高中数学知识应用竞赛试题及参考答案.doc

合集下载

高中数学竞赛赛题精选(带答案)

高中数学竞赛赛题精选(带答案)

高中数学竞赛赛题精选(带答案)高中数学竞赛是中学生竞赛中最重要的一部分,它不仅需要智力,还需要充分发挥数学能力和思维能力。

以下是一些高中数学竞赛赛题的精选和解答。

1. 设$a_n=x^n$+5的前n项和为S(n),求S(n+1)-S(n)的值。

解:S(n+1)-S(n)=(x^n+1+5)-(x^n+5)=(x^n+1)-(x^n)=x^n(x-1)。

由于$a_n=x^n+5$,所以S(n)=a_0+a_1+...+a_n=(x^0+5)+(x^1+5)+...+(x^n+5)=(x^0+x^1+...+x^n)+5(n+1),因此S(n+1)-S(n)=x^n(x-1)=(S(n+1)-S(n)-5(n+2))/(x^0+x^1+...+x^n)。

2. 已知函数f(x)=sin(x)+cos(x),0≤x≤π/2,求f(x)在[0,π/4]上的最小值。

解:f(x)=sin(x)+cos(x)=√2sin(x+π/4),当0≤x≤π/4时,x+π/4≤π/2,sin(x+π/4)不小于0,因此f(x)的最小值由sin(x+π/4)的最小值决定。

sin(x+π/4)的最小值为-√2/2,因此f(x)的最小值为-1。

3. 已知正整数n,设P(n)是n的质因数分解中所有质因数加起来的和,Q(n)是n的数字分解中所有数位加起来的和。

给定P(n)+Q(n)=n,求最小的n。

解:P(n)的范围是2到9×log_10n之间,因此可以枚举P(n)和Q(n),判断它们之和是否等于n。

当P(n)取到最小值2时,Q(n)的最大值为9log_10n,因此n的最小值为11。

4. 已知函数f(x)=2cos^2x-3cosx+1,x∈[0,2π],求f(x)的最小值。

解:由于f(x)=2cos^2x-3cosx+1=2(cosx-1/2)^2-1/2,因此f(x)的最小值为-1/2,且取到最小值的x为0或2π。

5. 已知正整数n,求使得3^n的末2位是9的最小正整数n。

高中数学知识应用竞赛试题及参考答案

高中数学知识应用竞赛试题及参考答案

高中数学知识应用竞赛试题及参考答案试题1、(满分20分)汽车在行驶中,由于惯性的作用,刹车后还要继续向前没行一段距离才能停住。

我们称这段距离为“刹车距离”。

刹车距离是分析事故的一个重要的因素。

在一个限速为40千米/时的路段上,先后有A、B两辆汽车发生交通事故。

事故后,交通警察现场测得A车的刹车距离超过12米,不足15米,B 车的刹车距离超过11米,不足12米。

又知A、B两种车型的刹车距离S(米)与车速x(千米/时)之间有如下关系:如果仅仅考虑汽车的车速因素,哪辆车应负责任?2.(满分20分)北京电视台每星期六晚播出《东芝动物乐园》,在这个节目中曾经有这样一个抢答题:小晰蜴体长15cm,体重15g,问:当小晰蜴长到体长为20cm时,它的体重大约是多少(选择答案:20g,25g,35g,40g)?尝试用数学分析出合理的解答。

3. (满分20分)受日月的引力,海水会发生涨落,这种现象叫做潮汐。

在通常的情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮时返回海洋。

下面是某港口顺某季节每天的时间与水深关系表:(1)请在坐标纸上,根据表中的数据,用连续曲线描出时间与水深关系的函数图像;(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5的安全间隙(船底与洋底的距离),问该船何时能进入港口?在港口能呆多久?(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?4.(满分20分)2000年末,某商家迎来店庆,为了吸引顾客,采取“满一百送二十,连环送”的酬宾方式,即顾客在店内花钱满100元(这100元可以是现金,也可是奖励券,或二者合计),就送20元奖励券;满200元,就送40元奖励券,满300元,就送60元奖励券;...。

当日,花钱最多的一顾客用现金70000元,如果按照酬宾方式,他最多能得到多少优惠呢?相当于商家打了几折销售?5.(满分20分)某城市准备举行书画展览,为了保证展品安全,展览的保卫部门准备安排保安员值班。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案1. 已知函数 \( f(x) = x^3 - 3x^2 + 2x \),求 \( f(x) \) 在区间 \([0, 3]\) 上的最大值和最小值。

答案:首先求导数 \( f'(x) = 3x^2 - 6x + 2 \),令 \( f'(x) = 0 \) 得 \( x = 1 \) 或 \( x = \frac{2}{3} \)。

计算 \( f(0) = 0 \),\( f(1) = 0 \),\( f(\frac{2}{3}) = \frac{2}{27} \),\( f(3) = 6 \)。

因此,最大值为 6,最小值为 0。

2. 计算极限 \( \lim_{x \to 0} \frac{e^x - \cos x}{x^2} \)。

答案:使用洛必达法则,首先求导得到 \( \frac{e^x + \sinx}{2x} \),再次求导得到 \( \frac{e^x + \cos x}{2} \)。

当 \( x \to 0 \) 时,极限为 \( \frac{1}{2} \)。

3. 证明不等式 \( \frac{1}{n+1} + \frac{1}{n+2} + \cdots +\frac{1}{2n} \geq \frac{1}{2} \ln 2 \) 对所有正整数 \( n \) 成立。

答案:利用调和级数的性质,将不等式左边的和表示为\( \sum_{k=1}^{n} \frac{1}{n+k} \)。

通过放缩和积分估计,可以证明该不等式成立。

4. 已知三角形 \( ABC \) 的内角 \( A, B, C \) 满足 \( A + B +C = \pi \),且 \( \sin A + \sin B + \sin C =\frac{3\sqrt{3}}{2} \),求 \( \cos A + \cos B + \cos C \) 的值。

答案:利用三角恒等式 \( \sin^2 x + \cos^2 x = 1 \) 和\( \sin x \) 的和为 \( \frac{3\sqrt{3}}{2} \),通过平方和展开,可以求得 \( \cos A + \cos B + \cos C = -\frac{3}{2} \)。

高中的数学竞赛试题及答案

高中的数学竞赛试题及答案

高中的数学竞赛试题及答案高中数学竞赛试题一、选择题(每题5分,共20分)1. 下列哪个数不是有理数?A. πB. √2C. 0.333...(无限循环)D. 1/32. 如果函数f(x) = 2x^2 - 5x + 3在x = 2时取得最小值,那么f(2)的值是多少?A. -1B. 1C. 3D. 53. 已知等差数列的前三项分别为3, 8, 13,求第10项的值。

A. 43B. 48C. 53D. 584. 若sinx = 1/2,求cosx的值(假设x在第一象限)。

A. √3/2B. -√3/2C. 1/2D. -1/2二、填空题(每题4分,共12分)5. 计算(2x^3 - 3x^2 + 4x - 5) / (x - 1)的商式和余数。

商式为:________余数为:______6. 已知复数z = 3 + 4i,求其共轭复数。

共轭复数为:______7. 一个圆的半径为5,求其内接正六边形的边长。

边长为:______三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 总是能被30整除。

9. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求其导数g'(x),并找出g(x)的极值点。

10. 解不等式:|x + 2| + |x - 3| > 4。

四、证明题(每题10分,共10分)11. 证明:对于任意实数a和b,(a^2 + b^2)(1/a^2 + 1/b^2) ≥ 2。

五、附加题(每题15分,共15分)12. 一个圆的半径为r,圆内接正n边形的边长为s。

证明:s =2r*sin(π/n)。

高中数学竞赛试题答案一、选择题1. A(π是无理数)2. B(f(2) = 4 - 10 + 3 = -3,但题目要求最小值,故应为B)3. C(公差d = 13 - 8 = 5,第10项a_10 = 3 + 9*5 = 53)4. A(根据勾股定理,cosx = √3/2)二、填空题5. 商式为:2x^2 - x - 5,余数为:-36. 共轭复数为:3 - 4i7. 边长为:10三、解答题8. 证明略。

第十五届北京高中数学知识应用竞赛决赛试题和参考答案

第十五届北京高中数学知识应用竞赛决赛试题和参考答案
曩 3》3 4
(1)请你根据截图内的信息,判断这个结论
年 汛0
是否正确,并给出说明. (2)如果这个结论不正确,请你通过计算得 出最佳组合. 解答(1)这个结论是错误的.根据三年期 的利率5%,可以算出两个三年整存整取存款组 合的本利和为:10000(1+3×5%)2=13225. oo元.这个数值比程序给出的结果要好,这说 明程序的结论是错误的.
注意到S。=SE+S,所以
S(z—zD)一SE(xD--3L"E).
由此可得
z一——'一。
SDzD—SEzE
将前面分析的结果代入这个式子,化简后
如果月牙的重心位于月牙的内圆弧的E点,
32=r--r2cosO=r(1—2cosO),
一r

2cosO(O--sinOcosO) ,r--2(0--sinOcosO)。
46
数学通报
2012年
第5l卷
第5期
第十五届北京高中数学知识应用
竞赛决赛试题和参考答案
2012年3月25日
1.(满分16分)2011年国庆期间,上海新世 界购物中心策划出一套“积点购物”营销方案.即 在活动期间,商品的售价按照一定的比率全部折 算成积点,这次全场商品共分为A、B、C三类, 一件A类商品的售价(元)与折算成的点数比是 l:1,一件B类商品的售价(元)与折算成的点 数比是1:1.5,一件C类商品的售价(元)与折 算成的点数比是1:1.9.顾客选定商品后,累 计积点.顾客按每满500个积点付200元的方式 付款.如果积点a不是500的整数倍,口=500b +f,其中b为正整数,o<c<500.这时有两种 付款方式供选择.第一种付款方式是按b+1个 500点支付200(b+1)元,剩余的500一f点可与 再继续购物的积点合用;第二种付款方式是支付 200b+f元.无论哪种付款方式,顾客均在积点 购物中得到了优惠. (1)请你算一算,当每一类商品的积点都是 500的整数倍时,顾客分别从这三类商品中能得 到相当于多少折的优惠? (2)有一位顾客,想买一双靴子、一件呢外 套和一条牛仔裤,靴子原价1499元,是A类商 品;呢外套原价899元,是B类商品;牛仔裤 原价699元,是C类商品.正当她要掏钱按第一 种付款方式付款时,一位“黄牛”走过来说:“这 样做,你还要绞尽脑汁处理剩余的积点,不如直 接按A类4.2折、B类6.2折,C类7.8折将货

高中数学竞赛试题及解题答案

高中数学竞赛试题及解题答案

高中数学竞赛试题及解题答案在高中数学竞赛中,试题是考察学生数学思维和解决问题的能力的重要手段。

下面将为大家提供一部分高中数学竞赛试题及解题答案,希望能够帮助大家更好地理解和应用数学知识。

一、整数与多项式试题1:已知多项式P(x)满足P(x)=x^3-5x^2+ax+b,其中a、b均为整数。

若多项式P(x)除以(x-1)得到余数4,则多项式P(x)除以(x+2)的余数为多少?解题思路:我们知道,多项式f(x)除以x-a的余数等于把a带入f(x)中所得到的值。

那么,题目中给出了P(x)除以(x-1)的余数为4,即P(1)=4,我们可以将1代入P(x)中,得到一个方程。

同理,题目要求求解P(x)除以(x+2)的余数,即P(-2)=?根据题意,我们有以下方程:P(1) = 4,即1^3 - 5(1^2) + a(1) + b = 4P(-2) = ?,即(-2)^3 - 5((-2)^2) + a(-2) + b = ?解题步骤:1. 代入P(1)的方程求解:1 - 5 + a + b = 4化简得 a + b = 82. 代入P(-2)的方程求解:-8 - 20 - 2a + b = ?化简得 -2a + b = ?将两个方程合并求解可得:-2a + b = a + b - 16当两边消去b时,可得:-2a = a - 16a = -8将a代入第一个方程a + b = 8,可得:-8 + b = 8b = 16因此,通过计算可得多项式P(x)除以(x+2)的余数为-16。

试题2:已知整数序列a1, a2, a3, ...,其中a1 = 1,a2 = 2,an = an-1 + an-2(n ≥ 3)。

求证:对于任意正整数n,任务子序列a1, a2, ..., an中必定存在一个数可以被11整除。

解题思路:根据题意,我们需要证明对于任意正整数n,序列a1, a2, ..., an中必定存在一个数可以被11整除。

第十四届北京高中数学知识应用竞赛初赛试题及参考解答

第十四届北京高中数学知识应用竞赛初赛试题及参考解答
中 学 生 数 学 ・ 0 1 8月 上 ・ 4 3 ( 中 ) 21年 第 2期 高
. j 1

第 十 四 届 北 京 高 中 数 学 知 识 应 用 竞 赛 初 赛 试 题 及 参 考 解 答


用 与


速 度 拍 摄 足 球 比赛 画 面 . 们 亲 呢 地 称 它 为 “ 猫 ” 这 人 飞 , 是 近 几 年 使 用 的 一 项新 技 术 , 使 世 界 杯更 为 生 动 , 它 在 刚 闭 幕 的 亚 运 会 上 也 使 用 了这 项 技 术 . 种 摄 影 技 术 这 是 靠 四根 钢 索 协 调 动 作 来 完 成 的 , 术 关 键 是 建 立 协 技 调牵引 3 立体的 比 小 包 装 的 合 算 .如 某 种 品 牌 的 牙 大 棱 膏 , 量 3 的 每 支 2.0元 / , 量 1 0克 的 每 支 质 O克 5 支 质 2
( 满分 2 O分 ) 们 常 常 会 发 现 在 商 店 里 买 同 一 我
85 . 0元 .
行 比较 . 说 明 取 舍 数 据 的原 因 ; 并 ( ) 这些 学 校 给 出一 个 排 名 顺 序 . 说 明 你 的排 2对 应
名 原 则 和方 法 .
座 率 比较 低 , 造成 空 间 的 浪 费 . 导 致 这 种 浪 费 的 主要 而
原 因 就 是 那 里 的过 道 太 窄 , 利 于 人 的 流 动 . 为 合 适 不 较 的过道宽度在 08 . m一 1 2 之 间 . .m 如 果 可 以适 当增 减 桌 椅 , 么 , 何 摆 放 座 椅 , 那 如 使 得 人 员 的 容 纳 量 与 原 来 相 当 , 时 提 高 通 道 的 通 畅 程 同 度 , 出你 的 改进 方 案 , 明理 由 . 给 说

数学竞赛试题及答案高中生

数学竞赛试题及答案高中生

数学竞赛试题及答案高中生试题一:代数问题题目:已知\( a, b \) 是方程 \( x^2 + 5x + 6 = 0 \) 的两个实根,求 \( a^2 + 5a + 6 \) 的值。

解答:根据韦达定理,对于方程 \( x^2 + bx + c = 0 \),其根\( a \) 和 \( b \) 满足 \( a + b = -b \) 和 \( ab = c \)。

因此,对于给定的方程 \( x^2 + 5x + 6 = 0 \),我们有 \( a + b =-5 \) 和 \( ab = 6 \)。

由于 \( a \) 是方程的一个根,我们可以将 \( a \) 代入方程得到 \( a^2 + 5a + 6 = 0 \)。

所以 \( a^2 + 5a + 6 = 0 \)。

试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为 3 厘米和 4 厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过直角边 \( a \) 和 \( b \) 计算得出,公式为 \( c = \sqrt{a^2 + b^2} \)。

将给定的边长代入公式,我们得到 \( c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。

试题三:数列问题题目:一个等差数列的首项 \( a_1 = 3 \),公差 \( d = 2 \),求第 10 项 \( a_{10} \) 的值。

解答:等差数列的通项公式为 \( a_n = a_1 + (n - 1)d \),其中\( n \) 是项数。

将给定的值代入公式,我们得到 \( a_{10} = 3 + (10 - 1) \times 2 = 3 + 9 \times 2 = 3 + 18 = 21 \)。

试题四:组合问题题目:从 10 个不同的球中选取 5 个球,求不同的选取方式有多少种。

第二十一届北京高中数学知识应用竞赛决赛试题及参考解答

第二十一届北京高中数学知识应用竞赛决赛试题及参考解答
在城市里有一个地区,其中的相邻道路恰可 近似地用过直角坐标系内格点(坐标为整数的点) 的平行线表示,如图1.
(1)求到点o(0,0)的曼距为5的点构成的 图形.
(2)该地区内有两个火警高危点A(一3, 一2)和B(2,2),为了这两处的安全,预在某个格 点位置设立一个消防站(格点位置四通八达),问: 这个消防站设在哪儿好?
第三个方案:3个报警器中,不止一个报警器 报警时才采取抢救措施.
当灾难发生时,如果3个报警器都不报警或 其中只有一个报警时,才不会采取抢救措施.这些 事件发生的概率是0.0001 3+3×0.9999× 0.00012 dO.0001.换句话说,灾难发生时,没采取 抢救措施的概率比原来只有一个报警器的情况 要小.
(2)如果安装三个报警器,能否设计一种方 案,使得两种错误发生的概率都会降低.如果能, 请给出具体的设计;如果不能,请说明道理.
解 (1)对于方案1,只要有报警器报警就采 取抢救措施.即只有两个报警器都不报警,才不会 去抢救.
当灾难发生时,两个报警器都不报警的概率 是0.00012<O.0001.也就是说,发生灾难不能及 时抢救的概率降低了,比原来只有一个报警器时 要好.
,。 l 。1I●j一‘I一:一1i一1I
—J一▲一L一●.J.J
—o一●一■一H一+
。1。t-r-I-1一'
一1一r—r一广1一T o
:一:一j一:一:一坦 一一j’一-:十一十:I-一■:一一’j一:i
一1一r—r—l一1一T
—j一÷一j一!一j一;
圈1
解 (1)设点P(z,y)满足dpo—Iz一0I+ ly—o|一5,由于城市道路上的点P(x,y)中的,27 和Y至少一个是整数,所以当IzI+IYI一5时,X 和了均是整数,即P(x,y)为格点.穷举可得P点 的集合为{(0,一5),(1,一4),(2,一3),(3, 一2),(4,一1),(5,0),(4,1),(3,2),(2,3),

竞赛数学高中试题及答案

竞赛数学高中试题及答案

竞赛数学高中试题及答案试题一:多项式问题题目:已知多项式 \( P(x) = x^3 - 3x^2 + 2x - 5 \),求 \( P(2) \) 的值。

解答:将 \( x = 2 \) 代入多项式 \( P(x) \) 中,得到:\[ P(2) = 2^3 - 3 \times 2^2 + 2 \times 2 - 5 = 8 - 12 + 4 -5 = -5 \]试题二:几何问题题目:在直角三角形 ABC 中,角 C 是直角,若 \( AB = 10 \) 且\( AC = 6 \),求斜边 BC 的长度。

解答:根据勾股定理,直角三角形的斜边 \( BC \) 可以通过以下公式计算:\[ BC = \sqrt{AB^2 - AC^2} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \]试题三:数列问题题目:给定数列 \( a_n = 2n - 3 \),求数列的前 5 项。

解答:根据数列公式 \( a_n = 2n - 3 \),我们可以计算出前 5 项:\[ a_1 = 2 \times 1 - 3 = -1 \]\[ a_2 = 2 \times 2 - 3 = 1 \]\[ a_3 = 2 \times 3 - 3 = 3 \]\[ a_4 = 2 \times 4 - 3 = 5 \]\[ a_5 = 2 \times 5 - 3 = 7 \]数列的前 5 项为:-1, 1, 3, 5, 7。

试题四:概率问题题目:一个袋子里有 5 个红球和 3 个蓝球,随机抽取 2 个球,求抽到一个红球和一个蓝球的概率。

解答:首先计算总的可能组合数,即从 8 个球中抽取 2 个球的组合数:\[ \text{总组合数} = \binom{8}{2} = \frac{8 \times 7}{2} = 28 \]然后计算抽到一个红球和一个蓝球的组合数:\[ \text{有利组合数} = \binom{5}{1} \times \binom{3}{1} = 5 \times 3 = 15 \]所以,抽到一个红球和一个蓝球的概率为:\[ P = \frac{\text{有利组合数}}{\text{总组合数}} =\frac{15}{28} \]试题五:函数问题题目:若函数 \( f(x) = x^2 - 4x + 4 \),求 \( f(x) \) 的最小值。

第01届北京高中数学知识应用竞赛及解题思路和答案

第01届北京高中数学知识应用竞赛及解题思路和答案

3.8 第一届北京市高中数学知识应用竞赛(1997)第一届北京市高中数学知识应用竞赛初赛于1997年12月举行.【初赛试题】1.乘夏利出租汽车,行程不超过4公里时,车费为10.40元,行程大于4公里但不超过15公里时,超出4公里部分,每公里车费1.60元.行程大于15公里后,超出15公里的部分,每公里车费2.40元,途中因红灯等原因而停车等候,每等候5分钟收车费1.60元,又计程器每半公里计一次价,例如,当行驶路程x(公里)满足12≤x<12.5时,按12.5公里计价;当12.5≤x<13时,按13公里计价.等候时间每2.5分钟计一次价,例如,等候时间t(分钟)满足2.5≤t<5时,按2.5分钟计价;当5≤t<7.5时,按5分钟计价.请回答下列问题.(1)若行驶12公里,停车等候3分钟,应付多少车费?(2)若行驶23.7公里,停车等候7分钟,应付多少车费?(3)若途中没有停车等候,所付车费y(元)就是行程x(公里)的函数y =f(x),画出y=f(x)(0<x<7)的图象.2.某罐装饮料厂为降低成本要将制罐材料减少到最小,假设罐装饮料筒为正圆柱体(视上、下底为平面),上下底半径为r,高为h.若体积为V,上下底厚度分别是侧面厚度的2倍,试问当r与h之比是多少时用料最少?(你可以到市场上做一下调查,看看哪些罐装饮料大体上符合你的计算结果.)3.中国人民银行前不久公布银行存款利率从97年10月23日起下调,调整后的整存整取年利率如下表:现有一位刚升入初一的学生,家长欲为其存1万元,以供6年后上大学使用.若此期间利率不变,问采用怎样的存款方案,可使6年所获收益最大?最大收益是多少?4.有一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图3—111所示,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,若行车道总宽度AB为6米,请计算车辆通过隧道时的限制高度是多少米?(精确到0.1米)5.“人口问题”是我国最大社会问题之一,估计人口数量和发展趋势是我们制定一系列相关政策的基础,由人口统计年鉴,可查得我国从1949年至1994年人口数据资料如下:试估计我国1999年的人口数.6.如图3—107所示,有一条河MN,河岸的一侧有一很高建筑物AB.一人位于河岸另一侧P处,手中有一个测角器(可以测仰角)和一个可以测量长度的皮尺(测量长度不超过5米).请你设计一种测量方案(不允许过河),并给出计算建筑物的高度AB 及距离PA的公式.希望在你的方案中被测量数据的个数尽量少.7.一房间的门宽为0.9米,墙厚为0.28米.今有一家具其水平截面如图3—108,问能否把此家具水平地移入房间内(说明理由).8.现有一批长方体金属原料,其长宽高的规格为12×3×3.1(长度单位:米).某车间要用这些原料切割出两种长方体,其长宽高的规格第一种为3×2.4×1,第二种为4×1.5×0.7.若这两种长方体各需900个,假设忽略切割损耗,问至少需多少块金属长方体原料?如何切割?此时材料的利用率是多少?(计算到小数点后面3位)9.改革开放以来,土地承包制成为基本政策,经常会遇到类似下面的阿题.北京怀柔县某村一农民承包了100亩(中低产)地.土地租用费50元/年、亩,农业税10元/年、亩;根据当地气候条件,可以种植小麦、玉米和花生,其种植周期是:10月份(秋天)收玉米后可种冬小麦,第二年6月(夏天)收割小麦,6月份收割小麦后可种玉米,10月份收割玉米,4月份种花生,10月份收割花生,收割花生后可种冬小麦.有关冬小麦、花生、玉米三种作物的收支价格及产量如下表所示.这位农民每年必须完成20000公斤小麦公粮,每年留足全家1000公斤口粮,另外根据市场预测1996年花生种植面积不宜超过20亩,1997年不宜再种花生.试问:这位农民应如何安排从1995年10月秋种至1997年10月秋收的两年生产计划,使他既能完成公粮征购任务,又能留够口粮,并且在100亩土地上取得最大收益?(为了便于计算,不妨假定从1995~1997年内各种价格不变,产量也不变,并且不计承包人自己的工资,假定卖公粮价与卖余粮价相同.)10.1997年11月8日电视正在播放十分壮观的长江三峡工程大江截流的实况.截流从8∶55开始,当时龙口的水面宽40米,水深60米.11∶50时,播音员报告宽为34.4米,到13∶00时,播音员又报告水面宽为31米.这时,电视机旁的小明说,现在可以估算下午几点合龙.从8∶55到11∶50,进展的速度每小时宽度减少1.9米,从11∶50到13∶00,每小时宽度减少2.9米,小明认为回填速度是越来越快的,近似地每小时速度加快1米.从下午1点起,大约要5个多小时,即到下午6点多才能合龙.但到了下午3点28分,电视里传来了振奋人心的消息:大江截流成功!小明后来想明白了,他估算的方法不好.现在请你根据上面的数据,设计一种较合理的估算方法(建立一种较合理的数学模型)进行计算,使你的计算结果更切合实际.【初赛试题解答要点与参考答案】1.(1)行驶12公里,由题设按12.5公里计价,车费为10.4+1.6×(12.5-4)=24(元),等候3分钟,由题设按2.5分钟计价,等候费为合计 24+0.8=24.8(元).………………………………(5分)(2)行驶23.7公里,按24公里计价.车费为10.4+1.6×(15-4)+2.4×(24-15)=49.6(元),等候7分钟,按5分钟计价.等候费为合计 49.6+1.6=51.2(元).……………………………(10分)(3)据题设可得如下x与y的关系,其函数图象为图3—110.…………………………………(15分)2.易知V=πr2h,设材料比重为ρ,侧面材料厚度为b,则用料为A=2πr×h×b×ρ+2πr2×2b×p…………………………………………………………(10分)这样,r与h之比是1∶4时,用料最少.………(15分)(市场上可口可乐,百事可乐等很多罐装饮料都大体符合这一结果.)此段不计分.3.解法一一年期存两次(按复利计算)获利金额为(四舍五入精确到分)P1×2=104(1+5.67%)2-104=1166.15元.两年期存一次获利金额为P2=2×104×5.94%=1188.00元.∴ P2>P1×2……………………………………………(5分)存一次一年期再存一次两年期的获利金额为P1+2 =104(1+5.67%)(1+2×5.94%)-104=1822.36元.三年期存一次获利金额为P3=3×104×6.21%=1863.00元.∴ P3>P1+2.又存一次二年期再存一次三年期的获利金额为P2+3=104(1+2×5.94%)(1+3×6.21%)-104=3272.32元.五年期存一次的获利金额为P5=5×10 4×6.66%=3330.00元.∴ p5>P2+3.三年期存两次的获利金额为P3×2=P3+3=104(1+3×6.21%)2-104=4073.08元.两年期存三次的获利金额为P2×3=104(1+2×5.94%)3-104=4004.17(元)∴ P3×2>P2×3.存一次五年期再存一次一年期的获利金额为P5+1=104(1+5×6.66%)(1+5.67%)-104=4085.81(元).∴ P5+1>P3+3.∵ P n+m=P m+n,(m,n∈N)∴由上述计算推知:存一次五年期一次一年期所获收益最大.为4085.81(元).……………………………………………………(15分)解法二直接计算P1×6,P1×4+2,P1×2+2×2,P2×3,P1×3+3,P1+2+3,P3×2,P1+5进行比较,得出P1+5最大.4.以AB为x轴正方向,AB的中点为原点,建立直角坐标系,于是过点P(4,2),Q(0,6)的抛物线在该坐标系中的方程为令x=3,得因此货车限高=3.75-0.5=3.25≈3.2(米).答:货车的限高为3.2米.………………………………………(15分)(注:答3.3米也算对)5.第一步:在直角坐标系上做出人口数的图形.…………………………………………………………………(5分)第二步:估计出这图形近似地可以看做一条直线.…………………………………………………………………(8分)第三步:用以下几种方法之一确定直线方程,并算出1999年人口数,在12.4~12.6亿之间均算正确答案.……………………………………………………………………(15分)方法一:选择能反映直线变化的两个点,例如 (1949,541.67),(1984,1034.75)二点确定一条直线,方程为:N=14.088t-26915.842代入t=1999,N=1246.07≈12.46(亿).方法二:可以多取几组点对,确定几条直线方程,将t=1999代入,分别求出人口数,再取其算术平均值.方法三:可采用最通用的“最小二乘法”求出直线方程.这里简单地介绍一下最小二乘法.设(x1,y1),(x2,y2),…(x k,y k)是平面直角坐标系下给出的一组数据,若x1<x2<…<x k,我们亦可以把这组数据看做是一个离散的函数.根据观察,如果这组数据图象“很像”一条直线(不是直线),我们的问题是确定一条直线y=bx+a,使得它能最好地反映出这组数据的变化.这样可以使第一项、第二项分别取最小,第一项是b的一元二次函由于系数是常数,不妨令l1=Σ(x i-x)2,l2=Σ(y i-y)(x i-x),l3=Σ(y i-y)2,通过配方有用最小二乘法可以求出N=14.51006t-27753.54649,代入t=1999,得N≈12.52亿.…………………………………………(15分)6.常见有两种测量方案.方案1 P位于开阔地域,则测量方案如下图3—112所示,被测量的数据为PC(测角器的高)和PQ(Q为在PA水平直线上选取的另一测量点)的长度,仰角α和β.……………………………………(5分)设AB为x,PA为y,则计算公式为方案2 若P处也是一可攀登建筑物(如楼房),则可在同一垂线上选两个测量点(见图3—113),被测数据为PC和CD的长度,仰角α和β.……………………………………………………………(5分)设AB=x,PA=y,则计算公式为说明:无论哪个方案都至少要测4个数据.7.解法一如图3—114,墙厚CD=0.28米,家具的一边AB中只要h不超过门宽0.9米,则家具可水平地搬入屋内.………(5分)从图中可见h=AEsinθ,又AE=AG+GF+FE,其中AG=0.48,GF=CDcosθ=0.28cosθ,FE=FCctgθ=0.48ctgθ.因此h=AEsinθ=(0.48+0.28cosθ+0.48ctgθ)sinθ………………………………………………………………(10分)=0.48(sinθ+cosθ)+0.28cosθsinθ…………………………………………………………………(15分)解法二在搬运家具时,为了顺利过门,家具的两个边KM、 KN紧贴C、 D,点K的运动轨迹是以CD为直径的半圆周, A点到CD的距离始终不大于AK+KO(O是CD中点).而AK+KO≈0.82<0.9.…………………………………(15分)8.把原料切割出所需的两种长方体而没有余料,只有两种切法,见图3—115(Ⅰ)和(Ⅱ).切法(Ⅰ)切割出12个第一种长方体和6个第二种长方体,切法(Ⅱ)切割出5个第一种长方体和18个第二种长方体.…………………………………………………………………(6分)取3块原料,2块按切法(Ⅰ)切割,1块按切法(Ⅱ)切割.得到29个第一种长方体和30个第二种长方体.因此,取90块原料,其中60块按切法(Ⅰ)切割, 30块按切法(Ⅱ)切割,共得到 870个第一种长方体和900个第二种长方体.至此,没产生任何余料,但还差30个第一种长方体.再取2块原料,按切法(Ⅲ)切割(见图),得30个第一种长方体.每块原料剩下12×3×0.1的余料.因此,为了得到这两种长方体各 900个,至少需 90+2=92块原料.…………………………………………………………………(13分)此时,材料的利用率为………………………………………………………………………(15分)9.第一步:承包两年土地共需缴纳土地租用费和农业税费为2×(50+60)×100=12000元.第二步根据给定数据计算出每种作物收支费用表如下:第三步:两年内只能有以下两种种植模式.………………(5分)Ⅰ 1995年秋种冬小麦→夏收完种玉米→秋收完再种冬小麦→夏收完再种玉米→1997年秋收玉米.Ⅱ 1995年不种→1996年春种花生→秋收后种冬小麦→夏收后再种玉米→1997年秋收玉米.按模式Ⅰ每亩地两年纯收入1096元/亩,按模式Ⅱ每亩地两年纯收入1153元/亩.第四步:设按模式Ⅰ种x1亩,模式Ⅱ种x2亩,总收入应该为y=f(x1,x2)=1096x1+1153x2-12000-2×1.68×1000.其中x1和x2应受到如下条件的限制:(1)x1≥0,x2≥0,(2)x2≤20,(3)x1+x2=100,(4)300x1≥21000(缴纳公粮和口粮).………………(12分)第五步:由于模式Ⅱ获利多,所以在满足条件(3)和(4)的前提下应该尽量多地采用模式(Ⅱ).所以只要计算一下x2=20时,能否满足条件(4)即可.∵300×80>21000,∴令x1=80,x2=20可取得最大收益.y max=1096×80+1153×20-12000-1680×2=87600+23060-12000-1680×2=95300(元).………………………………………………………………………(15分)(像第8题,第9题这类问题在数学上称做规划问题或整数规划问题.)10.说明:建模的合理性有以下两个评价要点:(1)回填速度应以每小时多少立方米填料计算;这样,能否建立合理的回填速度计算模型便成为第一个评价要点.(2)注意到回填速度是在逐渐加快;水流截面越大,水越深,回填时填料被冲走的就越多,相应的进展速度就越慢,反之就越快.在模型中对回填速度越来越快这一点如何作出较合理的假设,这是第二个评价要点.下面的计算模型可供参考.为简便计,回填体积可用龙口水流的截面面积代替,假设截面为等经175分钟回填后,龙口宽为34.4米.设此时截面与原截面相似(如图3—109).则此时的水深h1满足故h1=51.6(m).此时尚待回填的面积A1=17.2×51.6=887.52(m2)到13∶00尚待回填的面积A2=15.5×(15.5×3)=720.75(m2).从11∶50到13∶00回填的平均速度为比以前的速度加快了.在回填过程中,回填速度是越来越快的.可建立各种模型进行计算,下面举出两种算法.下午1∶00~2∶00,回填面积为143×1.336=191.048.2∶00~3∶00 回填面积为143×1.336 2=255.24.此时,待填面积为720.75-(191.048+255.24)=274.462.需个小时,即在下午3点48分龙口即可合龙.……………………(15分)方法二:假设回填速度v与水深l成反比.因为水深与待填面积Sm2/小时,故回填面积为224.67m2.所以下午4∶00,待填面积仅为720.75-192.36-224.67-296.33=7.39,可认为已经合龙;也就是说,按这一模型估算,下午4点龙口即可合龙.………………………………………………………(15分)【复赛试题】1.(14分)年初小王承包了一个小商店,一月初向银行贷款10000元做为投入资金用于进货.每月月底可售出全部货物,获得毛利(当月销售收入与投入资金之差)是该月月初投入资金的20%.每月月底需要支出税款等费用共占该月毛利的60%.此外小王每月还要支出生活费300元.余款作为下月投入资金用于进货.如此继续,问到年底小王拥有多少资金?若贷款年利率为10.98%,问小王的纯收入为多少?2.(14分)某铝制品厂在边长为40cm的正方形铝板上割下四个半径为20厘米的圆形(如图3—116的阴影部分).为节约铝材,该厂打算用余下部分制作底面直径和高相等的圆柱形包装盒.(接缝用料忽略不计)问:(1)包装盒的最大直径是多少?(精确到0.01厘米)(2)画出你设计的剪裁图.3.(14分)一底面积为S(分米)2,高为H分米,重量为M千克重的有盖圆柱形容器,内盛液面高度为h分米的水.设容器的质地是均匀的且薄厚相同(包括盖),问h为多少时使容器和水整体的重心最低.4.(12分)中国邮政贺年(有奖)明信片,每张明信片附有一个由六个数组成的号码,97、98年公布的获奖号码(其尾数)如下:97年98年特等奖 400656 一等奖 963639一等奖 877175 二等奖 07594二等奖 50725,20460 三等奖 7655,6839,4754三等奖 2463,5502 四等奖 090,433四等奖 626 803,796五等奖 84 624纪念奖 3 五等奖 9试问:(1)哪一年获奖的概率大?(注:发行100张明信片有5张中奖,则称获奖概率为5%)(2)若不考虑97年的纪念奖,98年的五等奖,这两年的获奖概率相差多少?5.(12分)家具厂的沙发框架装配流水线可以把锯、刨好的木料装配成沙发框架.主要有四道工序:打磨抛光,喷涂保护层,装配,贴厂名标签.按照工艺流程的要求,喷涂保护层不能安排在打磨抛光之前,而贴厂名标签必须在喷涂保护层之后进行.已知:贴标签需要1分钟;抛光需要5分钟,但装配之后再抛光则只需3分钟;喷涂需要8分钟,但装配之后再喷涂只需6分钟;如果喷涂前装配需要6分钟,否则只需4分钟.试为这条流水线安排一个加工顺序,使总加工时间最短.6.(12分)现有甲乙两个服装厂生产同一种服装,甲厂每月产成衣900套,生产上衣和裤子的时间比是2∶1,乙厂每月产成衣1200套,生产上衣和裤子的时间比是3∶2.若两厂分工合作,请安排一生产方案,其产量超过原两厂生产能力之和,求出每月生产多少套成衣?7.(污水处理问题)(12分)沿河有三城镇1、2和3,其地理位置如图3—117所示,污水需处理后方可排入河中.用Q表示污水量(吨/秒),L 表示管道长度(公里),按照经验公式,建污水处理厂的费用为P1=73Q0.712(千元),铺设管道的费用为P2=0.66Q0.51L(千元),已知三城镇的污水量分别为Q1=5,Q2=3,Q3=5,L的数值如图所示.三城镇既可以单独建立污水处理厂,也可以联合建厂,用管道送污水集中处理只能由河流的上游城镇向下游城镇输送.试问:(1)从节约总投资的角度出发,请给出一种最优的污水处理方案;(2)如果联合建厂,各城镇所分担的污水处理费用遵循下面建议:联合建厂费按污水量之比分担;管道费用根据谁用谁投资的原则,如果联合使用则按污水量之比分担.试计算在上述建议下,各城镇所分担的费用,并讨论其合理性;(3)请你试着给出一个分担污水处理费用的合理建议.并计算各城镇的费用.8.(10分)中国足球甲级队比赛,分成甲A和甲B两组,进行主客场双循环制,1997年足协决定:12只甲B球队的前四名将升入甲A,球队排序的原则如下:(1)胜一场积3分,平一场积1分,负一场积0分;(2)球队的名次按积分多少排序,积分高的队排名在前;(3)积分相同的球队,按净胜球的多少排序,净胜球(踢进球数减被踢入球数)多的队排名在前.(4)若积分相同、净胜球数也相同,则按进球数排序,踢进球总数多的队排在前.以下是甲B联赛(共赛22轮)第19轮后的形势:队名胜平负得失球积分武汉雅琪 10 6 3 29/18 36深圳平安 9 5 5 34/27 32深圳金鹏 8 5 6 32/38 29河南建业 8 5 6 20/18 29广州松日 7 7 5 27/19 28沈阳海狮 7 7 5 28/23 28佛山佛斯弟 8 2 9 26/28 26辽宁双星 7 4 8 20/19 25上海浦东 7 4 8 28/23 25上海豫园 6 5 8 23/29 23天津万科 5 7 7 22/23 22火车头杉杉 2 3 14 14/48 9还剩三轮,对阵表如下:上海浦东——深圳平安广州松日——河南建业深圳平安——辽宁双星河南建业——上海浦东深圳平安——沈阳海狮上海豫园——河南建业深圳金鹏——上海豫园武汉雅琪——佛斯弟沈阳海狮——深圳金鹏天津万科——佛斯弟辽宁双星——深圳金鹏佛斯弟——杉杉杉杉——广州松日广州松日——天津万科辽宁双星——天津万科沈阳海狮——杉杉上海豫园——武汉雅琪武汉雅琪——上海浦东试问:武汉雅琪队是否一定可以提前三轮晋升甲A?说明理由.【复赛试题解答要点与参考答案】1.设第n个月月底的资金为a n元,贷款金额为a0,则a n+1=a n·(1+20%)-a n·20%·60%-300=1.08a n-300,……………………………………5分又a0=10000元,于是a1=10500元.依题意,b=10500,c=1.08,d=-300,纯收入为a12-10000(1+10.98%)=8390.6元.……………14分答:小王年底有资金19488.6元,纯收入为8390.6元.2.如图3—118建立直角坐标系:………………………………………………………………………3分依题意,若使圆柱底面直径最大,应如图所示剪裁.设底面半径为r,由于2r为圆柱的高,故AD=2r,AB=2πr,………………………………………6分于是A点的坐标为(πr,r).⊙O′的方程为:(x-20)2+(y-20)2=20 2.(2) ………………………………………………………………………10分将(1)代入(2)得(πy-20)2+(y-20)2=20 2,求解得y1≈3.01(cm),y2≈12.23(cm)(舍去).……………………………………………………………………12分∴r≈3.01(cm).于是O″(0,6.02),O′(20,20),而 r+20=23.01<24.41,所以,在裁下矩形ABCD后,可在余下部分裁下两个半径为3.01的圆(⊙O″).这样,每块余料做一圆柱形(直径与高相等)的包装盒,底面最大直径是6.02(cm).………………………………………14分3.解法一容器质地均匀且薄厚相同(包括盖),故其重心高度为设容器和水整体的重心高度为x分米,则x满足以下方程:它恰好等于水面高度h.………………………………………………………………………6分整理得 Sh2-2Shx+MH-2Mx=0,由于h是非负实数,所以,x2S2-M(H-2x)≥0.(2)………………………8分使重心位置最低的x一定是使(4)成立的x最小非负值.由二次不等式可知,使(2)成立的x值为因此,x的最小值为4.设发行了n张明信片,其中k张获奖,则任买一张,获奖概率为1997、1998两年明信片号码均为六个数组成,可以认为发行了10 6张.…………2分(1)由于两年发行明信片数均为n=10 6,为了比获奖概率大小,只须比较获奖明信片张数的多少.1997年获奖明信片张数为1+1+20+200+1000+10000+100000=111222.1998年获奖明信片张数为1+10+300+5000+100000=105311.故 1997年获奖概率大于 1998年获奖概率.…… 8分相差为1.12%-0.53%= 0.59%……………………………12分5.我们用字母来表示工序:S—抛光;P—喷涂保护层;A—组装;N —贴厂名标签.解法一按题目的工艺流程要求,全部可能的生产流程及所用的时间可由图3—119给出.图中箭头所示方向为工艺的流程,每个箭头下方的字母为所执行的工序,上方为该工序所用的时间,方括号内为已完成的工序.………………………………………………………………………10分所有可能的流程共四条:ASPN、SAPN、SPAN、SPNA,所用的时间分别为16分钟、18分钟、18分钟、18分钟,生产流程ASPN所用时间最少.即为了使加工时间最短,应先组装,然后抛光,再喷涂保护层,最后贴厂名标签.……………………………………………12分解法二将生产流程图画成“树”(画出流程图10分,计算出时间12分)解法三按工艺流程的要求,S、P、N三个工序,只能有顺序S→P→N,而A可以在这三者前后的任意位置上,于是就得到所有可能的生产流程A→S→P→NS→A→P→NS→P→A→NS→P→N→A…………………………………………………10分计算各流程所用时间,得出最优流程.………………………12分6.甲厂只生产上衣1350件/月,甲厂只生产裤子2700件/月;乙厂只生产上衣2000件/月,乙厂只生产裤子3000件/月.………………………………………………………………………4分我们的目的是设计一种方案使总产量超过原总产量900+1200=2100.发挥乙厂生产上衣的优势,让乙厂全部生产上衣,共2000件,让甲这样的生产方案可生产2233套成衣,超过原总产量133套.……………………………12分7.设C i为城镇i单独建污水厂所需费用(i=1,2,3),则C1=73×50.712≈230(千元),C2=73×30.712≈160(千元),C3=C1≈230(千元).若城镇i,j合作在城镇j建厂,设C ij(i<j)为从城i到城j铺设管道的费用(i,j=1,2,3),则C12=73×(5+3)0.712+0.66×50.51×20=350(千元),C13=73×(5+5)0.712+0.66×50.51×(20+38)=463(千元),C23=73×(5+3)0.712+0.66×30.51×38=365(千元).(1)按题设三城镇的污水处理只有五种方案.方案1 各城分别建厂处理污水,总费用C1+C2+C3=230+160+230=620(千元)……………1分方案2 城1,城2合作处理污水,城3单独处理污水,总费用C12+C3=350+230=580(千元)……………………2分方案3 城1,城3合作处理污水,城2单独处理污水,总费用C13+C2=463+160=623(千元)………………3分方案4 城2,城3合作处理污水,城1单独处理污水,总费用C23+C1=365+230=595(千元)……………………4分方案5 三厂合作在城3建厂,并铺设城1及城2到城3的管道,总费用为73×(5+3+5)0.712+0.66×50.51×20+0.66×(5+3)0.51×38=453.4+30+72.4=555.8(千元)………………………5分方案5所用费用最少,三厂合作在城3建厂并铺设管道是最优方案.(2)三城合作建污水厂费用为73×(5+3+5)0.712=453.4(千元).按三城镇污水量的比例5∶3∶5来分担这一费用,城1,104.6(千元),174.4(千元).城1到城2的管道费0.66×50.51×20=30(千元)应由城1负担,城 2到城 3的管道费0.66×(5+3)0.51×38=72.4(千元)按城1,城2污水量的比例5∶3,由城1,因此,城1负担费用为174.4+30+45.25=249.65(千元)………………………………………………………………………6分城2负担费用为104.6+27.15=131.75(千元),城3负担费用为174.4(千元),三城总负担费用249.65+131.75+174.4=555.8(千元)……………………………………………………………………… 8分但由于249.65>230=C1,即此时城1负担的费用比它单独建污水厂所付费用还多,这对城1是不公平的,分配方案有不合理之处.………………………………………………………………………10分(3)这小题没有标准答案,答案是开放性的,比如把总费用555.8(干元)按C1,C2,C3的比例分别负担等,只要能设计出“合理”的方案均可.………………………………………………………………12分8.使用排除法.排除法的目的是确定“是否存在一种使雅琪队无法出线的比赛结果”.排除的原则是“排除那些有利于雅琪队出线的情况,仅考虑尽量少的不利雅琪队出线的情况”.这个思想明确,可以清楚地确定出以下原则:原则1:设后三轮雅琪队均以大比分告负;原则2:除了雅琪队其余各队分为二类:第一类队在后三轮即使全胜,其积分也少于36分;第二类队后三轮全胜积分可以达到或超过36分.原则3:使第二类中尽量多的队积分达到或超过36分,为此可以任意决定第一类队的比赛结果.根据以上三原则施行如下步骤:1°根据原则2,第一类队包括排在第七位(佛斯第队)以后的各队,第二类队包括:平安队、金鹏队、建业队、松日队和海狮队.2°设第二类的队与第一类队或雅琪队的比赛中均以大比分取胜,其结果为:平安队胜浦东队和双星队,积36分;金鹏队胜豫园队和双星队,积35分;建业队胜豫园队和浦东队,积35分;松日队胜万科队和杉杉队,积34分;海狮队胜杉杉队,积31分.3°设平安队积36分便可以净胜球排在雅琪队之前,这样,平安队即使负于海狮队亦可排在雅琪队之前.这样可使海狮队从平安队处得3分.积34分.4°这样,还有两场比赛即:金鹏对海狮,松日对建业,其中金鹏积35分,海狮积34分;松日积34分,建业积35分.显然,在金鹏与海狮之间,松日与建业之间,至多有一个队可达到或超过36分.这就是说,第二类队中至多有三个队排在雅琪队之前,而甲B有四支队可晋升甲A,故雅琪队一定可以晋升甲A.注解决这类问题,还可以使用穷举法,罗列出后三轮的所有可能的比赛结果,每一种比赛的结果都可以得到一种球队的排序,如果存在着一种比赛结果的排序使雅琪队被列在第五位或低于第五位,则说明雅琪队不能“一定晋升”.否则的话,就说明无论后三轮怎样的比赛结果的排序中雅琪队都在前四名,故雅琪队“一定晋升”.这种方法是可行的方法,尤其是比赛球队不多的情况下,穷举法的核心是要保证列举出“所有可能”,做到这一点并非容易,常常借助于计算机,给出“列出所有可能”的程序,由计算机来完成罗列和判别.一般说这种方法过于繁杂,在球队很多时,即使用计算机亦难于实现.例如此题:仅就积分结果来说,还须比赛18场,每场两个结果(或分胜负,或平),共计218种!人为列举是无法实现的,计算机也要工作一段时间.。

高中数学竞赛题

高中数学竞赛题

1、在一组数据中,平均数为15,中位数为14,众数为13。

如果将每个数据点增加2,新的平均数、中位数和众数分别是多少?A. 17, 16, 15B. 17, 15, 14C. 17, 16, 15(答案)D. 17, 15, 132、一个矩形的长是宽的2倍,如果矩形的周长是36厘米,那么矩形的长是多少厘米?A. 6厘米B. 9厘米C. 12厘米(答案)D. 18厘米3、一个等边三角形的边长是10厘米,那么这个等边三角形的面积是多少平方厘米?A. 25√3平方厘米B. 50√3平方厘米(答案)C. 75√3平方厘米D. 100√3平方厘米4、一个正方体的边长是5厘米,那么这个正方体的对角线长度是多少厘米?A. 5√3厘米(答案)B. 10√3厘米C. 15√3厘米D. 20√3厘米5、一个圆的直径是10厘米,那么这个圆的面积是多少平方厘米?A. 25π平方厘米(答案)B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米6、一个梯形的上底长4厘米,下底长8厘米,高是3厘米,那么这个梯形的面积是多少平方厘米?A. 6平方厘米B. 12平方厘米(答案)C. 18平方厘米D. 24平方厘米7、一个长方体的长是6厘米,宽是4厘米,高是3厘米,那么这个长方体的体积是多少立方厘米?A. 12立方厘米B. 24立方厘米C. 36立方厘米D. 72立方厘米(答案)8、一个等腰三角形的底边长是12厘米,两腰各长10厘米,那么这个等腰三角形的高是多少厘米?A. 6厘米B. 8厘米(答案)C. 10厘米D. 12厘米。

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。

2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。

3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。

试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。

2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。

3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。

试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。

2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。

3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。

试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。

2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。

3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。

试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。

2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。

高中数学竞赛试题及解题答案

高中数学竞赛试题及解题答案

⾼中数学竞赛试题及解题答案浙江省⾼中数学竞赛试题及答案⼀、选择题(本⼤题共有10⼩题,每题只有⼀个正确答案,将正确答案的序号填⼊题⼲后的括号⾥,多选、不选、错选均不得分,每题5分,共50分)1.集合{,11P x x R x =∈-<},{,1},Q x x R x a =∈-≤且P Q ?=?,则实数a 取值范围为(....)A. 3a ≥B. 1a ≤-.C. 1a ≤-或 3a ≥D. 13a -≤≤2.若,,R αβ∈则90αβ+=是sin sin 1αβ+>的()A. 充分⽽不必要条件B. 必要⽽不充分条件C. 充要条件D. 既不充分也不必要条件3.已知等⽐数列{a n }:,31=a 且第⼀项⾄第⼋项的⼏何平均数为9,则第三项是(.....)A.4. 已知复数(,,z x yi x y R i =+∈为虚数单位),且28z i =,则z =()A.22z i =+B. 22z i =-- .C. 22,z i =-+或22z i =-D. 22,z i =+或22z i =--5. 已知直线AB 与抛物线24y x =交于,A B 两点,M 为AB 的中点,C 为抛物线上⼀个动点,若0C 满⾜00min{}C A C B CA CB ?=?,则下列⼀定成⽴的是()。

A. 0C M AB ⊥ B. 0,C M l ⊥其中l 是抛物线过0C 的切线C. 00C A C B ⊥D. 012C M AB = 6. 某程序框图如下,当E =0.96时,则输出的K=()A. 20B. 22 ...C. 24 .D. 25,7. 若三位数abc 被7整除,且,,a b c 成公差⾮零的等差数列,则这样的整数共有()个。

A.4B. 6 ...C. 7 .D 88. 已知⼀个⽴体图形的三视图如下,则该⽴体的体积为()。

A.. ..9. 设函数234()(1)(2)(f x x x x x =--()f x =A.0x =B. 1x = .C. 2x =10. 已知(),(),()f x g x h x正视图:上下两个21,1()()()32,1022,0x f x g x h x x x x x -<-??-+=+-≤,则()h x 的表达式为()。

竞赛数学高中试题及答案

竞赛数学高中试题及答案

竞赛数学高中试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的零点为x1和x2,则x1 + x2的值为:A. 2B. 3C. 4D. 52. 已知数列{an}是等差数列,且a1 = 2,a3 = 8,则该数列的公差d为:A. 2B. 3C. 4D. 63. 若复数z满足|z - 1| = 2,则z的模|z|的取值范围为:A. [1, 3]B. [0, 3]C. [1, 5]D. [0, 5]4. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)的值为:A. 3x^2 - 6xB. 3x^2 - 6x + 2C. x^2 - 6x + 2D. x^3 - 3x^2 + 25. 若a,b,c是等比数列,且a + b + c = 14,b^2 = ac,则a + c 的值为:A. 4B. 8C. 10D. 126. 已知三角形ABC的三边长分别为a,b,c,且满足a^2 + b^2 = c^2,求角C的大小为:A. 30°B. 45°C. 60°D. 90°7. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图像与x轴有两个交点,则判别式Δ的取值范围为:A. Δ > 0B. Δ = 0C. Δ < 0D. Δ ≥ 08. 已知向量a = (1, 2),b = (3, 4),则向量a + b的坐标为:A. (4, 6)B. (-2, -2)C. (2, 6)D. (4, -2)9. 若函数f(x) = sin(x) + cos(x),则f(π/4)的值为:A. √2B. 1C. 2D. 010. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1(a > 0,b > 0),且双曲线C的一条渐近线方程为y = 2x,则a/b的值为:A. 1/2B. 1/3C. 1/4D. 1/5二、填空题(每题6分,共30分)11. 已知数列{an}的前n项和为Sn,且Sn = 3^n - 1,求a5的值为________。

高中数学竞赛试题及解答

高中数学竞赛试题及解答

高中数学竞赛试题及解答试题(一)一、 过圆的直径AB 上一定点C 作任意弦DE ,过B 作圆的切线L ,并设直线AD 与直线AE 分别与L 交于F 、G 。

若4,AB = 3,AC =求BF BG ⋅。

(12分)二、 证明x 的三次方程式3210x x π--=只有一个正实根。

(12分)三、 试证明2009不能表示成三个正整数的立方和。

(12分)四、有各张分别标有1, 2,, n 的一叠n 张卡片。

洗过卡片后,重复进行以下操作:若最上面一张卡片的标号是k ,则将前k 张卡片的顺序颠倒;例如,若4n =且卡片排列成3124,则操作一次后的卡片将排列成2134。

证明:经过有限次操作后,标号为1的卡片会在最上面。

(13分)试题(二)一、求2222(1.1)(1.2)(1.3)(3.1)++++。

(3分)二、设, , x y z 为实数且满足222 1x y z ++=,求xy yz zx ++的最小值。

(3分)三、空间中一四面体的四个顶点分别为(0, 0, 1), (2, 4, 0), (0, 0, 0),A B C (4, 2, 0)D ,平面E 通过A 点与BD 中点且与BC 有交点。

若平面E 将此四面体分成两块,其中一块的体积为原四面体的13,求E 的方程式。

(3分)四、求n ∞=,其中[]x 表示小于或等于x 的最大整数,例如[1.2]1=。

(4分)五、假设有5根电线杆,其中有2根会漏电,以致于停在它们上面的小鸟会立刻被电昏而摔落地面。

今有5只小鸟各自独立的随机选择其中一根电线杆逗留休息,试计算只有2根电线杆上有小鸟的机率。

(4分)试题(一)解答一、 【解】过C 作HI //FG ,与AF , AG 分别交I 和H ,连结BE , BH 。

因90BEH ∠=, 90BCH ∠=,所以四边形CBEH 是圆内接四边形BEC BHC ∠=∠而BED BAD ∠=∠BHI BAD ∴∠=∠由此可知,B , H , A , I 共圆 CI CH AC CB ∴⋅=⋅ (1)ACI ABF ∆∝∆ ::AC AB CI BF =又 ACH ABG ∆∝∆::AC AB CH BG ∴=22::AC AB CI CH BF BG ∴=⋅⋅ (2)由(1), (2), 22::AC AB AC CB BF BG =⋅⋅22AC CB AC BF BG AB ⋅=⋅, 2222()()4311633AB AC CB BF BG AC ⋅⋅⋅⋅===.二、 【证】令 32()1f x x x π=--则 (0)1f =-, (100)0f >由堪根定理,0与100之间有一个根r令 2()()()f x x r x ax b =-++32()()x a r x b ra x rb =+-+--得 a r π-=-b ra -= 1rb = (2)由(2) 0b >由(1) 0a => ,a b ∴皆为正数 20x ax b ∴++> for 0x ≥()f x ∴没有第二个正根。

2024年全国高中数学竞赛试题

2024年全国高中数学竞赛试题

选择题设函数f(x) = sin(x) + cos(2x),则f'(π/4) 的值为:A. -√2/2B. √2/2C. -1D. 1(正确答案)已知等差数列{an} 的前n 项和为Sn,且a1 = 1,S3 = 9,则a4 的值为:A. 5B. 6C. 7(正确答案)D. 8若复数z 满足(1 + i)z = 2i,则z 的共轭复数为:A. 1 - iB. 1 + i(正确答案)C. -1 - iD. -1 + i已知向量a = (1, 2),b = (3, 4),则a 与b 的夹角的余弦值为:A. √5/5B. 2√5/5(正确答案)C. 3/5D. 4/5设函数f(x) = ex - x - 1,则不等式f(x) > 0 的解集为:A. (-∞, 0)B. (0, +∞)(正确答案)C. (-∞, 1)D. (1, +∞)已知椭圆C: x2/4 + y2/3 = 1,F1,F2 分别为椭圆的左、右焦点,P 为椭圆上一点,且PF1 ⊥ PF2,则|PF1| × |PF2| 的值为:A. 6/7B. 12/7C. 9/4(正确答案)D. 3/2已知函数f(x) = ln(x + 1) - x,则f(x) 的单调递增区间为:A. (-1, 0)(正确答案)B. (0, +∞)C. (-∞, -1)D. (-∞, 0)已知三角形ABC 的内角A,B,C 对应的边分别为a,b,c,且a = 2,b = 3,cos C = -1/2,则三角形ABC 的面积为:A. 3√3/4B. 3√3/2(正确答案)C. 3/2D. 3已知数列{an} 满足a1 = 1,an+1 = 2an + 3,则数列{an} 的通项公式为:A. an = 2n - 1B. an = 2(n+1) - 3C. an = 2n + 3 - 4/2n(正确答案)D. an = 2(n-1) + 3。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(每题4分,共40分)1. 如果函数f(x)=x^2-4x+3,那么f(2)的值为:A. -1B. 1C. 3D. 5答案:B2. 已知等差数列{an}的首项a1=1,公差d=2,那么a5的值为:A. 9B. 10C. 11D. 12答案:A3. 函数y=sin(x)的周期为:A. 2πB. πC. 4πD. 1答案:A4. 已知三角形ABC的三个内角A、B、C满足A+B=2C,那么角C的度数为:A. 30°B. 45°C. 60°D. 90°答案:C5. 已知复数z=1+i,那么|z|的值为:B. 2C. √3D. 3答案:A6. 函数f(x)=x^3-3x^2+2在区间[1,2]上是:A. 增函数B. 减函数C. 先减后增D. 先增后减答案:C7. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,且a=2,那么b的值为:A. √3C. √5D. 2答案:A8. 已知椭圆C:x^2/4+y^2/3=1,那么椭圆C的离心率为:A. √3/2B. 1/2C. √2/2D. 2/3答案:C9. 已知向量a=(2,1),b=(1,-1),则向量a+2b的坐标为:A. (4, -1)B. (4, 1)C. (2, -1)D. (2, 1)答案:A10. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B 的元素个数为:A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3+3x^2-9x+5,求f'(x)的值为:______。

答案:3x^2+6x-912. 已知等比数列{bn}的首项b1=2,公比q=3,那么b4的值为:______。

答案:5413. 已知直线l的方程为y=2x+1,求直线l与x轴的交点坐标为:(______,______)。

高中数学趣味知识竞赛

高中数学趣味知识竞赛

把一根木头锯成2段要2分钟 ,锯成3段要几分钟?
正确答案 4分钟
小华1分钟可以剪好5只自己 的指甲。他在5分钟内可以 剪好多少只自己的手指甲?
正确答案 10
甲以为自己的表快5分钟,实 际上是慢了10分钟;乙的表 慢了5分钟,乙却以为它慢 了10分钟。甲乙都想赶四点 钟的火车,谁先到火车站?
正确答案 乙
正确答案 19天
第二部分: 团体答题
第1轮 24点
1 2345 6 7 8 9 10
1359
正确答案1*3*5+9
1388
正确答案 (1+3)*8-8
1444
正确答案4+4*(1+4)
2333
正确答案3*(3+2+3)
2558
正确答案 (5/5+2)*8
3334
正确答案(3*3-3)*4
正确答案 A
谜面
多十分(打一数学词语)
正确答案 余角
2239 正确答案 (2+2)*(9-3)
谜面
一直不来(打一数学名词)
正确答案 恒等
正确答案 B
1127 正确答案 (1+2)*(1+7)
正确答案 B
正确答案 A
ABC D
2347 正确答案 4+2*(3+7)
谢谢
教学资料
• 资料仅供参考
高中数学趣味知识竞赛
第一部分: 个人答题
第一轮 猜谜语
1 2345 6 7 8 9 10
谜面
555,555,555 (猜一成语)
正确答案 三五成群
谜面
一二五六七(打一成语)
正确答案丢三落四
谜面
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学知识应用竞赛试题及参考答案试题1、(满分汽车在行驶中,由于惯性的作用,刹车后还要继续向前没行一段距离才能停住。

我们称这段距离为“刹车距离”。

刹车距离是分析事故的一个重要的因素。

在一个限速为40千米/时的路段上,先后有A、B 两辆汽车发生交通事故。

事故后,交通警察现场测得A车的刹车距离超过12米,不足15米,B车的刹车距离超过11米,不足12米。

又知A、B两种车型的刹车距离S(米)与车速x(千米/时)之间有如下关系:如果仅仅考虑汽车的车速因素,哪辆车应负责任?2.(满分北京电视台每星期六晚播出《东芝动物乐园》,在这个节目中曾经有这样一个抢答题:小晰蜴体长15cm,体重15g,问:当小晰蜴长到体长为时,它的体重大约是多少(选择答案:25g,35g,40g)?尝试用数学分析出合理的解答。

3. (满分受日月的引力,海水会发生涨落,这种现象叫做潮汐。

在通常的情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮时返回海洋。

下面是某港口顺某季节每天的时间与水深关系表:时刻水深(米)时刻水深(米)时刻水深(米)0:00 5.0 8:00 3.1 16:00 7.41:00 6.2 9:00 2.5 17:00 6.92:00 7.1 10:00 2.4 18:00 5.93:00 7.5 11:00 3.5 19:00 4.44:00 7.3 12:00 4.4 0 3.35:00 6.5 13:00 5.6 21:00 2.56:00 5.3 14:00 6.7 22:00 2.77:00 4.1 15:00 7.2 23:00 3.8(1)请在坐标纸上,根据表中的数据,用连续曲线描出时间与水深关系的函数图像;(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5的安全间隙(船底与洋底的距离),问该船何时能进入港口?在港口能呆多久?(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?4.(满分末,某商家迎来店庆,为了吸引顾客,采取“满一百送二十,连环送”的酬宾方式,即顾客在店内花钱满100元(这100元可以是现金,也可是奖励券,或二者合计),就送励券;满,就送40元奖励券,满300元,就送60元奖励券;...。

当日,花钱最多的一顾客用现金70000元,如果按照酬宾方式,他最多能得到多少优惠呢?相当于商家打了几折销售?5.(满分某城市准备举行书画展览,为了保证展品安全,展览的保卫部门准备安排保安员值班。

情况如下:①展览大厅是长方形,内设均匀颁的m×n个长方形展区,如图所示(下图是一个3×4个展区的示意图)。

在展厅中,展览的书画被挂在每个展区的外墙上,参观者在通道上浏览书画。

②保安员站在固定的位置上,不允许转身,只能监视他的左右两侧和正前方,形如“T”形的区域。

且一个保安员的正前方不安排其它保安员。

③不考虑保安员的轮岗、换班问题。

④展口的安全意味着每一个展区的四面外墙都在保安员的监视范围内。

问题:(1)对于如上图所示的展厅中,最少需要几个保安员能使展品安全?在图中标明保安员的位置(不要求证明)。

(2)假如展要有n×m个展区,最少需要多少个保安员能使展品安全?请证明你的结论。

竞赛参考答案1.解法一:由题意得这两辆汽车的刹车距离分别满足如下的关系式:12<<15,11<<12,分别求解这两个不等式,得30<<<35,12<<<<45.可见,A车无责任,B车应付责任。

解法二:如果==40km/h,则可以算得==10m。

由于A车实际刹车距离没有超过它按限速行驶的刹车距离=而B车实际刹车距离超过了它按限速行驶时的刹车距离=10m。

可见A车无责任,B车应付责任。

2.解:假设小晰蜴从15cm长到,体形是相似的。

这时晰蜴的体重正比于它的体积,而体积与体长的立方成正比。

记体长为l的晰蜴的体重为,因此有合理的答案应该是35g。

3.解:(1)描点作图,设x表示时间,y表示水深。

(2)由题目条件,水深至少为5.5米时才能保证货船驶入港口的安全。

为此在上图中做一条y=5.5的水平直线a。

图象在a止方时,其对应的x范围为货船驶入港口的安全时间段,从图中可以看出,这个时间段约为0:30到5:40分,或13:00到18:10分钟左右的偏差可以算对),在港口停留的时间大约为5小时。

也可以用线性插值方法,在已知点中,若相邻两点在直线a的异侧,设加在它们中间且过直线a的点与它们共线。

于是利用点(0,5)和(1,6.2),得=(5.5-5)/(6.2-5)=0.417,对应的时间为0:25;利用点(5,6.5)和(6,5.3),得=5.83,对应的时间为5:50。

由此得到第一个满足条件的时间段约为0:25-5:50。

同理,利用点(12,4.4)和(13,5.6),得=12.92,对应的时间为12:55;利用点(18,5.9)和(19,4.4),得=18.27,对应的时间为18:16。

由此得到第二个满足条件的时间段约为12:55-18:16。

(3)2:00时水深为7.1米,船需要的安全水深随着卸货时间的变化公式为:y=5.5-0.3(x-2);其中2<x<5.83,此处利用了插值的结果。

在上面的函数图象中画出该图象,看出与原图象的交点大约在7:00左右(有10分钟左右上午偏差可以算正确),故知在7:00以前该货船一定要离开码头驶到较深的安全水域。

注:此处也可利用(6,5.3),(7,4.1)做线性插值,得y=-1.2x+12.5与y=5.5-0.(x-2),联立可求得x=7.1,即7:06;若利用(7,4.1),(8,3.1)做线性插值,得y=-x+11.1与y=5.5-0.3(x-2)联立可求得x=7,即7:00.这些做法与看图得到的结果一致。

4.解:购物价值=所用人民币值+优惠值,将最多购物价值记作。

按下列方法购物第一次用现金购物70000元,获得奖励券70000×12%=14000(元);第二次用现金购物14000元,获得奖励券14000×2800(元);第三次用现金购物2800元,获得奖励券2800×560(元);第四次用现金购物500元,获得奖励券500×100(元);第五次用现金购物100元,获得奖励券100×);第六次用现金购物80元,获得奖励券80(60+获得奖励券0元。

至此,现金及奖励券全部用完,共计购物(记作a)a=70000+14000+2800+500+100+80=87480(元)。

而=80。

018%,近似于八折。

下面证明=a.设分k次将70000花掉,第i次购物获得的奖励券为元,剩下的钱为元(不包括第i次获得的奖励券)。

则0≤≤,并可依次得=(70000-)14000;=(7000-)[(7000-) -]70000 70000--;=70000 70000 -(2-+{[70000-)-]-}=70000 70000 +70000 ---;一般地=70000 70000 +...+70000 --···--,即<70000 [++···+]<17500。

则总共购物价值为70000+<70000+17500=87500.即=87480元。

接近八折。

5.解:(1)对如图所示的3×4个展区,至少要5个保安员才能保证展览的书画是安全的。

保安员站位的方案有多种,其中一个如下图所示:(2)对n×m个展区,至少要m+n-2个保安员才能保证展览的书画是安全的。

证明:我们把模型进行抽象,把n×m 个展区抽象成一个n×m“格阵”,它有n+m+2条边(对应待监视的走廊),且用字母标记如下:由于保安员监视范围是“T”型区域,所以称保安员的位置对庆的“格隈”中的格点为“T形点。

”这样,我们把一个实际问题转化为一个数学模型:在n×m“格阵”中至少取几个“T”形点能够用这些T 形区域覆盖n×m“格阵”的全部n+m+2条边。

首先,“T”型点放在n×m“格阵”的外边框的格点上才能发挥最大作用,覆盖两条边。

否则,如果在中间某一格点处放一“T”形点P,那么这一“T”形点P的另一边的一部分,而另一部分还需要另外的“T”形点去覆盖,这样P“T”形点相当于只覆盖了一条边。

此外,在n×m“格阵”的边界格点上,当有了一个“T”形点时,如果在此边界上再放入第二个,它所在的边界已不需要它覆盖,那么这个“T”形点相当于覆盖了一条边。

由于n×m“格阵”只有4条边界,所以“T”形点多于4个时,其中4个覆盖两条边,其余的只相当于覆盖一条边。

因为这“其余的”不是被放在中间的格点上,就是被放在已有一个“T”形点的边界上,n×m“格阵”共有m+n+2条边,所以至少需“T”形点(m+n+2)-4个,即m+n-2个。

另外,也的确有如下的办法用m+n-2个“T”形点控制n×m“格阵”的m+n+2条边。

在处放4个“T”形点,它们可以控制8条边。

再在,这n-3个位置上放n-3个“T”形点,它们可以覆盖不同于前面的n-3条横向边。

再在,这n-3个位置上放m-3个“T”形点,它们可以覆盖不同于前面的m-3条纵向边。

总计覆盖了8+(n-3)+(m-3)条不同的的边,也就是整个n×m“格阵”。

相关文档
最新文档