2019-2020学年江苏省徐州市高二下学期期中考试数学试题 Word版

合集下载

江苏省徐州市2014-2015学年高一上学期期中考试数学试题 Word版含答案

江苏省徐州市2014-2015学年高一上学期期中考试数学试题 Word版含答案

徐州市2014—2015 学年度第一学期期中考试数学试题一、填空题(本大题共14小题,每小题5分,共70分) 1.集合},7,5,4,3{},7,6,4,2,1{==B A 则=B A . 2.函数x x x f -+-=5)1lg()(的定义域为 .3.幂函数)(x f y =的图象过点),2,2(A 则)4(f 的值为 .4.函数,0(1)(2>+=-a a x f x 且)1≠a 的图象恒过定点 .5.已知函数,4)12(2x x f =-则=)3(f .6.函数131-⎪⎭⎫⎝⎛=x y 的值域为 .7.已知,2l o g ,5.0,4.02.05.05.0===-c b a 将c b a ,,这三个数按从小到大的顺序排列 .(用“<”连接) 8.函数]3,2[,121)(∈+-=x x x f 的最大值是 . 9.已知函数⎩⎨⎧≤+>=0,10,2)(x x x x x f 若,2)(-=a f 则a 的值为 .10,已知14)(2+-=mx x x f 在),2[+∞-为增函数,则m 的取值范围是 .11.函数2)(3++=x x x x f 在]2014,2014[-上的最大值与最小值之和为 . 12.若函数⎪⎪⎩⎪⎪⎨⎧≥⎪⎭⎫ ⎝⎛<=0,310,1)(x x x x f x,则不等式31)(≥x f 的解集为 . 13.已知函数)(x f 对于任意的R x ∈,都满足),()(x f x f =-且对任意的],0,(,-∞∈b a 当b a ≠时,都有,0)()(<--ba b f a f 若)12()1(-<+m f m f ,则实数m 的取值范围为 .14.已知函数,212)(x xx f -=且0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,则实数m 的取值范围是 .二、解答题:本大题共6小题共90分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.(本题满分14分)已知集合}.11{},056{2<≤-=<++=x x B x x x A (1)求;B A(2)若全集},5{<=x x U 求);(B A C U(3)若},{a x x C <=且,B C B = 求a 的取值范围.16.(本题满分14分)已知函数.112)(+--=x x x f(1) 请在所给的平面直角坐标系中画出函数的图象; (2) 根据函数)(x f y =的图象回答下列问题:① 求函数)(x f y =的单调区间; ② 求函数)(x f y =的值域;③ 求关于x 的方程2)(=x f 在区间]2,0[上解的个数.(回答上述3个小题都只需直接写出结果,不需给出演算步骤)17. (本题满分14分)甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为)(x G (万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入⎩⎨⎧>≤≤+-=)5(11)50(2.44.0)(2x x x x x R ,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数)(x f y =的解析式(利润=销售收入—总成本); (2)甲厂生产多少台新产品时,可使盈利最多?18.(本题满分16分)已知函数x x x f 42)(-= (1)求)(x f y =在]1,1[-上的值域; (2)解不等式;2916)(xx f ⨯->(3)若关于x 的方程01)(=-+m x f 在]1,1[-上有解,求m 的取值范围.19. (本题满分16分)已知函数).(11lg)(R k x kx x f ∈--=(1)若)(x f y =是奇函数,求k 的值,并求该函数的定义域; (2)若函数)(x f y =在),10[+∞上是单增函数,求k 的取值范围.20. (本题满分16分)已知)(x f y =是偶函数,定义0≥x 时,⎩⎨⎧>--≤≤-=3),)(3(30),3()(x x a x x x x x f (1)求)2(-f ;(2)当3-<x 时,求)(x f 的解析式;(3)设函数)(x f y =在区间]5,5[-上的最大值为),(a g 试求)(a g 的表达式.高一数学期中考试参考答案一、填空题(本大题共14小题,每小题5分,计70分)1. {}4,72. (1,5]3. 2 4.(2,2) 5. 16 6. (]1,0 7. c<b<a 8. 129. -310. 1m ≤- 11. 4 12. []-3,1 13. 02m m <>或 14. 5m ≥-二、解答题:本大题共6小题共计90分,请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.解:(1){}15-<<-=x x A ………………………………2分A B ⋂=φ ………………………………5分(2){}55U x x =-<< ………………………………7分{}51A B x x ⋃=-<< ………………………………9分 {}()15U C A B x x ⋃=≤< ……………………………11分(3)因为B C B ⋂=所以B C ⊆ ………………………………13分则a 的取值范围为1≥a ……………………………14分 16. 解:(1)作图要规范:每条线上必须标明至少两个点的坐标,不在坐标轴上的点要用虚线标明对应的坐标值(有一条直线没有标明点的坐标扣.1.分.,两条都没标扣.2.分.) …5分 (2)①函数)(x f 的单调递增区间为[1,)+∞;……7分函数)(x f 的单调递减区间为(,1]-∞;……9分 ②函数)(x f 的值域为[0,)+∞ …………11分③方程()2f x =在区间[0,2]上解的个数为1个 …………14分 17.解:(1)由题意得G (x )=2.8+x . …………………2分∴()f x =R (x )-G (x )=20.4 3.2 2.8(05)8.2(5)x x x x x ⎧-+-⎨->⎩≤≤. …………………7分(2)当x >5时,∵函数()f x 递减,∴()f x 8.25<-=3.2(万元).……………10分 当0≤x ≤5时,函数()f x = -0.4(x -4)2+3.6,当x =4时,()f x 有最大值为3.6(万元). …………………13分答:当工厂生产4百台时,可使赢利最大为3. 6万元. …………………14分 18.解:(1)设xt 2=,因为[]1,1,x ∈-⎥⎦⎤⎢⎣⎡∈∴2,21t ……………………………2分2211()24y t t t =-=--+,2)(2,41)(21min max -====x f t x f t 时,时,.……………………………4分)(x f ∴的值域为⎥⎦⎤⎢⎣⎡-41,2.……………………………5分 (2)设x t 2=,由x x f 2916)(⨯->得:t t t 9162->-,即016102<+-t t .……7分82<<∴t ,即822<<x ,31<<∴x∴不等式的解集为)3,1(.……………………………12分(3)方程有解等价于m 在1-)(x f 的值域内,∴m 的取值范围为3,34⎡⎤⎢⎥⎣⎦.……………16分19. 解:()()()222211,lg lg (211)11,11 (311)1, 1 1-1 f x kx kx f x f x x x kx x k x x x kx k k k k ---∴-=-=-------∴=-=----∴==±=∴=因为是奇函数 分分而不合题意舍去, (41)01()(1,1)...............................6x x y f x -->-=-分由得函数的定义域为分(2)∵f (x )在[10,+∞)上是增函数,∴10k -110-1>0,∴k >110. ……………8分又f (x )=lg kx -1x -1=lg(k +k -1x -1),故对任意的x 1,x 2,当10≤x 1<x 2时,恒有f (x 1)<f (x 2),即lg(k +k -1x 1-1)<lg(k +k -1x 2-1),∴k -1x 1-1<k -1x 2-1,∴(k -1)·(1x 1-1-1x 2-1)<0, ……………14分 又∵1x 1-1>1x 2-1,∴k -1<0,∴k <1.综上可知k ∈(110,1).……………16分20. 解:(1)2; ………………………3分 (2)当3x <-时,()()(3)()(3)()f x f x x a x x a x =-=--+=-++,所以,当3x <-时,()f x 的解析式为()(3)()f x x a x =-++ ………………………6分(3)因为()f x 是偶函数,所以它在区间[]5,5-上的最大值即为它在区间[]0,5上的最大值,①当3a ≤时,()f x 在30,2⎡⎤⎢⎥⎣⎦上单调递增,在3,2⎡⎫+∞⎪⎢⎣⎭上单调递减,所以39()()24g a f ==②当37a <≤时,()f x 在30,2⎡⎤⎢⎥⎣⎦与33,2a +⎡⎤⎢⎥⎣⎦上单调递增,在3,32⎡⎤⎢⎥⎣⎦与3,52a +⎡⎤⎢⎥⎣⎦上单调递减,所以此时只需比较39()24f =与23(3)()24a a f +-=的大小. (A) 当36a <≤时, 39()24f =≥23(3)()24a a f +-=,所以39()()24g a f == (B) 当67a <≤时,39()24f =<23(3)()24a a f +-=,所以23(3)()()24a a g a f +-==③当7a >时,()f x 在30,2⎡⎤⎢⎥⎣⎦与[]3,5上单调递增,在3,32⎡⎤⎢⎥⎣⎦上单调递减,且39()24f =<(5)2(5)f a =-,所以()(5)2(5)g a f a ==- 综上所述, 29,64(3)(),6742(5),7a a g a a a a ⎧≤⎪⎪-⎪=<≤⎨⎪->⎪⎪⎩……………………… 16分。

江苏省徐州市2019-2020学年七年级上学期期中考试数学试卷含解析

江苏省徐州市2019-2020学年七年级上学期期中考试数学试卷含解析

2019-2020学年七年级上学期期中考试数学试卷一.选择题(每小题4分,共32分,每小题只有一个选项是符合题目要求的.)1.下列各数中无理数是()A.…B.C.D.02.下列算式中,运算结果为负数的是()A.﹣(﹣3)B.|﹣3| C.(﹣3)2D.(﹣3)33.下列运算,正确的是()A.3a﹣a=2 B.2a+b=2ab;C.﹣x2y+2x2y=x2y D.3a2+2a2=5a44.下列说法中不正确的是()A.0既不是正数,也不是负数B.0不是整数C.0的相反数是零D.0的绝对值是05.如图所示,将有理数a,b在数轴上表示,下列各式中正确的是()@A.﹣a>b B.|b|>|a| C.ab>0 D.a<2a6.某商店在甲批发市场以每包m元的价格进了40包茶叶,又在乙批发市场以每包n元(m >n)的价格进了同样的60包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店()A.盈利了B.亏损了C.不赢不亏D.盈亏不能确定7.当a取一切有理数时,下列代数式的值一定是正数的是()A.a2B.|a| C.a2+2 D.(a﹣3)28.观察下列图形,照此规律,第5个图形中白色三角形的个数是()—A.81 B.121 C.161 D.201二.填空题(本大题有8小题,每小题3分,共24分)9.某水库的水位下降1米,记作﹣1米,那么+米表示.10.光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,这个数字用科学记数法可表示为.11.多项式3a2+2b3的次数是.12.若m2﹣2m=1,则2019+2m2﹣4m的值是.13.数轴上,若A,B表示互为相反数的两个点,A在B的左边,并且这两点的距离为6,则A点所表示的数是.14.袋装牛奶的标准质量为100克,现抽取5袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克)-袋号①②③④⑤质量﹣5《+3+9﹣1﹣6其中,质量最标准的是号(填写序号).15.对单项式“”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是元,请你对“”再赋予一个含义:.16.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为."三.解答题(本大题有9小题,共84分,解答时应写出文字说明或演算步骤.)17.计算:(1)|﹣4|+23+3×(﹣5);(2)×(﹣7)﹣(﹣13)×(﹣).18.计算:(1)(﹣+)×(﹣36);(2)﹣12018﹣×[4﹣(﹣3)2].19.在数轴上表示下列各数,并把它们按照从小到大的顺序排列{﹣22,﹣(﹣1),0,﹣|﹣2|,﹣3.20.合并同类项:(1)3x2﹣1﹣2x﹣5+3x﹣x2(2)(2a2﹣1+2a)﹣3(a﹣1+a2)21.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.22.某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶记录如下.(单位:km)第一次)第二次第三次第四次第五次第六次第七次+15﹣8|+6+12﹣4+5﹣10(1)B地在A地哪个方向,与A地相距多少千米(2)巡逻车在巡逻过程中,离开A地最远是多少千米(3)若每km耗油升,问共耗油多少升"23.对于有理数a,b,定义一种新运算”⊙”,规定a⊙b=|a+b|+|a﹣b|.(1)计算:2⊙(﹣3)的值;(2)当a,b在数轴上的位置如图所示时,化简:a⊙b.24.某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:行驶路程收费标准不超出3km的部分'起步价7元+燃油附加费1元超出3km不超出6km的部分元/km超出6km的部分元/km(1)若行驶路程为5km,则打车费用为元;(2)若行驶路程为xkm(x>6),则打车费用为元(用含x的代数式表示);(3)当打车费用为32元时,行驶路程为多少千米&25.在一条直线上有依次排列的n(n>1)台机床在工作,我们需要设置零件供应站P,使这n台机床到供应站P的距离总和最小.要解决这个问题,先要分析比较简单的情形:如果直线上只有2台机床A1、A2时,很明显供应站P设在A1和A2之间的任何地方都行,距离之和等于A1到A2的距离.如果直线上有3台机床A1、A2、A3,供应站P应设在中间一台机床A2处最合适,距离之和恰好为A1到A3的距离;如果在直线上4台机床,供应站P应设在第2台与第3台之间的任何地方;如果直线上有5台机床,供应站P应设在第3台的地方.(1)阅读递推:如果在直线上有7台机床,供应站P应设在处.A.第3台B.第3台和第4台之间、C.第4台D.第4台和第5台之间(2)问题解决:在同一条直线上,如果有n台机床,供应站P应设在什么位置(3)问题转化:在数轴上找一点P,其表示的有理数为x.当x时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣99|取到最小值,此时最小值为.参考答案与试题解析一.选择题(共8小题)1.下列各数中无理数是()A.…B.C.D.0(【分析】根据无理数的定义(无理数是指无限不循环小数)逐个判断即可.【解答】解:A、不是无理数,故本选项不符合题意;B、不是无理数,故本选项不符合题意;C、是无理数,故本选项符合题意;D、不是无理数,故本选项不符合题意;故选:C.2.下列算式中,运算结果为负数的是()A.﹣(﹣3)B.|﹣3| C.(﹣3)2D.(﹣3)3】【分析】先计算各选择支,再判断结果为负数的选项.【解答】解:由于﹣(﹣3)=3,故选项A不为负数;由于|﹣3|=3,故选项B不为负数;由于(﹣3)2=9,故选项C不为负数;由于(﹣3)3=﹣27,故选项D为负数;故选:D.3.下列运算,正确的是()A.3a﹣a=2 B.2a+b=2ab!C.﹣x2y+2x2y=x2y D.3a2+2a2=5a4【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式不能合并,不符合题意;C、原式=x2y,符合题意;D、原式=5a2,不符合题意,故选:C.4.下列说法中不正确的是(),A.0既不是正数,也不是负数B.0不是整数C.0的相反数是零D.0的绝对值是0【分析】根据有理数的分类、相反数、绝对值的性质即可一一判断.【解答】解:A、0既不是正数,也不是负数,正确,本选项不符合题意;B、0是整数,故本选项符合题意;C、0的相反数是零,正确,故本选项不符合题意;[D、0的绝对值是0,正确,故本选项不符合题意,故选:B.5.如图所示,将有理数a,b在数轴上表示,下列各式中正确的是()A.﹣a>b B.|b|>|a| C.ab>0 D.a<2a【分析】由数轴可得a<0<b,且|a|>b,根据绝对值的含义易得答案.【解答】解:由数轴可得:a<0<b,且|a|>b∵﹣a=|a|¥∴﹣a>b故选:A.6.某商店在甲批发市场以每包m元的价格进了40包茶叶,又在乙批发市场以每包n元(m >n)的价格进了同样的60包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店()A.盈利了B.亏损了C.不赢不亏D.盈亏不能确定【分析】根据题意列出商店在甲批发市场茶叶的利润,以及商店在乙批发市场茶叶的利润,将两利润相加表示出总利润,根据m大于n判断出其结果大于0,可得出这家商店盈利了.【解答】解:根据题意列得:在甲批发市场茶叶的利润为40(﹣m)=20(m+n)﹣40m=20n﹣20m;在乙批发市场茶叶的利润为60(﹣n)=30(m+n)﹣60n=30m﹣30n,;∴该商店的总利润为20n﹣20m+30m﹣30n=10m﹣10n=10(m﹣n),∵m>n,∴m﹣n>0,即10(m﹣n)>0,则这家商店盈利了.故选:A.7.当a取一切有理数时,下列代数式的值一定是正数的是()A.a2B.|a| C.a2+2 D.(a﹣3)2【分析】利用非负数的性质判断即可.【解答】解:A、a2≥0,不符合题意;*B、|a|≥0,不符合题意;C、a2+2≥2>0,符合题意;D、(a﹣3)2≥0,不符合题意,故选:C.8.观察下列图形,照此规律,第5个图形中白色三角形的个数是()A.81 B.121 C.161 D.201【分析】由第一个图形中白色三角形的个数是1、第二个图形中白色三角形的个数是1+1×3=4、第三个图形中白色三角形的个数是1+4×3=13,从而得出第四个图形中白色三角形的个数是1+13×3=40、第五个图形中白色三角形的个数是1+40×3=121.【解答】解:∵第一个图形中白色三角形的个数是1,第二个图形中白色三角形的个数是1+1×3=4,第三个图形中白色三角形的个数是1+4×3=13,∴第四个图形中白色三角形的个数是1+13×3=40,第五个图形中白色三角形的个数是1+40×3=121,故选:B.二.填空题(共8小题)9.某水库的水位下降1米,记作﹣1米,那么+米表示该水库的水位上升米.`【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若某水库的水位下降1米,记作﹣1米,那么+米表示该水库的水位上升米.故答案为:该水库的水位上升米.10.光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,这个数字用科学记数法可表示为×1012km.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9 500 000 000 000=×1012,—故答案为:×1012km.11.多项式3a2+2b3的次数是3.【分析】根据多项式次数的定义:次数最高次项的次数进行填空即可.【解答】解:多项式3a2+2b3的次数是3,故答案为3.12.若m2﹣2m=1,则2019+2m2﹣4m的值是2021.【分析】原式变形后,把已知等式代入计算即可求出值.【解答】解:∵m2﹣2m=1,∴原式=2019+2(m2﹣2m)=2019+2=2021.故答案为:2021.13.数轴上,若A,B表示互为相反数的两个点,A在B的左边,并且这两点的距离为6,则A点所表示的数是﹣3.【分析】由相反数的含义及两点之间距离的表示方法,设表示点A的数为x,则表示点B 的数为﹣x,由题意得|x﹣(﹣x)|=6,结合A在B的左边,可得答案.【解答】解:∵A,B表示互为相反数的两个点∴设表示点A的数为x,则表示点B的数为﹣x∵这两点的距离为6∴|x﹣(﹣x)|=6(∴2|x|=6∴|x|=3∵A在B的左边∴x<﹣x∴x<0∴x=﹣3,即点A表示的数为﹣3.故答案为:﹣3.14.袋装牛奶的标准质量为100克,现抽取5袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克)①②③④⑤《袋号+9﹣1﹣6质量﹣5《+3其中,质量最标准的是④号(填写序号).【分析】根据表中数据求出每袋的质量,选出和100克比较接近的即可;也可以根据﹣5,+3,+9,﹣1,﹣6直接得出答案.【解答】解:∵①的质量是100﹣5=95(克),②的质量是100+3=103(克),【③的质量是100+9=109(克),④的质量是100﹣1=99(克),⑤的质量是100﹣6=94(克),∴最接近100克的是④,故答案为:④.15.对单项式“”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是元,请你对“”再赋予一个含义:练习本每本元,小明买了a本,共付款元(答案不唯一).【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本元,小明买了a本,共付款元.、16.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为0或±1.【分析】该题实际上是求a2≤1且a是整数时,a的值.【解答】解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案是:0或±1.三.解答题(共9小题)17.计算:】(1)|﹣4|+23+3×(﹣5);(2)×(﹣7)﹣(﹣13)×(﹣).【分析】(1)原式先计算绝对值,以及乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)原式先计算乘法运算,再计算加减运算即可求出值.【解答】解:(1)原式=4+8﹣15=12﹣15=﹣3;(2)原式=﹣﹣=﹣15.18.计算:(1)(﹣+)×(﹣36);@(2)﹣12018﹣×[4﹣(﹣3)2].【分析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣18+24﹣16=﹣10;(2)原式=﹣1﹣×(﹣5)=﹣1+1=0.19.在数轴上表示下列各数,并把它们按照从小到大的顺序排列﹣22,﹣(﹣1),0,﹣|﹣2|,﹣3.&【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:,﹣22<﹣3<﹣|﹣2|<0<﹣(﹣1).20.合并同类项:(1)3x2﹣1﹣2x﹣5+3x﹣x2(2)(2a2﹣1+2a)﹣3(a﹣1+a2)【分析】根据合并同类项的法则即可求出答案.【解答】解:(1)原式=3x2﹣x2﹣2x+3x﹣1﹣5/=2x2+x﹣6(2)原式=2a2﹣1+2a﹣3a+3﹣3a2=﹣a2﹣a+221.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【分析】首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.$22.某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶记录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次﹣8+6+12﹣4+5﹣10}+15(1)B地在A地哪个方向,与A地相距多少千米,(2)巡逻车在巡逻过程中,离开A地最远是多少千米(3)若每km耗油升,问共耗油多少升【分析】(1)把7次记录相加,根据和的情况判断点B与点A的关系即可;(2)求出每次记录时与点A的距离,数值最大的为最远的距离;(3)求出所有记录的绝对值的和,再乘以计算即可得解.【解答】解:(1)0+15﹣8+6+12﹣4+5﹣10=16.所以B在A地的东面,与A相距16千米;)(2)0+15=15,15﹣8=7,7+6=13,13+12=25,25﹣4=21,21+5=26,26﹣10=16,∵26最大,∴离开A地最远是26千米;(3)|+15|+|﹣8|+|+6|+|+12|+|﹣4|+|+5|+|﹣10|=60,60×=18(升).答:共耗油18升.23.对于有理数a,b,定义一种新运算”⊙”,规定a⊙b=|a+b|+|a﹣b|.~(1)计算:2⊙(﹣3)的值;(2)当a,b在数轴上的位置如图所示时,化简:a⊙b.【分析】(1)利用题中的新定义计算即可得到结果;(2)根据数轴得出b<0<a,且|a|<|b|,再计算即可.【解答】解:(1)根据题中的新定义得:2⊙(﹣3)=|2+(﹣3)|+|2﹣(﹣3)|=1+5=6;(2)从a,b在数轴上的位置可得a+b<0,a﹣b>0,¥∴a⊙b=|a+b|+|a﹣b|=﹣(a+b)+(a﹣b)=﹣2b.24.某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:行驶路程收费标准不超出3km的部分起步价7元+燃油附加费1元超出3km不超出6km的部分元/km"超出6km的部分元/km(1)若行驶路程为5km,则打车费用为元;(2)若行驶路程为xkm(x>6),则打车费用为(﹣)元(用含x的代数式表示);(3)当打车费用为32元时,行驶路程为多少千米【分析】(1)利用支付的车费=起步价+燃油附加费+超过3千米的费用,代入数据计算即可;(2)利用支付的车费=起步价+燃油附加费+超出3km不超出6km的部分的费用+超出6km的部分的费用,列出代数式即可;(3)利用(2)中代数式建立方程求得答案即可.【解答】解:(1)支付车费:7+1+(5﹣3)×=(元),故答案为:;(2)7+1+×3+(x﹣6)=8++﹣=﹣(元),故答案为:(﹣);(3)设当打车费用为32元时,行驶路程为x千米,由题意得:﹣=32,解得:x=14,∴当打车费用为32元时,行驶路程为14千米.25.在一条直线上有依次排列的n(n>1)台机床在工作,我们需要设置零件供应站P,使这n台机床到供应站P的距离总和最小.要解决这个问题,先要分析比较简单的情形:如果直线上只有2台机床A1、A2时,很明显供应站P设在A1和A2之间的任何地方都行,距离之和等于A1到A2的距离.如果直线上有3台机床A1、A2、A3,供应站P应设在中间一台机床A2处最合适,距离之和恰好为A1到A3的距离;如果在直线上4台机床,供应站P应设在第2台与第3台之间的任何地方;如果直线上有5台机床,供应站P应设在第3台的地方.(1)阅读递推:如果在直线上有7台机床,供应站P应设在C处.A.第3台B.第3台和第4台之间C.第4台D.第4台和第5台之间(2)问题解决:在同一条直线上,如果有n台机床,供应站P应设在什么位置(3)问题转化:在数轴上找一点P,其表示的有理数为x.当x50时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣99|取到最小值,此时最小值为2450.【分析】(1)根据阅读材料即可求解;(2)根据(1)中所得结论,可以分两种情况寻找到规律即可求解;(3)根据连续整数的和的计算公式即可求解.【解答】解:(1)根据题意,得直线上有3台机床A1、A2、A3,供应站P应设在中间一台机床A2处,直线上有5台机床A1、A2、A3、A4、A5,供应站P应设在中间一台机床A3处,直线上有7台机床A1、A2、A3…A7供应站P应设在中间一台机床A4处故选C.(2)当n为偶数时,P应设在第台和台之间的任何位置;当n为奇数时,P应设在第台的位置.(3)(1+99)÷2=50,所以当x=50时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣99|取到最小值(1+49)×49=2450.故答案为50、2450.。

2019-2020学年江苏省徐州市2018级高二下学期期中考试数学试卷及答案

2019-2020学年江苏省徐州市2018级高二下学期期中考试数学试卷及答案

2019-2020学年江苏省徐州市2018级高二下学期期中考试数学试卷★祝考试顺利★(解析版)注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共6页,包含单选题(第1题~第8题)、多选题(第9题~第12题)、填空题(第13题~第16题)、解答题(第17~第22题)。

本卷满分150分,考试时间为120分钟。

考试结束后,请将答题卡交回。

2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效。

作答必须用0.5毫米黑色墨水的签字笔。

请注意字体工整,笔迹清楚。

4.如需作图,须用2B铅笔绘、写清楚,线条符号等须加黑加粗。

5.请保持答题卡卡面清洁,不要折叠、破损。

一律不准使用胶带纸修正液、可擦洗的圆珠笔。

一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,有且只有一个选项是符合题目要求的。

1.复平面内,复数z=-3+4i对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.函数f(x)=x2-sinx在区间[0,π]上的平均变化率为A.1B.2C.π2D.π3.若复数z满足(1+2i)z=-3+4i(i是虚数单位),则|z|为D.54.函数f(x)的定义域为开区间(a,b),导函数f'(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内极小值的个数为A.1个B.2个C.3个D.4个5.将4个不同的文件发往3个不同的邮箱地址,则不同的方法种数为A.34B.43C.A 43D.C 436.已知z 1,z 2∈C,|z 1|=|z 2|=1,|z 1+z 2|=3,则|z 1-z 2|=A.0B.1C.3D.27.若点P 是曲线y =x 2-lnx 上的任意一点,则点P 到直线y =x -2的最小距离为 A.2 B.22 C.12D.1 8.洛书,古称龟书,是阴阳五行术数之源,被世界公认为组合数学的鼻祖,它是中华民族对人类的伟大贡献之一。

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。

2019-2020学年高中数学(人教版必修2)阶段质量检测(二) Word版含答案

2019-2020学年高中数学(人教版必修2)阶段质量检测(二) Word版含答案

阶段质量检测(二)(A卷学业水平达标)(时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.下列说法不正确的是( )A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内D.过一条直线有且只有一个平面与已知平面垂直答案:D2.(浙江高考)设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α则m⊥αC.若m⊥β,n⊥β,n⊥α则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α答案:C3.如图在四面体中,若直线EF和GH相交,则它们的交点一定( )A.在直线DB上B.在直线AB上C.在直线CB上D.都不对答案:A4.如图所示,在正方体ABCD­A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于( )A.AC B.BDC.A1D D.A1D1答案:B5.给定下列四个命题:①若两个平面有无数个公共点,则这两个平面重合;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为正确的命题的是( )A.①和②B.②和③C.③和④D.②和④6.正方体AC1中,E,F分别是DD1,BD的中点,则直线AD1与EF所成角的余弦值是( )A.12B.32C.63D.62答案:C7.在四面体ABCD中,已知棱AC的长为2,其余各棱长都为1,则二面角A­CD­B的余弦值为( )A.12B.13C.33D.23答案:C8.设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列三个说法:①若α⊥γ,β⊥γ,则α∥β;②若α∥β,l⊂α,则l∥β;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中正确的说法个数是( )A.3 B.2C.1 D.0答案:B9.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC答案:D10.已知平面α⊥平面β,α∩β=l,在l上取线段AB=4,AC,BD分别在平面α和平面β内,且AC⊥AB,DB⊥AB,AC=3,BD=12,则CD的长度为( )A.13 B.151 C.12 3 D.15答案:A二、填空题(共4小题,每小题5分,共20分)11.如图所示,在四棱锥P­ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为答案:BM⊥PC(其他合理即可)12.设a,b是两条不同的直线,α,β是两个不同的平面,则下列四个说法:①若a⊥b,a⊥α,b⊄α,则b∥α;②若a∥α,α⊥β,则a⊥β;③若a⊥β,α⊥β,则a∥α或a⊂α;④若a⊥b,a⊥α,b⊥β,则α⊥β.其中正确的个数为________.答案:313.在空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=3,则异面直线AD与BC所成角的大小为________.答案:60°14.将正方形ABCD沿对角线BD折成直二面角A­BD­C,有如下三个结论.①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;说法正确的命题序号是________.答案:①②三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分10分)如图,在梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,(1)证明:CD⊥平面PAC;(2)若E为AD的中点,求证:CE∥平面PAB.证明:(1)∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD.又CD⊥PC,PA∩PC=P,∴CD⊥平面PAC.(2)∵AD∥BC,AB⊥BC,AB=BC=1,∴∠BAC=45°,∠CAD=45°,AC= 2.∵CD⊥平面PAC,∴CD⊥CA,∴AD=2.又∵E为AD的中点,∴AE=BC=1,∴AE綊BC,∴四边形ABCE是平行四边形,又∵AB⊂平面PAB,CE⊄平面PAB,∴CE∥平面PAB.16.(本小题满分12分)(山东高考)如图,几何体E­ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形.所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,故平面DMN∥平面BEC.又DM⊂平面DMN,所以DM∥平面BEC.法二:延长AD,BC交于点F,连接EF. 因为CB=CD,∠BCD=120°,所以∠CBD=30°.因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因此∠AFB=30°,所以AB=12 AF.又AB=AD,所以D为线段AF的中点.连接DM,由于点M是线段AE的中点,因此DM∥EF.又DM⊄平面BEC,EF⊂平面BEC,所以DM∥平面BEC.17.(本小题满分12分)如图,在三棱柱ABC­A1B1C1中,AB⊥平面BB1C1C,BB1=2BC,D,E,F分别是CC1,A1C1,B1C1的中点,G在BB1上,且BG=3GB1.求证:(1)B1D⊥平面ABD;(2)平面GEF∥平面ABD.证明:(1)取BB1的中点为M,连接MD,如图所示.因为BB1=2BC,且四边形BB1C1C为平行四边形,所以四边形CDMB和四边形DMB1C1均为菱形.故∠CDB=∠BDM,∠MDB1=∠B1DC1,所以∠BDM+∠MDB1=90°,即BD⊥B1D.又AB⊥平面BB1C1C,B1D⊂平面BB1C1C,所以AB⊥B1D.又AB∩BD=B,所以B1D⊥平面ABD.又F为B1C1的中点,所以GF∥MC1.又MB綊C1D,所以四边形BMC1D为平行四边形,所以MC1∥BD,故GF∥BD.又BD⊂平面ABD,所以GF∥平面ABD.又EF∥A1B1,A1B1∥AB,AB⊂平面ABD,所以EF∥平面ABD.又EF∩GF=F,故平面GEF∥平面ABD.18.(本小题满分12分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE =EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.证明:(1)设AC与BD交于点G.∵EF∥AG,且EF=1,AG=12AC=1,∴四边形AGEF为平行四边形.所以AF∥EG. ∵EG⊂平面BDE,AF⊄平面BDE,∴AF∥平面BDE.(2)连接FG.∵EF∥CG,EF=CG=1,且CE=1,∴四边形CEFG为菱形.∴CF⊥EG.∵四边形ABCD为正方形,∴BD⊥AC.又∵平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,∴BD⊥平面ACEF.∴CF⊥BD.又BD∩EG=G,∴CF⊥平面BDE.(1)AO 与A ′C ′所成角的度数; (2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角的度数. 解:(1)∵A ′C ′∥AC ,∴AO 与A ′C ′所成的角就是∠OAC . ∵OC ⊥OB ,AB ⊥平面BC ′,∴OC ⊥AB .又AB ∩BO =B ,∴OC ⊥平面ABO . 又OA ⊂平面ABO ,∴OC ⊥OA . 在Rt △AOC 中,OC =22,AC =2, sin ∠OAC =OC AC =12,∴∠OAC =30°. 即AO 与A ′C ′所成角的度数为30°. (2)如图所示,作OE ⊥BC 于E ,连接AE . ∵平面BC ′⊥平面ABCD ,∴OE ⊥平面ABCD ,∠OAE 为OA 与平面ABCD 所成的角. 在Rt △OAE 中,OE =12,AE =12+⎝ ⎛⎭⎪⎫122=52, ∴tan ∠OAE =OE AE =55.(3)∵OC ⊥OA ,OC ⊥OB ,OA ∩OB =O , ∴OC ⊥平面AOB .又∵OC ⊂平面AOC ,∴平面AOB ⊥平面AOC . 即平面AOB 与平面AOC 所成角的度数为90°.M ,N 分别是边AD ,CD 上的点,且2AM =MD ,2CN =ND ,如图①,将△ABD 沿对角线BD 折叠,使得平面ABD ⊥平面BCD ,并连接AC ,MN (如图②).(1)证明:MN ∥平面ABC ; (2)证明:AD ⊥BC ;(3)若BC =1,求三棱锥A ­BCD 的体积. 解:(1)证明:在△ACD 中, ∵2AM =MD,2CN =ND , ∴MN ∥AC ,又∵MN ⊄平面ABC ,AC ⊂平面ABC , ∴MN ∥平面ABC .(2)证明:在△ABD 中,AB =AD ,∠A =90°, ∴∠ABD =45°.∵在平面四边形ABCD 中,∠B =135°, ∴BC ⊥BD .又∵平面ABD ⊥平面BCD ,且BC ⊂平面BCD ,平面ABD ∩平面BCD =BD , ∴BC ⊥平面ABD ,又AD ⊂平面ABD , ∴AD ⊥BC . (3)在△BCD 中,∵BC =1,∠CBD =90°,∠BCD =60°, ∴BD = 3.在△ABD 中,∵∠A =90°,AB =AD , ∴AB =AD =62, ∴S △ABD =12AB ·AD =34,由(2)知BC ⊥平面ABD , ∴V A ­BCD =V C ­ABD =13×34×1=14.(B卷能力素养提升)(时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.空间两个角α,β的两边分别对应平行,且α=60°,则β为( )A.60°B.120°C.30°D.60°或120°解析:选D 由等角定理可知β=60°或120°.2.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是( ) A.AB∥CDB.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交解析:选D 若三条线段共面,如果AB,BC,CD构成等腰三角形,则直线AB与CD相交,否则直线AB 与CD平行;若不共面,则直线AB与CD是异面直线.3.如图,正方体ABCD­A1B1C1D1中,①DA1与BC1平行;②DD1与BC1垂直;③BC1与AC所成角为60°.以上三个结论中,正确结论的序号是( )A.①B.②C.③D.②③解析:选C ①错,应为DA1⊥BC1;②错,两直线所成角为45°;③正确,将BC1平移至AD1,由于三角形AD1C为等边三角形,故两异面直线所成角为60°,即正确命题序号为③,故选C.4.已知l是直线,α、β是两个不同的平面,下列命题中的真命题( )A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l∥α,α∥β,则l∥βD.若l⊥α,l∥β,则α⊥β解析:选D 对于A,若l∥α,l∥β,则α∥β或α与β相交,所以A错;对于B,若α⊥β,l∥α,则l∥β或l⊥β或l⊂β或l与β相交,所以B错;对于C,若l∥α,α∥β,则l∥β或l⊂β,所以C错;对于D,若l⊥α,l∥β,则α⊥β,由面面垂直的判定可知选项D正确.5.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为( )A.AC⊥BDB.AC∥截面PQMNC.AC=BD解析:选C ∵MN∥PQ,由线面平行的性质定理可得MN∥AC,从而AC∥截面PQMN,B正确;同理可得MQ∥BD,故AC⊥BD,A正确;又∠PMQ=45°,故D正确.6.α,β,γ是三个平面,a、b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是( )A.①或②B.②或③C.①或③D.只有②解析:选C 若填入①,则由a∥γ,b⊂β,b⊂γ,b=β∩γ,又a⊂β,则a∥b;若填入③,则由a⊂γ,a=α∩β,则a是三个平面α、β、γ的交线,又b∥β,b⊂γ,则b∥a;若填入②,不能推出a∥b,可以举出反例,例如使β∥γ,b⊂γ,画一草图可知,此时能有a∥γ,b∥β,但不一定a∥b,有可能异面.从而A、B、D都不正确,只有C正确.7.平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面α=c,若a∥b,则c与a,b的位置关系是( )A.c与a,b都异面B.c与a,b都相交C.c至少与a,b中的一条相交D.c与a,b都平行解析:选D 如图,以三棱柱为模型.∵a∥b,a⊄γ,b⊂γ,∴a∥γ.又∵a⊂β,β∩γ=c,∴a∥c.∴a∥b∥c.8.如下图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是( )A.平行B.相交且垂直C.异面D.相交成60°解析:选D 还原几何体,如图.可知D点与B点重合,△ABC是正三角形,所以选D.成的角为( )A .30°B .45°C .60°D .90°解析:选A 如图,二面角α­l ­β为45°,AB ⊂β,且与棱l 成45°角,过A 作AO ⊥α于O ,作AH ⊥l 于H .连接OH 、OB ,则∠AHO 为二面角α­l ­β的平面角,∠ABO 为AB 与平面α所成角.不妨设AH =2,在Rt △AOH 中,易得AO =1;在Rt △ABH 中,易得AB =2.故在Rt △ABO 中,sin ∠ABO =AO AB =12, ∴∠ABO =30°,为所求线面角.10.如图(1)所示,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,G 是EF 的中点,现在沿AE 、AF 及EF 把这个正方形折成一个四面体,使B 、C 、D 三点重合,重合后的点记为H ,如图(2)所示,那么,在四面体A ­EFH 中必有( )A .AH ⊥△EFH 所在平面B .AG ⊥△EFH 所在平面C .HF ⊥△AEF 所在平面D .HG ⊥△EFH 所在平面解析:选A 折成的四面体中有AH ⊥EH ,AH ⊥FH ,∴AH ⊥平面HEF .故选A. 二、填空题(共4小题,每小题5分,共20分)11.如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是边长为1的正方形,侧棱长AA 1=2,则异面直线A 1B 1与BD 1的夹角大小等于________.解析:∵A 1B 1∥AB ,∴AB 与BD 1所成的角即是A 1B 1与BD 1所成的角.连接AD 1, 可知AB ⊥AD 1,在Rt △BAD 1中,AB =1,AD 1=3,∴tan ∠ABD 1=AD1AB=3, ∴∠ABD 1=60°,故A 1B 1与BD 1的夹角为60°. 答案:60°12.如图,在正三棱柱ABC ­A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成角的正弦值为________.解析:取AC ,A 1C 1的中点E ,E 1,连接BE ,B 1E 1,EE 1,由题意知平面BEE 1B 1⊥平面AC 1,过D 作DF ⊥EE 1于F ,连接AF ,则DF ⊥平面AC 1.∴∠DAF 即为AD 与平面AC 1所成的角.可求得AD =2,DF =32,∴sin ∠DAF =DF AD =64. 答案:6413.设a ,b ,c 是空间中的三条直线,下面给出五个命题: ①若a ∥b ,b ∥c ,则a ∥c ; ②若a ⊥b ,b ⊥c ,则a ∥c ;③若a 与b 相交,b 与c 相交,则a 与c 相交;④若a ⊂平面α,b ⊂平面β,则a ,b 一定是异面直线; ⑤若a ,b 与c 成等角,则a ∥b .上述命题中正确的命题是________(只填序号). 解析:由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行,也可以异面,故②不正确;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③不正确;a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内”,故④不正确;当a ,b 与c 成等角时,a 与b 可以相交、平行,也可以异面,故⑤不正确. 答案:①14.给出下列命题:①若平面α上的直线a 与平面β上的直线b 为异面直线,直线c 是α与β的交线,那么c 至多与a ,b 中一条相交;②若直线a 与b 异面,直线b 与c 异面,则直线a 与c 异面; ③一定存在平面α同时和异面直线a ,b 都平行. 其中正确的命题为________.(写出所有正确命题的序号)解析:①中,异面直线a ,b 可以都与c 相交,故不正确;②中,直线异面不具有传递性,故不正确;③中,过直线b 上一点P 作a ′∥a ,则a ′、b 确定一平面,则与该平面平行的任一平面(平面内不包含直线a 、b )都与异面直线a 、b 平行,故正确.答案:③三、解答题(共6小题,共70分,解答时应写出文字说明,证明过程或演算过程) 15.(本小题满分10分)如图所示,在正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别为CC 1,AA 1的中点,画出平面BED 1F 与平面ABCD 的交线.解:在平面AA 1D 1D 内,延长D 1F ,∵D 1F 与DA 不平行,∴D 1F 与DA 必相交于一点,设为P ,则P ∈D 1F ,P ∈DA .又∵D 1F ⊂平面BED 1F ,AD ⊂平面ABCD ,∴P ∈平面BED 1F ,P ∈平面ABCD .又B 为平面ABCD 与平面BED 1F 的公共点,连接PB ,∴PB 即为平面BED 1F 与平面ABCD 的交线.如图所示.16.(本小题满分12分)在右图的几何体中,面ABC ∥面DEFG, ∠BAC =∠EDG=120°,四边形ABED 是矩形,四边形ADGC 是直角梯形,∠ADG =90°,四边形DEFG是梯形, EF ∥DG ,AB =AC =AD =EF =1,DG =2.(1)求证:FG ⊥面ADF ; (2)求四面体 CDFG 的体积.解:(1)连接DF 、AF ,作DG 的中点H , 连接FH ,EH ,∵EF ∥DH ,EF =DH =ED =1, ∴四边形DEFH 是菱形,∴EH ⊥DF , 又∵EF ∥HG, EF =HG , ∴四边形EFGH 是平行四边形, ∴FG ∥EH ,∴FG ⊥DF ,由已知条件可知AD ⊥DG ,AD ⊥ED , 所以AD ⊥面EDGF ,所以AD ⊥FG .又∵⎩⎪⎨⎪⎧FG⊥AD,FG⊥DF,AD ⊂面ADF ,DF ⊂面ADF ,AD∩DF=D ,∴FG ⊥面ADF .(2)因为DH ∥AC 且DH =AC , 所以四边形ADHC 为平行四边形, 所以CH ∥AD ,CH =AD =1,由(1)知AD ⊥面EDGF , 所以CH ⊥面DEFG .由已知,可知在三角形DEF 中,ED =EF =1,∠DEF =60°,所以,△DEF 为正三角形,DF =1,∠FDG =60°, S △DEG =12·DF ·DG ·sin∠FDG =32. 四面体CDFG =13·S △DFG ·CH=13×32×1=36. 17.(本小题满分12分)如图所示,在四棱锥P ­ABCD 中,PA ⊥平面ABCD ,AD ⊥AB ,△ABC 是正三角形,AC 与BD 的交点M 恰好是AC 的中点,N 为线段PB 的中点,G在线段BM 上,且BGGM=2.(1)求证:AB ⊥PD ; (2)求证:GN ∥平面PCD . 证明:(1)因为PA ⊥平面ABCD , 所以PA ⊥AB .又因为AD ⊥AB ,AD ∩PA =A ,所以AB ⊥平面PAD .又PD ⊂平面PAD ,所以AB ⊥PD .(2)因为△ABC 是正三角形,且M 是AC 的中点,所以BM ⊥AC . 在直角三角形AMD 中,∠MAD =30°, 所以MD =12AD .在直角三角形ABD 中,∠ABD =30°, 所以AD =12BD ,所以MD =14BD .又因为BGGM=2,所以BG =GD .又N 为线段PB 的中点,所以GN ∥PD . 又GN ⊄平面PCD ,PD ⊂平面PCD , 所以GN ∥平面PCD .18.(本小题满分12分)(浙江高考)如图,在三棱柱ABC­A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.解:(1)证明:设E为BC的中点,连接AE,A1E,DE,由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.又因为A1E,BC⊂平面A1BC,A1E∩BC=E,故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以四边形AA1DE为平行四边形.于是A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)作A1F⊥DE,垂足为F,连接BF.因为A1E⊥平面ABC,所以BC⊥A1E.因为BC⊥AE,AE∩A1E=E,所以BC⊥平面AA1DE.所以BC⊥A1F.又因为DE∩BC=E,所以A1F⊥平面BB1C1C.所以∠A1BF为直线A1B和平面BB1C1C所成的角.由AB=AC=2,∠CAB=90°,得EA=EB= 2.由A1E⊥平面ABC,得A1A=A1B=4,A1E=14.由DE=BB1=4,DA1=EA=2,∠DA1E=90°,得A1F=72.所以sin∠A1BF=78.19.(本小题满分12分)如图,在三棱柱ABC­A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E­ABC的体积.解:(1)证明:在三棱柱ABC­A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,BB1∩BC=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)证明:取AB中点G,连接EG,FG.因为E,F,G分别是A1C1,BC,AB的中点,所以FG∥AC,且FG=12AC,EC1=12A1C1.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1,所以四边形FGEC1为平行四边形,所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)因为AA1=AC=2,BC=1,AB⊥BC,所以AB=AC2-BC2= 3.所以三棱锥E­ABC的体积V=13S△ABC·AA1=13×12×3×1×2=33.20.(本小题满分12分)如图所示,在棱长为2的正方体ABCD­A1B1C1D1中,E,F分别为DD1、DB的中点.(1)求证:EF∥平面ABC1D1;(2)求三棱锥VB1­EFC的体积;(3)求二面角E­CF­B1的大小.解:(1)证明:连接BD1,在△DD1B中,E、F分别为D1D,DB的中点,则EF为中位线,∴EF∥D1B,而D1B⊂面ABC1D1,EF⊄面ABC1D1,∴EF∥面ABC1D1.(2)等腰直角三角形BCD中,F为BD中点,∴CF⊥BD.①∵ABCD­A1B1C1D1是正方体,∴DD1⊥面ABCD,又CF⊂面ABCD,∴DD1⊥CF.②综合①②,且DD1∩BD=D,DD1,BD⊂面BDD1B1,∴CF ⊥平面EFB 1即CF 为高,CF =BF = 2. ∵EF =12BD 1=3,B 1F =BF2+BB21=2+22=6, B 1E =B1D21+D1E2=12+2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°, ∴S △B 1EF =12EF ·B 1F =322,∴VB 1­EFC =VC ­B 1EF =13·S △B 1EF ·CF=13×322×2=1. (3)∵CF ⊥平面BDD 1B 1,∴二面角E ­CF ­B 1的平面角为∠EFB 1. 由(2)知∠EFB 1=90°∴二面角E ­CF ­B 1的大小为90°.。

江苏省徐州市2019~2020学年度高一第1学期期中考试数学试题及参考答案解析

江苏省徐州市2019~2020学年度高一第1学期期中考试数学试题及参考答案解析

2019~2020学年度江苏省徐州市高一第一学期期中数学试卷一、选择题(本大题共12小题)1.已知集合A={1,3,5},B={3,5,7},则A∩B=( )A.3,5,B.C.D.2.函数f(x)=+ln(1-x)的定义域为( )A. B. C. D.3.已知幂函数f(x)的图象过点(2,16),则f(3)=( )A.27B.81C.12D.44.函数f(x)=a x+1+2(a>0且a≠1)的图象恒过定点( )A. B., C. D.5.设a=logπ3,b=π0.3,c=log0.3π,则( )A. B. C. D.6.已知函数,则的值是( )A.27B.C.D.7.已知函数f(x)=ax5-bx3+cx-3,f(-3)=7,则f(3)的值为( )A.13B.C.7D.8.函数y=(a>1)的图象的大致形状是( )A. B. C. D.9.已知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)-1<0的解集是( )A. B.或C. D.或10.已知函数f(x)=x2•(a+)是R上的奇函数,则实数a=( )A. B. C. D.111.若函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则函数的单调递增区间( )A. B. C. D.12.若函数f(x)=|lg x|-()x+a有2个零点,则实数a的取值范围是( )A. B. C. D.二、填空题(本大题共4小题)13.已知集合A={-2,0,1,3},B={x|-<x<},则A∩B的子集个数为______.14.若函数f(x)=lg x+x-3的零点在区间(k,k+1),k∈Z,则k=______.15.若函数f(x)=的值域为R,则实数a的范围是______.16.已知函数y=x+有如下性质:常数a>0,那么函数在(0,]上是单调减函数,在[,+∞)上是单调增函数.如果函数f(x)=|x+-m|+m在区间[1,4]上的最小值为7,则实数m的值是______.三、解答题(本大题共6小题)17.计算:(1);(2)2lg5+lg8+lg5•lg20+(lg2)2.18.已知集合A={x|3≤3x≤27},B={x|1<log2x<2}.(1)分别求A∩B,(∁R B)∪A;(2)已知集合C={x|2a<x<a+2},若C⊆A,求实数a的取值范围.19.已知函数f(x)是定义在(-4,4)上的奇函数,满足f(2)=1,当-4<x≤0时,有f(x)=.(1)求实数a,b的值;(2)求函数f(x)在区间(0,4)上的解析式,并利用定义证明函数f(x)在(0,4)上的单调性.20.某公司生产一种化工产品,该产品若以每吨10万元的价格销售,每年可售出1000吨,若将该产品每吨分价格上涨x%,则每年的销售数量将减少mx%,其中m为正常数,销售的总金额为y万元.(1)当m=时,该产品每吨的价格上涨百分之几,可使销售总金额最大?(2)当x=10时,若能使销售总金额比涨价前增加,试设定m的取值范围.21.已知函数f(x)=x|x-a|+x(a∈R)(1)若函数f(x)是R上的奇函数,求实数a的值;(2)若对于任意x∈[1,2],恒有f(x)≥2x2,求实数a的取值范围;(3)若a≥2,函数f(x)在区间[0,2]上的最大值为4,求实数a的值.22.已知函数f(x)=lg(m+),m∈R.(1)当m=-1时,求函数f(x)的定义域;(2)若函数g(x)=f(x)+2x lg2有且仅有一个零点,求实数m的取值范围;(3)任取x1,x2∈[t,t+2],若不等式|f(x1)-f(x2)|≤1对任意t∈[1,2]恒成立,求实数m的取值范围.答案和解析1.【参考答案】C【试题分析】解:∵集合A={1,3,5},B={3,5,7},∴A∩B={3,5}.故选:C.利用交集定义直接求解.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【参考答案】B【试题分析】解:要使f(x)有意义,则,解得,∴f(x)的定义域为.故选:B.可看出,要使得f(x)有意义,则需满足,解出x的范围即可.本题考查了函数定义域的定义及求法,对数函数的定义域,考查了计算能力,属于基础题.3.【参考答案】B【试题分析】解:设幂函数f(x)=xα,又f(x)过点(2,16),∴2α=16,解得α=4,∴f(x)=x4,∴f(3)=34=81.故选:B.用待定系数法求出f(x)的解析式,再计算f(3)的值.本题考查了幂函数的定义与应用问题,是基础题.4.【参考答案】D【试题分析】解:由x+1=0,解得x=-1,此时y=1+2=3,即函数的图象过定点(-1,3),故选:D.根据指数函数过定点的性质,直接领x+1=0即可得到结论本题主要考查指数函数过定点问题,利用指数幂等于0是解决本题的关键.5.【参考答案】D【试题分析】解:0=logπ1<logπ3<logππ=1,π0.3>π0=1,log0.3π<log0.31=0,∴b>a>c.故选:D.容易得出,从而得出a,b,c的大小关系.考查对数函数、指数函数的单调性,以及增函数和减函数的定义.6.【参考答案】B【试题分析】解:∵∴=f(-3)=故选B.由已知中的函数的解析式,我们将代入,即可求出f()的值,再代入即可得到的值.本题考查的知识点是分段函数的函数值,根据分析函数的解析式,由内到外,依次代入求解,即可得到答案.7.【参考答案】B【试题分析】解:∵函数f(x)=ax5-bx3+cx-3,f(-3)=7,令g(x)=ax5-bx3+cx,则g(-3)=10,又g(x)为奇函数,∴g(3)=-10,故f(3)=g(3)-3=-13,故选:B.令g(x)=ax5-bx3+cx,则g(-3)=10,又g(x)为奇函数,故有g(3)=-10,故f(3)=g(3)-3.本题考查函数的奇偶性的应用,求函数值,令g(x)=ax5-bx3+cx,求出g(3)=-10,是解题的关键.8.【参考答案】C【试题分析】解:当x>0时,y=a x,因为a>1,所以函数y=a x单调递增,当x<0时,y=-a x,因为a>1,所以函数y=-a x单调递减,故选:C.根据函数的单调性即可判断.本题考查了函数图象和识别,关键掌握函数的单调性,属于基础题9.【参考答案】B【试题分析】解:因为y=f(x)为奇函数,所以当x>0时,-x<0,根据题意得:f(-x)=-f(x)=-x+2,即f(x)=x-2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)-1<0,即2x<-3,解得x<-,则原不等式的解集为x<-;当x≥0时,f(x)=x-2,代入所求的不等式得:2(x-2)-1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<-或0≤x<}.故选:B.根据f(x)为奇函数,得到f(-x)=-f(x),设x大于0,得到-x小于0,代入已知的解析式中化简即可求出x 大于0时的解析式,然后分两种情况考虑,当x小于0时和x大于0时,分别把所对应的解析式代入所求的不等式中,得到关于x的两个一元一次不等式,求出不等式的解集的并集即为原不等式的解集.此题考查了其他不等式的解法,考查了函数奇偶性的应用,是一道基础题.10.【参考答案】A【试题分析】解:根据题意,函数f(x)=x2•(a+)是R上的奇函数,则有f(-x)=-f(x),即(-x)2(a+)=-(x2•(a+),变形可得:a+=-(a+),则有2a=-1,即a=-;故选:A.根据题意,由函数奇偶性的定义可得f(-x)=-f(x),即(-x)2(a+)=-(x2•(a+),变形分析可得a的值,即可得答案.本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.11.【参考答案】C【试题分析】解:∵函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则0<a<1.则函数的单调递增区间,即y=x2+2x-3在y>0时的减区间.由y=x2+2x-3>0,求得x<-3,或x>1.再利用二次函数的性质可得,y=x2+2x-3在y>0时的减区间为(-∞,-3),故选:C.复合函数的单调性,指数函数、二次函数的性质,先判断0<a<1,本题即求y=x2+2x-3在y>0时的增区间,再利用二次函数的性质得出结论.本题主要考查复合函数的单调性,指数函数、二次函数的性质,属于中档题.12.【参考答案】B【试题分析】解:原函数转化为f(x)=|lg x|-()x+a,|lg x|=()x-a,函数有2个零点,相当于y=|lg x|与y=()x-a有两个交点,根据图象:当x=1时,y=()x-a的值-a>0即可所以a∈(-∞,).故选:B.原函数转化为f(x)=|lg x|-()x+a,|lg x|=()x-a,根据图象:当x=1时,y=()x-a的值-a>0即可.把零点问题转换为两个函数的交点问题,考察图象法的应用,中档题.13.【参考答案】8【试题分析】解:∵A={-2,0,1,3},B={x|-<x<},∴A∩B={-2,0,1},∴A∩B的子集个数为:23=8个.故答案为:8.进行交集的运算求出A∩B,从而得出A∩B的元素个数,进而可得出A∩B的子集个数.本题考查了描述法、列举法的定义,交集的运算,集合子集个数的计算公式,考查了计算能力,属于基础题.14.【参考答案】2【试题分析】解:因为函数y=lg x与y=x-3都是定义域上的增函数,所以函数f(x)=lg x+x-3也为定义域上的增函数.因为f(2)=lg2+2-3<lg10+2-3=0,f(3)=lg3+3-3>0,所以由零点存在性定理可得函数f(x)=lg x+x-3的近似解在区间(2,3)上,所以k=2.故答案为:2.确定函数f(x)=lg x+x-3也为定义域上的增函数.计算f(2)=lg2+2-3<lg10+2-3=0,f(3)=lg3+3-3>0,由零点存在性定理可得函数f(x)=lg x+x-3的近似解在区间(2,3)上,即可得出结论.本题考查零点存在性定理,考查学生的计算能力,比较基础.15.【参考答案】[0,+∞)【试题分析】解:x≤1时,f(x)≤2+a;x>1时,f(x)=(x-a)2+1-a2,∴①a>1时,f(x)≥1-a2,且f(x)的值域为R,∴2+a≥1-a2,解得a∈R,∴a>1;②a≤1时,f(x)>(1-a)2+1-a2=2-2a,且f(x)的值域为R,∴2+a≥2-2a,解得a≥0,∴0≤a≤1,∴综上得,实数a的范围是[0,+∞).故答案为:[0,+∞).根据f(x)的解析式得出,x≤1时,f(x)≤2+a;x>1时,f(x)=(x-a)2+1-a2,从而得出:a>1时,f(x)≥1-a2,进而得出2+a≥1-a2;a≤1时,f(x)>2-2a,进而得出2+a≥2-2a,从而解出a的范围即可.本题考查分段函数值域的求法,配方求二次函数值域的方法,考查计算能力,属于中档题.16.【参考答案】6【试题分析】解:设t=在[1,2]上单调递减,在[2,4]上单调递增,所以t∈[4,5],问题化为y=|t-m|+m在区间[4,5]上的最小值为7,当m>5时,y min=y(5)=m-5+m=7,m=6;当m∈[4,5]时,y min=y(m)=m=7(舍去);当m<4时,y min=y(4)=4-m+m=7,不成立.故答案为:6.换元将问题化为绝对值函数在闭区间上的最小值问题,根据对称轴在闭区间的右侧、中间、左侧分三类讨论即可.本题是一个经典题目,通过换元将问题化为绝对值函数在闭区间上的最小值问题,接下来根据对称轴在闭区间的右侧、中间、左侧分三类讨论即可.17.【参考答案】解:(1)原式==4-4+3-π-1+π=2.(2)原式=2lg5+2lg2+lg5•(lg2+1)+(lg2)2=2+lg2(lg5+lg2)+lg5=2+lg2+lg5=3.【试题分析】(1)利用指数幂的运算性质即可得出.(2)利用对数的运算性质及其lg2+lg5=1即可得出.本题考查了指数幂与对数的运算性质,考查了推理能力与计算能力,属于基础题.18.【参考答案】解:(1)因为A={x|3≤3x≤27}={x|1≤x≤3},B={x|1<log2x<2}={x|2<x<4},所以A∩B={x|2<x≤3},从而(C R B)∪A={x|x≤3或x≥4}.(2)当2a≥a+2,即a≥2时C=∅,此时C⊆A,符合条件;当2a<a+2,即a<2时,C≠∅,要使C⊆A,只需即.故要使C⊆A,实数a的取值范围是{a|a≥2或}.【试题分析】(1)求出集合A,B,由此能求出A∩B和(C R B)∪A.(2)当2a≥a+2,即a≥2时C=∅,符合条件;当2a<a+2,即a<2时,C≠∅,要使C⊆A,只需由此能求出实数a的取值范围是.本题考查交集、补集、并集的求法,考查交集、补集、并集定义等基础知识,考查运算求解能力,是基础题.19.【参考答案】解:(1)∵函数f(x)是定义在(-4,4)上的奇函数,∴f(0)=0,即,∴b=0,又因为f(2)=1,所以f(-2)=-f(2)=-1,即,所以a=1,综上可知a=1,b=0,(2)由(1)可知当x∈(-4,0)时,,当x∈(0,4)时,-x∈(-4,0),且函数f(x)是奇函数,∴,∴当x∈(0,4)时,函数f(x)的解析式为,任取x1,x2∈(0,4),且x1<x2,则=,∵x1,x2∈(0,4),且x1<x2,∴4-x1>0,4-x2>0,x1-x2<0,于是f(x1)-f(x2)<0,即f(x1)<f(x2),故在区间(0,4)上是单调增函数.【试题分析】(1)根据f(x)是定义在(-4,4)上的奇函数及-4<x≤0时的f(x)解析式即可得出b=0,并可求出f(-2)=-1,从而可得出,求出a=1;(2)根据上面知,x∈(-4,0)时,,从而可设x∈(0,4),从而得出,从而得出x∈(0,4)时,,然后根据函数单调性的定义即可判断f(x)在(0,4)上的单调性:设任意的x1,x2∈(0,4),且x1<x2,然后作差,通分,提取公因式,然后判断f(x1)与f(x2)的大小关系即可得出f(x)在(0,4)上的单调性.本题考查了奇函数的定义,奇函数在原点有定义时,原点处的函数值为0,求奇函数在对称区间上的解析式的方法,以及函数的单调性,考查了推理能力和计算能力,属于基础题.20.【参考答案】解:(1)由题设,当价格上涨x%时,每年的销售数量将减少mx%,销售总金额y=10(1+x%)•1000(1-mx%)=-mx2+100(1-m)x+10000().当时,y=[-(x-50)2+22500],当x=50时,y max=11250.即该产品每吨的价格上涨50%时,销售总金额最大.(2)当x=10时,若能使销售总金额比涨价前增加,能使销售总金额增加,则存在使y>10×10000,由得,所以m<10.由y>10×10000,即-100m+1000(1-m)+10000>10000亦即,所以.故若能使销售总金额比涨价前增加,m的取值范围设定为.【试题分析】(1)得出y关于x的函数,根据二次函数的性质求出结论;(2)根据题意列不等式得出m的范围.本题考查了函数解析式,函数最值的计算,考查不等式的解法,属于中档题.21.【参考答案】解:(1)∵f(x)是奇函数,∴f(-1)=-f(1),∴-|-1-a|-1=-(1•|1-a|+1)∴-|1+a|-1=-|1-a|-1,∴|1+a|=|1-a|,∴a=0,当a=0时,f(x)=x•|x|+x是奇函数,∴a=0;(2)任意的x∈[1,2],f(x)≥2x2恒成立,∴x|x-a|+x≥2x2恒成立,∴|x-a|+1≥2x恒成立,∴|x-a|≥2x-1恒成立, ∵x∈[1,2],∴2x-1∈[1,3],2x-1>0,∴x-a≥2x-1恒成立或x-a≤-2x+1恒成立,∴a≤-x+1恒成立或a≥3x-1恒成立,而-x+1∈[-1,0],3x-1∈[2,5],∴a≤-1或a≥5;(3)∵a≥2,x∈[0,2],∴x-a≤0,∴|x-a|=-(x-a),∴f(x)=x[-(x-a)]+x=-x2+(a+1)x,开口向下,对称轴为x=≥,①当,即2≤a≤3时,f(x)max=f()==4,∴a=3或a=-5(舍),②当>2,即a>3时,f(x)max=f(2)=-4+2a+2=2a-2=4,∴a=3,又a>3,矛盾,综上a=3.【试题分析】(1)由奇函数的性质f(-x)=-f(x),进而求解;(2)x∈[1,2],2x-1∈[1,3],2x-1>0,f(x)≥2x2等价于x-a≥2x-1恒成立或x-a≤-2x+1恒成立,进而求解;(3))∵a≥2,x∈[0,2],∴x-a≤0,∴f(x)=x[-(x-a)]+x=-x2+(a+1)x,进而比较对称轴与区间端点的关系求解;(1)考查奇函数的性质,去绝对值号;(2)考查不等式恒成立的转化,得出x-a≥2x-1恒成立或x-a≤-2x+1恒成立,是突破本题的关键点;(3)考查不等式在特定区间上的最值问题,将不等式恒成立转化为二次函数在特定区间上的最值.22.【参考答案】解:(1)当m=-1时,,要使函数f(x)有意义,则需,即2x<2,从而x<1.故函数f(x)的定义域为{x|x<1};(2)若函数g(x)=f(x)+2x lg2有且仅有一个零点,即有且仅有一个根,亦即,即,即m(2x)2+2•2x-1=0有且仅有一个根.令2x=t>0,则mt2+2•t-1=0有且仅有一个正根,当m=0时,2•t-1=0,,即x=-1,成立;当m≠0时,若△=4+4m=0即m=-1时,t=1,此时x=0成立;若△=4+4m>0,需,即m>0,综上,m的取值范围为[0,+∞)∪{-1};(3)若任取x1,x2∈[t,t+2],不等式|f(x1)-f(x2)|≤1对任意t∈[1,2]恒成立,即f(x)max-f(x)min≤1对任意t∈[1,2]恒成立,因为在定义域上是单调减函数,所以,,即,即,,所以,即,又有意义,需,即,所以,t∈[1,2],.所以m的取值范围为.【试题分析】(1)将m=-1代入f(x)中,根据,解不等式可得f(x)的定义域;(2)函数g(x)=f(x)+2x lg2有且仅有一个零点,则可得方程m(2x)2+2•2x-1=0有且仅有一个根,然后求出m的范围;(3)由条件可得f(x)max-f(x)min≤1对任意t∈[1,2]恒成立,求出f(x)的最大值和最小值代入该式即可得到m 的范围.本题考查了函数定义域的求法,函数的零点判定定理和不等式恒成立问题,考查了分类讨论思想和转化思想,属难题.。

江苏省徐州市第一中学2023-2024学年高二上学期期中考试化学试题含答案解析

江苏省徐州市第一中学2023-2024学年高二上学期期中考试化学试题含答案解析

江苏省徐州市第一中学2023-2024学年高二上学期期中考试化学试题一、单选题(共40 分)1.能源、航天、信息等科技离不开新技术和新材料的发现和应用。

下列有关说法不正确...的是A.量子通信材料如螺旋碳纳米管、石墨烯等纳米材料属于胶体B.航天核心舱搭载的柔性太阳能电池板的核心材料是晶体硅C.新一代运载火箭成功应用液氧、煤油发动机,煤油是石油分馏所得混合物D.福建舰舰身材料采用低碳合金钢,合金的强度一般高于成分金属【答案】A【详解】A.量子通信材料如螺旋碳纳米管、石墨烯等纳米材料分散到分散剂后形成的分散系属于胶体,A错误;B.硅为半导体材料,太阳能电池板的核心材料是晶体硅,B正确;C.石油的分馏可获得多种物质,煤油是石油分馏所得混合物,C正确;D.合金的熔点比成分金属低,硬度比成分金属高,则合金的强度一般高于成分金属,D正确;故选A。

2.下列说法正确的是A.羟基的电子式:B.2,4,6-三硝基甲苯的结构简式:C.乙醚的分子式:C4H10Ol4分子的空间填充模型:【答案】C【详解】A.羟基电子式为,A错误;B.2,4,6-三硝基甲苯的结构简式B错误;C.乙醚结构简式C2H5OC2H5,分子式为C4H10O,C正确;D.四氯化碳中氯原子半径大于碳原子半径,D错误;故答案为:C。

3.下列实验装置或操作能达到实验目的的是A.用图1装置分离酒精和水B.用图2装置制备乙烯,并验证乙醇发生了消去反应C.实验室用图3装置制备乙酸乙酯D.用图4装置配制银氨溶液【答案】D【详解】A.酒精与水互溶,无法用分液进行分离,A错误;B.酒精具有挥发性,乙醇也可以发生消去,B错误;C.该反应需要将导气管与液面相切,防倒吸,C错误;D.硝酸银与过量氨气反应生成银氨溶液,D正确;故答案为:D。

4.298K时,N2与H2反应的能量变化曲线如图,下列叙述正确的是A.形成6molN—H键,吸收600kJ能量B.也可以用键能计算该反应的ΔH,ΔH=E(N−N)+3E(H−H)−6E(N−H)(E表示键能)C.b曲线是加入催化剂时的能量变化曲线D.使用高效催化剂不能改变该反应的焓变【答案】D【详解】A.形成化学键需要放出热量,A错误;B.N2的结构式为N≡N,所以反应的△H=反应物的总键能-生成物的总键能=E(N≡N)+3E(H-H)-6E(N-H)(E表示键能),B错误;C.加入催化剂可降低反应的活化能,达到顶峰值较小,则a曲线是加入催化剂时的能量变化曲线,C错误;D.催化剂只能改变反应速率,不能改变反应的焓变,D正确;故选D。

江苏省徐州市2023-2024学年高二下学期期中学业水平质量监测数学试题

江苏省徐州市2023-2024学年高二下学期期中学业水平质量监测数学试题

2023-2024学年度第二学期期中学业水平质量监测(本卷满分150分,共4页,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将答题卡交回.一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a =−(2,3,1),b =m n (4,,),且a b //,则+=m nA .4B .5C .6D .72.+=C C 101056A .C 117B .C 116C .C 1111D .C 1073.由1,2,3,4,5,6组成没有重复数字且1,3不相邻的六位数的个数是A .36B .72C .480D .6004.已知向量a =(1,3,1),b =(2,1,1),c =t (,5,1)共面,则实数t 的值是A .−1B .0C .1D .25.甲、乙等5人计划去上海、苏州及青岛三个城市调查农民工薪资情况.每个人只能去一个城市,并且每个城市都要有人去,则不同的分配方案共有种数为 A .150B .300C .450D .5406.13520232024202420242024C C C C ++++被3除的余数为A .1B .2C .3D .47.在正三棱锥−A BCD 中,2BE EA =,F 为AD 的中点,⊥BF CE ,则∠BAC 的正弦值为 A .12B .22C .1D .328.若将整个样本空间想象成一个⨯11的正方形,任何事件都对应样本空间的一个子集,且 事件发生的概率对应子集的面积,则如图所示的涂色部分的面积表示 A .事件A 发生的概率B .事件B 发生的概率C .事件C 不发生条件下事件A 发生的概率D .事件A ,B 同时发生的概率二、多项选择题(本大题共3个小题,每小题6分,共18分,在每小题给出的选项中,有多项是符合题目要求的.全选对的得6分,部分选对的得部分分,有选错的得0分)9. 若=−C C m m282838,则m 的取值可能是 A .4 B .5 C .8 D .910.已知A ,B 是两个随机事件,<<P A 0()1,下列命题正确的是A. 若A ,B 相互独立,则=P B A P B (|)()B. 若事件⊆A B ,则=P B A (|)1C. 若A ,B 是对立事件,则=P B A (|)1D. 若A ,B 是互斥事件,则=P B A (|)011.已知正方体−ABCD A B C D 1111的棱长为1,动点M ,N 在对角线AC ,C D 1上移动,且AM AC λ=,DN DC λ=1,∈λ(0,1)则下列结论中正确的是 A .异面直线AC 与C D 1所成的角为60 B .线段MN 的最小值为22C .MN 与平面AAD D 11不平行D .存在∈λ(0,1),使得⊥MN AC三、填空题(本大题共3个小题,每小题5分,共15分)12.已知正方体−ABCD A B C D 1111的棱长为1,则AB 在AC 1上的投影向量的模为 . 13.++x x (32)25展开式中含x 2项的系数是 .14.图为一个开关阵列,每个开关只有“开”和“关”两种状态,按其中一个开关 1 次将导致自身和所有相邻的开关改变状态.例如,按 (2,2) 将导致 (1,2),(2,1),(2.2), (2,3),(3,2)改变状态.如果要求改变(1,1),(2,2),(3,3)的状态,则需按开关的最少次数为_________;如果只要求改变(2,2)的状态,则需按开关的最少次数为_________四、解答题(本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤)15.(13分)已知n n n x a a x a x a x +=++++(21)0122,且满足各项的二项式系数之和为256(1)求a 3的值; (2)求2222nna a ++++a a 23123的值.16.(15分)如图,四棱锥−P ABCD 中,底面ABCD 为直角梯形,AD BC //,⊥AB AD ,⊥PA 平面ABCD ,=AD 10,==BC AB 28,M 为PC 的中点.(1)求证:平面⊥PAC 平面PCD ;(2)若⊥AM PC ,求直线BM 与面PCD 所成角的正弦值.17.(15分)在+8的展开式中,前3项的系数成等差数列,且第二项的系数大于1(1)求展开式中含x41的项;(2)求展开式中系数最大的项.18.(17分)设甲袋中有4个白球和2个红球,乙袋中有2个白球和2个红球.(1)现从甲袋中任取2个球放入乙袋,再从乙袋中任取2个球.求从乙袋中取出的是2个红球的概率;(2)先随机取一只袋,在再从该袋中先后随机取2个球,求第一次取出的是红球的前提下,第二次取出的球是白球的概率.19.(17分)在四棱柱−ABCD A B C D 1111中,已知⊥B C 1底面ABCD ,AD BC //,⊥AB AD ,===AD AB BC 222,=BB 1E 是线段B D 1上的点.(1)点C 1到平面B CD 1的距离;(2)若E 为B D 1的中点,求异面直线DD 1与AE 所成角的余弦值;(3)在线段B D 1上是否存在点E ,使得二面角−−C AE D 若存在,请确定E 点位置;若不存在,试说明理由.。

2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。

江苏省徐州市2020届高三上学期期中考试英语试题+扫描版含答案

江苏省徐州市2020届高三上学期期中考试英语试题+扫描版含答案

2019~2020学年度高三年级第一学期期中抽测英语答案第一部分听力(共20小题;每小题1分,满分20分)1-5CABBC 6-10ACABB 11-15ABCBB 16-20CACCA第二部分语言知识应用第一节单项选择(共15小题;每小题1分,满分15分)21-25 CABAD 26-30DCABB 31-35CBCDA第二节完形填空(共20小题;每小题1分,满分20分)36 – 40 BADCB 41 – 45 DABCA 46 – 50 CDBBA 51 – 55 DCCBA第三部分阅读理解(共15小题;每小题2分,满分30分)56--57 CB 58 – 60 BCD 61-64CDAA 65-70 BDAACA第四部分任务型阅读(共10小题;每小题1分,满分10分)71.various/different/diverse 72. obey/follow/observe 73. earlier 74.energetic75.absence 76. estimated 77. opponents 78. finance 79. fail 80. exist第五部分书面表达(满分25分)Possible version one:A series of books on the theme of Chinese culture were complied by some famous experts, greatly helping Chinese children improve their English and deepen their understanding of Chinese culture.The significance of teenagers learning Chinese culture can’t be emphasized too much. As we all know, Chinese culture is gradually accumulated in the long-term life practice of the Chinese nation. Above all, it helps teenagers develop correct and positive outlook on life. Moreover, by learning excellent Chinese culture, teenagers can build up extraordinary characters and cultivate their patriotic feelings.In truth, teenagers could take advantage of various measures to inherit Chinese culture. First, we teenagers should do our utmost to read Chinese classics, gradually accumulating the knowledge of Chinese culture. If possible, we’d better take an active part in different social activities concerning Chinese cu lture, trying to develop our affection for it. All in all, it’s our duty to have the ambition to英语学习讲义learn Chinese culture well.听力原稿Text 1M: Did you fall out of bed last night? I woke up because of a big noise. I thought it was thunder, but the sky was clear.W: No, it was the wind. We had left the door open and the wind blew it shut.Text 2M: The train will leave in 25 minutes. Do you want to find a seat now, or should we get coffee while we’re waiting?W: It doesn’t seem too crowded, and I’m kind of hungry. Let’s get some breakfast to go, and we can eat on the train.Text 3W: Can we pick up groceries later? I have a dentist appointment at noon.M: We’ve been up since 8:00. I’m hungry. The dentist’s is around the corner, and we still have two hours to get there.Text 4M: So, tell me about your new friend Cindy. What’s she like?W: She’s really neat. She’s younger than me, but she’s great to be around because she makes me laugh all the time. She’s always telling jokes.M: She must be pretty easy-going.Text 5W: When I got out of bed this morning, I nearly fell over. I was really dizzy. It must have been tiredness.M: I sometimes feel like that when I wake up. Anyway, I’m glad to see you’re back to normal.Text 6W: It looks like this game is completely sold out. How many people do you think are here right now?M: There are 20,000 seats in here. Have you ever been to a professional basketball game before? W: Only the ones at my university. Thanks again for buying the tickets. How much do I owe you? M: It’s my treat. You can buy the next tickets. Why don’t we go to the gift shop, and you can get yourself a souvenir?W: Sure. But at least let me get you a beer and a hot dog before we go back to our seats.M: I can’t say no to that.Text 7M: I got my book report back from my teacher, and she said I need to work on how I summarize things on paper.W: What were you trying to summarize?M: It’s a book we were reading in class. We had to give a brief summary of the plot.W: When I used to read textbooks, I always tried to summarize what I had learned by speaking it out loud. Then I just wrote it down on the paper.M: Really?W: If I couldn’t do it, I knew I had to go back and read it again. On ce I could do it naturally and smoothly, I wrote it down.M: That makes sense.W: Here, take this. Read today’s news, and then try and explain it to me.M: What if I can’t?W: Then keep trying until you can.Text 8W: Those are healthy things you have in your basket —fresh cabbage, fresh tomatoes…oh, and fresh bacon. That’s the only thing that might not be good for you.M: Hey, sis, we’re not children any more. You don’t need to look after me like you did in my childhood. Even wives don’t worry so much over their husbands.W: Well, if we want to reach the age of our grandparents’, we need to stay healthy. When I queue at the checkout behind some people, I am amazed at the unhealthy things they have in their baskets. No wonder they are overweight, unfit and always feeling ill.M: I think you have to keep a balance. I try to buy mostly healthy things, but I don’t get stressed if I sometimes feel like something less healthy, like the bacon. If I don’t feel cheerful, sometimes I have a bar of chocolate.W: I agree. Sometimes if I have a headache, I have a few cans of beer, even though that’s not particularly good for me.Text 9M: Mom, can we get a dog?W: Dogs need a lot of attention, Jeffrey. Do you think you can handle that ki nd of responsibility? It’s harder than you think.M: Of course I can. I’ll take it for walks every day, and clean up after it.W: Do you know what kind of dog you want?M: Yes, I’ve been looking at some pictures on the Internet. This one with the long golden hair is named Lion.W: He’s very cute, but we don’t have enough room for a dog that big. Those dogs need space to run around, and we live in an apartment. I think we should get a small one.M: OK, then what about this one? My friend has one like this, and everyone likes it.W: Those kinds of dogs always have health problems. Plus, they bark a lot. We don’t want to annoy our neighbors.M: So what do you suggest?W: First, we aren’t getting one from a pet store. They are too expensi ve. I know a place that saves dogs and gives them away for free.M: OK.W: And second, you need to show me you have the sense of responsibility. That means cleaning your room, doing your homework, and helping around the house.M: I promise!Text 10M: As a young child, I always enjoyed physical challenges more than mental ones. I liked to run and build swings. At that stage I hadn’t yet learned to climb or swim, but that is something I would also have loved to do. One day we had a physical education class at school. We did the long jump and handstands, but it was when I had to do a forward roll that disaster struck. Somehow, I twisted my neck in an extremely painful way. I screamed loudly and the teachers were very concerned. An ambulance was called and I was taken to hospital. The doctors fitted me with a collar and I was told to do no exercise and stay away from school for eight weeks. At first, I was very bored. Having to keep still all day was no fun. So I started to read. I looked at books on t he shelf at home. I wasn’t interested in love stories — I avoided those — but crime and adventure did appeal. From those eight weeks I developed alifelong love of reading. When my collar was removed, the doctors told me not to exercise for another four weeks. Instead of being disappointed, I was happy to devote more time to my new love — reading.。

江苏省徐州市邳州市2020届九年级上学期期中考试数学试题及答案解析

江苏省徐州市邳州市2020届九年级上学期期中考试数学试题及答案解析

2019-2020学年度第一学期期中调研九年级数学试题参考答案一、 选择题(每小题3分,共24分)1—8 CADB CDBB二、填空题(每小题4分,共32分)9. x 1=0,x 2=1, 10. 120 , 11. 19 , 12. 3, 13. 2, 14.20 15.1或5, 16.252+. 三、解答题 17.解:(1)(x+1)2 =2,x+1=2±12,1221--=-=x x ……………………………4分(2)a=1,b=-3,c=2b 2-4ac=(-3)2-4×1×2=1>02131213±=⨯±=x , 1,221==x x ……………………………8分(解法不唯一,酌情给分)18.解(1)把x =1代入x 2+ax +a ﹣2=0,得1+a+a-2=0,a=21…………………………4分 (2)a 2-4×1×(a-2)= a 2-4a+8=(a-2)2+4>0故不论a 取何实数,方程都有两个不相等的实数根…………………………8分19.(1)6……………………2分(2)6(1+x )2=17.34解得)(舍7.2,7.021-==x x 答:2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.……………8分20. (1)连接OB∵AB 是⊙O 的一条弦,OD ⊥AB ,∴=, ∴∠BOD=∠AOD =50°∴∠DEB =21∠BOD =21×50°=25°……………4分 (2)∵半径OD ⊥AB∴AC=21AB=5, ∠ACO =90° 设CD=x ,则OC=2CD=2x∴半径OA=OD=3x由Rt △ACO 中,AO 2=CO 2+AC 2(3x)2=(2x)2+52)(舍5,521-==x x 故CD 长为5.……………8分21.(1)作图略……………4分⊙O 就是所求作的圆……………5分(2)217-……………8分 22.(1)y=(x-1)2-4 ……2分 (2) >……4分(3)k>4……6分列表:x… -1 0 1 2 3 … y… 0 -3 -4 -3 0 ………………9分画图略……………12分23. 解(1)法一:∵AB 是⊙O 的直径,∴∠ADB=900 ∴AD ⊥BC ,又∵DC=BD ∴AB=AC=12,所以⊙O 半径为6法二:连接OD∵DC=BD ,OA=OB ∴OD=21AC=6 ⊙O 半径为6……………4分(2)连接OD∵∠CDE=∠DAC∴∠CDE+∠C =∠DAC+∠C∴∠AED=∠ADB由(1)可知∠ADB=900,∴∠AED=900∵DC=BD ,OA=OB ∴OD ∥AC∴∠ODF=∠AED= 900∴半径O D ⊥EF∴DE 为⊙O 的切线. ……………10分24.解 (1)设其函数关系式为:S =a (t ﹣2)2﹣2.∵所求函数关系式的图象过(0,0),代入得:a (0﹣2)2﹣2=0,解得a =,∴所求函数关系式为:S =(t ﹣2)2﹣2,即S =t 2﹣2t .答:累积利润S 与时间t 之间的函数关系式为:S =t 2﹣2t ;……………4分(2)把S =16代入S =(t ﹣2)2﹣2,得 (t ﹣2)2﹣2=16.解得t 1=8,t 2=﹣4(舍去).答:截止到第8个月公司累积利润可达30万元.……………7分(3)把t =9代入关系式,得S =×92﹣2×9=22.5,由(2)可知t =8时,累计利润16万元22.5﹣16=6.5,答:第9个月的利润是6.5万元. ……………10分25. 解:(1)∵抛物线y =ax 2+bx +3经过A (﹣1,0)、B (3,0),∴∴抛物线的函数关系式为y =﹣x 2+2x +3;……………3分(2)∵点A 与点B 关于直线l 对称,∴P A =PB ,∴PC +P A =PB +PC ,当P 、B 、C 共线时PB +PC 最小,PC +P A 最小 ∴此时△P AC 的周长最小,由y =﹣x 2+2x +3可得C (0,3)设直线BC 的函数关系式为y =kx +b ,把C (0,3),B (3,0)代入得,解得, ∴直线BC 的函数关系式为y =﹣x +3,当x =1时,y =﹣x +3=2,∴点P 的坐标为(1,2).……………8分(3)),)、(,)、(、(1-5-11-511,3-1)1,31(++……………。

2019-2020学年高中数学(苏教版 选修2-2)教师用书:第1章 1.3.3 最大值与最小值 Word版含答案

2019-2020学年高中数学(苏教版 选修2-2)教师用书:第1章 1.3.3 最大值与最小值 Word版含答案

1.3.3最大值与最小值1.会求在指定区间上函数的最大值、最小值(其中多项式函数一般不超过三次).(重点) 2.掌握含参数的最值问题的讨论.(难点)3.掌握函数的极值与最值的联系与区别.(易混点)[基础·初探]教材整理函数的最大(小)值与导数阅读教材P32“例1”以上部分,完成下列问题.1.函数的最大值与最小值.(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≤f(x0),则称f(x0)为函数f(x)在定义域上的最大值.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≥f(x0),则称f(x0)为函数f(x)在定义域上的最小值.函数的最大(小)值是相对函数定义域整体而言的,如果存在最大(小)值,那么函数的最大(小)值惟一.2.利用导数求函数的最值求可导函数f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的极值;(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值.1.判断正误:(1)函数的最大值一定是函数的极大值.( )(2)开区间上的单调连续函数无最值.( )(3)函数f(x)在区间[a,b]上的最大值和最小值一定在两个端点处取得.( )【答案】(1)×(2)√(3)×2.函数f(x)=2x-cos x在(-∞,+∞)上________.(填序号)①无最值;②有极值;③有最大值;④有最小值.【解析】f′(x)=2+sin x>0恒成立,所以f(x)在(-∞,+∞)上单调递增,无极值,也无最值.【答案】①[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_______________________________________________解惑:_______________________________________________疑问2:_______________________________________________解惑:_______________________________________________疑问3:_______________________________________________解惑:_______________________________________________[小组合作型](1)f(x)=x3-12x2-2x+5,x∈[-2,2];(2)f(x)=e-x-e x,x∈[0,1].【精彩点拨】首先利用函数求极值,再比较极值与端点值的大小,确定最值.【自主解答】(1)f′(x)=3x2-x-2=(3x+2)(x-1),令f′(x)=0,得x1=-23,x2=1.当x变化时,f′(x),f(x)变化情况如下表:(2)f ′(x )=⎝ ⎛⎭⎪⎪⎫1ex ′-(e x )′=-1ex -e x=-1+e2x ex .当x ∈[0,1]时,f ′(x )<0恒成立, 即f (x )在[0,1]上是减函数.故当x =1时,f (x )有最小值f (1)=1e -e ;当x =0时,f (x )有最大值f (0)=e -0-e 0=0.求函数最值的四个步骤 (1)求函数的定义域;(2)求f ′(x ),解方程f ′(x )=0; (3)列出关于x ,f (x ),f ′(x )的变化表; (4)求极值、端点值,确定最值.[再练一题]1.(2016·盐城质检)函数y =x +2cos x 在区间⎣⎢⎢⎡⎦⎥⎥⎤0,π2上的最大值是________.【导学号:01580015】【解析】 ∵y ′=1-2sin x ,x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,令y ′=0,得x =π6.由于f (0)=2,f ⎝ ⎛⎭⎪⎪⎫π6=π6+3,f ⎝ ⎛⎭⎪⎪⎫π2=π2,∴函数的最大值为π6+3.【答案】 π6+3已知函数f (x )=ax 3-6ax 2+b ,x∈[-1,2]的最大值为3,最小值为-29,求a ,b 的值.【精彩点拨】 首先求出f ′(x ).然后讨论a 的正负,根据函数f (x )的单调性得出用a ,b 表示的函数的最值,从而列出关于a ,b 的方程组,求a ,b .【自主解答】 由题设知a ≠0,否则f (x )=b 为常函数,与题设矛盾. 求导得f ′(x )=3ax 2-12ax =3ax (x -4), 令f ′(x )=0,得x 1=0,x 2=4(舍去).(1)当a >0,且x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减f (0)=b =3. 又f (-1)=-7a +3,f (2)=-16a +3<f (-1), ∴f (2)=-16a +3=-29,解得a =2.(2)当a <0时,同理可得,当x =0时,f (x )取得极小值b ,也就是函数在[-1,2]上的最小值,∴f (0)=b =-29.又f (-1)=-7a -29, f (2)=-16a -29>f (-1),∴f (2)=-16a -29=3,解得a =-2. 综上可得,a =2,b =3或a =-2,b =-29.1.本题的解题关键是利用函数的单调性确定某些极值就是函数的最值,同时由于系数a的符号对函数的单调性有直接的影响,且最值也受a的符号的影响,因此需要对a的符号进行分类讨论.2.已知函数的最值求参数问题属于逆向探究题型,解决该类问题的基本方法是待定系数法,列出关于参数的方程(组),从而求出参数的值,但在用参数表示最值时,需要根据参数的情况分类讨论.[再练一题]2.设23<a<1,函数f(x)=x3-32ax2+b在区间[-1,1]上的最大值为1,最小值为-62,求该函数的解析式.【导学号:01580016】【解】f′(x)=3x2-3ax,令f′(x)=0,得x=0或x=a.当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减单调递增当x=a时,f(x)取得极小值-a32+b,而f(0)>f(a),又f(1)>f(-1),故只需比较f(0)与f(1),f(-1)与f(a)的大小.因为f(0)-f(1)=32a-1>0,所以f(x)的最大值为f(0)=b,所以b=1.又因为f (-1)-f (a )=12(a +1)2(a -2)<0,所以f (x )的最小值为f (-1)=-1-32a +b=-32a ,所以-32a =-62,所以a =63.故所求函数的解析式是f (x )=x 3-62x 2+1. [探究共研型]如图1-3-6为y =f (x图1-3-6探究1 观察[a ,b ]上函数y =f (x )的图象,试找出它的极大值、极小值. 【提示】 f (x 1),f (x 3)为函数的极大值,f (x 2),f (x 4)为函数的极小值. 探究2结合图象判断,函数y =f (x )在区间[a ,b ]上是否存在最大值,最小值?若存在,分别为多少?【提示】 存在.f (x )最小值=f (a ),f (x )最大值=f (x 3).探究3 函数y =f (x )在[a ,b ]上的最大(小)值一定是其极值吗? 【提示】 不一定.也可能是区间端点的函数值.设函数f (x )=tx 2+2t 2x +t -1(x ∈R ,t >0). (1)求f (x )的最小值h (t );(2)若h (t )<-2t +m 对t ∈(0,2)恒成立,求实数m 的取值范围.【精彩点拨】(1)利用配方法,即可求出二次函数f(x)的最小值h(t);(2)构造函数g(t)=h(t)-(-2t+m),只需使g(t)在(0,2)上的最大值小于零即可求得m的取值范围.【自主解答】(1)∵f(x)=t(x+t)2-t3+t-1(x∈R,t>0),∴当x=-t时,f(x)取最小值f(-t)=-t3+t-1,即h(t)=-t3+t-1.(2)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,由g′(t)=-3t2+3=0,得t=1或t=-1(不合题意,舍去).当t变化时,g′(t),g(t)的变化情况如下表:单调递增单调递减∴g(t)在(0,2)h(t)<-2t+m在(0,2)内恒成立等价于g(t)<0在(0,2)内恒成立,即等价于1-m<0.∴m的取值范围为(1,+∞).1.涉及到不等式恒成立、不等式能成立的问题时,一般需转化为函数最值来解决.若不等式中含参数,则可考虑分离参数,以求避免分类讨论.2.不等式恒成立、能成立常见的转化策略(1)a>f(x)恒成立⇔a>f(x)最大值,a<f(x)恒成立⇔a<f(x)最小值;(2)f(x)>g(x)+k恒成立⇔k<[f(x)-g(x)]最小值;(3)f(x)>g(x)恒成立⇔f(x)最小值>g(x)最大值;(4)a>f(x)能成立⇔a>f(x)最小值,a<f(x)能成立⇔a<f(x)最大值.[再练一题]3.上例(2)若改为“存在t∈[0,2],使h(t)<-2t+m成立”,则实数m的取值范围如何求解?【解】令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,由g′(t)=-3t2+3=0,得t=1或t=-1(不合题意,舍去).当t变化时,g′(t),g(t)的变化情况如下表:单调 递增单调递减存在t ∈[0,2],使h (t )<-2t +m 成立, 等价于g (t )的最小值g (2)<0. ∴-3-m <0,∴m >-3,所以实数m 的取值范围为(-3,+∞).[构建·体系]1.函数y =x -sin x ,x ∈⎣⎢⎢⎡⎦⎥⎥⎤π2,π的最大值是________.【解析】 ∵y ′=1-cos x ≥0,∴y =x -sin x 在⎣⎢⎢⎡⎦⎥⎥⎤π2,π上是增函数,∴y 最大值=π.【答案】 π2.函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是________.【导学号:01580017】【解析】 f ′(x )=3x 2-6x =3x (x -2). 令f ′(x )=0得x 1=0,x 2=2(舍去). 当x ∈[-1,0)时,f ′(x )>0,f (x )递增; 当x ∈(0,1],f ′(x )<0,f (x )递减; ∴x =0时,f (x )取最大值2. 【答案】 23.函数f (x )=12e x(sin x +cos x )在区间⎣⎢⎢⎡⎦⎥⎥⎤0,π2上的值域为________ .【解析】 ∵x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,∴f ′(x )=e x cos x ≥0,∴f (0)≤f (x )≤f ⎝ ⎛⎭⎪⎪⎫π2,即12≤f (x )≤12·e π2.【答案】 ⎣⎢⎢⎡⎦⎥⎥⎤12,12e π24.已知函数f (x )=m ⎝ ⎛⎭⎪⎪⎫x -1x -2ln x (m ∈R ),g (x )=-m x ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的取值范围是________.【解析】 由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2ln x ,即m 2<ln xx 在[1,e]上有解,令h (x )=ln xx ,则h ′(x )=1-ln xx2,当1≤x ≤e 时,h ′(x )≥0,∴在[1,e]上,h (x )≥h (e)=1e ,∴m 2<1e ,∴m <2e .∴m 的取值范围是⎝ ⎛⎭⎪⎪⎫-∞,2e .【答案】 ⎝⎛⎦⎥⎥⎤-∞,2e5.已知a 为实数,f (x )=(x 2-4)·(x -a ). (1)求导数f ′(x );(2)若f ′(-1)=0,求f (x )在[-2,2]上的最大值和最小值. 【解】 (1)由原式得f (x )=x 3-ax 2-4x +4a , ∴f ′(x )=3x 2-2ax -4. (2)由f ′(-1)=0,得a =12,此时有f (x )=(x 2-4)·⎝ ⎛⎭⎪⎪⎫x -12,f ′(x )=3x 2-x -4.由f ′(x )=0,得x =43或x =-1.又f ⎝ ⎛⎭⎪⎪⎫43=-5027,f (-1)=92,f (-2)=0,f (2)=0,∴f (x )在[-2,2]上的最大值为92,最小值为-5027.我还有这些不足:(1)_______________________________________________ (2)_______________________________________________ 我的课下提升方案:(1)_______________________________________________ (2)_______________________________________________。

2019-2020学年江苏省东海县高二下学期期中考试数学试题 Word版

2019-2020学年江苏省东海县高二下学期期中考试数学试题 Word版

江苏省东海县2019-2020学年度第二学期期中考试 高二数学试题用时:120分钟满分:150分一、单项选择题:共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上。1.已知i 为虚数单位,复数z=4-5i,则z 的虚部是A.5iB.5C.-5iD.-52.已知复数z 满足z(2-i)=5i,其中i 为虚数单位,则z=A.1+2iB.-1+2i 510.33C i + 510.33D i -+ 3.如图,点1122(,()),(,())A x f x B x f x 在函数f(x)的图象上,且21,()x x f x '<为f(x)的导函数,则1()f x '与2()f x '的大小关系是12.()()A f x f x ''> 12.()()B f x f x ''< 12.()()C f x f x ''= D.不能确定4.已知复数|z|=1,i 为虚数单位,则|z-3+4i|的最小值是A.2B.3C.4D.5 5.若直线y=x+m 是曲线x y e =的一条切线,则实数m 的值是A.-1B.0C.1D.26.某医院计划从3名医生,9名护士中选派5人参加湖北新冠肺炎疫情狙击战,要求选派的5人中至少要有2名医生,则不同的选派方法有A.495种B.288种C.252种D.126种7.《九章算术》中,将四个面都为直角三角形的四面体称之为鱉臑,如图,在鱉臑P-ABC 中,PA ⊥平面ABC,AB ⊥BC,且PA=AB=BC=1,则二面角A-PC-B 的大小是A.30°B.45°C.60°D.90°8.函数f(x)的定义域为R ,f(-1)=2e,对任意x ∈R ,()()0,f x f x '+>则不等式()20xe f x x +>的解集为A.(-1,+∞)B.(-∞,-1)C.(1,+∞)D.(-∞,1) 二、多项选择题:共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分,请将正确选项前的字母代号填涂在答题卡相应位置上.9.下列各式中,等于n!的是1.n n A A - 1.n n B A + 11.n n C nA -- .!m n D m C10.下列关于复数的说法,其中正确的是A.复数z=a+bi(a,b ∈R )是实数的充要条件是b=0B.复数z=a+bi(a,b ∈R )是纯虚数的充要条件是b ≠0C.若12,z z 互为共轭复数,则12z z 是实数D.若12,z z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称11.已知()f x '是定义域为R 的函数f(x)的导函数,上图是函数'()y xf x =的图象,则下列关于函数f(x)性质说法正确的是A.单调递增区间是(-∞,-3),(0,3)B.单调递减区间是(-∞,-3),(3,+∞)C.f(-3)是极小值D.f(3)是极小值12.已知函数2()ln ,f x x x=+则下列判断正确的是 A.存在x ∈(0,+∞),使得f(x)<0B.函数f(x)的递减区间是(0,2)C.任意x ∈(0,+∞),都有f(x)>0D.若f(m)=f(n),则m+n ≥4 三、填空题:共4小题,每小题5分,共20分。请把答案直接填写在答题卡相应位置上.13.计算2222223456C C C C C ++++=___.14.已知函数1()cos ,[0,]22f x x x x π=+∈,则f(x)的单调递增区间为__. 15.在杨辉三角中,每一个数值是它上面两个数值之和,这个三角形开头几行如右图,则第9行从左到右的第3个数是___;若第n 行从左到右第12个数与第13个数的比值为3,4则n=___.(第一空2分,第二空3分)16.若函数2()2(1)2ln 1f x ax a x x =+---只有一个零点,则实数a 的取值范围是____.四、解答题:共6小题,共70分。请在答题卡指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤。17.(本小题满分10分)2名女生、4名男生排成一排,求:(1)2名女生不相邻的不同排法共有多少种?(2)女生甲必须排在女生乙的左边(不一定相邻)的不同排法共有多少种?18.(本小题满分12分)已知函数32()()f x x ax x a =--∈R .(1)当a=1时,求f(x)在区间(0,+∞)上的最小值;(2)若f(x)在区间[1,2]上是单调递减函数,求实数a 的取值范围。19.(本小题满分12分) 9290129(21)x a a x a x a x -=++++L ,求:1239(1)a a a a ++++L1239(2)239a a a a ++++L20.(本小题满分12分)已知函数()(1)(0)xf x kx k e k =--≠(1)求函数f(x)的极值;(2)求函数f(x)在区间[0,1]上的最大值g(k)。21.(本小题满分12分)如图,在底面边长为6m 、高为3m 的正六棱柱111111ABCDEF A B C D E F -展厅内,长为6m,宽为1m 的矩形油画MNOP 挂在厅内正前方中间。(1)求证:平面MNOP ⊥平面11BFF B ;(2)当游客Q 在AF 上看油画的纵向视角(即∠PQM)最大时,求MQ 与油画平面所成的角.22.(本小题满分12分)已知函数2()sin .x f x x e-=-求证: (1)f(x)在区间(0,)2π存在唯一极大值点;(2)f(x)在(0,+∞)上有且仅有2个零点.。

江苏省徐州市2018-2019学年高二下学期期中考试数学(理)试题(解析版)

江苏省徐州市2018-2019学年高二下学期期中考试数学(理)试题(解析版)

江苏省徐州市2018—2019学年高二下学期期中考试数学(理)试题一、填空题(不需要写出解答过程,请将答案填写在答题卡相应的位置上.)1.=______【答案】60【解析】【分析】根据排列数公式计算即可.【详解】5×4×3=60.故答案为:60.【点睛】本题主要考查了排列数公式,属于基础题.2.若i是虚数单位,且复数z满足z=3﹣i,则=______【答案】【解析】【分析】由已知直接代入复数模的计算公式求解.【详解】∵z=3﹣i,∴|z|.故答案为:.【点睛】本题考查复数模的求法,是基础题.3.用反证法证明命题“如果m<n,那么”时,假设的内容应该是______【答案】假设【解析】【分析】由于用反证法证明命题时,应先假设命题的否定成立,由此得出结论.【详解】∵用反证法证明命题时,应先假设命题的否定成立,而“m7<n7”的否定为:“m7≥n7”,故答案为:假设m7≥n7【点睛】本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.4.若,则x的值为______.【答案】3或4【解析】【分析】结合组合数公式结合性质进行求解即可.【详解】由组合数的公式和性质得x=2x﹣3,或x+2x﹣3=9,得x=3或x=4,经检验x=3或x=4都成立,故答案为:3或4.【点睛】本题主要考查组合数公式的计算,结合组合数的性质建立方程关系是解决本题的关键.5.已知复数(是虚数单位),则=______【答案】-1 【解析】【分析】把代入ω3﹣2,再由复数代数形式的乘除运算化简得答案.【详解】∵,∴ω3﹣2.故答案为:﹣1.【点睛】本题考查复数代数形式的乘除运算,是基础题.6.用灰、白两种颜色的正六边形瓷砖按如图所示的规律拼成若干个图案,则第6个图案中正六边形瓷砖的个数是______【答案】37【解析】【分析】通过已知的几个图案找出规律,可转化为求一个等差数列的通项公式问题即可.【详解】第1个图案中有灰色瓷砖6块,白色瓷砖1块第2个图案中有灰色瓷砖11块,白色瓷砖2块;第3个图案中有灰色瓷砖16块,白色瓷砖3块;…设第n个图案中有瓷砖a n块,用数列{}表示,则=6+1=7,=11+2=13,=16+3=19,可知﹣=﹣=6,…∴数列{}是以7为首项,6为公差的等差数列,∴=7+6(n﹣1)=6n+1,∴=37,故答案为:37.【点睛】本题考查了归纳推理的问题,属于基础题.7.有这样一段“三段论”推理,对于可导函数,大前提:如果,那么是函数的极值点;小前提:因为函数在处的导数值,结论:所以是函数的极值点.以上推理中错误的原因是______错误(“大前提”,“小前提”,“结论”).【答案】大前提【解析】因为导数等于零的点不一定是极值点.如函数y=x3,它在x=0处导数值等于零,但x=0不是函数y=x3的极值点.因为只有此值两侧的导数值异号时才是极值点8.用数学归纳法证明(,n>1)时,第一步应验证的不等式是______.【答案】【解析】试题分析:式子的左边应是分母从1,依次增加1,直到,所以答案为。

2019-2020学年高中数学(苏教版必修2)同步文档:章末综合测评(一) 立体几何初步 Word版含解析

2019-2020学年高中数学(苏教版必修2)同步文档:章末综合测评(一) 立体几何初步 Word版含解析

章末综合测评(一) 立体几何初步(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上) 1.给出下列命题:(1)若两个平面平行,那么其中一个平面内的直线一定平行于另一个平面; (2)若两个平面平行,那么垂直于其中一个平面的直线一定垂直于另一个平面; (3)若两个平面垂直,那么垂直于其中一个平面的直线一定平行于另一个平面; (4)若两个平面垂直,那么其中一个平面内的直线一定垂直于另一个平面. 其中真命题的序号为__________.【解析】 (1)因为两个平面平行,所以两个平面没有公共点,即其中一个平面内的直线与另一个平面也没有公共点,由直线与平面平行的判定定理可得直线与该平面平行,所以(1)正确.(2)因为该直线与其中一个平面垂直,那么该直线必与其中两条相交直线垂直,又两个平面平行,故另一个平面也必定存在两条相交直线与该直线垂直,所以该直线与另一个平面也垂直,故(2)正确.(3)错,反例:该直线可以在另一个平面内.(4)错,反例:其中一个平面内也存在直线与另一个平面平行. 综上:(1)(2)为真命题. 【答案】 (1)(2)2.在直四棱柱ABCD -A 1B 1C 1D 1中,当底面四边形ABCD 满足条件________时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种即可,不必考虑所有可能的情形).【解析】 若有AC ⊥BD ,则A 1C 1⊥B 1D 1. 又∵CC 1⊥B 1D 1,A 1C 1∩CC 1=C 1,∴B 1D 1⊥平面A 1C 1C ,∴B 1D 1⊥A 1C ,故条件可填AC ⊥BD . 【答案】 AC ⊥BD (答案不唯一)3.棱长为1的正四面体内有一点P ,由点P 向各个面引垂线,垂线段分别为d 1,d 2,d 3,d 4,则d 1+d 2+d 3+d 4的值为________.【解析】 设四面体的高为h ,则h =12-⎝ ⎛⎭⎪⎪⎫23×32×12=63,13Sh =13S (d 1+d 2+d 3+d 4), ∴d 1+d 2+d 3+d 4=h =63.【答案】 634.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积为__________.【解析】 设圆锥的体积为x ,则x -52x =⎝ ⎛⎭⎪⎪⎫133,解得x =54.【答案】 545.已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.【导学号:41292058】【解析】 V 四棱锥O -ABCD =13×3×3h =322,得h =322,∴OA 2=h 2+⎝ ⎛⎭⎪⎪⎫AC 22=184+64=6.∴S 球=4πOA 2=24π. 【答案】 24π6.若l ,m 是两条不同的直线,m 垂直于平面α,则“l ⊥m ”是“l ∥α”的________条件. 【解析】 ∵m ⊥α,若l ∥α,则必有l ⊥m ,即l ∥α⇒l ⊥m . 但l ⊥mD ⇒/l ∥α,∵l ⊥m 时,l 可能在α内. 故“l ⊥m ”是“l ∥α”的必要而不充分条件. 【答案】 必要不充分7.如图1所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN 等于________.图1【解析】 ∵B 1C 1⊥平面A 1ABB 1, MN ⊂平面A 1ABB 1,∴B 1C 1⊥MN ,又∠B 1MN 为直角. ∴B 1M ⊥MN ,而B 1M ∩B 1C 1=B 1.∴MN ⊥平面MB 1C 1.又MC 1⊂平面MB 1C 1, ∴MN ⊥MC 1,∴∠C 1MN =90°. 【答案】 90°8.设l 为直线,α,β是两个不同的平面.下列命题中正确的是________.①若l ∥α,l ∥β,则α∥β;②若l ⊥α,l ⊥β,则α∥β;③若l ⊥α,l ∥β,则α∥β;④若α⊥β,l ∥α,则l ⊥β.【解析】 对于①,若l ∥α,l ∥β,则α和β可能平行也可能相交,故错误; 对于②,若l ⊥α,l ⊥β,则α∥β,故正确; 对于③,若l ⊥α,l ∥β,则α⊥β,故错误;对于④,若α⊥β,l ∥α,则l 与β的位置关系有三种可能:l ⊥β,l ∥β,l ⊂β,故错误.故选②.【答案】 ②9.如图2,在空间四边形ABCD 中,E ,H 分别是AB ,AD 的中点,F ,G 分别是CB ,CD 上的点,且CF CB=CG CD=23,若BD =6cm ,梯形EFGH 的面积为28cm 2,则平行线EH ,FG 间的距离为__________cm.图2【解析】 由题知,EH =12BD =3 cm ,FG =23BD =4 cm.设平行线EH ,FG 之间距离为d ,则12×(3+4)×d =28,解得d =8 cm. 【答案】 810.在四棱锥P -ABCD 中,P A⊥平面ABCD ,且P A =AD ,四边形ABCD 是正方形,E 是PD 的中点,则AE 与PC 的位置关系为________.【解析】 易知CD ⊥AE ,AE ⊥PD ,则AE ⊥平面PCD ,所以AE ⊥PC . 【答案】 垂直11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是________.①点H 是△A 1BD 的垂心; ②AH ⊥平面CB 1D 1; ③AH 的延长线经过点C 1; ④直线AH 和BB 1所成的角为45°.【解析】 因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD , 所以BD ⊥AH .又BD ⊥AA 1,且AH ∩AA 1=A . 所以BD ⊥平面AA 1H . 又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D , 所以点H 是△A 1BD 的垂心,①正确. 因为平面A 1BD ∥平面CB 1D 1, 所以AH ⊥平面CB 1D 1,②正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故③正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠A 1AH ≠45°,故④错误. 【答案】 ④12.如图3所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.现有结论:图3①BC⊥PC;②OM∥平面APC;③点B到平面P AC的距离等于线段BC的长.其中正确的序号是________.【解析】对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC.又PC⊂平面P AC,∴BC⊥PC,故①正确;对于②,∵点M为线段PB的中点,∴OM∥P A.∵P A⊂平面P AC,∴OM∥平面P AC,故②正确;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离,故③正确.【答案】①②③13.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③二面角A-BC-D的度数为60°;④AB与CD所成的角是60°.其中正确结论的序号是________.【解析】如图(1)(2)所示,取BD的中点O,连结AO,OC,易知AO⊥BD且CO⊥BD,AO∩OC=O,故BD⊥平面AOC,∴BD⊥AC,故①正确.设正方形ABCD 的边长为1,易知AO =OC =22.又由题意可知∠AOC =90°,故AC =1.所以AC =AD =DC ,所以△ACD 是等边三角形,故②正确.取BC 的中点E ,连结OE ,AE ,则∠AEO 即为二面角A -BC -D 的平面角, ∴tan ∠AEO =AOOE=2,(3)故③不正确.对于④,如图(3)所示,取AC 的中点F ,连结OF ,EF ,OE ,则OE∥CD ,EF∥AB ,则∠FEO 即为异面直线AB 与CD 所成的角.又在△AOC 中,OF =12,故EF =OE =OF ,∴AB 与CD 所成的角为60°,故④正确.综上可知①②④正确. 【答案】 ①②④14.如图4所示,三棱锥A -BCD 的底面是等腰直角三角形,AB ⊥平面BCD ,AB =BC =BD =2,E 是棱CD 上的任意一点,F ,G 分别是AC ,BC 的中点,则在下面命题中:①平面ABE ⊥平面BCD ; ②平面EFG ∥平面ABD ;③四面体FECG体积的最大值是1 3 .其中为真命题的是__________.(填序号)【导学号:41292059】图4【解析】①正确,因为AB⊥平面BCD,且AB⊂平面ABE,由面面垂直的判定定理可知平面ABE⊥平面BCD;②错,若两平面平行,则必有AD∥EF,而点E是棱CD上任意一点,故该命题为假命题;③正确,由已知易得GF⊥平面GCE,且GF=12AB=1,而S△GCE=12GC·CE·sin45°=24CE≤1,故V F-GCE=13S△GCE·FG≤13.故正确的命题为①③.【答案】①③二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)图515.(本小题满分14分)如图5,正方体ABCD-A′B′C′D′的棱长为a,连结A′C′,A ′D,A′B,BD,BC′,C′D,得到一个三棱锥.求:(1)三棱锥A′-BC′D的表面积与正方体表面积的比值;(2)三棱锥A′-BC′D的体积.【解】(1)∵ABCD-A′B′C′D′是正方体,∴六个面是互相全等的正方形,∴A′C′=A′B=A′D=BC′=BD=C′D=2a,∴S 三棱锥=4×34×(2a )2=23a 2,S 正方体=6a 2,∴S 三棱锥S 正方体=33. (2)显然,三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的, ∴V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =13a 3.16.(本小题满分14分)如图6所示,长方体ABCD -A 1B 1C 1D 1中,M ,N 分别为AB ,A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,并说明理由.图6【解】 直线MN ∥平面A 1BC 1. 证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1. ∴MN ⊄平面A 1BC 1. 如图,取A 1C 1的中点O 1, 连结NO 1,BO 1.∵NO 1綊12D 1C 1,MB 綊12D 1C 1,∴NO 1綊MB , ∴四边形NO 1BM 为平行四边形, ∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1, ∴MN ∥平面A 1BC 1.17.(本小题满分14分)如图7,圆锥的轴截面SAB 为等腰直角三角形,Q 为底面圆周上一点.图7(1)若QB 的中点为C ,求证:平面SOC ⊥平面SBQ ; (2)若∠AOQ =120°,QB =3,求圆锥的表面积.【解】 (1)∵SQ =SB ,OQ =OB ,C 为QB 的中点, ∴QB ⊥SC ,QB ⊥OC . ∵SC ∩OC =C , ∴QB ⊥平面SOC . 又∵QB ⊂平面SBQ , ∴平面SOC ⊥平面SBQ . (2)∵∠AOQ =120°,QB =3,∴∠BOQ =60°,即△OBQ 为等边三角形, ∴OB =3.∵△SAB 为等腰直角三角形,∴SB =6,∴S 侧=3·6π=32π, ∴S 表=S 侧+S 底=32π+3π=(3+32)π.图818.(本小题满分16分)如图8所示,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,底面边长为a ,E 是PC 的中点.(1)求证:P A ∥平面BDE ; (2)求证:平面P AC ⊥平面BDE ;(3)若二面角E -BD -C 为30°,求四棱锥P -ABCD 的体积. 【解】 (1)证明:连结OE ,如图所示.∵O ,E 分别为AC ,PC 的中点, ∴OE ∥P A .∵OE ⊂平面BDE ,P A ⊄平面BDE ,∴P A ∥平面BDE . (2)证明:∵PO ⊥平面ABCD ,∴PO ⊥BD . 在正方形ABCD 中,BD ⊥AC . 又∵PO ∩AC =O ,∴BD ⊥平面P AC .又∵BD ⊂平面BDE ,∴平面P AC ⊥平面BDE . (3)取OC 中点F ,连结EF .∵E 为PC 中点, ∴EF 为△POC 的中位线,∴EF ∥PO . 又∵PO ⊥平面ABCD ,∴EF ⊥平面ABCD , ∴EF ⊥BD ,∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥平面EFO , ∴OE ⊥BD ,∴∠EOF 为二面角E -BD -C 的平面角, ∴∠EOF =30°.在Rt △OEF 中,OF =12OC =14AC =24a ,∴EF =OF ·tan 30°=612a ,∴OP =2EF =66a .∴V P -ABCD =13×a 2×66a =618a 3.19.(本小题满分16分)如图9,在四棱锥P -ABCD 中,底面ABCD 是正方形,P A ⊥平面ABCD ,E 是PC 的中点,F 为线段AC 上一点.【导学号:41292060】(1)求证:BD ⊥EF ; (2)若EF ∥平面PBD ,求AFFC 的值.图9【解】(1)因为P A⊥平面ABCD,BD⊂平面ABCD,所以P A⊥BD.又四边形ABCD是正方形,所以AC⊥BD.又P A∩AC=A,所以BD⊥平面P AC.又EF⊂平面P AC,所以BD⊥EF.(2)设AC与BD交于点O,连结PO.因为EF∥平面PBD,平面P AC∩平面PBD=PO,且EF⊂平面P AC,所以EF∥PO.又E 是PC的中点,所以OF=FC,所以AF=3FC,即AFFC=3.20.(本小题满分16分)如图10(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图10(2).(1) (2)图10(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ.说明理由.【解】(1)证明:∵D,E分别为AC,AB的中点,∴DE∥BC.又∵DE⊄平面A1CB,BC⊂平面A1CB,∴DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,DE⊥CD,A1D∩CD=D,∴DE⊥平面A1DC,而A1F⊂平面A1DC,∴DE⊥A1F.又∵A1F⊥CD,DE∩CD=D,∴A1F⊥平面BCDE,BE⊂平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC. 又∵DE∥BC,∴DE∥PQ,∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,A1C⊂平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP.又DE∩DP=D,∴A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q(中点),使得A1C⊥平面DEQ.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019—2020学年度第二学期期中学情调研试题高二数学一、单项选择题:本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若函数2)(x x f =,则)(x f 在1=x 处的导数为( ▲ ) A .x 2 B . 2 C .3 D .4 2.设复数z 满足i z i 2)1(=+(其中i 为虚数单位),则=z ( ▲ ) A .21B .22C .2D .23.下列求导运算正确的是( ▲ )A . 2'(2)2x x = B .xxe e =)'(C .xx 1)(ln -=' D .211)1(x x x +='+4.已知函数93)(23-++=x ax x x f 在3-=x 处取得极值,则实数a 的值为( ▲ )A .2B .3C .4D .55.已知函数)(x f y =的图象如图所示,则 其导函数)('x f y =的图象可能是( ▲ )A .B .C .D .6.已知函数)1('2)(2xf x x f +=,则=)0('f ( ▲ )A .4-B .4C .2-D .27.若函数x xx f ln 3)(+=在区间)2,(+m m 上是单调减函数,则实数m 的取值范围是( ▲ )A .]0,(-∞B .),1[+∞C .)1,0(D .]1,0[8.设)(x f 是定义在R 上的奇函数,0)2(=f ,当0>x 时,有0)()(2<-'xx f x f x 恒成立, 则0)(>xx f 的解集为( ▲ ) A .),0()0,2(+∞-Y B .)2,0()0,2(Y -C .),2()2,(+∞--∞YD .)2,0()2,(Y --∞二、多项选择题:本大题共4小题,每小题5分,共计20分.每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,不选或有选错的得0分. 9.已知不等式a e x x≥-)2(对任意的R x ∈恒成立, 则满足条件的整数a 的可能值为( ▲ )A .4- B.3- C .2- D .1- 10.已知函数2431)(3+-=x x x f ,下列说法中正确的有( ▲ ) A . 函数)(x f 的极大值为322,极小值为310-B . 当[]4,3∈x 时,函数)(x f 的最大值为322,最小值为310-C . 函数)(x f 的单调减区间为[]2,2-D . 曲线)(x f y =在点)2,0(处的切线方程为24+-=x yy =f (x )(第5题图)11.若函数xx f y ln )(=在),1(+∞上单调递减,则称)(x f 为M 函数. 下列函数中为M 函数的是( ▲ )A .1)(=x fB .x x f =)(C .xx f 1)(= D .2)(x x f =12.设函数x x x f ln )(=,xx f x g )()('=,给定下列命题,其中是正确命题的是( ▲ ) A .不等式0)(>x g 的解集为),1(+∞eB .函数)(x g 在),0(e 单调递增,在),(+∞e 单调递减C .当021>>x x 时,)()()(2212221x f x f x x m ->-恒成立,则1≥m D .若函数2)()(ax x f x F -=有两个极值点,则实数)21,0(∈a三、填空题:本大题共4小题,每小题5分,(第15题第一空2分,第二空3分)共计20分. 13.函数x x y ln 212-=的单调递减区间为 ▲ . 14.若函数4)(23+-=ax x x f 在区间]2,0[上不单调,则实数a 的取值范围为 ▲ .15.已知函数x x f =)(,x a x g ln )(=(R a ∈),若曲线)(x f y =与曲线)(x g y =相交,且在交点处有相同的切线,则=a ▲ ,切线的方程为 ▲ (直线的方程写成一般式).16.已知函数 , 若函数()f x 有四个不同的零点,则m 的取值范围为 ▲()3213221(0)3236(0){x x x m x x m x f x +++-≤+->=四、解答题:本大题共6小题,共计70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知复数i m m m z )2()2(-+-=,其中i 为虚数单位.若z 满足下列条件,求实数m 的值: (1)z 为实数; (2)z 为纯虚数;(3)z 在复平面内对应的点在直线x y =上.18.(本小题满分12分)已知函数xe x xf ⋅=)(. (1)求函数)(x f 的单调区间;(2)求函数)(x f 在]1,2[-上的最大值和最小值.19.(本小题满分12分)已知函数312)2(2131)(23+++-=ax x a x x f (R a ∈). (1)若函数)(x f 在2=x 处取得极小值1,求实数a 的值;(2)讨论函数)(x f 的单调性.20.(本小题满分12分)如图,已知海岛A 与海岸公路BC 的距离AB 为km 50,B ,C 间的距离为km 350, 从A 到C ,需要先乘船至海岸公路BC 上的登陆点D ,船速为h km /25,再乘汽车至C , 车速为h km /50.设θ=∠BAD .(1)用θ表示从海岛A 到C 所用的时间)(θf ,并写出θ的取值范围; (2)登陆点D 应选在何处,能使从A 到C 所用的时间最少?21.(本小题满分12分)已知函数x mx x x f ln 2)(2+-= (R m ∈).(1)若)(x f 在其定义域内单调递增,求实数m 的取值范围; (2)若54<<m ,且)(x f 有两个极值点21,x x ,其中21x x <, 求)()(21x f x f -的取值范围. 22.(本小题满分12分)已知函数)(3)(3R a ax x x f ∈-=,()ln g x x =. (1)若0a >,求函数()f x 在[1,2]上的最小值;(2)若不等式()|f x |()g x ≥在[1,2]上恒成立 求实数a 的取值范围.2019—2020学年度第二学期期中学情调研试题高二数学(参考答案)一、单项选择题1.B 2.C 3.B 4.D 5.A 6.A 7.D 8.B二、多项选择题9.AB 10.ACD 11.AC 12.ACD三、填空题13.()1,0或写成(]1,0 14.()3,0 15.2e ,022=+-e ey x 16.511(,)612四、解答题17.解:(1)2=m ……………3分(2)0=m ……………6分 (3)1=m 或2=m …………10分18.解:(1)函数)(x f 的定义域为R'()(1)x x x f x e xe x e =+=+ ………………2分由'()0f x >得1x >-,由'()0f x <得1x <-∴函数)(x f 的增区间为(1,)-+∞,减区间为(,1)-∞- ………………6分 (2) '()(1)xxxf x e xe x e =+=+令0)(='x f 得1-=x列表如下:由上表可知 函数)(x f 在]1,2[-上的最大值为e f =)1(最小值为ef 1)1(-=- ………………12分19.解:(1)∵)(x f 在2=x 时的极小值是1∴1)2(=f ,即13142)2(21231)2(23=+++-=a a f , 解得1=a ………………2分当1=a 时,3122331)(23++-=x x x x f ,则)2)(1(23)(2--=+-='x x x x x f 令0)(='x f ,解得2,1==x x列表如下:………………4分(2))2)((2)2()(2--=++-='x a x a x a x x f )(R x ∈令0)(='x f ,解得2,==x a x①当2=a 时,有0)(≥'x f ,函数)(x f 在),(+∞-∞上单调递增 ………………6分 ②当2<a 时,列表如下:8分 ③当2>a 时,列表如下:………10分 综上:①当2=a 时,函数)(x f 在),(+∞-∞上单调递增②当2<a 时,函数)(x f 在),(a -∞,),2(+∞上单调递增,在)2,(a 上单调递减 ③当2>a 时,函数)(x f 在)2,(-∞,),(+∞a 上单调递增,在),2(a 上单调递减……………12分20.解:(1)在Rt ABD ∆中,50AB =,BAD θ∠=∴50AD =,50tan BD θ=∴50tan CD θ=∴22sin ()tan 2550cos cos AD CD f θθθθθ-=+=+=+………………4分又tan BAC ∠=∴3BAC π∠=∴θ的取值范围是0,3π⎡⎤⎢⎥⎣⎦ ………………6分(2)22cos cos (2sin )(sin )2sin 1'()cos cos f θθθθθθθθ-----== 由'()0f θ=得1sin 2θ=又[0,]3πθ∈ ∴6πθ= ………………8分∴当06πθ<<时,'()0f θ<;当63ππθ<<时,'()0f θ>∴当6πθ=时,()f θ有极小值,即最小值 ………………10分此时50tan6BD π==答:登陆点D 与B km 时,从A 到C 所用的时间最少.……12分 21.解:(1)()f x 的定义域为(0,)+∞∵()f x 在(0,)+∞上单调递增∴2'()20f x x m x=-+≥在(0,)+∞上恒成立即22m x x ≤+在(0,)+∞上恒成立 ………………2分又224x x +≥=(当且仅当1x =时等号成立) ∴4m ≤ ………………4分(2)2222'()2x mx f x x m x x-+=-+=∵()f x 有两个极值点12,x x∴12,x x 为方程2220x mx -+=的两个不相等的实数根由韦达定理得 122mx x +=121x x ⋅=∵120x x << ∴1201x x <<< 又121112()2()(4,5)m x x x x =+=+∈ 解得1112x << ………………6分 ∴2212111222()()(2ln )(2ln )f x f x x mx x x mx x -=-+--+2212121212222112()2(ln ln )2()()()2(ln ln )x x x x x x x x x x x x =-+--+-=-+-2112114ln x x x =-+ ………………8分 设221()4ln g x x x x =-+(112x <<),则0)1(2)12(2422)(3223243<--=+--=+--='x x x x x x x x x g ∴()g x 在1(,1)2上为减函数 ………………10分又11115()44ln 4ln 22424g =-+=-, (1)1100g =-+= ∴150()4ln 24g x <<- 即12()()f x f x -的取值范围为1504ln 24⎛⎫- ⎪⎝⎭, ………………12分22.解:(1))0)()((333)(2>+-=-='a a x a x a x x f ,]2,1[∈x令0)(='x f ,解得a x =(舍负), ………2分①当1≤a 时,即10≤<a 时,0)(>'x f 恒成立,)(x f 在[1,2]上单调递增,所以a f f 31)1(min -==, ………3分②当21<<a 时,即41<<a 时,)(x f 在),1[a 上单调递减,在]2,(a 上单调递增,所以a a a f f 2)(min -==, ………4分③当2≥a 时,即4≥a 时,0)(<'x f 恒成立,)(x f 在[1,2]上单调递减,所以a f f 68)2(min -==, ………5分综上所述:11 ⎪⎩⎪⎨⎧≥-<<-≤<-=4,6841,210,31a a a a a a a f 最小值 ………………6分(2)[].0)(2,1恒成立时,当≥∈x g x所以 ()()f x g x ≥|| ()()()()f x g x f x g x ⇔≥≤-或……8分① 由()()f x g x ≥在[1,2]上恒成立得33ln x ax x -≥2ln 3xa x x ∴≤- ………设()h x =2ln x x x -则3221ln 2ln 1()2x x x h x x x x -+-'=-=3210,ln 0()0x x h x '-≥≥∴≥Q()h x ∴在[1,2]上单调递增min ()(1)1h x h ∴==13≤∴a 13a ∴≤ ……………………………………………………………………10分② 由()-()f x g x ≤在[1,2]上恒成立得33ln x ax x -≤-2ln 3+xa x x ∴≥设()u x =2ln x x x +则3'221ln 21ln ()2x x x u x x x x -+-=+=[]0ln 1,022,13>->∈x x x 时,Θ 0)(>'∴x u()u x ∴在[1,2]上单调递增max ln 2()(2)42u x u ∴==+ 22ln 43+≥∴a 62ln 34+≥∴a综上,所求 a 的取值范围为:⎪⎭⎫⎢⎣⎡+∞+⋃⎥⎦⎤ ⎝⎛∞,62ln 3431-,……………………12分。

相关文档
最新文档