北师大版七年级数学上册 探索与表达规律
北师大版七年级数学上册探索与表达规律课件
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
规律: “M”形中 七数之和=7×中间数
北师大版七年级《数学》上册 3.5.1 探索与表达规律
北师大版七年级《数学》上册
第三章 整式及其加减
3.5.1 探索与表达规律
北师大版七年级《数学》上册 3.5.1 探索与表达规律
学情分析
本节内容是在学生学习了“用字母表示数”、“ 列代数式”、“去括号”、“合并同类项”等知识的基 础上进行的,它既是对前面所学知识的综合应用, 也是对这些知识的拓展与延伸,对学生体会数学建 模具有重要的作用。
拓展训练
1. 用火柴棒按下图中的方式搭图形。
①
②
(1) 按图示规律填空:
图形符号 ①
②
③
火柴棒根数 4
6
8
③
④
⑤
10
12
(2)按照这种方式搭下去,搭第n个图形需要多少根火柴?
2n+2或2(n+1)
北师大版七年级《数学》上册 3.5.1 探索与表达规律
考考你 视察图1至图5中小黑点的摆放规律,并按照这样的规 律继续摆放.记第n个图中小黑点的个数为y.解答下列 问题:
作业:
习题3.8第1、2题
随堂练习
1.照这样的规律摆下去,摆第7、8个正方形
需要多少颗棋子? 2.探究:摆第n个正方形
需要多少颗棋子?
北师大版七年级《数学》上册 3.5.1 探索与表达规律
北师大版初一上册3.5《探索与表达规律》
北师大版初一上册3教材分析:探究规律是北师大版七年级数学上册第三章第五节,探究规律本身是数学课中比较抽象的一部分内容,学生需要积存一定的体会和差不多的探究方法才能够找到题目的规律,本章学习的整式及其加减正好用来表示这种规律,因此表达规律是整式应用专门好的范例,教材在本章安排了几种简单的规律探究问题,其目的要紧是让学生把握解决这类问题的差不多方法即:探究分析——归纳表示——验证结论,体会解决问题的差不多思想即:从专门到一样的思想。
教学目标:1.知识目标:会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探究的规律。
2.能力目标:培养学生的观看能力、动手能力、创新能力以及交往协作能力,并提高其分析问题和解决问题的能力。
3.情感目标:让学生体会数学就在周围,激发学生的探究热情,体验数学活动的探干脆及制造性,培养学生实事求是的科学态度。
教学重难点:【教学重点】探究实际问题中蕴涵的关系和规律。
【教学难点】用字母、运算符号表示一样规律。
课前预备:见PPT教学过程:一、问题引入这是2021年3 月的日历,你能填空吗?【设计意图】通过简单的问题,学生快速回答从而获得对数字规律的直观体验,为用字母表示规律埋下伏笔。
二、合作探究1.学生探究活动项目单:(1)说一说日历中的数字排列有什么规律?(同一排或同一列)(2)若用一个方框任意框出九个数,这九个数字之间有什么数量关系?(3)用字母表示这种数量关系。
(4)这九个数的和与中间数有什么关系?(5)尝试使用较为简练的语言和同桌说一说你发觉的规律。
学生摸索、猜想、交流,个别学生展现。
应鼓舞学生大胆探究,积极发言。
(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8) = __9a____可得到:蓝色方框中九个数之和=9×正中间的数。
进一步挑战:给出几个图形,如“十”字形、“H”形,“W”形,让学生以小组为单位对相应图形中数的规律进行探究,并用代数式表示验证规律,并分小组展现。
北师大版数学七年级上册探索与表达规律(第1课时探索规律)课件
星期四 3 10 17 24
星期五 4 11 18 25
星期六 5 12 19 26
规律: 十字形中,五数之和=5×中间数
“H”形中的数字有何规律?
星ห้องสมุดไป่ตู้日
6 13 20 27
星期一
7 14 21 28
星期二 1 8 15 22 29
星期三 2 9 16 23 30
星期四 3 10 17 24
星期五 4 11 18 25
图案需要黑色棋子的个数为( C )
①② ③ ④
随堂训练
3. 下图被称为“杨辉三角”或“贾宪三角”,
其规律是:从第三行起,每行两端的数都是
“1”,其余各数都等于该数“两肩”上的数
之和.图中两平行线之间的一列数:1,3,6,
10,15,…,我们把第一个数记为a1,第二个
数记为a2,第三个数记为a3,…,第n个数记为
你们能很快地说出数字200落在哪个手指上吗?2 000呢?
知识讲解
1.数式的变化规律
探究:以小组为单位探究日历中的“十”字形、“M” 形、“H”形中的数字有何规律?并进行验证
“十”字形中的数字有何规律?
星期日
6 13 20 27
星期一
7 14 21 28
星期二 1 8 15 22 29
星期三 2 9 16 23 30
2.图形的变化规律 用棋子摆成以下图案,并填写表格:
…
(1) (2)
(3)
① 填写下表:
图案编号
(1) (2) (3) (4)
棋子个数
5
11
17
23
② 摆第n个图案需要 6n-1颗棋子.
(5) … 29 …
例2 将棱长为1的正方体层层叠放如图所示,问第(5)个、 第(6)个图形各需多少个正方体?
北师大版数学七年级上册(2024)探索与表达规律课件
尝试练习
将连续的奇数1,3,5, 1 3 5 7 9 11
7…,排成如图数表,十 13 15 17 19 21 23
字框内有五个数。
4132、、十十若字字将设形框 十 中框内 字 间中五 形 的五个 框 数个数上为数的下a,之左如和 25 27 29 31 33 35
北师大版七年级上册
学习目标
1.能用代数式表示数与图形的变化规律.(重点) 2.进一步培养学生视察、分析、抽象、概括等思维 能力和应用意识.(难点)
导入新课
情境引入
请同学们伸出左手,一起 做下面的游戏:从大拇指开始, 像图中显示的这只手那样依次 数数字1,2,3,4,5,……, 请问数字20落在哪个手指上?
探知规律
如图,是用火柴棒拼成的图形。
(2)拼成第n个图形需要_(2_n__+_1_)根火柴棒。
(1) (2) (3)
(4)
图案编号
水平的火柴根数 倾斜的火柴根数 总的火柴根数
(1)
(2) (3) (4)
… 第n个
1 234
n
2 3 45
n+1
3 5 7 9 … 2n+1
探知规律
如图,是用火柴棒拼成的图形。
(2)拼成第n个图形需要_(2_n__+_1_)根火柴棒。
(图1)形的变(2化) 规律(问3)题要多视(察4)图形,从中 找图出案编排号 列(1)的规(2律) ,或(转3) 化为一(4)组数…字再第探n索个其
火柴根数 3 3+2×1 3+2×2 3+2×3 … 3+2×(n-1)
规律,要与图形的序号相联系。
北师大版数学七年级上册第三章第五节探索与表达规律
第三章第五节探索与表达规律一、基本知识点1.探究规律;2.计算二、基本方法数字探究;图形探究三、知识讲练【例1】图形题用棋子摆出下列一组图形:(1)(2)(3)图形编号 1 2 3 4 5 6图形中的棋子(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?〖针对练习1〗1.用同样大小的黑色棋子按图6所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚(用含n的代数式表示).…第1个图第2个图第3个图2. 下列每个图是由若干盆花组成的形如三角形的图案,按此规律写出第n个图形花盆的总数______________________;3. 下列每个图是由若干盆花组成的形如正方形的图案,按此规律写出第n个图形花盆的总数__________4. 下列每个图是由若干盆组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数是S,按此规律推断,花盆的总数S=______________________;5. 下列每个图是由若干盆组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数是S,按此规律推断,花盆的总数S=______________________;6. 下图中所有正方体的边长都是1. 例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。
依此规律。
则第(6)个图形的表面积个平方单位。
【例2】数字题1. 有若干个数,第1个数记为1a,第二个数记为2a,第三个数记为3a……,第n个记为na,若211-=a,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数。
”(1)试计算__________,__________________,432===aaa(2)根据以上结果,请你写出___________1999=a,_______2001=a。
(2024秋新版本)北师大版七年级数学上册 《 探索与表达规律》PPT课件
课堂检测
基础巩固题
1.用棋子摆出下列一组“口”字,按照这种方法摆下去,则 摆第n个“口”字需用棋子( A )
A.4n枚 C.(4n+4)枚
B.(4n-4)枚 D.n2 枚
课堂检测
基础巩固题
2.用正方形套住日历中的任意 9 个数,若中间的数是 14, 则这 9 个数的和是__1_2_6__.
课堂检测
如果用a,b分别表示一个两位数的十位数字和个位数字, 那么这个两位数可以表示为10a+b ,则可得,
5(2a+3)+b=10a+b+15
规律:结果为原两位数与15的和.
探究新知
方法归纳
用代数式表示数的变化的规律: (1)数字为整数,考虑相邻两数的和、差、积、商、符号等方面是否存在
规律,也可以是奇、偶、平方等方面的规律; (2)数字为分数,可分别观察分子、分母的变化规律及它们之间的联系; (3)若表示数字变化规律的是等式(或表格),可将每个等式对应写好,
=7+13+14+15+21 =70 5×中间数 =5 ×14
=70
规律: 十字形中五数之和=5×中间数.
探究新知
日一二三四五六
H形中七数之和
1234 5
=10+12+17+18+19+24+26
6 7 8 9 10 11 12
=126.
13 14 15 16 17 18 19
7×中间数=7×18=126.
北师大版 数学 七年级 上册
3.3 探索与表达规律 (第1课时)
导入新知
请同学们伸出左手,一起做下面的游 戏:从大拇指开始,像图中显示的这只手 那样依次数数字1,2,3,4,5,……, 请问数字20落在哪个手指上?
北师大版七年级数学上册探索与表达规律
2.用棋子摆出下列一组图形:
(1)填写下表:
图形编号
12 3 456
图形中棋子的枚数
(2)照这样的方式摆下去,写出摆第n个图 形棋子的枚数; (3)如果某一图形共有99枚棋子,你知道它 是第几个图形吗?
1、探索规律的主要过程: 特殊——一般——特殊
2、探索规律的一般方法: (1)寻找数量关系; (2)用代数式表示规律; (3)验证规律。
桌子张数 3
4
5
6 …… n
可坐人数 14 18 22 26
4n+2
(3)你能用不同的方法解释你所表示的规律吗? (4)一家餐厅有这样的长方形桌子30张,按照上图方 式每5张拼成一张大桌子,共可坐多少人?若按照上图 方式每6张拼成一张大桌子,共可坐多少人?若现在有 131个客人去吃饭,那该如何拼摆桌子?
以得到一条折痕,继续对折,对折时每次折痕 与上次的折痕保持平行,连续折6次后,可以得 到几条折痕?如果对折10次呢?对折n次呢?
大家来归纳
对折1次,折痕为1. 对折2次,折痕为3,即3=22-1 对折3次,折痕为7,即7=23-1
对折4次,折痕为15,即15=24-1 对折5次,折痕为31,即31=25-1。
妙的大门,按照这种规律写出的第七个数据( ).
A、
B、
C、
D、
请完成下面的作业:
1.有若干个数,第一个数记为 ,第二个数
记为 ,…,第n个数记为 。若 = , 从第二个数起,每个数都等于“1与它前面那个 数的差的倒数”。试计算: =______,
=____, =_____, =______。你发现 这排数有什么规律吗?由你发现的规律,请计 算 是多少?
13 14 15 16 17 18 19
北师大版七年级数学上册:3.5探索与表达规律(教案)
-代入法:通过具体的数值代入,验证所发现的规律是否成立。
-表达式:用字母和数学符号表示规律,如数列的通项公式。
-解决实际问题:将所学的图形和数字规律应用于解决实际问题,理解数学知识在实际生活中的应用。
2.教学难点
-图形变换的抽象理解:学生需要从具体的图形中抽象出变换的规律,这对于空间想象能力较弱的学生来说是一个难点。
北师大版七年级数学上册:3.5探索与表达规律(教案)
一、教学内容
北师大版七年级数学上册:3.5探索与表达规律。本节课我们将学习以下内容:
1.通过观察和操作,探索图形或数的规律,培养学生的观察能力和动手操作能力。
-平பைடு நூலகம்与旋转的规律
-数字的变化规律
2.学会使用简单的数学语言和符号表达规律,提高学生的表达能力。
5.培养学生的合作意识:在小组讨论和分享中,学会倾听、交流、协作,提高团队协作能力,培养合作精神。
三、教学难点与重点
1.教学重点
-掌握图形的平移与旋转规律:能够理解和运用平移与旋转的基本性质,如对应点、对应线段、对应角等。
-平移:理解平移变换的概念,能够描述平移变换的向量表示,并在具体图形中应用。
-旋转:理解旋转变换的概念,能够描述旋转中心、旋转角和旋转方向,并在具体图形中应用。
2.提升学生的数学表达能力:学会使用数学语言和符号表达所发现的规律,加强数学交流,提高数学表述的准确性。
3.增强学生的应用意识:将所学规律应用于解决实际问题,培养学生的数学应用能力,使其体会数学在生活中的重要性。
4.激发学生的创新意识:鼓励学生独立思考,发现新的规律,勇于提出不同的观点,培养创新精神和探索能力。
2024年北师大七年级数学上册3.3 探索与表达规律(课件)
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
探究1:观察日历图,日历图中的数有什么规律?
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19
+(a+8) = __9_a___
结论:绿色方框中九个数之和 = 9×正中间的数
尝试·思考
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26Leabharlann 27 28 29 30 31
(1) 如图所示的日历图中,能否使框中 9 个数的和为
27 28 29 30 31
探究2:这个关系对任何一个月的日历都成立吗? 为什么? 成立
猜想: 绿色方框中九个数之和 = 9×正中间的数
用代数式表示: a-8 a-7 a-6
a-1 a a+1
a+6 a+7 a+8 (a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)
“H”形中的数字有何规律?你是如何验证的?
星期日 星期一 星期二 星期三 星期四 星期五 星期六
3.3探索与表达规律第1课时探索并表达规律课件北师大版(2024)数学七年级上册
之间的其他关系吗?用代数式表示。 期 期 期 期 期 期 期 日一二三四五六
用代数式表示
12345 6 7 8 9 10 11 12
a-8 a-7 a-6
13 14 15 16 17 18 19 20 21 22 23 24 25 26
a-1 a a+1
27 28 29 30 31
a+6 a+7 a+8
(1)日历图中的数有什么规律?
左右相邻的数字相差1, 上下相邻的数字相差7。 (答案不唯一)
新课导入
观察下图所示的日历图,回答下列问题:
星星星星星星星 期期期期期期期 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
星星星星星星星 期期期期期期期 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
a-8+a-7+a-6-a-1+a+a+1+a+6+a+7+a+8=9a
新课导入
(4)你还能发现这样的方框中9个数 星 星 星 星 星 星 星
所以这个月的第一个星期日是2号。
合作探究
(1)如果将方框改为十字形框,你能发现哪些规律?如果改为“H”
形框呢?它们有什么共同规律?
十字形框中五个数之和是该框中 正中间数的5倍;
“H”形框中七个数之和是该框中 正中间数的7倍。
星星星星星星星 期期期期期期期 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
北师大版七年级上册《探索与表达规律》
北师大版七年级上册《探索与表达规律》教材剖析:探求规律是北师大版七年级数学上册第三章第五节,探求规律自身是数学课中比拟笼统的一局部外容,先生需求积聚一定的阅历和基本的探求方法才可以找到标题的规律,本章学习的整式及其加减正好用来表示这种规律,所以表达规律是整式运用很好的范例,教材在本章布置了几种复杂的规律探求效果,其目的主要是让先生掌握处置这类效果的基本方法即:探求剖析——归结表示——验证结论,体会处置效果的基本思想即:从特殊到普通的思想。
教学目的:1.知识目的:会用代数式表示复杂效果中的数量关系,能用兼并同类项、去括号等法那么验证所探求的规律。
2.才干目的:培育先生的观察才干、入手才干、创新才干以及交往协作才干,并提高其剖析效果和处置效果的才干。
3.情感目的:让先生体会数学就在身边,激起先生的探求热情,体验数学活动的探求性及发明性,培育先生实事求是的迷信态度。
教学重难点:【教学重点】探务实践效果中蕴涵的关系和规律。
【教学难点】用字母、运算符号表示普通规律。
课前预备:见PPT教学进程:一、效果引入这是2021年3 月的日历,你能填空吗?【设计意图】经过复杂的效果,先生快速回答从而取得对数字规律的直观体验,为用字母表示规律埋下伏笔。
二、协作探求1.先生探求活动项目单:〔1〕说一说日历中的数字陈列有什么规律?〔同一排或同一列〕〔2〕假定用一个方框恣意框出九个数,这九个数字之间有什么数量关系?〔3〕用字母表示这种数量关系。
〔4〕这九个数的和与中间数有什么关系?〔5〕尝试运用较为精练的言语和同桌说一说你发现的规律。
先生思索、猜想、交流,一般先生展现。
应鼓舞先生大胆探求,积极发言。
(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8) = __9a____可失掉:蓝色方框中九个数之和=9×正中间的数。
进一步应战:给出几个图形,如〝十〞字形、〝H〞形,〝W〞形,让先生以小组为单位对相应图形中数的规律停止探求,并用代数式表示验证规律,并分小组展现。
北师大版七年级数学上册教案:3.5探索与表达规律
-函数应用题中,学生可能不理解题目中变量间的依赖关系,需要教师通过图示、表格等方法帮助学生理解。
针对以上难点,教师应采取以下策略:
-使用直观的教具和动画,帮助学生从具体实例中观察、总结规律。
-提供足够的时间让学生进行小组讨论和分享,鼓励学生尝试不同的数学表达方式。
在讲授新课内容时,我注意到有些学生对函数概念的理解仍较模糊。因此,在接下来的课程中,我将结合具体案例,让学生在实际问题中进一步理解函数的意义,并学会运用函数模型解决问题。
最后,我会在课后收集学生的反馈意见,了解他们在课堂中的收获和困惑,以便在后续教学中进行针对性的指导。我相信,通过不断反思和改进,我和学生们都能在数学的世界中收获更多的知识和乐趣。
五、教学反思
在今天的课堂中,我尝试通过探索与表达规律的教学,让学生们体会到数学的乐趣和实用性。我发现,大多数学生对数字和图形的变化表现出浓厚的兴趣,但在归纳总结规律并运用数学语言表达时,确实存在一些困难。
首先,我意识到在引导学生探索规律时,需要提供更丰富的实例和更直观的教具,帮助他们从具体的数字和图形中抽象出规律。在今后的教学中,我打算设计更多的互动环节,让学生在操作中感受规律,从而提高他们的抽象思维能力。
-图形变化规律的函数表达:如正方形面积与边长的关系表达式。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生观察、分析、归纳数学规律的抽象思维能力,提高学生对数学本质的理解。
2.培养学生运用数学语言、符号表达规律,提升数学表达与交流能力。
3.培养学生将实际问题抽象为数学模型,运用函数概念进行问题解决的能力,强
北师大版(2024新版)七年级数学上册教案:3.3 探索与表达规律
《探索与表达规律》教学设计学习目标1.能分析日历和图形问题中的简单数量关系,并会用代数式表示.2.通过观察日历和图形、交流分析数量关系的过程,提高学生分析问题和解决问题的能力.重点分析实际问题中的数量关系.难点用代数式表示实际问题中的数量关系.第一环节情境引入课题请同学们随便想一个自然数,将这个数乘5减7,再把结果乘2加14,老师一定知道你的结果的个位数字是几?你知道为什么吗?(设计意图:使学生体会到数学中的规律性以及用代数式表示规律的可行性与应用性,预计3分钟)教师:这节课我们将一起探究日历和图形中的规律.第二环节合作探究日历中的规律探究活动1 请同学们认真观察日历表,回答下列问题:(1)请找出同一横线上三个相邻数之间的关系;(2)请找一找竖列三个相邻数的关系;(3)请找一找左上、右下对角线上三个相邻数的关系;(4)请找一找左下、右上对角线上三个相邻数的关系.你能用字母表示这些关系吗?(设计意图:用问题引导学生的思考,从特殊入手,发现规律。
让学生体会用字母表示规律的思维过程,5分钟)探究活动2(1)日历红色方框中的9个数之和与该方框正中间的数有什么关系?(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?(3)这个关系对任何一个月的日历都成立吗?为什么?(4)你还能发现这样的方框中的9个数之间的其他关系吗?用代数式表示.(设计意图:教师示范验证过程,规范学生的数学推理的书写过程.预计8分钟)探究活动3(1)如果将方框改为十字形框,你能发现哪些规律?(2)你还能设计其他形状的包含数字规律的数框吗?(3)如果有一个如第1问的十字形框中的5个数的和为110,则其中最小的数是多少?这5个数的和能为121吗?为什么?(4)你能根据这个十字形数框提出问题解答吗?(设计意图:教师讲解后让学生及时练习,有助于对知识的掌握与巩固,第2问给学生表达的机会,锻炼其提出问题解决问题的能力,预计7分钟)小结:从日历中的数这个具体问题入手,通过观察、分析、比较、猜想得出规律,表示出规律,并利用规律解决了简单问题.第三环节探究图形中的规律探究活动4创新1 班要上一节主题班会,需要重新摆放桌椅,按照班委会要求准备了充足的桌子(一张桌子坐6人),根据以下问题探究规律.1.按图(1)的方式摆放餐桌和椅子,完成下表桌子张数12345…n可坐人数(设计意图:由贴近生活的情景问题开始,由学生自主探索,经历观察、比较、归纳、猜想、验证,了解探索规律的过程)2.若按图2 的方式摆放餐桌和椅子,完成下表:(设计意图:巩固加深学生对探索规律的过程和方法的理解):3.能力提升:问题1:班委提出利用8张这样的桌子想要坐更多的人,应选择哪种方法摆放?问题2:现在有40张这样的桌子,若按照第一种摆放方式,每8张拼成1张大桌子,一共可以坐______人.问题3:如果有8n张桌子,仍然按第一种规律8张拼成一张大桌子,此时桌子周围可以坐多少人?你是怎么想的?你能根据这个图形提出问题并解答吗?(设计意图:通过这几个问题,加大了题目的开放性,不仅在探索过程中培养了学生的创造能力,也使学生在对数学的生活化和生活的数学化都有较好的体验,预计15分钟)第四环节学生总结收获探索规律的方法和步骤是什么呢?(教师分析)通过本节课的学习,你有什么收获?(设计意图:给学生表达的机会,培养学生及时归纳总结知识的方法的好习惯,3分钟)第五环节学以致用mm的黑白两种颜色的大理石地砖,按如图的方1.某展览馆选用规格为600600式铺设通向展厅的走廊地面,依据上图规律,第4个图形需要黑色大理石地砖________块,第n个图形中需要黑色大理石地砖________块.2.下面是用棋子摆成的“小房子” ,摆第10个这样的“小房子” 需要多少枚棋子?摆第n个这样的“小房子”呢?你是如何得到的?3.将连续的奇数1,3,5,7,9…排成如图所示的数表.(1)十字形框中的五个数之和与中间数17有什么关系?(2)设十字框中间的奇数为a,用含a的代数式表示框中五个奇数之和为______.(3)若将十字形框上下左右移动,可框住另外五个数,这五个数的和还有上述规律吗?(4)已知被十字框框中的五个奇数之和为6025,则十字框中间的奇数是______.(5)被十字框框中的五个奇数之和能等于2019吗?能等于2015吗?说说你的理由.结语:同学们,把你的年龄的两位数的十位与个位对调,然后相减,得到一个数,记下这个数,我知道你得到的数一定能被9整除. 同学们试一试,想知道为什么吗?下节课我们将探索其中的规律.。
北师大数学七年级上册第三章探索与表达规律经典总结
第03讲_探索与表达规律知识图谱定义新运算知识精讲近几年出现了一类“定义新运算”型的题目,这类题目以加、减、乘、除、乘方等运算为基础,定义了很多具有实际意义的新运算.这些新的运算及其符号,在中、小学课本中没有统一的定义及运算规律,其实质是给出了一种变换规则,以此考查同学们的思维应变能力和计算能力.解此类问题的关键是深刻理解所给的定义或规则,将它们转化成我们所熟悉的加、减、乘、除、乘方等运算.注意:解答定义新运算题,关键是要正确地理解新定义的算式的含义,在计算时,严格按照规定的法则代入数值,然后转化为常规的四则运算算式进行计算.新运算 符号现定义两种运算和*,对于任意两个整数a 、b,都有:1,1b a b a b a b a =+-*=-,试求:2[34)21)]((** 的值.原式162[(341)(21)]2[61]2(611)262131=*+--=*=*+-=*=-= 程序计算类按如图所示的程序计算,若开始输入的x 值为3,求最后输出的结果当输入3时,3(31)61002⨯+=<,再将6重新输入,6(61)211002⨯+=<, 再将21重新输入,21(211)2311002⨯+=>,故输出结果为231解答此类问题的方法是用数值替换程序中的x ,如果计算结果符合条件,那么输出;如果计算结果不符合条件,那么再将计算结果重新输入进行计算,如此循环,直到符合条件为止周期循环已知a 是不为1的有理数,我们把11a -称为a 的差倒数.如:2的差倒数是112-,﹣1的差倒数是111(1)2=--.已知a 1=﹣13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,则a 2017=______.分析:根据定义计算:a 1=﹣13,a 2=11131141()3a ==---,a 3=2113114a =--=4,a 4=311114a =--=﹣13,…,依此类推,每3个数为一个循环组依次循环, ∵2017÷3=672余1,∴a 2017为第673循环组的第一个数,∴a 2017=a 1=﹣13.三点剖析一.考点:新定义运算二.重难点:新定义运算三.易错点:新定义运算定义新运算例题1、 根据所给流程图,计算所有输出数据之和等于__________.【答案】 35【解析】 模拟执行程序框图,可得1,2A N ==;输出1,2N =,满足条件6N <,4A =,输出4,3N =;满足条件6N <,7A =,输出7,4N =;满足条件6N <,10A =,输出10,5N =;满足条件6N <,13A =,输出13,6N =,不满足条件6N <,退出循环,结束.例题2、 我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将()2101,()21011换算成十进制数应为:()21021011202124015=⨯+⨯+⨯=++= ()3210210111202121211=⨯+⨯+⨯+⨯=按此方式,将二进制()21001换算成十进制数的结果是__________.【答案】 9. 【解析】 略.例题3、 若规定新符号“☆”具有性质a ☆b=a b +b a ,则2☆1的值是( ) A.3 B.2 C.1D.12【解析】 ∵a ☆b=a b +b a , ∴2☆1 =21+12 =2+1 =3.例题4、 定义新运算“*”为:a*b=(a b)3b(a b)a b -≥⎧⎨<⎩,则当x=3时,计算2*x ﹣4*x 的结果为______.【答案】 8【解析】 当x=3时,2*x ﹣4*x=2*3﹣4*3=9﹣(4﹣3)=8例题5、 在密码学中,你直接可以看到的内容为明文(真实文),对明文进行某种处理后得到的内容为密文,现有一种密码把英文的明文单词按字母分解,其中英文的26个字母(不论大小写)按顺序依次对应1,2,3,……26这26个自然数,见以下表格:现给出一个公式:当126x ≤≤时,若x 不能被2整除,则12'x x +=;若x 能被2整除,则132'xx =+.将明文字母对应的数字x 按以上公式计算得到密文字母对应的数字'x ,比如明文字母为g ,则有71742g d +→→=→,所以明文字母g 对应的密文字母为d .(1)按照上述规定,将明文good 译成的密文是什么?写出你的计算过程; (2)按照上述规定,请你写出由密文字母'x 得到明文字母x 的公式;(3)按照(2)中得到的公式,密文gawqj 所代表的明文单词是什么?(直接写出结果) 【答案】 (1)dhho ;(2)若'13x ≤,则2'1x x =-;若'13x >,则()2'13x x =-;(3)maths【解析】 当126≤≤x 时,若x 为奇数,则对应的'x 必然不超过13;若x 为偶数,则对应的'x 必然大于13,因此在将密文翻译成明文时,需要看蜜文所对应的数字与13的大小关系,即“明文看奇偶,密文比十三”.随练1、 我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:32101202121211⨯+⨯+⨯+⨯=.按此方式,则将十进制数6换算成二进制数应为__________. 【答案】 110 【解析】 略随练2、 定义一种新运算:观察下列式:1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13 (1)请你想一想:a ⊙b= ;(2)若a ≠b ,那么a ⊙b b ⊙a (填入“=”或“≠”) (3)若a⊙(﹣2b )=4,请计算 (a ﹣b )⊙(2a+b )的值. 【答案】 (1)4a+b ,(2)≠,(3)6.【解析】 (1)⊙1⊙3=1×4+3=7,3⊙(﹣1)=3×4﹣1=11,5⊙4=5×4+4=24,4⊙(﹣3)=4×4﹣3=13, ⊙a ⊙b=4a+b ;(2)a ⊙b=4a+b ,b ⊙a=4b+a ,(4a+b )﹣(4b+a )=3a ﹣3b=3(a ﹣b ), ⊙a ≠b ,⊙3(a ﹣b )≠0,即(4a+b )﹣(4b+a )≠0, ⊙a ⊙b ≠b ⊙a ; a b c d e f g h i j k l m 1 2 3 4 5 6 7 8 9 10 11 12 13 n o p q r s t u v w x y z 14 15 16 17 18 19 20 21 22 23 24 25 26(3)⊙a ⊙(﹣2b )=4a ﹣2b=4, ⊙2a ﹣b=2,(a ﹣b )⊙(2a+b ) =4(a ﹣b )+(2a+b ) =4a ﹣4b+2a+b , =6a ﹣3b , =3(2a ﹣b ) =3×2 =6.随练3、 符号f 表示一种新运算,它对一些数的运算结果如下: (1)()10f =,()21f =,()32f =,()43f =, (2)122f ⎛⎫= ⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭, 利用以上规律计算()120122013f f ⎛⎫-= ⎪⎝⎭__________【答案】 2【解析】 该题考查的是规律题. 根据(1)可知()1f n n =-,根据(2)可知1f n n ⎛⎫= ⎪⎝⎭,故()120122013201122013f f ⎛⎫-=-= ⎪⎝⎭随练4、 执行如图所示的流程图,输出结果为__________.【答案】23【解析】 由分析知,该程序图共执行了200次替换,虽然赋值1i =,3a =,但2i =时执行了一次替换,用12-替换了a ,3i =时执行了一次替换,用23替换了a ;到4i =时,a 的值又等于3,所以在200次替换过程中a 的值成周期出现,周期为3,所以200次替换得到的23a =.与整式相关的找规律⋅⋅⋅⋅⋅⋅知识精讲规律探究类的问题考查从特殊到一般的认识水平、运算能力以及对知识的贯通能力,要求学生必须具备逻辑推理能力、观察归纳能力、猜想验证能力.考察题型主要有“数字类”、“图形类”、“计算类”等.掌握探究的一般方法是解决此类问题的关键.(1)掌握探究规律的方法,可以通过具体到抽象、特殊到一般的方法,有时通过类比、联想,还要充分利用已知条件或图形特征进行透彻分析,从中找到隐含的规律.(2)恰当合理的联想、猜想,从简单的、局部的特殊情况到一般情况是基本思路,经过归纳、提炼、加工,寻找出一般性规律,从而求解问题.解决“规律探索”的题目通常需要以下三个步骤:寻找数量之间的关系——用代数式表示规律——验证规律。
3.3探索与表达规律第2课时(北师大版2024)
课堂小结
本节课你学习了什么?本节课你有哪些收获?
探索与表达规律:
具
体
问
题
观
察
、
比
较
猜
想
规
律
表
示
规
律
验
证
规
律
得
出
结
论
成立
不成立
回头重新探索
作业布置
习题3.3:3,4,5题.
感谢聆听
第三步:算出y2的各位数字之和得x3,再计算x32+1得y3.
依此类推,y30的值为( D )
A.5
B.26
C.65
D.122
学以致用
3.破译密码“L dp d vwxghqw”,现在给你一把破译它的“钥匙”x-3,
即:把26个英文字母顺序排成圈,x-3代表“把一个字母换成字母表
中 从 它 向 前 移 动 3 位 的 字 母 ” , 那 么 “L dp d vwxghqw” 的 意 思 是
我便可以说出那个三位数.”乙同学试了几次,果真如此.请你指出甲同学
是如何猜出这个三位数的,并用数学知识说明理由.
解:只要将说出的三位数减去100就知道了.
理由:设百位上的数字为a,十位上的数字为b,个位上的数字为c,
则乙按步骤所得的三位数为10[2(5a+5)+b]+c,
化简后为100a+10b+c+100,减去100就是原三位数.
a+b+c+d+999a+99b+9c,
显然999a+99b+9c可以被3整除,
所以只考虑a+b+c+d,若a+b+c+d可以被3整除,则四位数可以被3整除.
3.3探索与表达规律+课件+-2024—2025学年北师大版数学七年级上册
(2)如果将紫色方框移至下图的位置,又如何?
12345 6
12 3 4 5 6
7 8 9 10 11 12 13 7 8 9 10 11 12 13
14 15 16 17 18 19 20 14 15 16 17 18 19 20
1199 2200
1+x+x+1+x+6+ x+7+x+8=9x
2211 x2+26 x2+37 2x+48 2255 2266 2277
2288 2299 3300 3311
(4)这个结论对于任何一个月的月历都成立吗?
联系实际,解决问题
金秋时节,袁山公园迎来了第七 届菊花展,里面摆弄着各种造型,争 奇斗艳。其中有一个这样的造型, 如下图:花盆按上、下、左、右四 个方向逐渐增加的规律摆放, 则摆 第n个图需要____ 盆白色菊花, ____盆黄色菊花.
正方形个数 1
2
火柴棍根数 4
7
3
...
10 ...
…
n个正方形
…
n
3n+1
变式2:
用火柴棍按下图的方式搭梯形 .
①
②
填写下表 : 梯形个数
火柴棍根数
…
③
12 3…
n
5 9 13 ... 4n+1
问题二: 下图是某月的月历。 (1)紫色方框中的9个数之和与方框正中 心的数有什么关系?
123456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
北师大版七年级上册数学课件:探索与表达规律
为பைடு நூலகம்abc.
4.用字母表示运算律: 加法交换律: a+b=b+a 加法结合律: a+b+c=a+(b+c) 乘法交换律: ab=ba 乘法结合律: abc=a(bc) 乘法分配律: a(b+c)=ab+ac
二、回顾旧知
代数式:
形如2(m+n),mn,∏ r2 , 2∏r, abc,a+b,
ab+ac这样的式子.即用运算符号(+、-、×、÷、乘 方、开方)把数或表示数的字母连结而成的式子.
注意:
单独的一个数字和字母也叫代数式.单独的一
个数或者字母也是代数式,如:5,∏,a等.
二、回顾旧知
列代数式要注意以下几点:
1.数字与字母、字母与字母相乘,要把乘号省略;如
2×a写作2a,a×b写作ab, 2×(a+b)或(a+b)×2写
这些和有什么规律? 你们组能发现并验证这个规律吗?
活动二:每个同学独立完成
任意写一个三位数
123 341 987
100a+10b+c
交换它的百位数字与个位数字, 321 143 789
又得到一个三位数
100c+10b+a
两个数相减
-198 299 198
?
两个数相减后的结果有什么规律,这个规律对任意一个 三位数都成立吗?
三、探索新知
要求: 1.请解决本节课最初的游戏问题; 2.以小组为单位,设计类似的数字游戏 并解释其中的道理 .
四、归纳提炼
1.基本方法:
分析 表示 验证
2.基本思想:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的()
A. B. C. D.
3.四个小朋友站成一排,老师按图中所示的规则数数,数到2014时对应的小朋友可得一朵红花.那么,得红花的小朋友是()
A.小沈 B.小叶 C.小李 D.小王
10.观察下列数表:
1 2 3 4…第一行
2 3 4 5…第二行
3 4 5 6…第三行
4 5 6 7…第四行
根据数表所反映的规律,第n行第n列交叉点上的数应为()
22
8.已知两组数3,7,11,15,…和5,8,11,14,…有许多相同的数,如11是它们第一个相同的数,那么它们的第20个相同的数是.
9.如图所示,长方形的长和宽分别为8厘米和6厘米,剪去一个长为x的小长方形(阴影部分)
后,余下一个长方形的面积S与x的关系式可表示为S=.
三.解答题(共10小题)
10.观察下列等式:
12×231=132×21,
13×341=143×31,
23×352=253×32,
34×473=374×43,
62×286=682×26,
…
以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.
(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:
①52×=×25;
②×396=693×.
(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.
11.正整数按如图的规律排列.请写出第20行,第21列的数字是
12.将连续的偶数2,4,6,8,10,…排成如图所示:(1)十字框中5个数之和与26有什么关系?(2)设中间数为a,用代数式表示这十字框中五个数的和.(3)若将十字框上、下、左、右平移,方框就是另外五个数,这五个数还有这种规律吗?(4)十字框中的五个数之和能等于2010吗?若能,请写出这五个数,若不能,请说明理由.能否等于2012呢?。