2009年全国高中数学联合竞赛湖北省预赛
2009年全国高中数学联赛试题及答案
全国高中数学联赛全国高中数学联赛一试命题范围不超出教育部《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容, 但在方法的要求上有所提高。
主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。
全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当 增加一些竞赛教学大纲的内容。
全卷包括 4 道大题,其中一道平面几何题 .一 试一、填空(每小题 7 分,共 56 分)1. 若函数 f x x x 2 且 f( n ) x f f f f x ,则 f 99 1 .1 n2. 已知直线 L : x y9 0 和圆M : 2 x 2 2 y 2 8x 8y 1 0 ,点 A 在直线 L 上, B ,C 为 圆 M 上 两 点 , 在 ABC 中 , BAC 45 , AB 过 圆 心 M , 则 点 A 横 坐 标 范 围为 .y≥ 0. 在坐标平面上有两个区域 M 和 N , M 为 y ≤ x , N 是随 t 变化的区域,它由3y≤ 2 x不等式 t ≤ x ≤ t 1 所确定, t 的取值范围是 0 ≤ t ≤ 1 ,则 M 和 N 的公共面积是函数f t .4. 使不等式 1 1 1 a 2007 1 对一切正整数 n 都成立的最小正整数n 1 n 2 2n 1 3a 的值为 .2 25. 椭圆 x y 1 a b 0 上任意两点 P ,Q ,若 OP OQ ,则乘积 OP OQ 的最a 2 b2小值为 .6. 若方程 lg kx 2lg x 1 仅有一个实根,那么 k 的取值范围是 .第一行是前 则最后一行的 数是 (可以用指数表示) 8. 某车站每天 8∶00 ~ 9∶00 , 9∶00 ~ 10∶00 都恰有一辆客车到站,但到站的时刻是随 机的,且两者到站的时间是相互独立的,其规律为 到站时刻 8∶10 8∶30 8∶50 9∶10 9∶30 9∶50 概率 1 1 1 6 2 3 一旅客 8∶20 到车站,则它候车时间的数学期望为 (精确到分). 二、解答题 1. ( 14 分)设直线 l : y kx m (其中 k , m 为整数)与椭圆 x 2 y 2 16 1交于不同两 x 2 y 2 12 点 A , B ,与双曲线 1 交于不同两点 C , D ,问是否存在直线 l ,使得向量 4 12AC BD 0 ,若存在,指出这样的直线有多少条?若不存在,请说明理由. 162.( 15 分)已知 p ,q q 0 是实数,方程 x2 px q 0 有两个实根,,数列 an 满足 a1 p , a2 p 2 q , an pan 1 qan 2 n 3,4 ,(Ⅰ )求数列a n的通项公式(用,表示);(Ⅱ )若 p 1 , q 1 ,求 a n的前 n 项和.43.( 15 分)求函数y x 27 13 x x 的最大和最小值.加试一、填空(共 4 小题,每小题50 分,共 200 分)9.如图, M , N 分别为锐角三角形 ABC (AB )的外接圆中点.过点 C 作 PC ∥ MN 交圆于 P 点, I 为ABC 的内心,连接PI⑴求证: MP MT NP NT ;⑵在弧 AB (不含点 C )上任取一点Q ( Q ≠ A ,T , B ),记上弧BC 、AC 的并延长交圆于 T .AQC ,△QCB 的内心分别为 I1, I 2,P CN MI BAT Q1610.求证不等式:nk ln n ≤1,n1 ,2,⋯12k 1 k 1 211.设 k , l 是给定的两个正整数.证明:有无穷多个正整数m≥ k ,使得 C k m与 l 互素.16\-16。
2009年全国高中数学联合竞赛试题及解答.
2009年全国高中数学联合竞赛一试一、填空题:本大题共8个小题,每小题7分,共56分。
2009*1、函数21)(x x x f +=,且fn n x f f f f x f个)]]([[)()(=,则=)1()99(f◆答案:101★解析:由题意得2)1(1)()(xxx f x f+==,2)2(21)]([)(xx x f f x f+==,······2)99(991)(x x x f +=.故 101)1()99(=f .2009*2、已知直线09:=-+y x L 和圆018822:22=---+y x y x M ,点A 在直线L 上,点C B ,为圆M 上两点,在ABC ∆中,045=∠BAC ,直线AB 过圆心M ,则点A 横坐标的取值范围为 ◆答案:[]6,3★解析:设A (a ,9-a ),则圆心M 到直线AC 的距离d =AM sin ︒45,由直线AC 与圆M 相交,得 234≤d .解得 63≤≤a .2009*3、在坐标平面上有两个区域M 和N ,M 为⎪⎩⎪⎨⎧-≤≤≥x y x y y 20,N 是随t 变化的区域,它由不等式1+≤≤t x t 所确定,t 的取值范围是10≤≤t ,则M 和N 的公共面积是函数=)(t f◆答案:212++-t t ★解析:由题意知阴影部分面积s t f =)( =BEF OCD AOB S S S ∆∆∆--=212++-t t2009*4、若不等式3120071212111<++++++n n n 对一切正整数n 都成立,则最小正整数a 的值为 ◆答案:2009 ★解析:设121...2111)(++++++=n n n n f .显然)(n f 单调递减.则由)(n f 的最大值312007)1(-<a f ,可得2009=a .2009*5、椭圆12222=+by a x (0>>b a )上任意两点Q P ,,若OQ OP ⊥,则OQ OP ⋅的最小值为◆答案:.22222ba b a + ★解析:设)sin ,cos (θθOP OP P ,)).2sin(),2cos((πθπθ±±OQ OQ Q由Q P 、在椭圆上,有22222sin cos 1b a OP θθ+=(1), 22222cos sin 1b a OQθθ+=(2) (1)+(2)得.11112222b a OQOP+=+于是当 22222ba b a OQ OP +==时,OQ OP 达到最小值.22222b a b a +2009*6、若关于x 的方程)1lg(2lg +=x kx 仅有一个实根,则实数k 的取值范围为 ◆答案:0<k 或4=k★解析:由题意,方程等价于⎪⎩⎪⎨⎧+=>+>2)1(010x kx x kx ,当且仅当 0>kx (1);01>+x (2);01)2(2=+-+x k x (3) 对(3)由求根公式得]42[21,221k k k x x -±-= (4)又0042≤⇒≥-=∆k k k 或4≥k)(i 当0<k 时,由(3)得⎩⎨⎧>=<-=+01022121x x k x x ,所以21x x 同为负根。
2009年全国高中数学联赛一、二试及详细答案和评分标准(A卷)
2009年全国高中数学联合竞赛一试试题参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准,填空题只设7分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中至少4分为一个档次,不要增加其他中间档次. 一、填空(共8小题,每小题7分,共56分)1. 若函数()f x ()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()()991f = . 【答案】 110【解析】 ()()()1f x f x ==, ()()()2f x f f x ==⎡⎤⎣⎦……()()99f x =故()()991110f =.2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】 []36, 【解析】 设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得d 解得36a ≤≤.3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .【答案】 212t t -++【解析】 由题意知 ()f t S =阴影部分面积A OB OCD BS S S ∆∆∆=-- ()22111122t t =---212t t =-++4. 使不等式1111200712213a n n n +++<-+++对一切正整数n 都成立的最小正整数a 的值为 .【答案】 2009【解析】 设()1111221f n n n n =++++++.显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.5. 椭圆22221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 .【答案】 22222a ba b+【解析】 设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.由P ,Q 在椭圆上,有 222221cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得22221111a b OP OQ+=+.于是当OP OQ ==OP OQ 达到最小值22222a b a b+.6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 . 【答案】 0k <或4k = 【解析】 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩当且仅当0kx > ① 10x +>② ()2210x k x +-+=③对③由求根公式得1x,2122x k ⎡=-⎣ ④2400k k k ∆=-⇒≥≤或4k ≥.(ⅰ)当0k <时,由③得 12122010x x k x x +=-<⎧⎨=>⎩ 所以1x ,2x 同为负根. 又由④知121010x x +>⎧⎨+<⎩所以原方程有一个解1x .(ⅱ)当4k =时,原方程有一个解112kx =-=. (ⅲ)当4k >时,由③得12122010x x k x x +=->⎧⎨=>⎩所以1x ,2x 同为正根,且12x x ≠,不合题意,舍去. 综上可得0k <或4k =为所求.7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)【答案】 981012⨯ 【解析】 易知:(ⅰ)该数表共有100行;(ⅱ)每一行构成一个等差数列,且公差依次为11d =,22d =,232d =,…,98992d =(ⅲ)100a 为所求.设第()2n n ≥行的第一个数为n a ,则 ()22111222n n n n n n a a a a -----=++=+3222222n n n a ---⎡⎤=++⎣⎦24223222222n n n n a ----⎡⎤=++⨯+⎣⎦323232n n a --=+⨯……()121212n n a n --=+-⨯ ()212n n -=+故981001012a =⨯.8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且两者到站一旅客820∶到车站,则它候车时间的数学期望为 (精确到分)【答案】 27 【解析】 旅客候车的分布列为候车时间的数学期望为1111110305070902723361218⨯+⨯+⨯+⨯+⨯=二、解答题1. (本小题满分14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y -=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由. 【解析】 由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k xkmx m +++-=设()11A x y ,,()22B x y ,,则122834kmx x k +=-+()()()222184344480km k m ∆=-+-> ① ………………………………………………4分由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k xkmx m ----=设()34C x y ,,()44D x y ,,则34223kmx x k+=- ()()()2222243120km k m ∆=-+-+> ② ………………………………………………8分因为0AC BD +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=.由1234x x x x +=+得2282343km kmk k -=+-. 所以20km =或2241343k k -=+-.由上式解得0k =或0m =.当0k =时,由①和②得m -<m 是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得k .因k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.………14分2. (本小题15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-=,,(Ⅰ)求数列{}n a 的通项公式(用α,β表示);(Ⅱ)若1p =,14q =,求{}n a 的前n 项和.【解析】 方法一:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以()1212n n n n n a px qx a a αβαβ------=+-,()345n =,,,整理得()112n n n n a a a a βαβ----=- 令1n n n b a a β+=-,则()112n n b b n α+==,,.所以{}n b 是公比为α的等比数列.数列{}n b 的首项为:()()222121b a a p q p ββαβαββαβα=-=--=+--+=.所以211n n n b ααα-+=⋅=,即11n n n a a βα++-=()12n =,,.所以11n n n a a βα++=+()12n =,,.①当240p q ∆=-=时,0αβ=≠,12a p ααα==+=,11n n n a a βα++=+()12n =,,变为11n n n a a αα++=+()12n =,,.整理得,111n nn na a αα++-=,()12n =,,.所以,数列n n a α⎧⎫⎨⎬⎩⎭成公差为1的等差数列,其首项为122a ααα==.所以()2111nna n n α=+-=+.于是数列{}n a 的通项公式为()1n n a n α=+;……………………………………………………………………………5分②当240p q ∆=->时,αβ≠, 11n n n a a βα++=+1n n a βαβαβα+-=+-11n n n a βαβααβαβα++=+---()12n =,,.整理得211n n n n a a ααββαβα+++⎛⎫+=+ ⎪--⎝⎭,()12n =,,.所以,数列1n n a αβα+⎧⎫+⎨⎬-⎩⎭成公比为β的等比数列,其首项为2221a ααβαββαβαβα+=++=---.所以121n n n a αβββαβα+-+=--.于是数列{}n a 的通项公式为11n n n a βαβα++-=-.………………………………………………10分(Ⅱ)若1p =,14q =,则240p q ∆=-=,此时12αβ==.由第(Ⅰ)步的结果得,数列{}n a 的通项公式为()11122nn n n a n +⎛⎫=+= ⎪⎝⎭,所以,{}n a 的前n 项和为231234122222n n n n n s -+=+++++234112341222222n n n n s n ++=+++++以上两式相减,整理得1133222n n n s ++=-所以332n n n s +=-.……………………………………………………………………………15分方法二:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以1a αβ=+,222a αβαβ=++.特征方程20p q λλ-+=的两个根为α,β. ①当0αβ=≠时,通项()()1212n n a A A n n α=+=,,由12a α=,223a α=得()()122212223A A A A αααα+=⎧⎪⎨+=⎪⎩ 解得121A A ==.故 ()1n n a n α=+.……………………………………………………5分 ②当αβ≠时,通项()1212n n n a A A n αβ=+=,,.由1a αβ=+,222a αβαβ=++得12222212A A A A αβαβαβαβαβ+=+⎧⎪⎨+=++⎪⎩ 解得1A αβα-=-,2A ββα=-.故1111n n n n n a αββαβαβαβα++++--=+=---.…………………………………………………………10分 (Ⅱ)同方法一.3. (本小题满分15分)求函数y=【解析】函数的定义域为[]013,.因为y=当0x =时等号成立.故y的最小值为.……………………………………………5分 又由柯西不等式得 22y =()()()11122731312123x x x ⎛⎫+++++-= ⎪⎝⎭≤所以11y ≤. ………………………………………………………………………………10分 由柯西不等式等号成立的条件,得()491327x x x =-=+,解得9x =.故当9x =时等号成立.因此y 的最大值为11.…………………………………………………………………………………15分2009年全国高中数学联合竞赛加试试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次. 一、填空(共4小题,每小题50分,共200分)9. 如图,M ,N 分别为锐角三角形ABC ∆(A B ∠<∠)的外接圆Γ上弧BC 、AC 的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ∆的内心,连接PI 并延长交圆Γ于T . ⑴求证:MP MT NP NT ⋅=⋅;⑵在弧AB (不含点C )上任取一点Q (Q A ≠,T ,B ),记AQC ∆,QCB △的内心分别为1I ,2I ,B求证:Q ,1I ,2I ,T 四点共圆.【解析】 ⑴连NI ,MI .由于PC MN ∥,P ,C ,M ,N 共圆,故PCMN 是等腰梯形.因此NP MC =,PM NC =.ABCMNPTI连AM ,CI ,则AM 与CI 交于I ,因为MIC MAC ACI MCB BCI MCI ∠=∠+∠=∠+∠=∠,所以MC MI =.同理NC NI =.于是NP MI =,PM NI =.故四边形MPNI 为平行四边形.因此PMT PNT S S =△△(同底,等高). 又P ,N ,T ,M 四点共圆,故180TNP PMT ∠+∠=︒,由三角形面积公式1sin 2PMT S PM MT PMT =⋅∠△1s i n 2PNT S PN NT PNT ==⋅∠△1s i n 2P N N T P MT =⋅∠ 于是PM MT PN NT ⋅=⋅.⑵因为1111NCI NCA ACI NQC QCI CI N ∠=∠+∠=∠+∠=∠,B所以1NC NI =,同理2MC MI =.由MP MT NP NT ⋅=⋅得NT MTMP NP=. 由⑴所证MP NC =,NP MC =,故 12NT MTNI MI =. 又因12I NT QNT QMT I MT ∠=∠=∠=∠,有12I NT I MT ∆∆∽.故12NTI MTI ∠=∠,从而1212I QI NQM NTM I TI ∠=∠=∠=∠.因此Q ,1I ,2I ,T 四点共圆. 10. 求证不等式:2111ln 12n k k n k =⎛⎫-<- ⎪+⎝⎭∑≤,1n =,2,… 【解析】 证明:首先证明一个不等式: ⑴ln(1)1x x x x<+<+,0x >. 事实上,令()ln(1)h x x x =-+,()ln(1)1xg x x x=+-+. 则对0x >,1()101h x x '=->+,2211()01(1)(1)x g x x x x '=-=>+++. 于是()(0)0h x h >=,()(0)0g x g >=.在⑴中取1x n=得⑵111ln 11n n n⎛⎫<+< ⎪+⎝⎭. 令21ln 1nn k k x n k ==-+∑,则112x =,121ln 111n n n x x n n -⎛⎫-=-+ ⎪+-⎝⎭ 211n n n<-+210(1)n n=-<+因此1112n n x x x -<<<=.又因为111ln (ln ln(1))(ln(1)ln(2))(ln 2ln1)ln1ln 1n k n n n n n k -=⎛⎫=--+---++-+=+ ⎪⎝⎭∑.从而12111ln 11nn n k k k x k k -==⎛⎫=-+ ⎪+⎝⎭∑∑12211ln 111n k k n k k n -=⎛⎫⎛⎫=-++ ⎪ ⎪++⎝⎭⎝⎭∑12111n k kk k -=⎛⎫>- ⎪+⎝⎭∑1211(1)n k k k -==-+∑111(1)n k k k -=-+∑≥111n=-+>-.11. 设k ,l 是给定的两个正整数.证明:有无穷多个正整数m k ≥,使得C k m 与l 互素.【解析】 证法一:对任意正整数t ,令(!)m k t l k =+⋅⋅.我们证明()C 1k m l =,. 设p 是l 的任一素因子,只要证明:C k m p Œ.若!p k Œ,则由 1!C ()kkmi k m k i ==-+∏1[((!)]k i i t l k =≡+∏ 1ki i =≡∏()1!m o d k p α+≡.及|!p k α,且1!p k α+Œ,知|!C k m p k α且1!C k m p k α+Œ.从而C k m p Œ.证法二:对任意正整数t ,令2(!)m k t l k =+⋅⋅,我们证明()C 1k m l =,. 设p 是l 的任一素因子,只要证明:C k m p Œ.若!p k Œ,则由1!C ()kkmi k m k i ==-+∏21[((!)]ki i t l k =≡+∏ 1ki i =≡∏()!m o dk p ≡. 即p 不整除上式,故C k m p Œ.若|!p k ,设1α≥使|!p k α,但1!p k α+Œ.12|(!)p k α+.故由 11!C ()k kmi k m k i -==-+∏21[((!)]ki i t l k =≡+∏ 1ki i =≡∏()1!mod k p α+≡及|!p k α,且1!p k α+Œ,知|!C k m p k α且1!C k m p k α+Œ.从而C k m p Œ.12. 在非负数构成的39⨯数表111213141516171212223242526272829313233343536373839x x x x x x x x x P x x x x x x x x x x x x x x x x x x⎛⎫ ⎪= ⎪ ⎪⎝⎭ 中每行的数互不相同,前6列中每列的三数之和为1,1728390x x x ===,27x ,37x ,18x ,38x ,19x ,29x 均大于.如果P 的前三列构成的数表111213212223313233x x x S x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭满足下面的性质()O :对于数表P 中的任意一列123k k k x x x ⎛⎫ ⎪⎪ ⎪⎝⎭(1k =,2,…,9)均存在某个{}123i ∈,,使得⑶{}123min ik i i i i x u x x x =≤,,.求证:(ⅰ)最小值{}123min i i i i u x x x =,,,1i =,2,3一定自数表S 的不同列. (ⅱ)存在数表P 中唯一的一列***123k k k x x x ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,*1k ≠,2,3使得33⨯数表***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭ 仍然具有性质()O .【解析】 (ⅰ)假设最小值{}123min i i i i u x x x =,,,1i =,2,3不是取自数表S 的不同列.则存在一列不含任何i u .不妨设2i i u x ≠,1i =,2,3.由于数表P 中同一行中的任何两个元素都不等,于是2i i u x <,1i =,2,3.另一方面,由于数表S 具有性质()O ,在⑶中取2k =,则存在某个{}0123i ∈,,使得002i i x u ≤.矛盾.(ⅱ)由抽届原理知{}1112min x x ,,{}2122min x x ,,{}3132min x x , 中至少有两个值取在同一列.不妨设 {}212222min x x x =,,{}313232min x x x =,.由前面的结论知数表S 的第一列一定含有某个i u ,所以只能是111x u =.同样,第二列中也必含某个i u ,1i =,2.不妨设222x u =.于是333u x =,即i u 是数表S 中的对角线上数字.111213212223313233x x x S x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭记{}129M =,,,,令集合 {}{}12|min 13ik i i I k M x x x i =∈>=,,,.显然{}111332|k k I k M x x x x =∈>>,且1,23I ∉.因为18x ,38111x x >≥,32x ,所以8I ∈. 故I ∅≠.于是存在*k I ∈使得{}*22max |k k x x k I =∈.显然,*1k ≠,2,3. 下面证明33⨯数表 ***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭具有性质()O .从上面的选法可知{}{}*1212:min min i i i i i ik u x x x x x '==,,,,(13)i =,.这说明 {}*111211min k x x x u >,≥,{}*313233min k x x x u >,≥.又由S 满足性质()O .在⑶中取*k k =,推得*22k x u ≤,于是{}**2212222min k k u x x x x '==,,.下证对任意的k M ∈,存在某个1i =,2,3使得i ik u x '≥.假若不然,则{}12min ik i i x x x >,,1i =,3且*22k k x x >.这与*2k x 的最大性矛盾.因此,数表S '满足性质()O .下证唯一性.设有k M ∈使得数表 111212122231323k k k x x x S x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭具有性质()O ,不失一般性,我们假定 {}111121311m i n u x x x x ==,, ⑷{}221222322min u x x x x ==,,{}331323333m i n u x x xx ==,,3231x x <.由于3231x x <,2221x x <及(ⅰ),有{}11112111min k u x x x x ==,,.又由(ⅰ)知:或者()a {}3313233min k k u x x x x ==,,,或者{}2212222()min k k b u x x x x ==,,.如果()a 成立,由数表S 具有性质()O ,则 {}11112111m i n ku x x x x ==,,, ⑸{}22122222min k u x x x x ==,,, {}3313233m i n k k u x x x x ==,,.由数表S 满足性质()O ,则对于3M ∈至少存在一个{}123i ∈,,使得*i ik u x ≥.由*k I ∈及⑷和⑹式知,*1111k x x u >=,*3323k x x u >=.于是只能有*222k k x u x =≤.类似地,由S '满足性质()O 及k M ∈可推得*222k k x u x '=≤.从而*k k =.。
2009年全国高中数学联赛一试(试题参考答案及评分标准)
2009年全国高中数学联合竞赛一试试题参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准,填空题只设7分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中至少4分为一个档次,不要增加其他中间档次. 一、填空(共8小题,每小题7分,共56分) 1. 若函数()f x =且()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦ ,则()()991f = . 【答案】110【解析】 ()()()1f x f x ==,()()()2fx f f x ==⎡⎤⎣⎦……()()99fx =故()()991110f =.2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在A B C ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】 []36, 【解析】 设()9A a a -,,则圆心M 到直线A C 的距离sin 45d AM =︒,由直线A C 与圆M 相交,得2d ≤解得36a ≤≤.3.在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .【答案】 212t t -++【解析】 由题意知()f t S =阴影部分面积AOB OCD BEF S S S ∆∆∆=-- ()22111122t t =---212t t =-++4. 使不等式1111200712213a n n n +++<-+++ 对一切正整数n 都成立的最小正整数a 的值为 .【答案】 2009 【解析】 设()1111221f n n n n =++++++ .显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.5. 椭圆22221x y ab+=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 .【答案】22222a ba b+【解析】 设()cos sin P O P O P θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.由P ,Q 在椭圆上,有 222221cos sin abO Pθθ=+① 222221sin cos abO Qθθ=+②①+②得 22221111abOPOQ+=+.于是当OP OQ ==OP OQ 达到最小值22222a ba b+.6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 .【答案】0k <或4k = 【解析】 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩ 当且仅当kx > ① 10x +> ② ()2210x k x +-+=③对③由求根公式得1x,2122x k ⎡=-±⎣④2400k k k ∆=-⇒≥≤或4k ≥.(ⅰ)当0k <时,由③得12122010x x k x x +=-<⎧⎨=>⎩ 所以1x ,2x 同为负根. 又由④知121010x x +>⎧⎨+<⎩所以原方程有一个解1x .(ⅱ)当4k =时,原方程有一个解112k x =-=.(ⅲ)当4k >时,由③得12122010x x k x x +=->⎧⎨=>⎩所以1x ,2x 同为正根,且12x x ≠,不合题意,舍去. 综上可得0k <或4k =为所求.7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)【答案】 981012⨯ 【解析】 易知:(ⅰ)该数表共有100行;(ⅱ)每一行构成一个等差数列,且公差依次为11d =,22d =,232d =,…,98992d =(ⅲ)100a 为所求.设第()2n n ≥行的第一个数为n a ,则 ()22111222n n n n n n a a a a -----=++=+3222222n n n a ---⎡⎤=++⎣⎦24223222222n n n n a ----⎡⎤=++⨯+⎣⎦ 323232n n a --=+⨯……()121212n n a n --=+-⨯()212n n -=+故981001012a =⨯.8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随一旅客820∶到车站,则它候车时间的数学期望为 (精确到分).【答案】 27 【解析】 旅候车时间的数学期望为1111110305070902723361218⨯+⨯+⨯+⨯+⨯=二、解答题1. (本小题满分14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612xy+=交于不同两点A ,B ,与双曲线221412xy-=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由.【解析】 由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k xkmx m +++-=设()11A x y ,,()22B x y ,,则122834km x x k+=-+()()()222184344480km km∆=-+->① ………………………………………………4分由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k xkmx m ----=设()34C x y ,,()44D x y ,,则34223km x x k+=-()()()2222243120km km∆=-+-+>② ………………………………………………8分因为0A C B D +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=.由1234x x x x +=+得 2282343km km kk-=+-.所以20km =或2241343kk-=+-.由上式解得0k =或0m =.当0k =时,由①和②得m -<因m 是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得k <<.因k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.………14分2. (本小题15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-= ,, (Ⅰ)求数列{}n a 的通项公式(用α,β表示); (Ⅱ)若1p =,14q =,求{}n a 的前n 项和.【解析】 方法一:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以()1212n n n n n a px qx a a αβαβ------=+-,()345n = ,,,整理得()112n n n n a a a a βαβ----=-令1n n n b a a β+=-,则()112n n b b n α+== ,,.所以{}n b 是公比为α的等比数列. 数列{}n b 的首项为:()()222121b a a p q p ββαβαββαβα=-=--=+--+=.所以21n n n b ααα-+=⋅=,即11n n n a a βα++-=()12n = ,,.所以11n n n a a βα++=+()12n = ,,.①当240p q ∆=-=时,αβ=≠,12a p ααα==+=,11n n n a a βα++=+()12n = ,,变为11n n n a a αα++=+()12n = ,,.整理得,111n nn na a αα++-=,()12n = ,,.所以,数列n n a α⎧⎫⎨⎬⎩⎭成公差为1的等差数列,其首项为122a ααα==.所以()2111nna n n α=+-=+.于是数列{}n a 的通项公式为()1nn a n α=+;……………………………………………………………………………5分②当240p q ∆=->时,αβ≠, 11n n n a a βα++=+1n n a βαβαβα+-=+-11n n n a βαβααβαβα++=+---()12n = ,,.整理得211n n n n a a ααββαβα+++⎛⎫+=+ ⎪--⎝⎭,()12n = ,,. 所以,数列1n n a αβα+⎧⎫+⎨⎬-⎩⎭成公比为β的等比数列,其首项为2221a ααβαββαβαβα+=++=---.所以121n n n a αβββαβα+-+=--.于是数列{}n a 的通项公式为11n n n a βαβα++-=-.………………………………………………10分(Ⅱ)若1p =,14q =,则240p q ∆=-=,此时12αβ==.由第(Ⅰ)步的结果得,数列{}n a 的通项公式为()11122nn n n a n +⎛⎫=+= ⎪⎝⎭,所以,{}n a 的前n 项和为231234122222n n nn n s -+=+++++ 234112341222222n n nn s n ++=+++++以上两式相减,整理得1133222n n n s ++=-所以332n nn s +=-.……………………………………………………………………………15分 方法二:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以1a αβ=+,222a αβαβ=++.特征方程20p q λλ-+=的两个根为α,β.①当0αβ=≠时,通项()()1212n n a A A n n α=+= ,,由12a α=,223a α=得()()122212223A A A A αααα+=⎧⎪⎨+=⎪⎩ 解得121A A ==.故()1nn a n α=+.……………………………………………………5分②当αβ≠时,通项()1212n n n a A A n αβ=+= ,,.由1a αβ=+,222a αβαβ=++得12222212A A A A αβαβαβαβαβ+=+⎧⎪⎨+=++⎪⎩ 解得1A αβα-=-,2A ββα=-.故1111n n n n n a αββαβαβαβα++++--=+=---.…………………………………………………………10分 (Ⅱ)同方法一.3. (本小题满分15分)求函数y =的最大和最小值.【解析】 函数的定义域为[]013,.因为y =≥=当0x =时等号成立.故y的最小值为13分又由柯西不等式得22y =()()()11122731312123x x x ⎛⎫+++++-= ⎪⎝⎭≤ 所以11y ≤. ………………………………………………………………………………10分由柯西不等式等号成立的条件,得()491327x x x =-=+,解得9x =.故当9x =时等号成立.因此y 的最大值为11. (15)分。
2009年全国高中数学联合竞赛试题答案
2009年全国高中数学联合竞赛一试试题参考答案及评分标准一、填空(共8小题,每小题7分,共56分)1. 若函数()21xf x x=+且()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()()991f = . 【答案】 110【解析】 ()()()121x f x f x x==+, ()()()2212xf x f f x x==⎡⎤⎣⎦+……()()992199xf x x=+.故()()991110f =.2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】 []36, 【解析】 设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得342d ≤. 解得36a ≤≤.3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .【答案】 212t t -++【解析】 由题意知()f t S =阴影部分面积 AOB OCD BEF S S S ∆∆∆=--()22111122t t =--- 212t t =-++4. 使不等式1111200712213a n n n +++<-+++对一切正整数n 都成立的最小正整数a 的值为 .F ED CB A O yx【答案】 2009 【解析】 设()1111221f n n n n =++++++.显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.5. 椭圆22221x y a b+=()0a b >>上任意两点P ,Q ,若O P O Q ⊥,则乘积OP OQ ⋅的最小值为 . 【答案】 22222a b a b+【解析】 设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.由P ,Q 在椭圆上,有 222221cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得22221111a b OP OQ+=+. 于是当22222a b OP OQ a b ==+时,OP OQ 达到最小值22222a b a b+.6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 . 【答案】 0k <或4k =【解析】 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩当且仅当0kx > ① 10x +> ② ()2210x k x +-+=③对③由求根公式得1x ,221242x k k k ⎡⎤=-±-⎣⎦ ④2400k k k ∆=-⇒≥≤或4k ≥. (ⅰ)当0k <时,由③得 12122010x x k x x +=-<⎧⎨=>⎩ 所以1x ,2x 同为负根. 又由④知121010x x +>⎧⎨+<⎩所以原方程有一个解1x .(ⅱ)当4k =时,原方程有一个解112kx =-=. (ⅲ)当4k >时,由③得12122010x x k x x +=->⎧⎨=>⎩所以1x ,2x 同为正根,且12x x ≠,不合题意,舍去.综上可得0k <或4k =为所求.7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)【答案】 981012⨯ 【解析】 易知:(ⅰ)该数表共有100行;(ⅱ)每一行构成一个等差数列,且公差依次为11d =,22d =,232d =,…,98992d =(ⅲ)100a 为所求.设第()2n n ≥行的第一个数为n a ,则 ()22111222n n n n n n a a a a -----=++=+3222222n n n a ---⎡⎤=++⎣⎦24223222222n n n n a ----⎡⎤=++⨯+⎣⎦323232n n a --=+⨯……()121212n n a n --=+-⨯ ()212n n -=+故981001012a =⨯.8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为到站时刻810∶ 910∶ 830∶ 930∶ 850∶950∶ 概率16 12 13一旅客820∶到车站,则它候车时间的数学期望为 (精确到分). 【答案】 27 【解析】 旅客候车的分布列为候车时间(分) 10 30 50 70 90概率12 131166⨯ 1126⨯ 1136⨯ 候车时间的数学期望为1111110305070902723361218⨯+⨯+⨯+⨯+⨯=二、解答题1. (本小题满分14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y -=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由. 【解析】 由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k xkmx m +++-=设()11A x y ,,()22B x y ,,则122834kmx x k +=-+()()()222184344480km k m ∆=-+->① ………………………………………………4分 由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k xkmx m ----=设()34C x y ,,()44D x y ,,则34223kmx x k +=- ()()()2222243120km k m ∆=-+-+>② ………………………………………………8分因为0AC BD +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=.由1234x x x x +=+得 2282343km kmk k-=+-. 所以20km =或2241343k k -=+-.由上式解得0k =或0m =.当0k =时,由①和②得2323m -<<.因m 是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得33k -<<.因k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.………14分2. (本小题15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-=,,(Ⅰ)求数列{}n a 的通项公式(用α,β表示); (Ⅱ)若1p =,14q =,求{}n a 的前n 项和. 【解析】 方法一:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以()1212n n n n n a px qx a a αβαβ------=+-,()345n =,,,整理得()112n n n n a a a a βαβ----=- 令1n n n b a a β+=-,则()112n n b b n α+==,,.所以{}n b 是公比为α的等比数列. 数列{}n b 的首项为:()()222121b a a p q p ββαβαββαβα=-=--=+--+=.所以21n n n b ααα-+=⋅=,即11n n n a a βα++-=()12n =,,.所以11n n n a a βα++=+()12n =,,.①当240p q ∆=-=时,0αβ=≠,12a p ααα==+=,11n n n a a βα++=+()12n =,,变为11n n n a a αα++=+()12n =,,.整理得,111n n n na a αα++-=,()12n =,,.所以,数列n n a α⎧⎫⎨⎬⎩⎭成公差为1的等差数列,其首项为122a ααα==.所以()2111nna n n α=+-=+.于是数列{}n a 的通项公式为()1n n a n α=+;……………………………………………………………………………5分②当240p q ∆=->时,αβ≠, 11n n n a a βα++=+1n n a βαβαβα+-=+-11n n n a βαβααβαβα++=+---()12n =,,.整理得211n n n n a a ααββαβα+++⎛⎫+=+ ⎪--⎝⎭,()12n =,,. 所以,数列1n n a αβα+⎧⎫+⎨⎬-⎩⎭成公比为β的等比数列,其首项为2221a ααβαββαβαβα+=++=---.所以121n n n a αβββαβα+-+=--. 于是数列{}n a 的通项公式为11n n n a βαβα++-=-.………………………………………………10分(Ⅱ)若1p =,14q =,则240p q ∆=-=,此时12αβ==.由第(Ⅰ)步的结果得,数列{}n a 的通项公式为()11122nn n n a n +⎛⎫=+= ⎪⎝⎭,所以,{}n a 的前n 项和为231234122222n n n n n s -+=+++++234112341222222n n n n s n ++=+++++以上两式相减,整理得1133222n n n s ++=-所以332n n n s +=-.……………………………………………………………………………15分 方法二:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以1a αβ=+,222a αβαβ=++.特征方程20p q λλ-+=的两个根为α,β. ①当0αβ=≠时,通项()()1212n n a A A n n α=+=,,由12a α=,223a α=得()()122212223A A A A αααα+=⎧⎪⎨+=⎪⎩ 解得121A A ==.故()1n n a n α=+.……………………………………………………5分 ②当αβ≠时,通项()1212n n n a A A n αβ=+=,,.由1a αβ=+,222a αβαβ=++得12222212A A A A αβαβαβαβαβ+=+⎧⎪⎨+=++⎪⎩ 解得1A αβα-=-,2A ββα=-.故1111n n n n n a αββαβαβαβα++++--=+=---.…………………………………………………………10分 (Ⅱ)同方法一.3. (本小题满分15分)求函数2713y x x x =++-+的最大和最小值. 【解析】 函数的定义域为[]013,.因为 ()27132713213y x x x x x x =+++-=+++-2713+≥ 3313=+当0x =时等号成立.故y 的最小值为3313+.……………………………………………5分 又由柯西不等式得()222713y x x x=+++-()()()11122731312123x x x ⎛⎫+++++-= ⎪⎝⎭≤所以11y ≤. ………………………………………………………………………………10分由柯西不等式等号成立的条件,得()491327x x x =-=+,解得9x =.故当9x =时等号成立.因此y的最大值为1.…………………………………………………………………………………15分。
2009年全国高中数学联赛试题及答案
2009年全国高中数学联赛一 试一、填空(每小题7分,共56分)1. 若函数()f x =且()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()()991f = .2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .4. 使不等式1111200712213a n n n +++<-+++对一切正整数n 都成立的最小正整数a 的值为 .5. 椭圆22221x y a b+=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 .6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 .7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且一旅客820∶到车站,则它候车时间的数学期望为 (精确到分). 二、解答题1. (14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y-=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由.2. (15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a pq =-,()1234n n n a pa qa n --=-=,,(Ⅰ)求数列{}n a 的通项公式(用α,β表示);(Ⅱ)若1p =,14q =,求{}n a 的前n 项和.3. (15分)求函数y 的最大和最小值.加试一、填空(共4小题,每小题50分,共200分)9. 如图,M ,N 分别为锐角三角形ABC ∆(A B ∠<∠)的外接圆Γ上弧BC 、AC 的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ∆的内心,连接PI 并延长交圆Γ于T .⑴求证:MP MT NP NT ⋅=⋅;⑵在弧AB (不含点C )上任取一点Q (Q A ≠,T ,B ),记A Q C ∆,QCB △的内心分别为1I ,2I ,B求证:Q ,1I ,2I ,T 四点共圆.10. 求证不等式:2111ln 12n k k n k =⎛⎫-<- ⎪+⎝⎭∑≤,1n =,2,… 11. 设k ,l 是给定的两个正整数.证明:有无穷多个正整数m k ≥,使得C k m 与l 互素. 12. 在非负数构成的39⨯数表111213141516171212223242526272829313233343536373839x x x x x x x x x P x x x x x x x x x x x x x x x x x x⎛⎫ ⎪= ⎪ ⎪⎝⎭ 中每行的数互不相同,前6列中每列的三数之和为1,1728390x x x ===,27x ,37x ,18x ,38x ,19x ,29x 均大于.如果P 的前三列构成的数表111213212223313233x x x S x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭满足下面的性质()O :对于数表P 中的任意一列123k k k x x x ⎛⎫⎪⎪ ⎪⎝⎭(1k =,2,…,9)均存在某个{}123i ∈,,使得⑶{}123min ik i i i i x u x x x =≤,,.求证:(ⅰ)最小值{}123min i i i i u x x x =,,,1i =,2,3一定自数表S 的不同列.(ⅱ)存在数表P 中唯一的一列***123k k k x x x ⎛⎫⎪⎪ ⎪ ⎪⎝⎭,*1k ≠,2,3使得33⨯数表***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭仍然具有性质()O .\。
湖北省百所重点中学2009届高三联合考试(理)
湖北省百所重点中学 2009 届 高 三 联 合 考 试数学试题(理科)考生注意:1.本试卷共150分,考试时间120分钟。
2.请将各题答案填在试卷后面的答题卷上。
3.本试卷主要考试内容:集合与简易逻辑、函数、数列(约占70%),排列、组合、二项式定理、概率、以及选修II 的概率与统计、极限、数学归纳法、导数、复数(约占30%)。
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设A 、B 是非空数集,定义:{|,}A B a b a A b B ⊕=+∈∈,若{1,2,3}A =、{4,5,6}B =,则B A ⊕的非空真子集个数为DA .64B .32C .31D .30 2.已知x 、y R ∈,i 为虚数单位,且(2)1x i y i --=-+,则(1)x y i ++的值为B A .4 B .4- C .44i + D .2i 3.已知函数()1log (01)a f x x a a =+>≠且,1()f x -是()f x 的反函数,若1()f x - 的图象过点的图象过点(3,4),则a 等于DA .2B .3C .33D .24.若函数(1)f x +的定义域为[0,1],则函数(22)xf -的定义域为BA .[0,1]B .]2,3[log 2C .]3log ,1[2D .[1,2] 5.如果函数2()f x x bx c =++对于任意的实数x ,都有(1)()f x f x +=-成立,那么A A .)2()2()0(-<<f f f B .)2()2()0(f f f <-< C .)2()0()2(-<<f f f D .)2()0()2(f f f <<- 6.如果随机变量2~(,)N ξμσ,且3E ξ=、1D ξ=,那么(24)P ξ<≤等于 (其中2(,)N μσ在(,)μσμσ-+内的取值的概率为0.683;在(2,2)μσμσ-+ 内的取值的概率为内的取值概率为0.954;在)3,3(σμσμ+-内的取值概率 为0.997)BA .0.5B .0.683C .0.954D .0.9977.若函数122(1)()log (1)x x f x x x ⎧≤⎪=⎨>⎪⎩,则(1)y f x =-的图象可以是CA .B .C .D .8.函数()y f x =与()y g x =有相同的定义域,且对于定义域内的任意x ,都有()()0f x f x -+=、()()1g x g x ⋅-=,且(0)1g =,则函数2()()()()1f x F x f xg x =+-是BA .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数 9.已知函数)(x f 是以2为周期的偶函数,且当(0,1)x ∈时,()21x f x =-,则2(log 10)f 的值为AA .53B .58C .83-D .35 10.函数244(1)()43(1)x x f x x x x -≤⎧⎪=⎨-+>⎪⎩的图象和函数2()log g x x =的图象的交点个数为CA .1B .2C .3D .4二、填空题(本大题共5小题,每小题5分,共25分。
2009答案
n 1
n
2, 1 , n 1,
.所以,数列
an 成 n
公差为 1 的等差数列,其首项为
2 1 n 1 n 1 . n 于是数列 an 的通项公式为 an
2 .所以
n 1 2n 2
故 a100 101 298 . 8.
∶ 00 ~ 9 ∶ 00 , 9 ∶ 00 ~ 10 ∶ 00 都恰有一辆客车到站,但到站的时刻是随机的,且两 某车站每天 8
者到站的时间是相互独立的,其规律为 到站时刻
8 ∶ 10 9 ∶ 10 8 ∶ 30 9 ∶ 30 8 ∶ 50 9 ∶ 50
n 1 n 1,2 ,
.
.
整理得 n2 n 1 2, an 1 an , n 1,
n 1 所 以 , 数 列 an 成 公 比 为 的 等 比 数 列 , 其 首 项 为 2 2 2 n 1 2 .所以 an a1 n 1 .
.
2.
已知直线 L : x y 9 0 和圆 M : 2 x2 2 y 2 8x 8 y 1 0 ,点 A 在直线 L 上, B , C 为圆 M 上两点,在 ABC 中, BAC 45 , AB 过圆心 M ,则点 A 横坐标范围为 .
【解析】
3 ,6 9 a ,则圆心 M 到直线 AC 的距离 d 设 A a ,
1 2
1 3 (精确到分).
50 1 1 6 6
70 1 1 2 6
90 1 1 3 6
2009年全国高中数学联合竞赛试题及解答.
2009年全国高中数学联合竞赛一试一、填空题:本大题共8个小题,每小题7分,共56分。
2009*1、函数21)(x x x f +=,且fn n x f f f f x f个)]]([[)()(=,则=)1()99(f◆答案:101★解析:由题意得2)1(1)()(xxx f x f+==,2)2(21)]([)(xx x f f x f+==,······2)99(991)(x x x f +=.故 101)1()99(=f .2009*2、已知直线09:=-+y x L 和圆018822:22=---+y x y x M ,点A 在直线L 上,点C B ,为圆M 上两点,在ABC ∆中,045=∠BAC ,直线AB 过圆心M ,则点A 横坐标的取值范围 为 ◆答案:[]6,3★解析:设A (a ,9-a ),则圆心M 到直线AC 的距离d =AM sin ︒45,由直线AC 与圆M 相交,得 234≤d .解得 63≤≤a .2009*3、在坐标平面上有两个区域M 和N ,M 为⎪⎩⎪⎨⎧-≤≤≥x y x y y 20,N 是随t 变化的区域,它由不等式1+≤≤t x t 所确定,t 的取值范围是10≤≤t ,则M 和N 的公共面积是函数=)(t f◆答案:212++-t t ★解析:由题意知阴影部分面积s t f =)( =BEF OCD AOB S S S ∆∆∆--=212++-t t2009*4、若不等式3120071212111<++++++n n n 对一切正整数n 都成立,则最小正整数a 的值为 ◆答案:2009★解析:设121...2111)(++++++=n n n n f .显然)(n f 单调递减.则由)(n f 的最大值312007)1(-<a f ,可得2009=a .2009*5、椭圆12222=+by a x (0>>b a )上任意两点Q P ,,若OQ OP ⊥,则OQ OP ⋅的最小值为◆答案:.22222ba b a + ★解析:设)sin ,cos (θθOP OP P ,)).2sin(),2cos((πθπθ±±OQ OQ Q由Q P 、在椭圆上,有22222sin cos 1b a OP θθ+=(1), 22222cos sin 1b a OQθθ+=(2) (1)+(2)得.11112222b a OQOP+=+于是当 22222ba b a OQ OP +==时,OQ OP 达到最小值.22222b a b a +2009*6、若关于x 的方程)1lg(2lg +=x kx 仅有一个实根,则实数k 的取值范围为 ◆答案:0<k 或4=k★解析:由题意,方程等价于⎪⎩⎪⎨⎧+=>+>2)1(010x kx x kx ,当且仅当 0>kx (1);01>+x (2);01)2(2=+-+x k x (3) 对(3)由求根公式得]42[21,221k k k x x -±-= (4)又0042≤⇒≥-=∆k k k 或4≥k)(i 当0<k 时,由(3)得⎩⎨⎧>=<-=+01022121x x k x x ,所以21x x 同为负根。
全国高中数学联合竞赛湖北省预赛试题参考答案高二年级
全国高中数学联合竞赛湖北省预赛试题参考答案(高二年级)说明:评阅试卷时,请依据本评分标准。
填空题只设8分和0分两档;解答题的评阅,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分。
一、填空题(本题满分64分,每小题8分。
直接将答案写在横线上。
)1.函数741)(2+++=x x x x f的值域为. 2.已知1sin 2sin 322=+βα,1)cos (sin 2)cos (sin 322=+-+ββαα,则=+)(2cos βα13-. 3.已知数列}{n a 满足:1a 为正整数,⎪⎩⎪⎨⎧+=+,,13,,21为奇数为偶数n n n nn a a a a a 如果29321=++a a a ,则=1a 5 .4.设集合}12,,3,2,1{Λ=S ,},,{321a a a A =是S 的子集,且满足321a a a <<,523≤-a a ,那么满足条件的子集A 的个数为 185 .5.过原点O 的直线l 与椭圆C :)0(12222>>=+b a by a x 交于N M ,两点,P 是椭圆C 上异于N M ,的任一点.若直线PN PM ,的斜率之积为31-,则椭圆C6.在△ABC 中,2==BC AB ,3=AC .设O 是△ABC 的内心,若q p +=,则q p的值为32. 7.在长方体1111D C B A ABCD -中,已知p AB C B AC ===11,2,1,则长方体的体积最大时,p为. 8.设][x 表示不超过x 的最大整数,则2012120122[]2kk k +=+=∑ 2012 . 二、解答题(本大题满分56分,第9题16分,第10题20分,第11题20分)9.已知正项数列}{n a=11a =,28a =,求}{n a 的通项公式.解 在已知等式两边同时除以1+n n a a ,得3141112++=++++nn n n a aa a ,所以11)=. ------------------------------------------4分令111++=+nn n a a b ,则n n b b b 4,411==+,即数列}{n b 是以1b =4为首项,4为公比的等比数列,所以nn n b b 4411=⋅=-.------------------------------------------8分所以n nn a a 4111=+++,即nn n a a ]1)14[(21--=+.------------------------------------------12分于是,当1>n 时,22221121]1)14[(]1)14[(]1)14[(-------⋅--=--=n n n n n n a a a∏∏-=--=---=--==112111121]1)14[(]1)14[(n k k n k k a Λ ,因此,⎪⎩⎪⎨⎧≥--==∏-=-.2,]1)14[(,1,11121n n a n k k n ------------------------------------------16分10.已知正实数b a ,满足122=+b a ,且333)1(1++=++b a m b a ,求m 的取值范围. 解 令cos ,sin a b θθ==,02πθ<<,则322333)1sin (cos 1)sin sin cos )(cos sin (cos )1sin (cos 1sin cos ++++-+=++++=θθθθθθθθθθθθm .----------------------------------------5分令θθsin cos +=x ,则 ]2,1()4sin(2∈+=πθx ,且21sin cos 2-=x θθ.------------------------------10分 于是21)1(23)1(22)1(22)1(232)1(1)211(223332-+=+-=+-+=+-+=++--=x x x x x x x x x x x x m . ------------------------------15分因为函数21)1(23)(-+=x x f 在]2,1(上单调递减,所以)1()2(f m f <≤.又2423)2(,41)1(-==f f ,所以)41,2423[-∈m . --------------------------------------20分11.已知点),(n m E 为抛物线)0(22>=p px y 内一定点,过E 作斜率分别为21,k k 的两条直线交抛物线于D C B A ,,,,且N M ,分别是线段CD AB ,的中点.(1)当0=n 且121-=⋅k k 时,求△EMN 的面积的最小值; (2)若λ=+21k k (λλ,0≠为常数),证明:直线MN 过定点.解 AB 所在直线的方程为m n y t x +-=)(1,其中111k t =,代入px y 22=中,得 2112220y pt y pt n pm -+-=,设1122(,),(,)A x y B x y ,则有1212pt y y =+,从而1211211(2)2(22)2x x t y y n m t pt n m +=+-+=-+.则2111(,)M pt nt m pt -+.CD 所在直线的方程为m n y t x +-=)(2,其中221k t =,同理可得2222(,)N pt nt m pt -+. ------------------------------------------5分(1)当0=n 时,(,0)E m ,211(,)M pt m pt +,222(,)N pt m pt +,2111||||t pt EM +=,2221||||t pt EN +=.又121-=⋅k k ,故121-=⋅t t ,于是△EMN 的面积221211||||||222p S EM EN p t t =⋅==222p p ≥=, 当且仅当1||||21==t t 时等号成立. 所以,△EMN的面积的最小值为2p .------------------------------------------10分(2)p nt t t t n t t p t t p k MN -+=----=)(1)()()(2121222121,MN 所在直线的方程为]([)(1121211m nt pt x pn t t pt y +--⋅-+=-,即m x t pt pnt t y -=--+2121)(. ------------------------------------------15分又λ=+=+212111t t k k ,即λ2121t t t t +=,代入上式,得1212()t t n y t t p x m p λ++--⋅=-, 即 m pnyx p y t t -+=-+))((21λ.当0=-λp y 时,有0=-+m p ny x ,即⎪⎩⎪⎨⎧-==λλn m x p y 为方程的一组解,所以直线MN 恒过定 点),(λλpn m -. ------------20分。
2009年全国高中数学联赛加试题另解
赛题新解
中等数学
2009年全国高中数学联赛加试题另解
第 一 题 如 图 1, M 、N 分 别 为 锐 角 △ABC ( A < B ) 的外接圆圆 Γ 上
弧 B C、AC的中点.
过点 C作 PC∥MN
交圆 Γ 于 点 P, I
为 △ABC 的内心 ,
联结 PI并延长交
圆 Γ于点 T. 求证 :
f ( x) = ln ( 1 + x) - x, g ( x) = ln ( 1 + x) - x + x2 .
2
则
f
′( x)
=
1
1 +
x
-
1
=
-x 1 +x
<
0,
g′( x) = 1 - 1 + x = x2 > 0.
1 +x
1 +x
从而 ,当 x > 0时 ,
f ( x) < f (0) , g ( x) > g (0) ,
图1
(1)M P·M T =N P·N T;
(2)在弧 AB (不含点 C ) 上任取一点 Q
(Q ≠A、T、B ) ,记 △AQC、△QCB 的内心分别
为 I1 、I2 ,则 Q、I1 、I2 、T四点共圆.
证法 1:为了证明该题 ,先给出一个引理.
引理 设 I为 △AB C 内一点 , A I所在直
与 l互质.
证法 1:若质数 p与 Cmk 互质 ,由于 Cmk 中质
∞
因数 p的次数为
t =1
m
k m-k
pt - pt -
pt
,
因此 ,
2009年全国高中数学联赛试题及答案
2009年全国高中数学联赛一 试一、填空(每小题7分,共56分)1. 若函数()f x =且()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()()991f = . 2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .4. 使不等式1111200712213a n n n +++<-+++对一切正整数n 都成立的最小正整数a 的值为 .5. 椭圆22221x y a b+=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 .6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 .7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随一旅客820∶到车站,则它候车时间的数学期望为 (精确到分). 二、解答题1. (14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y -=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由.2. (15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-=,,(Ⅰ)求数列{}n a 的通项公式(用α,β表示);(Ⅱ)若1p =,14q =,求{}n a 的前n 项和.3. (15分)求函数y =的最大和最小值.加试一、填空(共4小题,每小题50分,共200分)9. 如图,M ,N 分别为锐角三角形ABC ∆(A B ∠<∠)的外接圆Γ上弧BC 、AC 的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ∆的内心,连接PI 并延长交圆Γ于T .⑴求证:MP MT NP NT ⋅=⋅;⑵在弧AB (不含点C )上任取一点Q (Q A ≠,T ,B ),记AQC ∆,QCB △的内心分别为1I ,2I ,B求证:Q ,1I ,2I ,T 四点共圆.10. 求证不等式:2111ln 12n k k n k =⎛⎫-<- ⎪+⎝⎭∑≤,1n =,2,…11. 设k ,l 是给定的两个正整数.证明:有无穷多个正整数m k ≥,使得C k m 与l 互素.12. 在非负数构成的39⨯数表111213141516171819212223242526272829313233343536373839x x x x x x x x x P x x x x x x x x x x x x x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭中每行的数互不相同,前6列中每列的三数之和为1,1728390x x x ===,27x ,37x ,18x ,38x ,19x ,29x 均大于.如果P 的前三列构成的数表111213212223313233x x x S x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭满足下面的性质()O :对于数表P 中的任意一列123k k k x x x ⎛⎫ ⎪⎪ ⎪⎝⎭(1k =,2,…,9)均存在某个{}123i ∈,,使得⑶{}123min ik i i i i x u x x x =≤,,.求证:(ⅰ)最小值{}123min i i i i u x x x =,,,1i =,2,3一定自数表S 的不同列. (ⅱ)存在数表P 中唯一的一列***123k k k x x x ⎛⎫⎪⎪ ⎪ ⎪⎝⎭,*1k ≠,2,3使得33⨯数表***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭仍然具有性质()O .\。
全国高中数学联合竞赛湖北省预赛试题2008-2011
一、填空题1、已知集合21{|23},{|,0}A y y x x B y y x x x==+−==+<,则A B =I _ . 2、设数列{}n a 满足:1111,(1)21n n na a a n a ++==≥−,则2008a = _ _. 3、函数44sin 2sin cos cos y x x x x =++的最小值为 _ _.4、已知正三棱锥P ABC −的底面正三角形的边长为1,其外接球的球心O 满足0OA OB OC ++=uuu r uuu r uuu r r,则这个正三棱锥的体积为 _ _.5、设H 为锐角△ABC 的垂心,已知30,3A BC ∠=°=,则AH = _ _.6、在等腰梯形ABCD 中,AB//CD ,且AB >CD. 设以A ,B 为焦点且过点D 的双曲线的离心率为1e ,以C ,D 为焦点且过点A 的椭圆的离心率为2e ,则12e e = _ _.7、设2621201212(22)(2)(2)(2)x x a a x a x a x +−=+++++++L ,其中(0,1,2,,12)i a i =L 为实常数,则0123122312a a a a a +++++=L _ _.8、有六张分别写有数字1,2,3,4,5,6的卡片,每次从中抽取一张,记下上面的数字,然后放回. 这样抽取了4次,则抽到的最大数与最小数的差等于5的概率为 _ _.9、设[]x 表示不超过x 的最大整数,则2222[log 1][log 2][log 3][log 500]++++=L _ _. 10、已知三个正整数a ,b ,c 满足223,3()5a b c a b a a c b ≤+≤≤+≤,则2b ca−的最小值是 _ _. 二、解答题11、设P 为椭圆22143x y +=上的一个动点,过点P 作椭圆的切线与22:12O x y += 相交于M ,N 两点,⊙O 在M ,N 两点处的切线相交于点Q.(1)求点Q 的轨迹方程;(2)若P 是第一象限的点,求△OPQ 的面积的最大值.12、设数列{}n a 满足:22112211,2,(1).1n n n n a a a a n a a +++===≥+ (1)求1n a +与n a 之间的递推关系式1();n n a f a += (2)证明:20086378.a <<13、如果正整数n 可以写成b a (其中,,2,2a b N a b ∈≥≥)的形式,则称n 为“好数”. 在与2的正整数次幂相邻的正整数中,试找出所有的“好数”.1一、填空题(本题满分56分,每小题7分。
09全国高中那个数学联赛二试试题答案
2009年全国高中数学联合竞赛加试 试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次. 一、填空(共4小题,每小题50分,共200分)1. 如图,M ,N 分别为锐角三角形A B C ∆(A B ∠<∠)的外接圆Γ上弧 B C 、 A C 的中点.过点C 作P C M N ∥交圆Γ于P 点,I 为A B C ∆的内心,连接P I 并延长交圆Γ于T .⑴求证:M P M T N P N T ⋅=⋅;⑵在弧 A B (不含点C )上任取一点Q (Q A≠,T ,B ),记A Q C ∆,Q C B △的内心分别为1I ,2I ,B求证:Q ,1I ,2I ,T 四点共圆.【解析】 ⑴连N I ,M I .由于P C M N ∥,P ,C ,M ,N 共圆,故P C M N 是等腰梯形.因此N P M C =,P M N C =.ABCMNPTI连A M ,C I ,则A M 与C I 交于I ,因为M IC M A C A C I M C B B C I M C I∠=∠+∠=∠+∠=∠,所以M CM I=.同理N C N I=.于是N P M I=,P M N I =.故四边形M P N I 为平行四边形.因此P M TP N TS S =△△(同底,等高).又P ,N ,T ,M 四点共圆,故180T N PP M T ∠+∠=︒,由三角形面积公式1sin 2P M T S P M M T P M T=⋅∠△1s i n 2P N TS P N N T P NT ==⋅∠△1s i n 2P N N T P MT =⋅∠ 于是P M M T P N N T⋅=⋅.⑵因为1111N C I N C A A C I N Q C Q C I C I N∠=∠+∠=∠+∠=∠,B所以1N CN I =,同理2M C M I =.由M P M T N P N T⋅=⋅得N T M T M PN P=.由⑴所证M PN C=,N PM C=,故12N T M T N I M I =.又因12I N T Q N T Q M T I M T∠=∠=∠=∠,有12I N T I M T∆∆∽. 故12N T I M T I ∠=∠,从而1212I Q I N Q M N T M I T I ∠=∠=∠=∠.因此Q ,1I ,2I ,T 四点共圆. 2. 求证不等式:2111ln 12nk k n k =⎛⎫-<- ⎪+⎝⎭∑≤,1n =,2,…【解析】 证明:首先证明一个不等式:⑴ln (1)1x x xx<+<+,0x>.事实上,令()ln (1)h x x x =-+,()ln (1)1x g x x x =+-+.则对0x>,1()101h x x'=->+,2211()1(1)(1)x g x xx x '=-=>+++.于是()(0)0h x h >=,()(0)0g x g >=.在⑴中取1xn=得⑵111ln 11n n n ⎛⎫<+< ⎪+⎝⎭.令21ln 1nnk k x nk==-+∑,则112x =,121ln 111n n nx x nn -⎛⎫-=-+ ⎪+-⎝⎭211n n n<-+210(1)n n=-<+因此1112n n x x x -<<<=.又因为111ln (ln ln (1))(ln (1)ln (2))(ln 2ln 1)ln 1ln 1n k n n n n n k -=⎛⎫=--+---++-+=+⎪⎝⎭∑ .从而12111ln 11nn n k k k x kk -==⎛⎫=-+ ⎪+⎝⎭∑∑12211ln 111n k k n kk n -=⎛⎫⎛⎫=-++ ⎪ ⎪++⎝⎭⎝⎭∑12111n k k k k -=⎛⎫>- ⎪+⎝⎭∑1211(1)n k kk-==-+∑111(1)n k k k-=-+∑≥111n=-+>-.3. 设k ,l 是给定的两个正整数.证明:有无穷多个正整数m k≥,使得C k m 与l 互素.【解析】 证法一:对任意正整数t ,令(!)mk t l k =+⋅⋅.我们证明()C 1k ml =,. 设p 是l 的任一素因子,只要证明:C kmpŒ.若!p k Œ,则由1!C ()kkm i k m k i ==-+∏1[((!)]ki i t l k =≡+∏1ki i =≡∏()1!m o d k pα+≡.及|!p k α,且1!pk α+Œ,知|!C kmpk α且1!C kmp k α+Œ.从而C kmpŒ.证法二:对任意正整数t ,令2(!)mk t l k =+⋅⋅,我们证明()C 1k ml =,. 设p 是l 的任一素因子,只要证明:C kmpŒ.若!p k Œ,则由1!C ()kkm i k m k i ==-+∏21[((!)]ki i t l k =≡+∏1ki i =≡∏()!m o d k p ≡.即p 不整除上式,故C kmp Œ.若|!pk ,设1α≥使|!p k α,但1!p k α+Œ.12|(!)pk α+.故由11!C ()k km i k m k i -==-+∏21[((!)]ki i t l k =≡+∏1ki i =≡∏()1!m o d k pα+≡及|!p k α,且1!p k α+Œ,知|!C kmp k α且1!C kmp k α+Œ.从而C kmpŒ.4. 在非负数构成的39⨯数表111213141516171212223242526272829313233343536373839x xx x x x xxx P xx x x xxxx x x xxxx x xx x ⎛⎫ ⎪= ⎪ ⎪⎝⎭ 中每行的数互不相同,前6列中每列的三数之和为1,1728390x x x ===,27x ,37x ,18x ,38x ,19x ,29x 均大于.如果P 的前三列构成的数表111213212223313233x xx S xx x x xx ⎛⎫ ⎪= ⎪ ⎪⎝⎭满足下面的性质()O :对于数表P 中的任意一列123k kkx x x ⎛⎫⎪ ⎪ ⎪⎝⎭(1k =,2,…,9)均存在某个{}123i ∈,,使得 ⑶{}123m in ik i i i i x u x x x =≤,,.求证:(ⅰ)最小值{}123m in ii i i u x x x =,,,1i =,2,3一定自数表S 的不同列.(ⅱ)存在数表P 中唯一的一列***123k k k x x x ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭,*1k ≠,2,3使得33⨯数表***111212122231323k kk x x xS x x x x x x ⎛⎫⎪'= ⎪ ⎪ ⎪⎝⎭仍然具有性质()O .【解析】 (ⅰ)假设最小值{}123m in ii i i u x x x =,,,1i =,2,3不是取自数表S 的不同列.则存在一列不含任何i u .不妨设2i i u x ≠,1i =,2,3.由于数表P 中同一行中的任何两个元素都不等,于是2i i u x <,1i =,2,3.另一方面,由于数表S 具有性质()O ,在⑶中取2k=,则存在某个{}123i ∈,,使得02iix u ≤.矛盾.(ⅱ)由抽届原理知{}1112m in x x ,,{}2122m in x x ,,{}3132m in x x ,中至少有两个值取在同一列.不妨设{}212222m in x x x =,,{}313232m in x x x =,.由前面的结论知数表S 的第一列一定含有某个i u ,所以只能是111x u =.同样,第二列中也必含某个i u ,1i =,2.不妨设222x u =.于是333u x =,即i u 是数表S中的对角线上数字.111213212223313233x x x S x x x xx x ⎛⎫⎪= ⎪ ⎪⎝⎭记{}129M = ,,,,令集合{}{}12|m in 13ik i i I k Mx x x i =∈>=,,,.显然{}111332|k k I k M x x x x =∈>>,且1,23I ∉.因为18x ,38111x x >≥,32x ,所以8I ∈.故I ∅≠.于是存在*k I ∈使得{}*22m a x |k k x x k I =∈.显然,*1k ≠,2,3.下面证明33⨯数表***111212122231323k kk x x xS x x x x x x ⎛⎫⎪'= ⎪ ⎪ ⎪⎝⎭具有性质()O . 从上面的选法可知{}{}*1212:m in m in i i i i i ik u x x xxx '==,,,,(13)i =,.这说明{}*111211m in k xx x u >,≥,{}*313233m in kx x x u >,≥. 又由S满足性质()O .在⑶中取*k k =,推得*22k xu ≤,于是{}**2212222m in k k u x x x x'==,,.下证对任意的k M ∈,存在某个1i =,2,3使得i iku x '≥.假若不然,则{}12m in ik i i x x x >,,1i =,3且*22kk x x>.这与*2k x 的最大性矛盾.因此,数表S '满足性质()O .下证唯一性.设有k M ∈使得数表111212122231323k kkx x x S x x x xx x ⎛⎫ ⎪= ⎪ ⎪⎝⎭具有性质()O ,不失一般性,我们假定 {}111121311m i n u x x x x ==,,⑷{}221222322m in u x x x x ==,,{}331323333m i n u x x x x ==,,3231x x<.由于3231x x <,2221x x <及(ⅰ),有 {}11112111m in k u x x x x ==,,.又由(ⅰ)知:或者()a {}3313233m in k k u x x x x ==,,,或者 {}2212222()m in k kb u x x x x ==,,.如果()a 成立,由数表 S具有性质()O ,则{}11112111m i n ku x x x x ==,,, ⑸ {}22122222m in k u x x x x ==,,,{}3313233m i n kku x x xx==,,.由数表S 满足性质()O ,则对于3M∈至少存在一个{}123i ∈,,使得*i ik u x ≥.由*k I ∈及⑷和⑹式知, *1111k x x u >=, *3323kx x u >=.于是只能有*222kk xu x =≤.类似地,由S '满足性质()O 及k M ∈可推得*222kk x u x '=≤.从而*k k=.。
2009高中数学联赛
2009高中数学联赛介绍:2009年的高中数学联赛是一场备受关注的盛会,吸引了来自全国各地的优秀数学学子参与。
这场竞赛不仅是学生们展示数学才能的舞台,也是学习和交流的机会。
本文将就2009年高中数学联赛的组织过程、赛事特点以及对参赛学生的影响进行详细介绍。
组织过程:2009年高中数学联赛是在各省市的支持下组织的,旨在提高学生的数学素养和解决问题的能力。
各地学校都积极响应,并派出学生代表参与比赛。
这场比赛由高级数学教师组成的专业团队负责组织,并制定了一系列细则和规定。
比赛的题目从基础知识到难度逐渐加大,涵盖了高中数学的各个领域。
赛事特点:2009年高中数学联赛有几个鲜明的特点。
首先,这场比赛注重考察学生运用数学知识解决实际问题的能力。
其次,比赛不仅要求学生答题准确,还注重解题过程的逻辑性和严谨性。
第三,比赛时间紧凑,要求学生迅速反应和高效解题。
最后,为了更好地展示学生的综合能力,比赛不仅有选择题,还有填空题和解答题。
对参赛学生的影响:参与2009年高中数学联赛对学生的影响是深远的。
首先,这场比赛为学生创造了一个展示自己才华的机会。
通过参与竞赛,学生们能够展示他们在数学上的优秀能力,增强自信心。
其次,比赛能够激发学生对数学的热情和兴趣。
在比赛中遇到的挑战,可以促进学生深入思考和学习更多数学知识。
最后,比赛也为学生提供了一个交流和学习的平台。
学生们可以与来自不同地区的同学交流解题思路和经验,互相学习。
总结:2009年高中数学联赛作为一场重要的竞赛活动,为广大学生提供了一次展示才华、提高数学能力的机会。
这场比赛的组织过程严谨,特点鲜明,对学生产生了积极的影响。
参与这场比赛的学生们通过比赛展示了自己独特的数学才能,并在解题过程中提高了自己的解决问题的能力。
同时,比赛也促进了学生们之间的交流和学习。
可以说,2009年高中数学联赛为我国高中数学教育的发展做出了积极贡献。
希望未来会有更多的数学比赛举行,为学生们提供更多展示才华的平台。
2009年全国高中数学联赛试题
0 / 1 2009年全国高中数学联合竞赛一试试题一、填空题:本大题共8小题,每小题7分,共56分.1.若函数()21x x x f +=且()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()()991f =____________. 2.已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为____________.3.在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t =____________.4.使不等式1111200712213a n n n +++<-+++对一切正整数n 都成立的最小正整数a 的值为__________. 5.椭圆22221x y ab +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为____________. 6.若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是____________. 7.一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是___________(可以用指数表示)8.某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时一旅客820∶到车站,则它候车时间的数学期望为____________(精确到分).二、解答题:本大题共3小题,共44分,解答应写出文字说明、证明过程或演算步骤.9.(本小题满分14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y -=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由.10.(本小题15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}na 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-=,,(1)求数列{}n a 的通项公式(用α,β表示);(2)若1p =,14q =,求{}n a 的前n 项和.11.(本小题满分15分)求函数y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年全国高中数学联合竞赛湖北省预赛
试题参考答案及评分标准
说明:评阅试卷时,请依据本评分标准。
填空题只设7分和0分两档;解答题的评阅,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分。
一、填空题(本题满分56分,每小题7分。
)
1.已知复数m 满足11=+m m ,则=+200920081m
m 0 . 2.设2cos sin 23cos 21)(2++=x x x x f ,]4
,6[ππ-∈x ,则)(x f 的值域为3[2,2]4. 3.设等差数列{}n a 的前n 项和为n S ,若0,01615<>S S ,则15152211,,,a S a S a S 中最大的是88
S a . 4.已知O 是锐角△ABC 的外心,10,6==AC AB ,若y x +=,且5102=+y x ,则=∠BAC cos 13
. 5.已知正方体1111D C B A ABCD -的棱长为1,O 为底面ABCD 的中心,M ,N 分别是棱A 1D 1和CC 1的中点.则四面体1MNB O -的体积为748
. 6.设}6,5,4,3,2,1{=C B A ,且}2,1{=B A ,C B ⊆}4,3,2,1{,则符合条件的),,(C B A 共有 1600 组.(注:C B A ,,顺序不同视为不同组.)
7.设x x x x x x y csc sec cot tan cos sin +++++=,则||y
的最小值为
1. 8.设p 是给定的正偶数,集合},3,22|{1N ∈=<<=+m m x x x A p p p 的所有元素的和是21122p p ---.
二、解答题(本题满分64分,第9题14分,第10题15分,第11题15分,第12题20分。
)
9.设数列)0}({≥n a n 满足21=a ,)(2122n m n m n m a a n m a a +=
+-+-+,其中n m n m ≥∈,,N . (1)证明:对一切N ∈n ,有2212+-=++n n n a a a ;
(2)证明:11112009
21<+++a a a . 证明 (1)在已知关系式)(2
122n m n m n m a a n m a a +=
+-+-+中,令n m =,可得00=a ;
令0=n ,可得
m a a m m 242-= ①
令2+=n m ,可得
)(2
12242222n n n a a a a +=-+++ ② 由①得)1(24122+-=++n a a n n ,62412=-=a a ,)2(24242+-=++n a a n n ,n a a n n 242-=, 代入②,化简得2212+-=++n n n a a a . ------------------------------------------7分
(2)由2212+-=++n n n a a a ,得2)()(112+-=-+++n n n n a a a a ,故数列}{1n n a a -+是首项为201=-a a ,公差为2的等差数列,因此221+=-+n a a n n .
于是∑∑==-+=+=+-=n
k n k k k n n n k a a a
a 1101)1(0)2()(. 因为)1(1
11)1(11≥+-=+=n n n n n a n ,所以 12010
11)2010120091()3121()211(111200921<-=-++-+-=+++ a a a . ------------------------------------------14分
10.求不定方程21533654321=+++++x x x x x x 的正整数解的组数.
解 令x x x x =++321,y x x =+54,z x =6,则1,2,3≥≥≥z y x .
先考虑不定方程2153=++z y x 满足1,2,3≥≥≥z y x 的正整数解.
1,2,3≥≥≥z y x ,123215≤--=∴y x z ,21≤≤∴z .----------------------------------5分
当1=z 时,有163=+y x ,此方程满足2,3≥≥y x 的正整数解为)4,4(),3,7(),2,10(),(=y x . 当2=z 时,有113=+y x ,此方程满足2,3≥≥y x 的正整数解为)2,5(),(=y x .
所以不定方程2153=++z y x 满足1,2,3≥≥≥z y x 的正整数解为
)2,2,5(),1,4,4(),1,3,7(),1,2,10(),,(=z y x . ------------------------------------------10分
又方程)3,(321≥∈=++x N x x x x x 的正整数解的组数为21x C -,方程y x x =+54)2,(≥∈x N y 的
正整数解的组数为1
1C -y ,故由分步计数原理知,原不定方程的正整数解的组数为
81693036C C C C C C C C 112
4132312261129=+++=+++. ------------------------------------------15分
11.已知抛物线C :22
1x y =与直线l :1-=kx y 没有公共点,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A ,B 为切点.
(1)证明:直线AB 恒过定点Q ;
(2)若点P 与(1)中的定点Q 的连线交抛物线C 于M ,N 两点,证明:QN QM
PN PM
=.
证明 (1)设11(,)A x y ,则21121x y =
. 由22
1x y =得x y =',所以11|x y x x ='=. 于是抛物线C 在A 点处的切线方程为)(111x x x y y -=-,即11y x x y -=.
设)1,(00-kx x P ,则有11001y x x kx -=-.
设22(,)B x y ,同理有22001y x x kx -=-.
所以AB 的方程为y x x kx -=-001,即0)1()(0=---y k x x ,
所以直线AB 恒过定点)1,(k Q . ------------------------------------------7分
(2)PQ 的方程为002()1kx y x k x k -=-+-,与抛物线方程22
1x y =联立,消去y ,得 02)22(42002002
=---+---k x k x k x k x kx x . 设),(33y x M ,),(44y x N ,则
k
x k x k x x k x kx x x ---=--=+0024300432)22(,42 ① 要证QN QM
PN PM
=,只需证明k
x x k x x x x --=--430403,即 02))((2043043=+++-kx x x x k x x ②
由①知,
②式左边=0000002242)(4)22(2kx k
x kx x k k x k x k +--+---- 0)(2)42)((4)22(20000002=--+-+---=k
x k x kx kx x k k x k . 故②式成立,从而结论成立. ------------------------------------------15分
12.设d c b a ,,,为正实数,且4=+++d c b a .证明:
22
222)(4b a a
d d c c b b a -+≥+++. 证明 因为4=+++d c b a ,要证原不等式成立,等价于证明
d
c b a b a
d c b a a d d c c b b a +++-++++≥+++2
2222)(4 ① ----------------5分 事实上,
)(2
222d c b a a
d d c c b b a +++-+++ )2()2()2()2(2
222d a a
d c d d c b c c b a b b a -++-++-++-+= 2222)(1)(1)(1)(1a d a
d c d c b c b a b -+-+-+-=
②----------------10分 由柯西不等式知
2222
()()()()[]()a b b c c d d a a b c d b c d a
----++++++ 2|)||||||(|a d d c c b b a -+-+-+-≥ ③----------------15分 又由||||||||a b a d d c c b -≥-+-+-知
22)(4|)||||||(|b a a d d c c b b a -≥-+-+-+- ④
由②,③,④,可知①式成立,从而原不等式成立. ------------------------------------20分。