在左边画出与之对应的图示;⑵ 猜想并写出与第n 个图形相对应的等式. 16. 用棋子摆出下列一组图形:(1)填写下表:111122=⨯+211122222+=⨯+⨯2111233322++=⨯+⨯21112344422+++=⨯+⨯……n(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?【答案与解析】一、选择题1.【答案】A;2.【答案】D;【解析】观察表一,寻找规律:每个数可以看成它所在的行数与列数的乘积,由表一得:12=4×3,15=5×3,a=6×3=18;由表二得:20=4×5,24=4×6,25=5×5,b=5×6=30;由表三得:18=6×3,32=8×4,c=7×4=28.3. 【答案】A.【解析】由题意知:1,2,4,8,16,22,24,28,…由此可知,每4个数一组,后面依次为36,42,44,48,56,62,64,68,76,82,84,88,96,故小于100的个数为:21个.4.【答案】A;【解析】从大拇指到小指再到食指的过程堪称一个循环,一个循环就是8,∵2013÷8=251…5,余数是5,所以是从大拇指开始第五个,就是小指.5. 【答案】B;【解析】解:设第n行中最大的数为a n(n为正整数),观察,发现规律:a1=1,a2=1+2=3,a3=1+2+3=6,…,∴a n=1+2+…+n=.令a n≤2016,即≤2016,解得:﹣64≤n≤63.∴1≤n≤63,即整数2016为63行的最后一个数.∴a+b=63+63=126.6. 【答案】B;【解析】解:a 1=0,a 2=-|a 1+1|=-|0+1|=-1, a 3=-|a 2+2|=-|-1+2|=-1, a 4=-|a 3+3|=-|-1+3|=-2, a 5=-|a 4+4|=-|-2+4|=-2, …,所以,n 是奇数时,a n =,n 是偶数时,a n =, a 2012=. 二、填空题 7.【答案】45,63.【解析】第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n (n+1)=4032,解得:n=63.故答案为:45,63.8.【答案】1010100;【解析】观察可得:第一个数表示序列号,第二数是序列号的平方,第三个数是序列号的立方,所以第100组数是(100,1002,1003).9.【答案】668; 【解析】,“0” 的个数:.10.【答案】(1)n (n +1); (2)110 . 11.【答案】50502;【解析】从给出的三个条件式子中不难发现各式的特点:从1开始的几个连续自然数的立方和,等于这几个数的和的平方.不难找到第N 个式子为: 13+23+33+……+N 3=(1+2+3+……+N )2.因此,13+23+33+43+……+993+1003=(1+2+3+4+……+99+100)2=50502.12.【答案】45,; 【解析】. 13.【答案】226.【解析】解:根据题意得出规律:14+a=15×16,解得:a=226;12n --2n-201210062-=-200392225÷=32222668⨯+=(1)2n n -109452⨯=故答案为:226.三、解答题14.【解析】解:(1)a n == ﹣;(2)a 1+a 2+a 3+…+a 20=﹣+﹣+﹣+…+﹣= ﹣.故答案为,﹣;﹣.15.【解析】解:(1),图示如下:(2)与第n 个图形相对应的等式:.16. 【解析】解:(1)(2) 3(n +1)(3) 3(n +1)=99, n=32,是第32个图形.211123455522++++=⨯+⨯21112322n n n ++++=+。

初中数学七年级《探索规律》优秀教学设计

初中数学七年级《探索规律》优秀教学设计

对于一节“探索规律”教学的课堂简录及反思对于一节“探索规律”教学的课堂简录及反思规律探索型问题:是对材料信息的加工提炼和运用,从而得出数学概念和规律,或者将实际问题抽象为数学问题,建立数学模型的一类问题。

对规律归纳和发现能反映出一个人的应用数学、发展数学和进行数学创新的意识和能力。

求解规律探索型问题要求学生有敏锐的观察力,能从特殊的情况出发,经过周密的思考,全面的分析,去推得一般的结论。

这类试题意在检测解题者驾驭数学的创新意识和才能,因此,成为了这几年的热点内容而探索规律的有效教学有利于学生的创新能力和实践能力的培养;它有利于培养学生对数学的情感,增强学生学习数学的自信心和克服困难的意志力;有利于加深学生对所学知识的理解,掌握解决问题的方法和策略,提高解决问题的能力;有利于培养学生的自主意识和合作精神,促进学生的全面发展。

但是对于数学人教版教材中,探索规律并没有专门的章节来让学生们能够系统的学习,但是探索规律的题目却常常出现,基本上贯穿了整个初中阶段,从代数到几何,从数,到式子,到图形,题目形式的多变,正是考察学生思维能力的一个很好体现,所以近年来的中考也越来越重视此类题型的出现,甚至成为每年中考的常考题型之一。

但是由于学生们的数学基本素养不同,往往对于此类题目的难易程度有着不同的看法,所以很多学生都是不知如何入手,大部分通常都是遇到一道做一道,解决一道,最终还是不知道探索规律的题目该从何处思考,基于此,本人把常出现的几种寻找规律题集于一节课中讲授,让学生们集中的系统的学习,通过观察,思考,讨论,以及小组的合作探究,最终明确了题目形式虽多样,但万变不离其中,我们只要灵活掌握了几种形式间的相互转化,以及恰到好处的运用数形结合的思想,那么任何规律的题目都会迎刃而解了,在此,本人对本节课堂稍作简录如下:教学过程简录:第一阶段:课前自主探索一、(一)观察下列数组,按照某一规律填空4,8,12,16, 20, _____ ,……,第8个数是:______.第n 个数是:_______.第2012个数是:______.(二)先观察下列各式,再填空:22-02=4,32-12=8 ,42-22=12,……第4个式子是:__________第8个式子是: __________第n 个等式是:______________(三)观察下图,是由棋子 组成的一组图形:按照(1)(2)(3)图的规律,① 第4个图中有____枚棋子;② 第10个图有____枚棋子.③ 猜想:第n 个图中有____枚棋子呢?(1教师总结:我们发现同样一个规律既可以由数、也可以由式、还可以借助图形直观的表示,三者可以灵活的转化。

七年级上册数学第三章规律探索

七年级上册数学第三章规律探索
……
n
1+2+2+2+2+2+2+…..+2=1+2n
1、探索规律的一般步骤:
具 体 问 题 观 察 特 例 猜 想 规 律 表 示 规 律
验 证 规 律
得 出 结 论
成立
不成立
索 探 新 重 头 回
2、谈谈本节课你的收获?
9
10 11 12
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
关系? 规律五:
同一直线上无论位置怎样的相邻三个数,
首尾两数之和= 2 X a (a为中间数)
怎样用字母来表示和验证呢?
(1) 水平三邻数:
a-1
a a+1
a-8
(3)斜下三邻数
第三章 §3.5
探索与表达规律
星期 日 星期 一 星期 二 星期 三 星期 四 星期 五 星期 六
1 6 13 20 27 7 14 21 28 8 15 22 29
2 9 16 23 30
3 10 17 24 31
4 11 18 25
5 12 19 26
学习目标
1.经历探索数量关系、运用符号表示规 律、通过运算验证规律的过程。 2.会用代数式表示简单问题中的数量关 系,能用合并同类项、去括号等法则 验证所探索的规律。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
规律三:
a-8
a
a+8
能用字母表示吗?
星期 日

七年级数学上册《探索与表达规律》教学设计.doc

七年级数学上册《探索与表达规律》教学设计.doc

七年级数学上册《探索与表达规律》教学设计教学目标:1、会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律。

2、经历探索数量关系,运用符号表示规律,通过验算验证规律的过程,培养、发展数感、符号感。

3、在解决问题的过程中体验类比、转化等思维方法,培养学生良好的思维品质。

4、渗透辩证唯物主义思想中的从特殊到一般,从具体到抽象的认知观点,并通过小组讨论、合作交流等方式,体验在解决问题的过程中与他人合作的重要性。

教学重点:探索实际问题中蕴涵的关系和规律。

教学难点:用字母、运算符号表示一般规律。

课时安排:一课时教学设计:第一环节创设情境,导入新课导入:(多媒体展示)一首永远唱不完的儿歌:1只青蛙,1张嘴,2只眼睛,4条腿,1声扑通跳下水。

2只青蛙,2张嘴,4只眼睛,8条腿,2声扑通跳下水。

3只青蛙,3张嘴,6只眼睛,12条腿,3声扑通跳下水。

(学生跟着回答)n只青蛙,n 张嘴,2n 只眼睛,4n 条腿, n 声扑通跳下水。

目的:通过学生熟悉的儿歌创设问题情境,目的是让学生在解决问题中形成认知冲突,激发学生的学习兴趣和探究欲望,为本节课作好情感、方法和思维铺垫,同时也让学生初步体验探索规律的一般方法。

第二环节合作探究探究1:数的变化规律下图是2015年11月的日历,你能发现日历中的数据有什么规律吗?《探索与表达规律》教学设计探究活动一:你能用代数式分别表示出横排、竖排、左上右下、左下右上每相邻3个数间的关系吗?三个数的和与正中间的数有什么关系呢?(学生通过观察,找到日历中每一行、每一列、每一条对角线上相邻两数之间的关系.)(1)水平三邻数:(2)竖直三邻数:(3)斜下三邻数(4)斜上三邻数探究活动二:•用套色方框框住日历中的九个数,并让学生计算套框中这九个数的和•《探索与表达规律》教学设计(1)请思考方框中九个数的和与正中间的数有什么关系?(2)请同学们拿出日历,任意用方框框住这份日历中其它的九个数,这个关系是否成立?(3)这个关系对十月份的日历成立,那对其他月份的日历成立吗?(学生四人组合作完成,先猜想,再验证)猜想:蓝色方框中九个数之和=9X正中间的数探究活动三:如果将方框改为十字形方框,你能发现哪些规律?如果改为“H”形方框呢?你还能设计其他形状的包含数字规律的数框吗?(学生以小组为单位对相应图形中数的规律进行探究,并用代数式表示验证规律,并分小组展示•)《探索与表达规律》教学设计目的:让学生自主探究问题串,然后生生之间、师生之间相互交流, 目的在于通过学生自主探究和合作交流的学习方式,让师生共同经历探索数量关系、运用符号表示规律、通过计算验证规律的过程,进一步发展其符号感;让学生经历从特殊到一般再到特殊的认识过程,发展其辩证唯物主义观点。

七年级上-探索规律与定义新运算

七年级上-探索规律与定义新运算

探索规律与定义新运算知识集结知识元数字规律知识讲解数字规律就是一列数按一定规律排列起来,常见的规律有:1、正整数规律:1、2、3、4、5、……可以表示为n(其中n为正整数)2、奇数规律:1、3、5、7、9、……可以表示为(其中n为正整数)3、偶数规律:2、4、6、8、10、……可以表示为2n(其中n为正整数)4、正、负交替规律变化:一组数,不看他们的绝对值,只看其性质,为正负交替(1)-、+、-、+、-、+、-、+可以表示为(2)+、-、+、-、+、-、+、-可以表示为5、平方数规律:1、4、9、16、……可以表示为(其中n为正整数),能看得出:上面的规律数+1、+2、-1、-2例题精讲数字规律例1.已知一组数:1,3,5,7,9,…按此规律,第n个数是.例2.观察下列顺序排列的式子:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;…猜想:第个式子应为___________________。

例3.观察下列算式:;;;,…(1)左边各项的底数与右边幂的底数之间的关系是什么?(2)猜想的规律是什么?(3)用第五个关系式进行验证。

算式规律知识讲解算式规律就是一些等式按一定的规律排列起来,这类规律寻找的方法一般是:应对的一般原则:①找出等式中的各个部分;②找出等式中的各个部分中不变的部分;③找出等式中的各个部分中变化的部分、并寻找他们的变化规律.例题精讲算式规律例1.观察下列顺序排列的式子:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;…猜想:第个式子应为___________________。

例2.观察下列各式:;;;;…,把发现的规律用含自然数的式子表示:_______________________。

数字循环的规律知识讲解循环排列规律是运动着的规律,就是一列数或图形按几个固定的数或图形循环重复出现,我们只要根据题目的已知部分分析出图案或数据每隔几个就会循环出现,看看最后所求的与循环的第几个一致即可,关键是找出“循环节数”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
教师___徐玉华_学生______ 时间:______年____月_____日__________段 教学目标:七年级2011年探索规律试题探讨
龙文教育个性化辅导授课案
2 …… 图③图②图①教学内容:
一、例题
1.直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有________个点.
答案:16073 ,若本题将2010改为2011,结果是多少?
2. (2010年安徽中考)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。

对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。

当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( )
A )495
B )497
C )501
D )503
答案:A
3.(2010年浙江省)阅读材料,寻找共同存在的规律:有一个运算程序a ⊕b = n ,
可以使:(a+c )⊕b= n+c ,a ⊕(b+c )=n -2c ,
如果1⊕1=2,那么2010⊕2010 =________.
答案:-2007;若本题将2010⊕2010改为2011⊕2011,结果是多少?
4.(2010重庆市)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,则第10次旋转后得到的图形与图①~④中相同的是()
A .图①
B .图②
C .图③
D .图④
解析:观察图形,可知每转动4次为一个循环,所以10÷4=2…2,即第10次旋转后得到图形是图②. 答案:B. 循环型探索规律主要是弄清循环节。

5.(2010年四川省)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);
再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.
答案:17
6.(2010年福建省)如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( ) .
A. 669
B. 670
C.671
D. 672
三、课后作业
四、学生对于本次课的评价:
○特别满意○满意○一般○差
学生签字:
五、教师评定:
1、学生上次作业评价:○好○较好○一般○差
2、学生本次上课情况评价:○好○较好○一般○差
教师签字:
主任签字:______________
龙文教育教务处
3。

相关文档
最新文档