高考数学二轮复习小题限时训练1理

合集下载

高三二轮复习限时训练(一)

高三二轮复习限时训练(一)

高考二轮复习限时训练(一)(时间:60分钟)班级 姓名 得分一、填空题:本大题共12小题,每小题5分,共60分。

1、复数ii4321+-在复平面上对应的点位于第__ 象限. 2、命题“2,220x R x x ∃∈++≤”的否定是3、设{}{}=⋂+==∈==B A x y y x B R x x y y A 则,2|),(,,|2 4、已知x 、y 的取值如下表:从散点图分析,y 与x 线性相关,且回归方程为 0.95y x a =+,则a = 5、若椭圆的焦距长等于它的短轴长,则椭圆的离心率等于____ ____。

6、如果执行右面的程序框图,那么输出的S = 7、把函数4cos()3y x π=++1的图象向左平移ϕ个单位,所得的图象对应的函数为偶函数,则ϕ的最小正值为8、如果实数x ,y 满足x 2+y 2=1,则(1+xy )(1-xy )的最小值为9、已知实数x ,y 满足条件5003x y x y x -+⎧⎪+⎨⎪⎩≥≥≤,i z x y =+(i 为虚数单位),则|12i |z -+的最小值是 .10、一枚半径为1的硬币随机落在边长为3的正方形所在平面内,且硬币一定落在正方形内部或与正方形有公共点,则硬币与正方形没有公共点的概率是11、若函数f (x )=e x -2x-a 在R 上有两个零点,则实数a 的取值范围是12、设函数)0](,[,321)1ln()(2>-∈+-+=t t t x x e x x f x ,若函数的最大值是M ,最小值是m ,则M+m=二、解答题:本大题共2小题,共30分。

13、(本小题满分15分)在ABC ∆中,角A 、B 、C 的对边分别为,,a b c ,已知向量33(cos ,sin ),22A A m = (cos ,sin ),22A An =且满足m n +=(Ⅰ)求角A 的大小;(Ⅱ)若,b c +=试判断ABC ∆的形状。

14、(本小题满分15分)已知圆C :224x y +=.(1)直线l 过点()1,2P ,且与圆C 交于A 、B 两点,若||AB =l 的方程;(2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ OM ON =+,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.高考二轮复习限时训练(一)1、三2、2,220.x R x x ∀∈++>3、∅4、2.6 5 6、25507、32π 8、43 9 10、 π+21111、()+∞-,2ln 2212、6 二、解答题: 13、(1)3A π=———————————————————7分(2)ABC ∆为直角三角形。

高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

2024届高三二轮复习“8+3+3”小题强化训练(1)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1对两个具有线性相关关系的变量x 和y 进行统计时,得到一组数据1,0.3 ,2,4.7 ,3,m ,4,8 ,通过这组数据求得回归直线方程为y=2.4x -2,则m 的值为()A.3B.5C.5.2D.6【答案】A【解析】易知x =1+2+3+44=52,y =13+m4,代入y =2.4x -2得13+m 4=2.4×52-2⇒m =3.故选:A2已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是()A.若m ⎳α,n ⎳α,则m ⎳nB.若m ⊥α,n ⊂α,则m ⊥nC.若m ⊥α,m ⊥n ,则n ⎳αD.若m ⎳α,m ⊥n ,则n ⊥α【答案】B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.故选:B3已知向量a ,b 满足a =3,b =23,且a ⊥a +b,则b 在a 方向上的投影向量为()A.3B.-3C.-3aD.-a【答案】D【解析】a ⊥a +b ,则a ⋅a +b =a 2+a ⋅b =9+a ⋅b =0,故a ⋅b=-9,b 在a 方向上的投影向量a ⋅b a 2⋅a =-99⋅a =-a.故选:D .4若n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,则二项式3x +12xn的展开式的常数项是()A.7B.8C.9D.10【答案】A【解析】因为n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,6×60%=3.6,所以n =8,二项式3x +12x8的通项公式为T r +1=C r 8⋅3x 8-r ⋅12x r =C r 8⋅12 r⋅x8-r 3-r,令8-r 3-r =0⇒r =2,所以常数项为C 28×12 2=8×72×14=7,故选:A5折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且∠ABC =120°,则该圆台的体积为()A.5023π B.9π C.7π D.1423π【答案】D【解析】设圆台上下底面的半径分别为r 1,r 2,由题意可知13×2π×3=2πr 1,解得r 1=1,13×2π×6=2πr 2,解得:r 2=2,作出圆台的轴截面,如图所示:图中OD =r 1=1,O A =r 2=2,AD =6-3=3,过点D 向AP 作垂线,垂足为T ,则AT =r 2-r 1=1,所以圆台的高h =AD 2-AT 2=32-1=22,则上底面面积S 1=π×12=π,S 2=π×22=4π,由圆台的体积计算公式可得:V =13×(S 1+S 2+S 1⋅S 2)×h =13×7π×22=142π3,故选:D .6已知函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,若x 1,x 2,-1三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式x -bx -c≤0的解集为()A.1,52B.1,52C.-∞,1 ∪52,+∞D.-∞,1 ∪52,+∞ 【答案】A【解析】由函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,即x 1,x 2是x 2-bx +c =0的两个实数根据,则x 1+x 2=b ,x 1x 2=c 因为b >0,c >0,可得x 1>0,x 2>0,又因为x 1,x 2,-1适当调整可以是等差数列和等比数列,不妨设x 1<x 2,可得x 1x 2=-1 2=1-1+x 2=2x 1 ,解得x 1=12,x 2=2,所以x 1+x 2=52,x 1x 2=1,所以b =52,c =1,则不等式x -b x -c ≤0,即为x -52x -1≤0,解得1<x ≤52,所以不等式的解集为1,52.故选:A .7已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M ,N 为双曲线一条渐近线上的两点,A 为双曲线的右顶点,若四边形MF 1NF 2为矩形,且∠MAN =2π3,则双曲线C 的离心率为()A.3B.7C.213D.13【答案】C【解析】如图,因为四边形MF 1NF 2为矩形,所以MN =F 1F 2 =2c (矩形的对角线相等),所以以MN 为直径的圆的方程为x 2+y 2=c 2.直线MN 为双曲线的一条渐近线,不妨设其方程为y =bax ,由y =b a x ,x 2+y 2=c 2,解得x =a y =b ,或x =-a ,y =-b , 所以N a ,b ,M -a ,-b 或N -a ,-b ,M a ,b .不妨设N a ,b ,M -a , -b ,又A a ,0 ,所以AM =a +a 2+b 2=4a 2+b 2,AN =a -a 2+b 2=b .在△AMN 中,∠MAN =2π3,由余弦定理得MN 2=AM 2+AN 2-2AM AN ⋅cos 2π3,即4c 2=4a 2+b 2+b 2+4a 2+b 2×b ,则2b =4a 2+b 2,所以4b 2=4a 2+b 2,则b 2=43a 2,所以e =1+b 2a2=213.故选:C .8已知a =ln 1.2e ,b =e 0.2,c =1.2e 0.2,则有()A.a <b <cB.a <c <bC.c <a <bD.c <b <a【答案】C【解析】令f x =e x -ln x +1 -1,x >0,则f x =e x -1x +1.当x >0时,有e x >1,1x +1<1,所以1x +1<1,所以,f (x )>0在0,+∞ 上恒成立,所以,f (x )在0,+∞ 上单调递增,所以,f (x )>f (0)=1-1=0,所以,f (0.2)>0,即e 0.2-ln1.2-1>0,所以a <b令g x =e x -x +1 ,x >0,则g x =e x -1在x >0时恒大于零,故g x 为增函数,所以x +1ex <1,x >0,而a =ln 1.2e =1+ln1.2>1,所以c <a ,所以c <a <b ,故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知函数f x =sin 2x +3π4 +cos 2x +3π4,则()A.函数f x -π4 为偶函数 B.曲线y =f x 对称轴为x =k π,k ∈ZC.f x 在区间π3,π2单调递增D.f x 的最小值为-2【答案】AC【解析】f x =sin 2x +3π4 +cos 2x +3π4=sin2x cos 3π4+sin 3π4cos2x +cos2x cos 3π4-sin2x sin3π4=-22sin2x +22cos2x -22cos2x -22sin2x =-2sin2x ,即f x =-2sin2x ,对于A ,f x -π4 =-2sin 2x -π2=2cos2x ,易知为偶函数,所以A 正确;对于B ,f x =-2sin2x 对称轴为2x =π2+k π,k ∈Z ⇒x =π4+k π2,k ∈Z ,故B 错误;对于C ,x ∈π3,π2 ,2x ∈2π3,π ,y =sin2x 单调递减,则f x =-2sin2x 单调递增,故C 正确;对于D ,f x =-2sin2x ,则sin2x ∈-1,1 ,所以f x ∈-2,2 ,故D 错误;故选:AC10设z 为复数,则下列命题中正确的是()A.z 2=zz B.若z =(1-2i )2,则复平面内z对应的点位于第二象限C.z 2=z 2D.若z =1,则z +i 的最大值为2【答案】ABD【解析】对于A ,设z =a +bi ,故z =a -bi ,则z 2=a 2+b 2,zz =(a +bi )(a -bi )=a 2+b 2,故z 2=zz成立,故A 正确,对于B ,z =(1-2i )2=-4i -3,z =4i -3,显然复平面内z对应的点位于第二象限,故B 正确,对于C ,易知z 2=a 2+b 2,z 2=a 2+b 2+2abi ,当ab ≠0时,z 2≠z 2,故C 错误,对于D ,若z =1,则a 2+b 2=1,而z +i =a 2+(b +1)2=2b +2,易得当b =1时,z +i 最大,此时z +i =2,故D 正确.故选:ABD11已知菱形ABCD 的边长为2,∠ABC =π3.将△DAC 沿着对角线AC 折起至△D AC ,连结BD .设二面角D -AC -B 的大小为θ,则下列说法正确的是()A.若四面体D ABC 为正四面体,则θ=π3B.四面体D ABC 的体积最大值为1C.四面体D ABC 的表面积最大值为23+2D.当θ=2π3时,四面体D ABC 的外接球的半径为213【答案】BCD【解析】如图,取AC 中点O ,连接OB ,OD ,则OB =OD ,OB ⊥AC ,OD ⊥AC ,∠BOC 为二面角D AC -B 的平面角,即∠BOC =θ.若D ABC 是正四面体,则BD =BC ≠BO ,△OBD 不是正三角形,θ≠π3,A 错;四面体D ABC 的体积最大时,BO ⊥平面ACD ,此时B 到平面ACD 的距离最大为BO =3,而S △ACD=34×22=3,所以V =13×3×3=1,B 正确;S △ABC =S △DAC =3,易得△BAD ≅△BCD ,S △BAD=S △BCD=12×22sin ∠BCD =2sin ∠BCD ,未折叠时BD =BD =23,折叠到B ,D 重合时,BD =0,中间存在一个位置,使得BD =22,则BC 2+D C 2=BD 2,∠BCD =π2,此时S △BAD=S △BCD=2sin ∠BCD 取得最大值2,所以四面体D ABC 的表面积最大值为23+2 ,C 正确;当θ=2π3时,如图,设M ,N 分别是△ACD 和△BAC 的外心,在平面AOD 内作PM ⊥OD ,作PN ⊥OB ,PM ∩PN =P ,则P 是三棱锥外接球的球心,由上面证明过程知平面OBD 与平面ABC 、平面D AC 垂直,即P ,N ,O ,M 四点共面,θ=2π3,则∠PON =π3,ON =13×32×2=33,PN =ON tan π3=33×3=1,PB =PN 2+BN 2=12+233 2=213为球半径,D 正确.故选:BCD .三、填空题:本题共3小题,每小题5分,共15分.12设集合M =x log 2x <1 ,N =x 2x -1<0 ,则M ∩N =.【答案】x 0<x <12【解析】因为log 2x <1=log 22,所以0<x <2,即M =x log 2x <1 =x 0<x <2 ,因为2x -1<0,解得x <12,所以N =x 2x -1<0 =x x <12,所以,M ∩N =x 0<x <12 .故答案为:x 0<x <12 13已知正项等比数列a n 的前n 项和为S n ,且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为.【答案】24【解析】设正项等比数列a n 的公比为q ,则q >0,所以,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=a 1+a 2+a 3+a 4+q 4a 1+a 2+a 3+a 4 =S 41+q 4 ,则S 8-2S 4=S 4q 4-1 =6,则q 4>1,可得q >1,则S 4=6q 4-1,所以,a 9+a 10+a 11+a 12=q 8a 1+a 2+a 3+a 4 =S 4q 8=6q 8q 4-1=6q 4-1+1 2q 4-1=6q 4-1 2+1+2q 4-1 q 4+1=6q 4-1 +1q 4-1+2 ≥62q 4-1 ⋅1q 4-1+2 =24,当且仅当q 4-1=1q 4-1q >1 时,即当q =42时,等号成立,故a 9+a 10+a 11+a 12的最小值为24.故答案为:2414已知F 为拋物线C :y =14x 2的焦点,过点F 的直线l 与拋物线C 交于不同的两点A ,B ,拋物线在点A ,B 处的切线分别为l 1和l 2,若l 1和l 2交于点P ,则|PF |2+25AB的最小值为.【答案】10【解析】C :x 2=4y 的焦点为0,1 ,设直线AB 方程为y =kx +1,A x 1,y 1 ,B x 2,y 2 .联立直线与抛物线方程有x 2-4kx -4=0,则AB =y 1+y 2+2=k x 1+x 2 +4=4k 2+4.又y =14x 2求导可得y =12x ,故直线AP 方程为y -y 1=12x 1x -x 1 .又y 1=14x 21,故AP :y =12x 1x -14x 21,同理BP :y =12x 2x -14x 22.联立y =12x 1x -14x 21y =12x 2x -14x 22可得12x 1-x 2 x =14x 21-x 22 ,解得x =x 1+x 22,代入可得P x 1+x 22,x 1x 24 ,代入韦达定理可得P 2k ,-1 ,故PF =4k 2+4.故|PF |2+25AB=4k 2+4+254k 2+4≥24k 2+4 ×254k 2+4=10,当且仅当4k 2+4=254k 2+4,即k =±12时取等号.故答案为:102024届高三二轮复习“8+3+3”小题强化训练(2)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1抛物线y =12x 2的焦点坐标为()A.18,0B.12,0 C.0,18D.0,12【答案】D 【解析】由y =12x 2可得抛物线标准方程为:x 2=2y ,∴其焦点坐标为0,12 .故选:D .2二项式3x 2-1x 47的展开式中常数项为()A.-7B.-21C.7D.21【答案】A 【解析】二项式3x 2-1x47的通项公式为Tr +1=C r 7⋅3x 27-r⋅-1x4r=Cr 7⋅-1 r⋅x14-14r 3,令14-14r 3=0⇒r =1,所以常数项为C 17⋅-1 =-7,故选:A3已知集合A =x log 2x ≤1 ,B =y y =2x ,x ≤2 ,则()A.A ∪B =BB.A ∪B =AC.A ∩B =BD.A ∪(C R B )=R【答案】A【解析】由log 2x ≤1,则log 2x ≤log 22,所以0<x ≤2,所以A =x log 2x ≤1 =x 0<x ≤2 ,又B =y y =2x ,x ≤2 =y 0<y ≤4 ,所以A ⊆B ,则A ∪B =B ,A ∩B =A .故选:A .4若古典概型的样本空间Ω=1,2,3,4 ,事件A =1,2 ,甲:事件B =Ω,乙:事件A ,B 相互独立,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若B =Ω,A ∩B =1,2 ,则P A ∩B =24=12,而P A =24=12,P B =1,所以P A P B =P A ∩B ,所以事件A ,B 相互独立,反过来,当B =1,3 ,A ∩B =1 ,此时P A ∩B =14,P A =P B =12,满足P A P B =P A ∩B ,事件A ,B 相互独立,所以不一定B =Ω,所以甲是乙的充分不必要条件.故选:A5若函数f x =ln e x -1 -mx 为偶函数,则实数m =()A.1B.-1C.12D.-12【答案】C【解析】由函数f x =ln e x -1 -mx 为偶函数,可得f -1 =f 1 ,即ln e -1-1 +m =ln e -1 -m ,解之得m =12,则f x =ln e x -1 -12x (x ≠0),f -x =ln e -x -1 +12x =ln e x -1 -x +12x =ln e x -1 -12x =f x故f x =ln e x -1 -12x 为偶函数,符合题意.故选:C6已知函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点(s ,t )的轨迹是()A.线段(不包含端点) B.椭圆一部分C.双曲线一部分D.线段(不包含端点)和双曲线一部分【答案】A【解析】因为函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,所以y =f (x )=b ⋅1-x 2a2(-a <x <a ),因为f (s -t ),f (s ),f (s +t )成等比数列,所以有f 2(s )=f (s -t )⋅f (s +t ),且有-a <s <a ,-a <s -t <a ,-a <s +t <a 成立,即-a <s <a ,-a <t <a 成立,由f 2(s )=f (s -t )⋅f (s +t )⇒b ⋅1-s 2a 22=b ⋅1-(s -t )2a 2⋅b ⋅1-(s +t )2a 2,化简得:t 4=2a 2t 2+2s 2t 2⇒t 2(t 2-2a 2-2s 2)=0⇒t 2=0,或t 2-2a 2-2s 2=0,当t 2=0时,即t =0,因为-a <s <a ,所以平面上点(s ,t )的轨迹是线段(不包含端点);当t 2-2a 2-2s 2=0时,即t 2=2a 2+2s 2,因为-a <t <a ,所以t 2<a 2,而2a 2+2s 2>a 2,所以t 2=2a 2+2s 2不成立,故选:A7若tan α+π4=-2,则sin α1-sin2α cos α-sin α=()A.65B.35C.-35D.-65【答案】C【解析】因为tan α+π4 =tan α+tan π41-tan αtan π4=tan α+11-tan α=-2,解得tan α=3,所以,sin α1-sin2αcos α-sin α=sin αsin 2α+cos 2α-2sin αcos α cos α-sin α=sin αcos α-sin α 2cos α-sin α=sin αcos α-sin 2α=sin αcos α-sin 2αcos 2α+sin 2α=tan α-tan 2α1+tan 2α=3-91+9=-35.故选:C .8函数f x =2ln xx,x >0sin ωx +π6,-π≤x ≤0,若2f 2(x )-3f (x )+1=0恰有6个不同实数解,正实数ω的范围为()A.103,4B.103,4 C.2,103D.2,103【答案】D【解析】由题知,2f 2x -3f x +1=0的实数解可转化为f (x )=12或f (x )=1的实数解,即y =f (x )与y =1或y =12的交点,当x >0时,f x =2ln xx ⇒f (x )=21-ln x x 2所以x ∈0,e 时,f (x )>0,f x 单调递增,x ∈e ,+∞ 时,f (x )<0,f x 单调递减,如图所示:所以x =e 时f x 有最大值:12<f (x )max =2e<1所以x >0时,由图可知y =f (x )与y =1无交点,即方程f (x )=1无解,y =f (x )与y =12有两个不同交点,即方程f (x )=12有2解当x <0时,因为ω>0,-π≤x ≤0,所以-ωπ+π6≤ωx +π6≤π6,令t =ωx +π6,则t ∈-ωπ+π6,π6则有y =sin t 且t ∈-ωπ+π6,π6,如图所示:因为x >0时,已有两个交点,所以只需保证y =sin t 与y =12及与y =1有四个交点即可,所以只需-19π6<-ωπ+π6≤-11π6,解得2≤ω<103.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知复数z 1,z 2是关于x 的方程x 2+bx +1=0(-2<b <2,b ∈R )的两根,则下列说法中正确的是()A.z 1=z 2B.z 1z 2∈R C.z 1 =z 2 =1D.若b =1,则z 31=z 32=1【答案】ACD【解析】Δ=b 2-4<0,∴x =-b ±4-b 2i 2,不妨设z 1=-b 2+4-b 22i ,z 2=-b2-4-b 22i ,z 1=z 2,A 正确;z 1 =z 2 =-b 22+4-b 222=1,C 正确;z 1z 2=1,∴z 1z 2=z 21z 1z 2=z 21=b 2-22-b 4-b 22i ,b ≠0时,z 1z 2∉R ,B 错;b =1时,z 1=-12+32i ,z 2=-12-32i ,计算得z 21=-12-32i =z 2=z 1 ,z 22=z 1=z 2 ,z 31=z 1z 2=1,同理z 32=1,D 正确.故选:ACD .10四棱锥P -ABCD 的底面为正方形,P A 与底面垂直,P A =2,AB =1,动点M 在线段PC 上,则()A.不存在点M ,使得AC ⊥BMB.MB +MD 的最小值为303C.四棱锥P -ABCD 的外接球表面积为5πD.点M 到直线AB 的距离的最小值为255【答案】BD【解析】对于A :连接BD ,且AC ∩BD =O ,如图所示,当M 在PC 中点时,因为点O 为AC 的中点,所以OM ⎳P A ,因为P A ⊥平面ABCD ,所以OM ⊥平面ABCD ,又因为AC ⊂平面ABCD ,所以OM ⊥AC ,因为ABCD 为正方形,所以AC ⊥BD .又因为BD ∩OM =O ,且BD ,OM ⊂平面BDM ,所以AC ⊥平面BDM ,因为BM ⊂平面BDM ,所以AC ⊥BM ,所以A 错误;对于B :将△PBC 和△PCD 所在的平面沿着PC 展开在一个平面上,如图所示,则MB +MD 的最小值为BD ,直角△PBC 斜边PC 上高为1×56,即306,直角△PCD 斜边PC 上高也为1×56,所以MB +MD 的最小值为303,所以B 正确;对于C :易知四棱锥P -ABCD 的外接球直径为PC ,半径R =12PC =1222+12+12=62,表面积S =4πR 2=6π,所以C 错误;对于D :点M 到直线AB 距离的最小值即为异面直线PC 与AB 的距离,因为AB ⎳CD ,且AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ⎳平面PCD ,所以直线AB 到平面PCD 的距离等于点A 到平面PCD 的距离,过点A 作AF ⊥PD ,因为P A ⊥平面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,且P A ∩AD =A ,故CD ⊥平面P AD ,AF ⊂平面P AD ,所以AF ⊥CD ,因为PD ∩CD =D ,且PD ,CD ⊂平面PCD ,所以AF ⊥平面PCD ,所以点A 到平面PCD 的距离,即为AF 的长,如图所示,在Rt △P AD 中,P A =2,AD =1,可得PD =5,所以由等面积得AF =255,即直线AB 到平面PCD 的距离等于255,所以D 正确,故选:BCD .11今年是共建“一带一路”倡议提出十周年.某校进行“一带一路”知识了解情况的问卷调查,为调动学生参与的积极性,凡参与者均有机会获得奖品.设置3个不同颜色的抽奖箱,每个箱子中的小球大小相同质地均匀,其中红色箱子中放有红球3个,黄球2个,绿球2个;黄色箱子中放有红球4个,绿球2个;绿色箱子中放有红球3个,黄球2个,要求参与者先从红色箱子中随机抽取一个小球,将其放入与小球颜色相同的箱子中,再从放入小球的箱子中随机抽取一个小球,抽奖结束.若第二次抽取的是红色小球,则获得奖品,否则不能获得奖品,已知甲同学参与了问卷调查,则()A.在甲先抽取的是黄球的条件下,甲获得奖品的概率为47B.在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为1314C.甲获得奖品的概率为2449D.若甲获得奖品,则甲先抽取绿球的机会最小【答案】ACD【解析】设A 红,A 黄,A 绿,分别表示先抽到的小球的颜色分别是红、黄、绿的事件,设B 红表示再抽到的小球的颜色是红的事件,在甲先抽取的是黄球的条件下,甲获得奖品的概率为:P B 红∣A 黄 =P B 红A 黄 P A 黄=27×4727=47,故A 正确;在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为:P B 红 ∣A 红 =P A 红 B 红 P A 红 =P A 黄B 红 +P A 绿B 红 P A 红 =27×37+27×1247=1328,故B 错误;由题意可知,P A 红 =37,P A 黄 =27,P A 绿 =27,P B 红∣A 红 =37,P B 红∣A 黄 =47,P B 红∣A 绿 =12,由全概率公式可知,甲获得奖品的概率为:P =P A 红 P B 红∣A 红 +P A 黄 ⋅P B 红∣A 黄 +P A 绿 ⋅P B 红∣A 绿 =37×37+27×47+27×12=2449,故C 正确;因为甲获奖时红球取自哪个箱子的颜色与先抽取小球的颜色相同,则P A 红∣B 红 =P A 红 ⋅P B 红∣A 红 P B 红=37×37×4924=38,P A 黄∣B 红 =P A 黄 ⋅P B 红∣A 黄P B 红=27×47×4924=13,P A 绿∣B 红 =P A 绿 ⋅P B 红∣A 绿 P B 红 =27×12×4924=724,所以甲获得奖品时,甲先抽取绿球机会最小,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12已知△ABC 的边BC 的中点为D ,点E 在△ABC 所在平面内,且CD =3CE -2CA ,若AC =xAB +yBE,则x +y =.【答案】11【解析】因为CD =3CE -2CA ,边BC 的中点为D ,所以12CB=3BE -BC +2AC ,因为12CB =3BE -3BC +2AC ,所以52BC =3BE +2AC ,所以52BC =52AC -AB =3BE +2AC ,所以5AC -5AB =6BE +4AC ,即5AB +6BE =AC ,因为AC =xAB +yBE ,所以x =5,y =6,故x +y =11.故答案为:1113已知圆锥母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.【答案】①.63②.16327π【解析】设圆锥的底面半径为r ,圆锥的母线与底面所成的角为θ,θ∈0,π2 ,易知cos θ=r 2.圆锥的体积为V =13πr 2⋅4-r 2=43πcos 2θ⋅2sin θ=8π3cos 2θ⋅sin θ=8π31-sin 2θ sin θ令x =sin θ,x ∈0,1 ,则y =1-sin 2θ sin θ=-x 3+x ,y =-3x 2+1当y >0时,x ∈0,33,当y<0时,x ∈33,1 ,即函数y =-x 3+x 在0,33 上单调递增,在33,1上单调递减,即V max =8π333-33 3 =163π27,此时cos θ=1-323 =62.故答案为:62;163π2714已知双曲线C :x 2-y 23=1的左、右焦点分别为F 1,F 2,右顶点为E ,过F 2的直线交双曲线C 的右支于A ,B 两点(其中点A 在第一象限内),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则当F 1A ⊥AB 时,AF 1=;△ABF 1内切圆的半径为.【答案】①.7+1##1+7②.7-1##-1+7【解析】由双曲线方程知a =1,b =3,c =2,如下图所示:由F 1A ⊥AB ,则AF 1 2+AF 2 2=F 1F 2 2=16,故AF 1 -AF 2 2+2AF 1 AF 2 =16,而AF 1 -AF 2 =2a =2,所以AF 1 AF 2 =6,故AF 2 2+2AF 2 -6=0,解得AF 2 =7-1,所以AF 1 =7+1,若G 为△ABF 1内切圆圆心且F 1A ⊥AB 可知,以直角边切点和G ,A 为顶点的四边形为正方形,结合双曲线定义内切圆半径r =12AF 1 +AB -BF 1 =12AF 1 +AF 2 +BF 2 -BF 1所以r =1227+BF 2 -BF 1 =1227-2 =7-1;故答案为:7+1,7-1;2024届高三二轮复习“8+3+3”小题强化训练(3)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1有一组按从小到大顺序排列数据:3,5,x ,8,9,10,若其极差与平均数相等,则这组数据的中位数为()A.7B.7.5C.8D.6.5【答案】B【解析】依题意可得极差为10-3=7,平均数为163+5+x +8+9+10 =1635+x ,所以1635+x =7,解得x =7,所以中位线为7+82=7.5.故选:B .2已知集合A =x x -1 >2 ,B =x log 4x <1 ,则A ∩B =()A.3,4B.-∞,-1 ∪3,4C.1,4D.-∞,4【答案】A【解析】由x -1 >2,得x <-1或x >3,所以A =x x <-1或x >3 ,由log 4x <1,得0<x <4,所以B =x 0<x <4 ,所以A ∩B =x 3<x <4 .故选:A .3已知向量a =(2,0),b =sin α,32,若向量b 在向量a 上的投影向量c =12,0 ,则|a +b |=()A.3B.7C.3D.7【答案】B【解析】由已知可得,b 在a 上的投影向量为a ⋅b |a |⋅a |a |=2sin α2×2(2,0)=(sin α,0),又b 在a 上的投影向量c =12,0 ,所以sin α=12,所以b =12,32,所以a +b =52,32 ,所以|a +b |=52 2+322=7.故选:B .4如图是两个底面半径都为1的圆锥底面重合在一起构成的几何体,上面圆锥的侧面积是下面圆锥侧面积的2倍,AP ⊥AQ ,则PQ =()A.74B.262C.52D.3【答案】C【解析】设两圆锥的高OP =x ,OQ =y ,则AP =x 2+1,AQ =y 2+1,由AP ⊥AQ ,有AP 2+AQ 2=PQ 2,可得x 2+1+y 2+1=x +y 2,可得xy =1,又由上下圆锥侧面积之比为2:1,即π×1×P A =2×π×1×QA ,可得P A =2QA ,则有x 2+1=2y 2+1,即x 2=4y 2+3,代入y =1x整理为x 4-3x 2-4=0,解得x =2(负值舍),可得y =12,OP =x +y =2+12=52.故选:C .5已知Q 为直线l :x +2y +1=0上的动点,点P 满足QP=1,-3 ,记P 的轨迹为E ,则()A.E 是一个半径为5的圆B.E 是一条与l 相交的直线C.E 上的点到l 的距离均为5D.E 是两条平行直线【答案】C【解析】设P x ,y ,由QP=1,-3 ,则Q x -1,y +3 ,由Q 在直线l :x +2y +1=0上,故x -1+2y +3 +1=0,化简得x +2y +6=0,即P 轨迹为E 为直线且与直线l 平行,E 上的点到l 的距离d =6-112+22=5,故A 、B 、D 错误,C 正确.故选:C .6已知x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 1+a 3的值为()A.-1B.1C.4D.-2【答案】C【解析】在x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6中,而x +1 x -1 5=x x -1 5+x -1 5,由二项式定理知x -1 5展开式的通项为T r +1=C r 5x 5-r (-1)r ,令5-r =2,解得r =3,令5-r =3,r =2,故a 3=C 35(-1)3+C 25(-1)2=0,同理令5-r =1,解得r =4,令5-r =0,解得r =5,故a 1=C 45(-1)4+C 55(-1)5=4,故a 1+a 3=4.故选:C7已知P 为抛物线x 2=4y 上一点,过P 作圆x 2+(y -3)2=1的两条切线,切点分别为A ,B ,则cos ∠APB 的最小值为()A.12B.23C.34D.78【答案】C【解析】如图所示:因为∠APB =2∠APC ,sin ∠APC =AC PC=1PC,设P t ,t 24,则PC 2=t 2+t 24-3 2=t 416-t 22+9=116t 2-4 2+8,当t 2=4时,PC 取得最小值22,此时∠APB 最大,cos ∠APB 最小,且cos ∠APB min =1-2sin 2∠APC =1-21222=34,故C 正确.故选:C8已知函数f x ,g x 的定义域为R ,g x 为g x 的导函数且f x +g x =3,f x -g 4-x =3,若g x 为偶函数,则下列结论一定成立的是()A.f -1 =f -3B.f 1 +f 3 =65C.g 2 =3D.f 4 =3【答案】D【解析】对于D ,∵g x 为偶函数,则g x =g -x ,两边求导可得g x =-g -x ,则g x 为奇函数,则g 0 =0,令x =4,则f 4 -g 0 =3,f 4 =3,D 对;对于C ,令x =2,可得f 2 +g 2 =3f 2 -g 2 =3 ,则f 2 =3g 2 =0 ,C 错;对于B ,∵f x +g x =3,可得f 2+x +g 2+x =3,f x -g 4-x =3可得f 2-x -g 2+x =3,两式相加可得f 2+x +f 2-x =6,令x =1,即可得f 1 +f 3 =6,B 错;又∵f x +g x =3,则f x -4 +g x -4 =f x -4 -g 4-x =3,f x -g 4-x =3,可得f x =f x -4 ,所以f x 是以4为周期的函数,所以根据以上性质不能推出f -1 =f -3 ,A 不一定成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9下列结论正确的是()A.若a <b <0,则a 2>ab >b 2B.若x ∈R ,则x 2+2+1x 2+2的最小值为2C.若a +b =2,则a 2+b 2的最大值为2D.若x ∈(0,2),则1x +12-x ≥2【答案】AD【解析】因为a 2-ab =a (a -b )>0,所以a 2>ab ,因为ab -b 2=b (a -b )>0,所以ab >b 2,所以a 2>ab >b 2,故A 正确;因为x 2+2+1x 2+2≥2的等号成立条件x 2+2=1x 2+2不成立,所以B 错误;因为a 2+b 22≥a +b 2 2=1,所以a 2+b 2≥2,故C 错误;因为1x +12-x =12(x +2-x )1x +12-x =122+2-x x +x 2-x ≥12(2+2)=2,当且仅当1x =12-x,即x =1时,等号成立,所以D 正确.故选:AD10若函数f x =2sin 2x ⋅log 2sin x +2cos 2x ⋅log 2cos x ,则()A.f x 的最小正周期为πB.f x 的图像关于直线x =π4对称C.f x 的最小值为-1D.f x 的单调递减区间为2k π,π4+2k π ,k ∈Z【答案】BCD【解析】由sin x >0,cos x >0得f x 的定义域为2k π,π2+2k π ,k ∈Z .对于A :当x ∈0,π2时,x +π∈π,32π 不在定义域内,故f x +π =f x 不成立,易知f x 的最小正周期为2π,故选项A 错误;对于B :又f π2-x =2cos 2x ⋅log 2cos x +2sin 2x ⋅log 2sin x =f x ,所以f x 的图像关于直线x =π4对称,所以选项B 正确;对于C :因为f x =sin 2x ⋅log 2sin 2x +cos 2x ⋅log 2cos 2x ,设t =sin 2x ,所以函数转化为g t =t ⋅log 2t +1-t ⋅log 21-t ,t ∈0,1 ,g t =log 2t -log 21-t ,由g t >0得,12<t <1.g t <0得0<t <12.所以g t 在0,12 上单调递减,在12,1 上单调递增,故g (t )min =g 12=-1,即f (x )min =-1,故选项C 正确;对于D :因为g t 在0,12 上单调递减,在12,1 上单调递增,由t =sin 2x ,令0<sin 2x <12得0<sin x <22,又f x 的定义域为2k π,π2+2k π ,k ∈Z ,解得2k π<x <π4+2k π,k ∈Z ,因为t =sin 2x 在2k π,π4+2k π 上单调递增,所以f x 的单调递减区间为2k π,π4+2k π ,k ∈Z ,同理函数的递增区间为π4+2k π,π2+2k π ,k ∈Z ,所以选项D 正确.故选:BCD .11已知数列a n 的前n 项和为S n ,且2S n S n +1+S n +1=3,a 1=α0<α<1 ,则()A.当0<α<13-14时,a 2>a 1B.a 3>a 2C.数列S 2n -1 单调递增,S 2n 单调递减D.当α=34时,恒有nk =1S k -1 <54【答案】ACD【解析】由题意可得:S n +1=32S n +1,a 1=α,由S n +1=32S n +1可知:S n +1=1⇔S n =1,但S 1=α∈0,1 ,可知对任意的n ∈N *,都有S n ≠1,对于选项A :若0<α<13-14,则a 2-a 1=S 2-2a 1=32α+1-2α=3-2α-4α22α+1=4α+1+13 13-14-α2α+1>0,即a 2>a 1,故A 正确;对于选项B :a 3-a 2=S 3-2S 2+S 1=6α+32α+7-62α+1+α=α-1 4α2+32α+39 2α+1 2α+7<0,即a 3<a 2,故B 错误.对于选项C :因为S n +1-1=-2S n -1 2S n +1,S n +1+32=3S n +32 2S n +1,则S n +1-1S n +1+32=-23⋅S n -1S n +32,且S 1-1S 1+32=α-1α+32<0,可知S n -1S n+32是等比数列,则S n -1S n +32=α-1α+32⋅-23n -1,设A =α-1α+32<0,t =232n -2,可得S 2n =3-3At 3+2At =3253+2At -1 ,S 2n -1=1+32At 1-At =521-At-32,因为At =A 232n -2,可知A 23 2n -2 为递增数列,所以数列S 2n -1 单调递增,S 2n 单调递减,故C 正确;对于选项D :因为S n +1=32S n +1,S n +1-34=32S n +1-34=33-2S n 42S n +1,由S 1=α=34,可得S 2-34>0,即S 2>34,则S 2≤65,即34<S 2≤65;由34<S 2≤65,可得S 3-34>0,即S 3>34,则S 3<65,即34<S 3<65;以此类推,可得对任意的n ∈N *,都有S n ≥S 1=α=34,又因为S n +1-1S n -1=22S n +1,则S n +1-1 ≤22α+1S n -1 =45S n -1 ,所以∑nk =1S k -1 ≤541-45 n <54,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12在(1+ax )n (其中n ∈N *,a ≠0)的展开式中,x 的系数为-10,各项系数之和为-1,则n =.【答案】5【解析】由题意得(1+ax )n 的展开式中x 的系数为aC 1n =-10,即an =-10,令x =1,得各项系数之和为(1+a )n =-1,则n 为奇数,且1+a =-1,即得a =-2,n =5,故答案为:513已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别F 1,F 2,椭圆的长轴长为22,短轴长为2,P 为直线x =2b 上的任意一点,则∠F 1PF 2的最大值为.【答案】π6【解析】由题意有a =2,b =1,c =1,设直线x =2与x 轴的交点为Q ,设PQ =t ,有tan ∠PF 1Q =PQ F 1Q=t3,tan ∠PF 2Q =PQ F 2Q=t ,可得tan ∠F 1PF 2=tan ∠PF 2Q -∠PF 1Q =t -t31+t23=2t t 2+3=2t +3t ≤2t 23t =33,当且仅当t =3时取等号,可得∠F 1PF 2的最大值为π6.故答案为:π614已知四棱锥P -ABCD 的底面为矩形,AB =23,BC =4,侧面P AB 为正三角形且垂直于底面ABCD ,M 为四棱锥P -ABCD 内切球表面上一点,则点M 到直线CD 距离的最小值为.【答案】10-1【解析】如图,设四棱锥的内切球的半径为r ,取AB 的中点为H ,CD 的中点为N ,连接PH ,PN ,HN ,球O为四棱锥P-ABCD的内切球,底面ABCD为矩形,侧面P AB为正三角形且垂直于底面ABCD,则平面PHN截四棱锥P-ABCD的内切球O所得的截面为大圆,此圆为△PHN的内切圆,半径为r,与HN,PH分别相切于点E,F,平面P AB⊥平面ABCD,交线为AB,PH⊂平面P AB,△P AB为正三角形,有PH⊥AB,∴PH⊥平面ABCD,HN⊂平面ABCD,∴PH⊥HN,AB=23,BC=4,则有PH=3,HN=4,PN=5,则△PHN中,S△PHN=12×3×4=12r3+4+5,解得r=1.所以,四棱锥P-ABCD内切球半径为1,连接ON.∵PH⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PH,又CD⊥HN,PH,HN⊂平面PHN,PH∩HN=H,∴CD⊥平面PHN,∵ON⊂平面PHN,可得ON⊥CD,所以内切球表面上一点M到直线CD的距离的最小值即为线段ON的长减去球的半径,又ON=OE2+EN2=10.所以四棱锥P-ABCD内切球表面上的一点M到直线CD的距离的最小值为10-1.故答案为:10-12024届高三二轮复习“8+3+3”小题强化训练(4)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知双曲线的标准方程为x 2k -4+y 2k -5=1,则该双曲线的焦距是()A.1B.3C.2D.4【答案】C【解析】由双曲线方程可知a 2=k -4,b 2=5-k ,所以c 2=k -4+5-k =1,c =1,2c =2.故选:C2在等比数列a n 中,a 1+a x =82,a 3a x -2=81,前x 项和S x =121,则此数列的项数x 等于()A.4B.5C.6D.7【答案】B【解析】由已知条件可得a 1+a x =82a 3a x -2=a 1a x =81,解得a 1=1a x =81 或a 1=81a x =1 .设等比数列a n 的公比为q .①当a 1=1,a x =81时,由S x =a 1-a x q 1-q =1-81q1-q=121,解得q =3,∵a x =a 1q x -1=3x -1=81,解得x =5;②当a 1=81,a x =1时,由S x =a 1-a x q 1-q =81-q 1-q =121,解得q =13,∵a x =a 1q x -1=81×13x -1=35-x =1,解得x =5.综上所述,x =5.故选:B .3对任意实数a ,b ,c ,在下列命题中,真命题是()A.“ac 2>bc 2”是“a >b ”的必要条件B.“ac 2=bc 2”是“a =b ”的必要条件C.“ac 2=bc 2”是“a =b ”的充分条件D.“ac 2≥bc 2”是“a ≥b ”的充分条件【答案】B【解析】对于A ,若c =0,则由a >b ⇏ac 2>bc 2,∴“ac 2>bc 2”不是“a >b ”的必要条件,A 错.对于B ,a =b ⇒ac 2=bc 2,∴“ac 2=bc 2”是“a =b ”的必要条件,B 对,对于C ,若c =0,则由ac 2=bc 2,推不出a =b ,“ac 2=bc 2”不是“a =b ”的充分条件对于D ,当c =0时,ac 2=bc 2,即ac 2≥bc 2成立,此时不一定有a ≥b 成立,故“ac 2≥bc 2”不是“a ≥b ”的充分条件,D 错误,故选:B .4已知m 、n 是两条不同直线,α、β、γ是三个不同平面,则下列命题中正确的是()A.若m ∥α,n ∥α,则m ∥nB.若α⊥β,β⊥γ,则α∥βC.若m ∥α,m ∥β,则α∥βD.若m ⊥α,n ⊥α,则m ∥n【答案】D【解析】A选项:令平面ABCD为平面α,A1B1为直线m,B1C1为直线n,有:m∥α,n∥α,但m∩n=B1,A错误;B选项:令平面ABCD为平面β,令平面B1BCC1为平面α,令平面A1ABB1为平面γ,有:α⊥β,β⊥γ,而α⊥β,B错误;C选项:令平面ABCD为平面α,令平面A1ABB1为平面β,C1D1为直线m,有:m∥α,m∥β,则α∥β,而α⊥β,C错误;D选项:垂直与同一平面的两直线一定平行,D正确.故选:D5将甲、乙等8名同学分配到3个体育场馆进行冬奥会志愿服务,每个场馆不能少于2人,则不同的安排方法有()A.2720B.3160C.3000D.2940【答案】D【解析】共有两种分配方式,一种是4:2:2,一种是3:3:2,故不同的安排方法有C48C24C222!+C38C35C222!A33=2940.故选:D6若抛物线y2=4x与椭圆E:x2a2+y2a2-1=1的交点在x轴上的射影恰好是E的焦点,则E的离心率为()A.2-12 B.3-12 C.2-1 D.3-1【答案】C【解析】不妨设椭圆与抛物线在第一象限的交点为A,椭圆E右焦点为F,则根据题意得AF⊥x轴,c2=a2-a2-1=1,则c=1,则F1,0,当x=1时,y2=4×1,则y A=2,则A1,2,代入椭圆方程得12a2+22a2-1=1,结合a2-1>0,不妨令a>0;解得a=2+1,则其离心率e=ca=12+1=2-1,故选:C.7已知等边△ABC 的边长为3,P 为△ABC 所在平面内的动点,且|P A |=1,则PB ⋅PC 的取值范围是()A.-32,92B.-12,112C.[1,4]D.[1,7]【答案】B【解析】如下图构建平面直角坐标系,且A -32,0 ,B 32,0 ,C 0,32,所以P (x ,y )在以A 为圆心,1为半径的圆上,即轨迹方程为x +322+y 2=1,而PB =32-x ,-y ,PC =-x ,32-y ,故PB ⋅PC =x 2-32x +y 2-32y =x -34 2+y -34 2-34,综上,只需求出定点34,34 与圆x +322+y 2=1上点距离平方范围即可,而圆心A 与34,34 的距离d =34+32 2+34 2=32,故定点34,34与圆上点的距离范围为12,52,所以PB ⋅PC ∈-12,112.故选:B 8设a 、b 、c ∈0,1 满足a =sin b ,b =cos c ,c =tan a ,则()A.a +c <2b ,ac <b 2B.a +c <2b ,ac >b 2C.a +c >2b ,ac <b 2D.a +c >2b ,ac >b 2【答案】A【解析】∵a 、b 、c ∈0,1 且a =sin b ,b =cos c ,c =tan a ,则c =tan a =tan sin b ,先比较a +c =sin b +tan sin b 与2b 的大小关系,构造函数f x =sin x +tan sin x -2x ,其中0<x <1,则0<sin x <1,所以,cos1<cos sin x <1,则f x =cos x +cos xcos 2sin x -2=cos x -2 cos 2sin x +cos x cos 2sin x,令g x =cos x -1-12x 2 ,其中x ∈0,1 ,则g x =x -sin x ,令p x =x -sin x ,其中0<x <1,所以,p x =1-cos x >0,所以,函数g x 在0,1 上单调递增,故g x >g 0 =0,所以,函数g x 在0,1 上单调递增,则g x =cos x -1-12x 2 >0,即cos x >1-12x 2,因为x ∈0,1 ,则0<sin x <sin1,所以,cos sin x >1-12sin 2x =1-121-cos 2x =121+cos 2x ,所以,cos 2sin x >141+cos 2x 2,因为cos x -2<0,所以,cos x -2 cos 2sin x +cos x <14cos x -2 1+cos 2x 2+cos x=14cos 5x -2cos 4x +2cos 3x -4cos 2x +5cos x -2 =14cos x -1 3cos 2x +cos x +2 <0,所以,对任意的x ∈0,1 ,f x =cos x -2 cos 2sin x +cos xcos 2sin x <0,故函数f x 在0,1 上单调递减,因为b ∈0,1 ,则f b =sin b +tan sin b -2b <f 0 =0,故a +c <2b ,由基本不等式可得0<2ac ≤a +c <2b (a ≠c ,故取不了等号),所以,ac <b 2,故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9某大学生做社会实践调查,随机抽取6名市民对生活满意度进行评分,得到一组样本数据如下:88、89、90、90、91、92,则下列关于该样本数据的说法中正确的是()A.均值为90B.中位数为90C.方差为2D.第80百分位数为91【答案】ABD【解析】由题意可知,该组数据的均值为x =88+89+90+90+91+926=90,故A 正确;中位数为90+902=90,故B 正确;方差为s 2=1688-90 2+89-90 2+90-90 2×2+91-90 2+92-90 2 =53,故C 错误;因为6×80%=4.8,第80百分位数为91,故D 正确.故选:ABD .10设M ,N ,P 为函数f x =A sin ωx +φ 图象上三点,其中A >0,ω>0,ϕ <π2,已知M ,N 是函数f x 的图象与x 轴相邻的两个交点,P 是图象在M ,N 之间的最高点,若MP 2+2MN ⋅NP=0,△MNP 的面积是3,M 点的坐标是-12,0 ,则()A.A =2B.ω=π2C.φ=π4D.函数f x 在M ,N 间的图象上存在点Q ,使得QM ⋅QN <0【答案】BCD【解析】MP 2+2MN ⋅NP =MP 2-2NM ⋅NP =MP 2-2NM ⋅12NM =T 4 2+A 2 -T 22=A 2-3T 216=0,而S △MNP =AT 4=3,故A =3,T =4=2πω,ω=π2,A 错误、B 正确;-12⋅π2+φ=k π,φ=k π+π4(k ∈Z ),而ϕ <π2,故φ=π4,C 正确;显然,函数f x 的图象有一部分位于以MN 为直径的圆内,当Q 位于以MN 为直径的圆内时,QM⋅QN<0,D 正确,故选:BCD .11设a 为常数,f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x ),则().A .f (a )=12B .f (x )=12成立C f (x +y )=2f (x )f (y )D .满足条件的f (x )不止一个【答案】ABC 【解析】f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x )对A :对原式令x =y =0,则12=12f a +12f a =f a ,即f a =12,故A 正确;对B :对原式令y =0,则f x =f x f a +f 0 f a -x =12f x +12f a -x ,故f x =f a -x ,对原式令x =y ,则f 2x =f x f y +f y f x =2f x f y =2f 2x ≥0,故f x 非负;对原式令y =a -x ,则f a =f 2x +f 2a -x =2f 2x =12,解得f x =±12,又f x 非负,故可得f x =12,故B 正确;对C :由B 分析可得:f x +y =2f x f y ,故C 正确;对D :由B 分析可得:满足条件的f x 只有一个,故D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12在复平面内,复数z =-12+32i 对应的向量为OA ,复数z +1对应的向量为OB ,那么向量AB 对应的复数是.。

高考二轮复习限时训练(五)

高考二轮复习限时训练(五)

高考二轮复习限时训练(五)(时间:60分钟)班级 姓名 得分一、填空题:(12×5分=60分)1、命题“2,210x R x x ∃∈-+≤”的否定形式为 .2、已知U={1,2,3,4,5,6},集合A={2,3},集合B={3,5},则A ∩(U B) = .3、0tan(1125)-的值是 .4、如图所示的流程图输出的n 值是 .5、若复数z 满足(2)5i z -= (i 是虛数单位),则z= .6、函数[]sin()(0,3y x x ππ=+∈)的单调减区间是 .7、方程x x 28lg -=的根)1,(+∈k k x ,k ∈Z ,则k = .8、已知向量(1,2),(2,3)a b == ,若()()a b a b λ+⊥-,则λ= .9、设奇函数()f x 满足:对x R ∀∈有(1)()0f x f x ++=,则(5)f = . 10、某城市一年中12个月的平均气温与月份的关系可近似地用三角函数)]6(6cos[-+=x A a y π(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为 ℃.11、在等比数列{}n a 中,若22a =,632a =,则4a = .12、在ABC ∆中,角A,B,C 所对的边分别是,,a b c ,若22b c+2a =,且a b=则∠C= .二.解答题(每题15分,共30分)13.设向量(c o s,s i n )m θθ=,sin ,cos )n θθ= ,),23(ππθ--∈,若1m n ∙=,求:(1))4sin(πθ+的值; (2))127cos(πθ+的值.14.如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;使得MN∥平面DAE.南师大附校09高考二轮复习限时训练(五)一、填空题1、∀x∈R,x 2-2x+l >0 2、{2} 3、1 4、5 5、1 6、[,]6ππ7、3 8、53- 9、0 10、20.5 11、8 12、1050二、解答题13、解:(1)依题意,cos sin )sin cos )m n θθθθ∙=+cos )θθ=+4sin()4πθ=+又1m n ∙= ∴41)4sin(=+πθ…………… ……7分(2)由于),23(ππθ--∈,则)43,45(4πππθ--∈+结合41)4s i n(=+πθ,可得415)4cos(-=+πθ 则7cos()12θπ+11cos[()]43θππ=++11(4242=-⨯-⨯8=-15分14、(1)证明: ABE AD 平面⊥,BC AD //∴ABE BC 平面⊥,则BC AE ⊥…… ……… 3分又 ACE BF 平面⊥,则BF AE ⊥ ∴BCE AE 平面⊥ 又BCE BE 平面⊂ ∴BE AE ⊥ ………………………… 6分(2)在三角形ABE 中过M 点作MG ∥AE 交BE 于G 点,在三角形BEC 中过G 点作GN ∥BC交EC 于N 点,连MN,则由比例关系易得CN =CE 31…… …8分MG ∥AE MG ⊄平面ADE, AE ⊂平面ADE, ∴MG ∥平面ADE ……………………10分同理, GN ∥平面ADE∴平面MGN ∥平面ADE ……………12分又MN ⊂平面MGN ∴MN ∥平面ADE∴N 点为线段CE 上靠近C 点的一个三等分点 …………………………………………15分。

2022高考数学(文)二轮复习高考小题标准练(十一) Word版含答案

2022高考数学(文)二轮复习高考小题标准练(十一) Word版含答案

温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。

关闭Word 文档返回原板块。

高考小题标准练(十一)满分75分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|1≤x ≤2},B={x|x 2-1≤0},则A ∩B=( ) A.{x|-1<x<1} B{x|-1<x<2} C.{1} D.{-1,1}【解析】选C.由已知,得A={x|1≤x ≤2},B={x|-1≤x ≤1},则A ∩B={x|x=1}. 2.已知复数z 满足(2-i)2·z=1,则z 的虚部为( ) A.325i B.325C.425i D.425【解析】选D.设复数z=a+bi ,则由(2-i)2·z=1可得:(4-4i-1)·(a+bi)=1,即3a+4b+(3b-4a)i=1,所以{3a +4b =1,3b −4a =0,解得:a=325,b=425,故z 的虚部为425.3.已知log 2a>log 2b ,则下列不等式肯定成立的是( ) A.1a >1bB.log 2(a-b)>0C.2a-b<1 D.(13)a <(12)b【解析】选D.由log 2a>log 2b 得a>b>0,所以(13)a <(13)b <(12)b,故选D.4.函数f(x)=x 2+bx 的图象在点A(1,f(1))处的切线与直线3x-y+2=0平行,若数列{1f(n)}的前n 项和为S n ,则S 2021=( )A.1B.2 0132 014C.2 0142 015D.2 0152 016【解题提示】由f ′(1)与直线斜率相等可得f(x)的解析式,从而可得数列{1f(n)}的通项公式,计算可得答案.【解析】选D.f ′(x)=2x+b ,由直线3x-y+2=0可知其斜率为3, 依据题意,有f ′(1)=2+b=3,即b=1, 所以f(x)=x 2+x ,从而数列{1f(n)}的通项为1f(n)=1n 2+n =1n -1n+1,所以S 2021=1-12+12-13+…+12 015-12 016=2 0152 016.5.直线x-y+1=0被圆x 2+y 2+2my=0所截得的弦长等于圆的半径,则实数m=( ) A.√6-2或√6+2 B.2+√6或2-√6 C.1 D.√6【解析】选B.圆的方程即x 2+(y+m)2=m 2,圆心(0,-m)到已知直线的距离d=|m+1|√2=√3|m|2,解得m=2+√6或m=2-√6.6.函数f(x)的导函数f ′(x)的图象如图所示,那么f(x)的图象最有可能的是 ( )【解析】选A.由f ′(x)的图象可知f(x)在(-2,0)上是单调递增的, 在(-∞,-2),(0,+∞)单调递减,故选A.7.某程序框图如图所示,若该程序运行后输出的值是74,则( )A.a=3B.a=4C.a=5D.a=6【解析】选A.第一次:S=32,k=2;其次次:S=53,k=3;第三次:S=74,k=4,退出循环,故选A.8.已知不等式组{x −y ≥0,x +y ≤1,x +2y ≥1表示的平面区域为D ,若D 内存在一点P(x 0,y 0),使ax 0+y 0<1,则a 的取值范围为( )A.(-∞,2)B.(-∞,1)C.(2,+∞)D.(1,+∞)【解析】选A.平面区域D 如图所示,先求z=ax+y 的最小值,当a ≤12时,-a ≥-12,z=ax+y 在点A(1,0)取得最小值a ;当a>12,-a<-12,z=ax+y 在点B (13,13)取得最小值13a+13.若D 内存在一点P(x 0,y 0),使ax 0+y 0<1,则有z=ax+y 的最小值小于1,所以{a ≤12,a <1或{a >12,13a +13<1,解得a<2,故选A.9.在平行四边形ABCD 中,AB →·BD →=0,2AB →2+BD →2-4=0,若将其沿BD 折成直二面角A-BD-C ,则三棱锥A-BDC 的外接球的表面积为( )A.16πB.8πC.4πD.2π【解题提示】由已知中AB →·BD →=0,可得AB ⊥BD ,沿BD 折起后,由平面ABD ⊥平面BDC ,可得三棱锥A-BCD 的外接球的直径为AC ,进而依据2AB 2→+BD 2→-4=0,求出三棱锥A-BCD 的外接球的半径.【解析】选C.平行四边形ABCD 中,由于AB →·BD →=0,所以AB ⊥BD , 沿BD 折成直二面角A-BD-C , 由于平面ABD ⊥平面BDC ,三棱锥A-BCD 的外接球的直径为AC , 所以AC 2=AB 2+BD 2+CD 2=2AB 2+BD 2=4,所以外接球的半径为1,故表面积是4π.10.已知函数f(x)的定义域为[-1,5],部分对应值如表,f(x)的导函数y= f ′(x)的图象如图所示.x -1 0 2 4 5 y1221若函数y=f(x)-a 有4个零点,则实数a 的取值范围为( ) A.[1,2) B.[1,2] C.(2,3) D.[1,3)【解析】选A.依据导函数的图象可知:y=f(x)在[-1,0],[2,4]单调递增,在[0,2],[4,5]单调递减,将函数的大致图象画出,所以若y=f(x)-a 有4个零点,则a ∈[1,2),所以答案为A.【加固训练】已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x ∈(0, +∞),都有f[f(x)-log 2x]=3,则方程f(x)-f ′ (x)=2的解所在的区间是( ) A.(0,12) B.(12,1) C.(1,2) D.(2,3)【解析】选C.对任意的x ∈(0,+∞),都有f[f(x)-log 2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)-log 2x 为定值,设t=f(x)-log 2x ,则f(x)=log 2x+t ,又由f(t)=3,即log 2t+t=3, 解得t=2;则f(x)=log 2x+2,f ′(x)=1xln2,由于f(x)-f ′(x)=2, 所以log 2x+2-1xln2=2,即log 2x-1xln2=0,设h(x)=log 2x-1xln2,可知h(x)在定义域上为单调增函数,又由于h(1)=log 21-1ln2<0,h(2)=log 22-12ln2=1-1ln4>0,所以h(x)=log 2x-1xln2的零点在区间 (1,2)上,即方程f(x)-f ′(x)=2的解所在的区间是(1,2).二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知向量a =(x 2-1,2+x),b =(x ,1),a ∥b ,则x= .【解析】由于a =(x 2-1,2+x),b =(x ,1),a ∥b ,所以x 2-1=(2+x)x ,解得x=-12.答案:-1212.某几何体的三视图如图所示,则它的表面积为 .【解析】由三视图可知,该几何体是底面半径为2,高为4的圆锥的一半,其表面积为:S=12×π×22+12×4×4+12×12×2π×2×√42+22=8+(2+2√5)π.答案:8+(2+2√5)π13.椭圆C :x 24+y 23=1的左、右顶点A 1,A 2,点P 在C 上且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是 .【解析】椭圆C :x 24+y 23=1的左、右顶点A 1,A 2的坐标为(-2,0),(2,0),设点P的坐标为(x 0,y 0),由题意x 024+y 023=1,所以y 02x 02−4=-34,又由于k PA 1·k PA 2=y 0x 0+2·y 0x 0−2=y 02x 02−4=-34,k PA 1=−34k PA 2,直线PA 2的斜率的取值范围是[-2,-1],所以38≤k PA 1≤34.答案:[38,34]14.抛物线y 2=-12x 的准线与双曲线x 26-y 22=1的两条渐近线所围成的三角形的面积等于 .【解析】抛物线的准线方程为x=3,双曲线的渐近线方程为y=±√33x ,所以所要求的三角形的面积为12×3×2√3=3√3.答案:3√315.袋中有大小、质地相同的红、黑球各一个,现有放回地随机摸取3次,每次摸取一个球,若摸出红球,得2分,摸出黑球,得1分,则3次摸球所得总分至少是4分的概率是 .【解析】全部基本大事为(红,红,红),(红,红,黑),(红,黑,红),(黑,红,红),(红,黑,黑),(黑,红,黑),(黑,黑,红),(黑,黑,黑)共计8个,总分至少4分的大事可分为“两黑一红”,“一黑两红”,“三红”这三个互斥大事,所以P=38+38+18=78;也可求对立大事“总分少于4分”即“三黑”的概率为18,所以P=1-18=78. 答案:78关闭Word 文档返回原板块。

2023年高考数学二轮复习第一部分专题攻略专题一小题专攻第二讲复数、平面向量

2023年高考数学二轮复习第一部分专题攻略专题一小题专攻第二讲复数、平面向量

第二讲 复数、平面向量微专题1 复数常考常用结论1.已知复数z =a +b i(a ,b ∈R ),则(1)当b =0时,z ∈R ;当b ≠0时,z 为虚数;当a =0,b ≠0时,z 为纯虚数. (2)z 的共轭复数z ̅=a -b i. (3)z 的模|z |=√a 2+b 2. 2.已知i 是虚数单位,则 (1)(1±i)2=±2i ,1+i 1−i =i ,1−i1+i =-i.(2)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.保 分 题1.[2022·新高考Ⅱ卷](2+2i)(1-2i)=( ) A .-2+4i B .-2-4i C .6+2i D .6-2i 2.[2022·全国甲卷]若z =1+i ,则|i z +3z ̅|=( ) A .4√5 B .4√2 C .2√5D .2√23.[2022·全国乙卷]已知z =1-2i ,且z +a z ̅+b =0,其中a ,b 为实数,则( ) A .a =1,b =-2 B .a =-1,b =2 C .a =1,b =2 D .a =-1,b =-2提 分 题例1 (1)[2022·福建漳州一模]已知z =|√3i -1|+11+i,则在复平面内z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限(2)[2022·山东潍坊二模](多选)若复数z 1=2+3i ,z 2=-1+i ,其中i 是虚数单位,则下列说法正确的是( )A .z1z 2∈RB.z 1·z 2̅̅̅̅̅̅̅̅=z 1̅·z 2̅C .若z 1+m (m ∈R )是纯虚数,那么m =-2D .若z 1,z 2在复平面内对应的向量分别为OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ (O 为坐标原点),则|AB⃗⃗⃗⃗⃗ |=5 听课笔记:【技法领悟】复数的代数运算的基本方法是运用运算法则,可以通过对代数式结构特征的分析,灵活运用i 的幂的性质、运算法则来优化运算过程.巩固训练11.[2022·山东泰安二模]已知复数z =3−i 1−2i,i 是虚数单位,则复数z ̅-4在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.[2022·河北保定二模](多选)已知复数z 满足方程(z 2-4)(z 2-4z +5)=0,则( )A .z 可能为纯虚数B .方程各根之和为4C .z 可能为2-iD .方程各根之积为-20微专题2 平面向量常考常用结论1.平面向量的两个定理 (1)向量共线定理:向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . (2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.2.平面向量的坐标运算设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,θ为a 与b 的夹角. (1)a ∥b ⇔x 1y 2-x 2y 1=0.(2)a ·b =|a ||b |cos θ=x 1x 2+y 1y 2. (3)a ⊥b ⇔x 1x 2+y 1y 2=0.(4)|a |=√a ·a =√x 12+y 12.(5)cos θ=a·b|a ||b |=1212√x 1+y 1 √x 2+y 2.保 分 题1.△ABC 中,E 是边BC 上靠近B 的三等分点,则向量AE⃗⃗⃗⃗⃗ =( ) A .13AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ B .13AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ C .23AB⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ D .23AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ 2.[2022·全国乙卷]已知向量a ,b 满足|a |=1,|b |=√3,|a -2b |=3,则a ·b =( ) A .-2 B .-1 C .1 D .2 3.[2022·全国甲卷]已知向量a =(m ,3),b =(1,m +1),若a ⊥b ,则m =________.提 分 题例2 (1)[2022·河北石家庄二模]在平行四边形ABCD 中,M ,N 分别是AD ,CD 的中点,若BM⃗⃗⃗⃗⃗⃗ =a ,BN ⃗⃗⃗⃗⃗ =b ,则BD ⃗⃗⃗⃗⃗ =( ) A .34a +23b B .23a +23bC .34a +34bD .23a +34b(2)[2022·山东济宁一模]等边三角形ABC 的外接圆的半径为2,点P 是该圆上的动点,则PA ⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值为( ) A .4 B .7 C .8 D .11 听课笔记:【技法领悟】求解向量数量积最值问题的两种思路1.直接利用数量积公式得出代数式,依据代数式求最值.2.建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值.巩固训练21.[2022·山东济南二模]在等腰梯形ABCD 中,AB ⃗⃗⃗⃗⃗ =-2CD ⃗⃗⃗⃗⃗ ,M 为BC 的中点,则AM ⃗⃗⃗⃗⃗⃗ =( )A .12AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ B .34AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ C .34AB ⃗⃗⃗⃗⃗ +14AD⃗⃗⃗⃗⃗ D .12AB ⃗⃗⃗⃗⃗ +34AD⃗⃗⃗⃗⃗ 2.[2022·福建漳州二模]已知△ABC 是边长为2的正三角形,P 为线段AB 上一点(包含端点),则PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的取值范围为( ) A .[-14,2] B .[-14,4] C .[0,2]D .[0,4]第二讲 复数、平面向量微专题1 复数保分题1.解析:(2+2i)(1-2i)=2-4i +2i -4i 2=2-2i +4=6-2i.故选D. 答案:D2.解析:因为z =1+i ,所以z ̅=1-i ,所以i z +3z ̅=i(1+i)+3(1-i)=2-2i ,所以|i z +3z ̅|=|2-2i|=√22+(−2)2=2√2.故选D. 答案:D3.解析:由z =1-2i 可知z ̅=1+2i.由z +a z ̅+b =0,得1-2i +a (1+2i)+b =1+a +b +(2a -2)i =0.根据复数相等,得{1+a +b =0,2a −2=0,解得{a =1,b =−2.故选A.答案:A提分题[例1] 解析:(1)∵z =|√3i -1|+11+i = √(√3)2+(−1)2+1−i1−i 2=2+1−i 2=52−12i ,∴复平面内z 对应的点(52,-12)位于第四象限. (2)对于A ,z1z 2=2+3i −1+i=(2+3i )(−1−i )(−1+i )(−1−i )=1−5i 2=12−52i ,A 错误;对于B ,∵z 1·z 2=(2+3i)(-1+i)=-5-i ,∴z 1·z 2̅̅̅̅̅̅̅̅=-5+i ;又z 1̅·z 2̅=(2-3i)(-1-i)=-5+i ,∴z 1·z 2̅̅̅̅̅̅̅̅=z 1̅·z 2̅,B 正确;对于C ,∵z 1+m =2+m +3i 为纯虚数,∴m +2=0,解得:m =-2,C 正确; 对于D ,由题意得:OA ⃗⃗⃗⃗⃗ =(2,3),OB ⃗⃗⃗⃗⃗ =(-1,-1),∴AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(-3,-4),∴|AB ⃗⃗⃗⃗⃗ |=√9+16=5,D 正确.答案:(1)D (2)BCD [巩固训练1]1.解析:z =3−i1−2i =(3−i )(1+2i )(1−2i )(1+2i )=5+5i 5=1+i ,则z ̅-4=1-i -4=-3-i ,对应的点位于第三象限.故选C.答案:C2.解析:由(z 2-4)(z 2-4z +5)=0,得z 2-4=0或z 2-4z +5=0, 即z 2=4或(z -2)2=-1,解得:z =±2或z =2±i ,显然A 错误,C 正确; 各根之和为-2+2+(2+i)+(2-i)=4,B 正确; 各根之积为-2×2×(2+i)(2-i)=-20,D 正确. 答案:BCD微专题2 平面向量保分题1.解析:因为点E 是BC 边上靠近B 的三等分点,所以BE ⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ , 所以AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13(BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=23AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ .故选C. 答案:C2.解析:将|a -2b |=3两边平方,得a 2-4a ·b +4b 2=9.因为|a |=1,|b |=√3,所以1-4a ·b +12=9,解得a ·b =1.故选C.答案:C3.解析:由a ⊥b ,可得a ·b =(m ,3)·(1,m +1)=m +3m +3=0,所以m =-34. 答案:-34提分题[例2] 解析:(1)如图所示,设AB ⃗⃗⃗⃗⃗ =m ,AD⃗⃗⃗⃗⃗ =n ,且BD ⃗⃗⃗⃗⃗ =x a +y b ,则BD ⃗⃗⃗⃗⃗ =x a +y b =x (12n -m )+y (n -12m )=(12x +y )n -(x +12y )m , 又因为BD⃗⃗⃗⃗⃗ =n -m , 所以{12x +y =1x +12y =1,解得x =23,y =23,所以BD ⃗⃗⃗⃗⃗ =23a +23b . 故选B.(2)如图,等边三角形ABC ,O 为等边三角形ABC 的外接圆的圆心,以O 为原点,AO 所在直线为y 轴,建立直角坐标系.因为AO =2,所以A (0,2),设等边三角形ABC 的边长为a ,则asin A =asin 60°=2R =4,所以a =2√3,则B (-√3,-1),C (√3,-1).又因为P 是该圆上的动点,所以设P (2cos θ,2sin θ),θ∈[0,2π), PA ⃗⃗⃗⃗ =(-2cos θ,2-2sin θ),PB⃗⃗⃗⃗⃗ =(-√3-2cos θ,-1-2sin θ),PC ⃗⃗⃗⃗ =(√3-2cos θ,-1-2sin θ),PA ⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ =-2cos θ(-√3-2cos θ)+(2-2sin θ)(-1-2sin θ)+(-√3-2cos θ)(√3-2cos θ)+(-1-2sin θ)(-1-2sin θ)=3+1+2sin θ+2√3cos θ=4+4sin (θ+π3),因为θ∈[0,2π),θ+π3∈[π3,7π3),sin (θ+π3)∈[-1,1],所以当sin (θ+π3)=1时,PA ⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值为8.故选C.答案:(1)B (2)C [巩固训练2]1.解析:取AD 中点N ,连接MN ,∵AB⃗⃗⃗⃗⃗ =-2CD ⃗⃗⃗⃗⃗ ,∴AB ∥CD ,|AB |=2|CD |, 又M 是BC 中点,∴MN ∥AB ,且|MN |=12(|AB |+|CD |)=34|AB |, ∴AM ⃗⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗⃗ +NM ⃗⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ +34AB ⃗⃗⃗⃗⃗ ,故选B. 答案:B 2.解析:以AB 中点O 为坐标原点,OB ⃗⃗⃗⃗⃗ ,OC⃗⃗⃗⃗⃗ 正方向为x ,y 轴可建立如图所示平面直角坐标系,则A (-1,0),B (1,0),C (0,√3),设P (m ,0)(-1≤m ≤1),∴PB⃗⃗⃗⃗⃗ =(1-m ,0),PC ⃗⃗⃗⃗ =(-m ,√3), ∴PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ =m 2-m =(m -12)2-14, 则当m =12时,(PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ )min =-14;当m =-1时,(PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ )max =2; ∴PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的取值范围为[-14,2].故选A. 答案:A。

2021新高考数学二轮复习专题练:小题满分限时练

2021新高考数学二轮复习专题练:小题满分限时练

限时练(一)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |x 2-2x <0},N ={-2,-1,0,1,2},则M ∩N =( ) A.∅ B.{1}C.{0,1}D.{-1,0,1}解析 ∵M ={x |0<x <2},N ={-2,-1,0,1,2},∴M ∩N ={1}. 答案 B2.设(2+i)(3-x i)=3+(y +5)i(i 为虚数单位),其中x ,y 是实数,则|x +y i|等于( ) A.5B.13C.2 2D.2解析 易得6+x +(3-2x )i =3+(y +5)i(x ,y ∈R ). ∴⎩⎨⎧6+x =3,3-2x =y +5,∴⎩⎨⎧x =-3,y =4,故|x +y i|=|-3+4i|=5. 答案 A3.已知等差数列{a n }的前n 项和为S n ,且a 2+a 8=0,S 11=33,则公差d 的值为( ) A.1B.2C.3D.4解析 ∵a 2+a 8=2a 5=0,∴a 5=0, 又S 11=(a 1+a 11)×112=11a 6=33,∴a 6=3,从而公差d =a 6-a 5=3. 答案 C4.设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线a ,a ∥α,a ∥βB.存在一条直线a ,a ⊂α,a ∥βC.存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD.存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析 对于A ,a ∥α,a ∥β,则平面α,β可能平行,也可能相交,所以A 不是α∥β的一个充分条件.对于B ,a ⊂α,a ∥β,则平面α,β可能平行,也可能相交,所以B 不是α∥β的一个充分条件.对于C ,由a ∥b ,a ⊂α,b ⊂β,a ∥β,b ∥α可得α∥β或α,β相交,所以C 不是α∥β的一个充分条件.对于D ,存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α,如图,在β内过b 上一点作c ∥a ,则c ∥α,所以β内有两条相交直线平行于α,则有α∥β,所以D 是α∥β的一个充分条件.答案 D5.设双曲线的一条渐近线为方程y =2x ,且一个焦点与抛物线y 2=4x 的焦点相同,则此双曲线的方程为( ) A.54x 2-5y 2=1 B.5y 2-54x 2=1 C.5x 2-54y 2=1D.54y 2-5x 2=1解析 抛物线y 2=4x 的焦点为点(1,0),则双曲线的一个焦点为(1,0),设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意得⎩⎪⎨⎪⎧b a =2,a 2+b 2=1,解得⎩⎪⎨⎪⎧a =55,b =255,所以双曲线方程为5x 2-54y 2=1. 答案 C6.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A 为“4名同学所报项目各不相同”,事件B 为“只有甲同学一人报关怀老人项目,则P (A |B )的值为( ) A.14B.34C.29D.59解析 ∵P (B )=3344,P (AB )=A 3344, 由条件概率P (A |B )=P (AB )P (B )=A 3333=29.答案 C7.在如图所示的△ABC 中,点D ,E 分别在边AB ,CD 上,AB =3,AC =2,∠BAC =60°,BD =2AD ,CE =2ED ,则向量BE →·AB→=( )A.9B.4C.-3D.-6解析 根据题意,AB =3,BD =2AD ,则AD =1, 在△ADC 中,又由AC =2,∠BAC =60°, 则DC 2=AD 2+AC 2-2AD ·AC cos ∠BAC =3, 即DC =3,所以AC 2=AD 2+DC 2, 则CD ⊥AB ,故BE →·AB →=(BD →+DE →)·AB →=BD →·AB →+DE →·AB →=BD →·AB →=3×2×cos 180°=-6. 答案 D8.设定义在R 上的偶函数f (x )满足:f (x )=f (4-x ),且当x ∈[0,2]时,f (x )=x -e x +1,若a =f (2 022),b =f (2 019),c =f (2 020),则a ,b ,c 的大小关系为( ) A.c <b <a B.a <b <c C.c <a <bD.b <a <c解析 因为f (x )是偶函数,所以f (-x )=f (x )=f (4-x ),则f (x )的周期为4,则a =f (2 022)=f (2),b =f (2 019)=f (3)=f (4-3)=f (1),c =f (2 020)=f (0). 又当x ∈[0,2]时,f (x )=x -e x +1,知f ′(x )=1-e x <0. ∴f (x )在区间[0,2]上单调递减, 因此f (2)<f (1)<f (0),即a <b <c . 答案 B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.(2020·聊城模拟)已知双曲线C 过点(3,2)且渐近线为y =±33x ,则下列结论正确的是( )A.C 的方程为x 23-y 2=1 B.C 的离心率为 3C.曲线y =e x -2-1经过C 的一个焦点D.直线x -2y -1=0与C 有两个公共点解析 ∵双曲线的渐近线为y =±33x ,∴设双曲线C 的方程为x 23-y 2=λ(λ≠0).又双曲线C 过点(3,2),∴323-(2)2=λ,解得λ=1,故A 正确.此时C 的离心率为3+13=233,故B 错误.双曲线C 的焦点为(-2,0),(2,0),曲线y =e x -2-1经过点(2,0),故C 正确.把直线方程代入双曲线C 的方程并整理,得x 2-6x +9=0,所以Δ=0,故直线x -2y -1=0与双曲线C 只有一个公共点,所以D 错误.故选AC. 答案 AC10.(2020·青岛质检)已知函数f (x )=sin 2x +23sin x cos x -cos 2x ,x ∈R ,则( ) A.-2≤f (x )≤2B.f (x )在区间(0,π)上只有1个零点C.f (x )的最小正周期为πD.直线x =π3为函数f (x )图象的一条对称轴解析 已知函数f (x )=sin 2x +23sin x cos x -cos 2x =3sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6,x ∈R ,则-2≤f (x )≤2,A 正确;令2x -π6=k π,k ∈Z ,则x =k π2+π12,k ∈Z ,则f (x )在区间(0,π)上有2个零点,B 错误;f (x )的最小正周期为π,C 正确;当x =π3时,f ⎝ ⎛⎭⎪⎫π3=2sin(2×π3-π6)=2,所以直线x =π3为函数f (x )图象的一条对称轴,D正确.故选ACD.答案ACD11.在某次高中学科竞赛中,4 000名考生的竞赛成绩(单位:分)统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间的中点值为代表,则下列说法中正确的是()A.成绩在[70,80)的考生人数最多B.不及格的考生人数为1 000C.考生竞赛成绩的平均数约为70.5D.考生竞赛成绩的中位数约为75解析由频率分布直方图可知,成绩在[70,80)的考生人数最多,所以A正确.不及格的人数为4 000×(0.01+0.015)×10=1 000,所以B正确.考生竞赛成绩的平均数约为(45×0.01+55×0.015+65×0.02+75×0.03+85×0.015+95×0.01)×10=70.5,所以C正确.设考生竞赛成绩的中位数约为x0,因为(0.01+0.015+0.02)×10=0.45<0.5,(0.01+0.015+0.02+0.03)×10=0.75>0.5,所以0.45+(x0-70)×0.03=0.5,解得x0≈71.7,D错误.故选ABC.答案ABC12.下列结论正确的是()A.若a>b>0,c<d<0,则一定有b c> a dB.若x>y>0,且xy=1,则x+1y>y2x>log2(x+y)C.设{a n}是等差数列,若a2>a1>0,则a2>a1a3D.若x∈[0,+∞),则ln(1+x)≥x-1 8x2解析对于A,由c<d<0,可得-c>-d>0,则-1d>-1c>0,又a>b>0,所以-ad>-bc,则bc>ad,故A正确.对于B,取x=2,y=12,则x+1y=4,y2x=18,log2(x+y)=log 252>1,故B 不正确.对于C ,由题意得a 1+a 3=2a 2且a 1≠a 3,所以a 2=12(a 1+a 3)>12×2a 1a 3=a 1a 3,故C 正确.对于D ,设h (x )=ln(1+x )-x +18x 2,则h ′(x )=11+x -1+x 4=x (x -3)4(x +1),当0<x <3时,h ′(x )<0,则h (x )单调递减,h (x )<h (0)=0,故D不正确.故选AC. 答案 AC三、填空题:本题共4小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.13.已知圆C :(x -2)2+y 2=r 2(r >0)与双曲线E :x 2-y 2=1的渐近线相切,则r =________.解析 ∵双曲线x 2-y 2=1的渐近线为x ±y =0.依题意,得r =21+1=1. 答案 114.已知等差数列{a n },其前n 项和为S n .若a 2+a 5=24,S 3=S 9,则a 6=________,S n 的最大值为________.(本小题第一空2分,第二空3分)解析 由S 3=S 9,得a 4+a 5+…+a 9=0,则a 6+a 7=0.又a 2+a 5=24,所以设等差数列{a n }的公差为d ,可得⎩⎨⎧a 1+5d +a 1+6d =0,a 1+d +a 1+4d =24,解得⎩⎨⎧a 1=22,d =-4,所以a 6=a 1+5d =2,S n =-2n 2+24n =-2(n -6)2+72,故当n =6时,S n 取得最大值72. 答案 2 7215.若(x +a )(1+2x )5的展开式中x 3的系数为20,则a =________. 解析 由已知得C 25·22+a ·C 35·23=20,解得a =-14. 答案 -1416.(2020·河南百校大联考)魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”(如图所示),刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为π∶4.若“牟合方盖”的体积为163,则正方体的外接球的表面积为________.解析因为“牟合方盖”的体积为163,又正方体的内切球的体积与“牟合方盖”的体积之比应为π∶4,所以正方体的内切球的体积V球=π4×163=43π.则内切球的半径r=1,正方体的棱长为2.所以正方体的体对角线d=23,因此正方体外接球的直径2R=d=23,则半径R= 3.所以正方体的外接球的表面积为S=4πR2=4π(3)2=12π.答案12π限时练(二)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i是虚数单位,复数z=1-3i1+i在复平面内对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限解析z=1-3i1+i=(1-3i)(1-i)(1+i)(1-i)=-1-2i,∴复数z在复平面内对应的点(-1,-2)在第三象限.答案 B2.若集合A={x|x(x-2)>0},B={x|x-1≤0},则A∩(∁R B)=()A.{x|x>1或x<0}B.{x|1<x<2}C.{x|x>2}D.{x|x>1}解析易知A={x|x>2或x<0},∁R B={x|x>1},∴A∩(∁R B)={x|x>2}.答案 C3.某公司一种型号的产品近期销售情况如下表:根据上表可得到回归直线方程y ^=0.75x +a ^,据此估计,该公司7月份这种型号产品的销售额为( ) A.19.5万元 B.19.25万元 C.19.15万元D.19.05万元解析 易知x -=4,y -=16.8.∵回归直线y ^=0.75x +a ^过点(4,16.8),∴a ^=16.8-4×0.75=13.8,则y ^=0.75x +13.8.故7月份的销售额y ^=0.75×7+13.8=19.05(万元). 答案 D4.⎝ ⎛⎭⎪⎫2x 2-x 43的展开式中的常数项为( ) A.-3 2B.3 2C.6D.-6解析 通项T r +1=C r 3⎝ ⎛⎭⎪⎫2x 23-r(-x 4)r=C r 3(2)3-r(-1)r x -6+6r , 当-6+6r =0,即r =1时为常数项,T 2=-6. 答案 D5.已知等比数列{a n }中,a 1=2,数列{b n }满足b n =log 2a n ,且b 2+b 3+b 4=9,则a 5=( ) A.8B.16C.32D.64解析 由{a n }是等比数列,且b n =log 2a n , ∴{b n }是等差数列,又b 2+b 3+b 4=9,所以b 3=3.由b 1=log 2a 1=1,知公差d =1,从而b n =n , 因此a n =2n ,于是a 5=25=32. 答案 C6.(2020·青岛质检)某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”“升级题型”“创新题型”三类题型,每类题型均指定一道题让参赛者回答.已知某位参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率是( ) A.112125B.80125C.113125D.124125解析 某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”“升级题型”“创新题型”三类题型,每类题型均指定一道题让参赛者回答.某位参赛者答对每道题的概率均为45,且各次答对与否相应独立,则该参赛者答完三道题后至少答对两道题的概率:P =⎝ ⎛⎭⎪⎫453+C 23⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫15=112125. 答案 A7.函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π,且x ≠0)的图象可能为( )解析 由f (-x )=-f (x )及-π≤x ≤π,且x ≠0判定函数f (x )为奇函数,其图象关于原点对称,排除A ,B 选项;当x >0且x →0时,-1x →-∞,cos x →1,此时f (x )→-∞,排除C 选项,故选D. 答案 D8.在△ABC 中,AB =3,AC =2,∠BAC =120°,点D 为BC 边上的一点,且BD →=2DC →,则AB →·AD →=( ) A.13B.23C.1D.2解析 以A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,如图所示.则A (0,0),B (3,0),C (-1,3),∵BD→=2DC →,∴BD →=23BC →=23(-4,3)=⎝ ⎛⎭⎪⎫-83,233,则D ⎝ ⎛⎭⎪⎫13,233,∴AD→=⎝ ⎛⎭⎪⎫13,233,AB →=(3,0), 所以AB →·AD→=3×13+0×233=1. 答案 C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.(2020·淄博模拟)甲、乙、丙三家企业的产品成本(万元)分别为10 000,12 000,15 000,其成本构成比例如图,则下列关于这三家企业的说法正确的是( )A.成本最大的企业是丙B.其他费用支出最高的企业是丙C.支付工资最少的企业是乙D.材料成本最高的企业是丙解析 由扇形统计图可知,甲企业的材料成本为10 000×60%=6 000(万元),支付工资10 000×35%=3 500(万元),其他费用支出为10 000×5%=500(万元); 乙企业的材料成本为12 000×53%=6 360(万元),支付工资为12 000×30%= 3 600(万元),其他费用支出为12 000×17%=2 040(万元);丙企业的材料成本为15 000×60%=9 000(万元),支付工资为15 000×25%= 3 750(万元),其他费用支出为15 000×15%=2 250(万元).所以成本最大的企业是丙,其他费用支出最高的企业是丙,支付工资最少的企业是甲,材料成本最高的企业是丙.故选ABD.答案 ABD10.(2020·海南模拟)将函数f (x )=sin(2x +φ)(0<φ<π)的图象向右平移π4个单位长度后得到函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +π6的图象,则下列说法正确的是( )A.φ=π6B.函数f (x )的最小正周期为πC.函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π3,0成中心对称D.函数f (x )的一个单调递减区间为⎣⎢⎡⎦⎥⎤-π12,5π12解析 由题意可知函数f (x )的最小正周期T =2π2=π,B 正确;将函数f (x )=sin(2x +φ)(0<φ<π)的图象向右平移π4个单位长度后得到函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +π6的图象,所以sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+φ=sin ⎝ ⎛⎭⎪⎫2x -π2+φ=sin ⎝ ⎛⎭⎪⎫2x +π6,所以-π2+φ=π6,所以φ=2π3∈(0,π),A 错误;f (x )=sin ⎝ ⎛⎭⎪⎫2x +2π3,令2x +2π3=k π,k ∈Z ,则x =k π2-π3,k ∈Z ,C 错误;令2k π+π2≤2x +2π3≤2k π+3π2,k ∈Z ,解得k π-π12≤x ≤k π+5π12,k ∈Z ,所以函数f (x )的一个单调递减区间为⎣⎢⎡⎦⎥⎤-π12,5π12,D 正确.故选BD.答案 BD11.已知实数a >b >0,则下列不等关系正确的是( ) A.b a <b +4a +4B.lga +b 2>lg a +lg b2C.a +1b <b +1aD.a -b >a -b解析 对于A ,因为b a -b +4a +4=b (a +4)-a (b +4)a (a +4)=4(b -a )a (a +4),又a >b >0,所以b a <b +4a +4,故A 正确;因为lg a +lgb 2=lg ab ,又a +b 2≥ab ,当且仅当a =b 时等号成立,由a >b >0,得a +b 2>ab ,所以lg a +b 2>lg ab ,即lg a +b 2>lg a +lg b2,故B 正确;因为a +1b -⎝ ⎛⎭⎪⎫b +1a =(a -b )+⎝ ⎛⎭⎪⎫1b -1a =(a -b )+a -b ab =(a -b )·⎝ ⎛⎭⎪⎫1+1ab ,又a >b >0,所以a +1b -⎝ ⎛⎭⎪⎫b +1a >0,即a +1b >b +1a ,故C 错误;因为a >b >0,所以a-b >0,则(a -b )2=a +b -2ab ,而(a -b )2=a -b ,即(a -b )2-(a -b )2=2b -2ab =2(b -ab ),又a >b >0,所以b -ab <0,所以(a -b )2<(a -b )2,即a -b <a -b ,故D 错误.故选AB. 答案 AB12.(2020·临沂模拟)已知点P 在双曲线C :x 216-y 29=1上,点F 1,F 2是双曲线C 的左、右焦点.若△PF 1F 2的面积为20,则下列说法正确的是( ) A.点P 到x 轴的距离为203 B.|PF 1|+|PF 2|=503 C.△PF 1F 2为钝角三角形 D.∠F 1PF 2=π3解析 由双曲线C :x 216-y 29=1可得,a =4,b =3,c =5,不妨设P (x P ,y P ),由△PF 1F 2的面积为20,可得12|F 1F 2||y P |=c |y P |=5|y p |=20,所以|y P |=4,选项A 错误.将|y P |=4代入双曲线C 的方程x 216-y 29=1中,得x 2P16-429=1,解得|x P |=203.由双曲线的对称性,不妨设点P 在第一象限,则P ⎝ ⎛⎭⎪⎫203,4,可知|PF 2|=⎝ ⎛⎭⎪⎫203-52+(4-0)2=133.由双曲线的定义可知|PF 1|=|PF 2|+2a =133+8=373,所以|PF 1|+|PF 2|=373+133=503,选项B 正确.在△PF 1F 2中,|PF 1|=373>2c =10>|PF 2|=133,且cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=-513<0,则∠PF 2F 1为钝角,所以△PF 1F 2为钝角三角形,选项C 正确.由余弦定理得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=319481≠12,所以∠F 1PF 2≠π3,选项D 错误.故选BC. 答案 BC三、填空题:本题共4小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.13.某年级有1 000名学生,一次数学考试成绩服从正态分布X ~N (105,102),P (95≤X ≤105)=0.34,则该年级学生此次数学成绩在115分以上的人数大约为________.解析 ∵数学考试成绩服从正态分布X ~N (105,102),∴考试成绩关于X =105对称.∵P (95≤X ≤105)=0.34,∴P (X >115)=12×(1-0.68)=0.16,∴该年级学生此次数学成绩在115分以上的人数大约为0.16×1 000=160. 答案 160 14.曲线y =1-2x +2在点(-1,-1)处的切线方程为________. 解析 ∵y =1-2x +2=x x +2,∴y ′=x +2-x (x +2)2=2(x +2)2,∴y ′|x =-1=2,∴曲线在点(-1,-1)处的切线斜率为2,∴所求切线方程为y +1=2(x +1),即2x -y +1=0.答案 2x -y +1=015.已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为________,此时S n =________.(本小题第一空3分,第二空2分)解析 所有的正奇数和2n (n ∈N *)按照从小到大的顺序排列构成{a n },在数列{a n }中,25前面有16个正奇数,即a 21=25,a 38=26.当n =1时,S 1=1<12a 2=24,不符合题意;当n =2时,S 2=3<12a 3=36,不符合题意;当n =3时,S 3=6<12a 4=48,不符合题意;当n =4时,S 4=10<12a 5=60,不符合题意;……;当n =26时,S 26=21×(1+41)2+2×(1-25)1-2=441+62=503<12a 27=516,不符合题意;当n =27时,S 27=22×(1+43)2+2×(1-25)1-2=484+62=546>12a 28=540,符合题意.故使得S n >12a n +1成立的n 的最小值为27. 答案 27 54616.如图,在正方体ABCD -A 1B 1C 1D 1中,点P 在线段BC 1上运动,有下列判断:①平面PB 1D ⊥平面ACD 1; ②A 1P ∥平面ACD 1;③异面直线A 1P 与AD 1所成角的取值范围是⎝ ⎛⎦⎥⎤0,π3;④三棱锥D 1-APC 的体积不变.其中,正确的是________(把所有正确判断的序号都填上). 解析 在正方体中,B 1D ⊥平面ACD 1,B 1D ⊂平面PB 1D ,所以平面PB 1D ⊥平面ACD 1,所以①正确.连接A 1B ,A 1C 1,如图,容易证明平面A 1BC 1∥平面ACD 1,又A 1P ⊂平面A 1BC 1,所以A 1P ∥平面ACD 1,所以②正确.因为BC 1∥AD 1,所以异面直线A 1P 与AD 1所成的角就是直线A 1P 与BC 1所成的角,在△A 1BC 1中,易知所求角的范围是⎣⎢⎡⎦⎥⎤π3,π2,所以③错误.VD 1-APC =VC -AD 1P ,因为点C 到平面AD 1P 的距离不变,且△AD 1P 的面积不变,所以三棱锥D 1-APC 的体积不变,所以④正确. 答案 ①②④限时练(三)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·河南联检)已知集合A ={x ∈N |x 2<8x },B ={2,3,6},C ={2,3,7},则B ∪(∁A C )=( ) A.{2,3,4,5} B.{2,3,4,5,6} C.{1,2,3,4,5,6}D.{1,3,4,5,6,7}解析 因为A ={x ∈N |0<x <8}={1,2,3,4,5,6,7},所以∁A C ={1,4,5,6},所以B∪(∁A C)={1,2,3,4,5,6}.故选C.答案 C2.若z=(3-i)(a+2i)(a∈R)为纯虚数,则z=()A.163i B.6i C.203i D.20解析因为z=3a+2+(6-a)i为纯虚数,所以3a+2=0,解得a=-23,所以z=203i.故选C.答案 C3.(2020·潍坊模拟)甲、乙、丙、丁四位同学各自对变量x,y的线性相关性进行试验,并分别用回归分析法求得相关系数r,如下表:哪位同学的试验结果能体现出两变量有更强的线性相关性?()A.甲B.乙C.丙D.丁解析由于丁同学求得的相关系数r的绝对值最接近于1,因此丁同学的试验结果能体现出两变量有更强的线性相关性.故选D.答案 D4.设a=ln 12,b=-5-12,c=log132,则()A.c<b<aB.a<c<bC.c<a<bD.b<a<c解析由题意易知-a=ln 2,-b=5-12,-c=log32.因为12=log33<log32<ln 2<1,0<5-12<4-12=12,所以-b<-c<-a,所以a<c<b.故选B.答案 B5.(2020·青岛质检)已知某市居民在2019年用手机支付的个人消费额ξ(元)服从正态分布N(2 000,1002),则该市某居民在2019年用手机支付的消费额在(1 900,2 200]内的概率为()附:随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ≤μ+σ)≈0.682 7,P(μ-2σ<ξ≤μ+2σ)≈0.954 5,P(μ-3σ<ξ≤μ+3σ)≈0.997 3.A.0.975 9B.0.84C.0.818 6D.0.477 2解析 ∵ξ服从正态分布N (2 000,1002),∴μ=2 000,σ=100,则P (1 900<ξ≤ 2 200)=P (μ-σ<ξ≤μ+σ)+12[P (μ-2σ<ξ≤μ+2σ)-P (μ-σ<ξ≤μ+σ)]≈0.682 7+12(0.954 5-0.682 7)=0.818 6.故选C. 答案 C6.设抛物线C :y 2=2px (p >0)的焦点为F ,斜率为k 的直线过F 交C 于点A ,B ,且AF →=2FB →,则直线AB 的斜率为( ) A.2 2 B.2 3 C.±2 2D.±2 3解析 由题意知k ≠0,F ⎝ ⎛⎭⎪⎫p 2,0,则直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,代入抛物线方程消去x ,得y 2-2p k y -p 2=0.不妨设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2).因为AF →=2FB →,所以y 1=-2y 2.又y 1y 2=-p 2.所以y 2=-22p ,x 2=p 4,所以k AB=-22p -0p 4-p 2=2 2.根据对称性,直线AB 的斜率为±2 2. 答案 C7.已知点A (1,0),B (1,3),点C 在第二象限,且∠AOC =150°,OC →=-4OA →+λOB →,则λ=( ) A.12B.1C.2D.3解析 设|OC→|=r ,则OC →=⎝ ⎛⎭⎪⎫-32r ,12r ,由已知,得OA →=(1,0),OB →=(1,3),又OC→=-4OA →+λOB →,∴⎝ ⎛⎭⎪⎫-32r ,12r =-4(1,0)+λ(1,3)=(-4+λ,3λ),∴⎩⎪⎨⎪⎧-32r =-4+λ,12r =3λ,解得λ=1.答案 B8.在△ABC中,AB=AC,D,E分别在AB,AC上,DE∥BC,AD=3BD,将△ADE 沿DE折起,连接AB,AC,当四棱锥A-BCED体积最大时,二面角A-BC-D 的大小为()A.π6 B.π4 C.π3 D.π2解析因为AB=AC,所以△ABC为等腰三角形,过A作BC的垂线AH,垂足为H,交DE于O,∴当△ADE⊥平面BCED时,四棱锥A-BCED体积最大.由DE⊥AO,DE⊥OH,AO∩OH=O,可得DE⊥平面AOH,又BC∥DE,则BC⊥平面AOH,∴∠AHO为二面角A-BC-D的平面角,在Rt△AOH中,由AOOH=ADDB=3,∴tan∠AHO=AOOH=3,则二面角A-BC-D的大小为π3.答案 C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.(2020·济宁模拟)“悦跑圈”是一款社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况.某人根据2019年1月至2019年11月每月跑步的里程(十公里)的数据绘制了下面的折线图,根据该折线图,下列结论正确的是()A.月跑步里程数逐月增加B.月跑步里程数的最大值出现在9月C.月跑步里程的中位数为8月份对应的里程数D.1月至5月的月跑步里程数相于6月至11月波动性更小,变化比较平稳 解析 根据折线图可知,2月跑步里程数比1月小,7月跑步里程数比6月小,10月跑步里程数比9月小,A 错误.根据折线图可知,9月的跑步里程数最大,B 正确.一共11个月份,将月跑步里程数从小到大排列,根据折线图可知,跑步里程的中位数为8月份对应的里程数,C 正确.根据折线图可知D 正确.故选BCD. 答案 BCD10.下列各式中,值为12的是( ) A.sin 15°cos 15°B.cos 2π6-sin 2π6C.1+cos π62D.tan 22.5°1-tan 222.5°解析 sin 15°cos 15°=sin 30°2=14,排除A ;cos 2π6-sin 2π6=cos π3=12,B 正确;1+cos π62=1+322=2+32,排除C ;tan 45°=2tan 22.5°1-tan 222.5°,得tan 22.5°1-tan 222.5°=12,D 正确.故选BD.答案 BD11.已知{a n }是等比数列,若a 6=8a 3=8a 22,则( )A.a n =2n -1B.a n =2nC.S n =2n -1D.S n =2n +1-2解析 设数列{a n }的公比为q ,由a 6=8a 3,得a 3·q 3=8a 3,则q 3=8,所以q =2.又8a 3=8a 22,则a 2·q =a 22,又a 2≠0,所以a 2=2,即a n =a 2q n -2=2n -1,所以a 1=1,S n =a 1(1-q n )1-q =2n -1,故选AC.答案 AC12.数列{F n }:1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入的,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.记数列{F n }的前n项和为S n,则下列结论正确的是()A.F n=F n-1+F n-2(n≥3)B.S4=F6-1C.S2 019=F2 020-1D.S2 019=F2 021-1解析根据题意有F n=F n-1+F n-2(n≥3),所以S3=F1+F2+F3=1+F1+F2+F3-1=F3+F2+F3-1=F4+F3-1=F5-1,S4=F4+S3=F4+F5-1=F6-1,S5=F5+S4=F5+F6-1=F7-1,…,所以S2 019=F2 021-1.答案ABD三、填空题:本题共4小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.13.设a=210+1211+1,b=212+1213+1,则a,b的大小关系为________.解析法一由题意知,a-b=210+1211+1-212+1213+1=(210+1)(213+1)-(212+1)(211+1)(211+1)(213+1)=3×210(211+1)(213+1)>0,故a>b.法二可考虑用函数的单调性解题.令f(x)=2x+12x+1+1=12⎝⎛⎭⎪⎫1+12x+1+1,则f(x)在定义域内单调递减,所以a=f(10)>b=f(12).答案a>b14.(2020·深圳统测)很多网站利用验证码来防止恶意登录,以提升网络安全.某马拉松赛事报名网站的登录验证码由0,1,2,…,9中的四个数字随机组成,将从左往右数字依次增大的验证码称为“递增型验证码”(如0123).已知某人收到了一个“递增型验证码”,则该验证码的首位数字是1的概率为________.解析由0,1,2,…,9中的四个数字随机组成的“递增型验证码”共有C410个,而首位数字是1的“递增型验证码”有C38个.因此某人收到的“递增型验证码”的首位数字是1的概率p=C38C410=415.答案4 1515.设双曲线C:x2a2-y2b2=1(a>0,b>0)的左焦点为F,直线4x-3y+20=0过点F且与双曲线C在第二象限的交点为P,O为原点,|OP|=|OF|,则双曲线C的右焦点的坐标为________,离心率为________.(本小题第一空2分,第二空3分)解析如图,∵直线4x-3y+20=0过点F,∴F(-5,0),半焦距c=5,则右焦点为F2(5,0).连接PF2.设点A为PF的中点,连接OA,则OA∥PF2.∵|OP|=|OF|,∴OA⊥PF,∴PF2⊥PF.由点到直线的距离公式可得|OA|=205=4,∴|PF2|=2|OA|=8.由勾股定理,得|FP|=|FF2|2-|PF2|2=6.由双曲线的定义,得|PF2|-|PF|=2a=2,∴a=1,∴离心率e=ca=5.答案(5,0) 516.(2020·厦门质检)已知正方体ABCD-A1B1C1D1的棱长为3,点N是棱A1B1的中点,点T是棱CC1上靠近点C的三等分点,动点Q在侧面D1DAA1(包含边界)内运动,且QB∥平面D1NT,则动点Q所形成的轨迹的长度为________.解析因为QB∥平面D1NT,所以点Q在过点B且与平面D1NT平行的平面内,如图,取DC的中点E1,取A1G=1,则平面BGE1∥平面D1NT.延长BE1,交AD 的延长线于点E,连接EG,交DD1于点I.显然,平面BGE∩平面D1DAA1=GI,所以点Q的轨迹是线段GI.∵DE1綊12AB,∴DE1为△EAB的中位线,∴D为AE的中点.又DI∥AG,∴DI=12AG=1,∴GI=(2-1)2+32=10.答案10限时练(四)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|y=log2(x-2)},B={x|x2≥9},则A∩(∁R B)=()A.[2,3)B.(2,3)C.(3,+∞)D.(2,+∞)解析A={x|y=log2(x-2)}=(2,+∞),∵B={x|x2≥9}=(-∞,-3]∪[3,+∞),∴∁R B=(-3,3),则A∩(∁R B)=(2,3).答案 B2.设x,y∈R,i为虚数单位,且3+4iz=1+2i,则z=x+y i的共轭复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限解析z=3+4i1+2i=(3+4i)(1-2i)5=115-25i,则z-=115+25i,z-对应点⎝⎛⎭⎪⎫115,25在第一象限.答案 A3.(2020·福建漳州适应性测试)如图是某地区从1月21日至2月24日的新冠肺炎每日新增确诊病例变化曲线图.若该地区从1月21日至2月24日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列{a n},{a n}的前n项和为S n,则下列说法中正确的是()A.数列{a n}是递增数列B.数列{S n}是递增数列C.数列{a n}的最大项是a11D.数列{S n}的最大项是S11解析因为1月28日新增确诊人数小于1月27日新增确诊人数,即a7>a8,所以{a n }不是递增数列,所以A 错误;因为2月23日新增确诊病例数为0,所以S 33=S 34,所以数列{S n }不是递增数列,所以B 错误;因为1月31日新增病例数最多,从1月21日算起,1月31日是第11天,所以数列{a n }的最大项是a 11,所以C 正确;由a n ≥0,知S n +1≥S n ,故数列{S n }的最大项是最后一项,所以D 错误.故选C. 答案 C4.大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为( ) A.112B.12C.13D.16解析 大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,每个村小学至少分配1名大学生,基本事件总个数n =C 24A 33=36,小明恰好分配到甲村小学包含的基本事件个数m =A 33+C 23A 22=12,所以小明恰好分配到甲村小学的概率p =m n =1236=13. 答案 C5.(2020·荆门模拟)在二项式⎝ ⎛⎭⎪⎫x 12+12x 7的展开式中,有理项的项数为( ) A.1B.2C.3D.4解析 该二项展开式的通项为T r +1=C r 7x7-r 2⎝ ⎛⎭⎪⎫12x r=C r 7⎝ ⎛⎭⎪⎫12r ·x 7-3r 2,r =0,1,2,…,7.当r =1,3,5,7时,T r +1为有理项,共有4项.故选D. 答案 D6.如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,BC =2,点D 为BC 的中点,则异面直线AD 与A 1C 所成的角为( )A.π2 B.π3 C.π4D.π6解析 以A 为原点,AB ,AC ,AA 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (2,0,0),C (0,2,0),∴D ⎝ ⎛⎭⎪⎫22,22,0,∴AD →=⎝ ⎛⎭⎪⎫22,22,0,A 1C →=(0,2,-2), ∴cos 〈AD →,A 1C →〉=AD →·A 1C →|AD →||A 1C →|=12,∴〈AD →,A 1C →〉=π3. 答案 B7.已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB→|=2,OC →=13OA →+23OB →,若M是线段AB 的中点,则OC →·OM →的值为( )A. 3B.2 3C.2D.3解析 由OC→=13OA →+23OB →,又OM →=12(OA →+OB →), 所以OC →·OM →=⎝ ⎛⎭⎪⎫13OA →+23OB →·12(OA →+OB →)=16(OA →2+2OB →2+3OA →·OB →), 又△OAB 为等边三角形,所以OA →·OB →=2×2cos 60°=2,OA →2=4,OB →2=4,所以OC →·OM →=3. 答案 D8.(2020·天津适应性测试)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,2x -4x ,x >0.若函数F (x )=f (x )-|kx -1|有且只有3个零点,则实数k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,916 B.⎝ ⎛⎭⎪⎫916,+∞C.⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫-116,0∪⎝ ⎛⎭⎪⎫0,916解析 当k =12时,|kx -1|=⎪⎪⎪⎪⎪⎪12x -1=⎩⎪⎨⎪⎧12x -1,x ≥2,1-12x ,x <2.作出函数y =f (x )与y =⎪⎪⎪⎪⎪⎪12x -1的图象,如图.此时两函数的图象有且只有3个交点,此时F (x )有且只有3个零点,排除B ,C.当k =-120时,|kx -1|=⎪⎪⎪⎪⎪⎪-120x -1=⎩⎪⎨⎪⎧-120x -1,x ≤-20,1+120x ,x >-20,作出函数y =⎪⎪⎪⎪⎪⎪-120x -1的图象,如图.由图可得函数y =f (x )的图象与y =⎪⎪⎪⎪⎪⎪-120x -1的图象有且只有3个交点,此时F (x )有且只有3个零点,排除A.故选D. 答案 D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知0<c <1,1>a >b >0,则下列不等式成立的是( )A.c a <c bB.a a +c <b b +cC.ba c >ab cD.log a c >log b c解析 构造函数y =c x ,因为0<c <1,所以函数y =c x 是减函数,而a >b >0,根据指数函数的单调性得c a<c b,故A 正确;由题意得a +c a =1+c a ,b +c b =1+cb ,因为0<c <1,1>a >b >0,所以0<c a <c b ,即0<a +c b <b +c b ,取倒数得a a +c >b b +c ,故B 错误;由题意得⎝ ⎛⎭⎪⎫a b c <a b ,整理得ba c <ab c ,故C 错误;由已知得log a c >0,log b c >0,又0<log c a <log c b ,所以1log c a >1log c b ,则log a c >log b c ,故D 正确.故选AD.答案 AD10.已知f (x )=A sin(ωx +φ)+B ⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象如图所示,则函数f (x )的对称中心可以为( )A.⎝ ⎛⎭⎪⎫2π3,0B.⎝ ⎛⎭⎪⎫π6,1 C.⎝ ⎛⎭⎪⎫-π6,1 D.⎝ ⎛⎭⎪⎫π3,1 解析 由图象知A =3+12=2,B =3-12=1,又T =2⎝ ⎛⎭⎪⎫7π12-π12=π,所以ω=2.由2×π12+φ=π2+2k π(k ∈Z )且|φ|<π2,得φ=π3,故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1.令2x +π3=k π(k ∈Z ),得x =-π6+k π2(k ∈Z ),取k =0,有x =-π6;k =1,x =π3. 答案 CD11.对于函数f (x )=ln xx ,下列说法正确的是( )A.f (x )在x =e 处取得极大值1eB.f (x )有两个不同的零点C.f (4)<f (π)<f (3)D.π4<4π解析 f (x )的定义域为(0,+∞),且f ′(x )=1-ln xx 2.令f ′(x )=0,得x =e.∴f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,因此f (x )在x =e 处取得极大值f (e)=1e ,A 正确.令f (x )=0,解得x =1,故函数f (x )有且仅有一个零点,B 错误.由f (x )在(e ,+∞)上单调递减,得f (4)<f (π)<f (3),则C 正确.因为f (4)<f (π),即ln 44<ln ππ,所以ln 4π<ln π4,则4π<π4,D 错误.综上知,正确的为AC. 答案 AC12.(2020·烟台诊断)已知P 是双曲线C :x 23-y 2m =1(m >0)上任意一点,A ,B 是双曲线C 上关于坐标原点对称的两点.设直线P A ,PB 的斜率分别为k 1,k 2(k 1k 2≠0),若|k 1|+|k 2|≥t 恒成立,且实数t 的最大值为233,则下列说法正确的是( )A.双曲线C 的方程为x 23-y 2=1 B.双曲线C 的离心率为2C.函数y =log a (x -1)(a >0,a ≠1)的图象恒过双曲线C 的一个焦点D.直线2x -3y =0与双曲线C 有两个交点解析 设A (x 1,y 1),P (x 2,y 2).由A ,B 是双曲线C 上关于坐标原点对称的两点,得B (-x 1,-y 1),则x 213-y 21m =1,x 223-y 22m =1.两式相减,得x 21-x 223=y 21-y 22m ,所以y 21-y 22x 21-x 22=m 3.又直线P A ,PB 的斜率分别为k 1,k 2,所以k 1k 2=y 1-y 2x 1-x 2×-y 1-y 2-x 1-x 2=y 21-y 22x 21-x 22=m3.所以|k 1|+|k 2|≥2|k 1||k 2|=2m3,当且仅当|k 1|=|k 2|时取等号.又|k 1|+|k 2|≥t 恒成立,且实数t 的最大值为233,所以2m 3=233,解得m =1.因此双曲线C 的方程为x 23-y 2=1,则A 项正确.因为a =3,b =1,所以c =a 2+b 2=2,所以双曲线C 的离心率e =c a =23=233,则B 项不正确.双曲线C 的左、右焦点分别为(-2,0),(2,0),而当x =2时,y =log a (2-1)=log a 1=0,所以函数y =log a (x -1)(a >0,a ≠1)的图象恒过双曲线C 的一个焦点(2,0),则C 项正确.由⎩⎪⎨⎪⎧2x -3y =0,x 23-y 2=1消去y ,得x 2=-9,此方程无实数解,所以直线2x -3y =0与双曲线C 没有交点,则D 项不正确.故选AC. 答案 AC三、填空题:本题共4小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.13.设{a n }是公差不为零的等差数列,S n 为其前n 项和.已知S 1,S 2,S 4成等比数列,且a 3=5,则数列{a n }的通项公式为________.解析 设等差数列{a n }的公差为d (d ≠0),则由S 1,S 2,S 4成等比数列,得S 22=S 1S 4,即(2a 3-3d )2=(a 3-2d )·(4a 3-2d ).又a 3=5,所以(10-3d )2=(5-2d )(20-2d ),解得d =2.所以数列{a n }的通项公式为a n =a 3+(n -3)d =2n -1. 答案 a n =2n -114.已知点E 在y 轴上,点F 是抛物线y 2=2px (p >0)的焦点,直线EF 与抛物线交于M ,N 两点,若点M 为线段EF 的中点,且|NF |=12,则p =________. 解析 由题意知,直线EF 的斜率存在且不为0,故设直线EF 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,与抛物线方程y 2=2px 联立,得k 2x 2-p (k 2+2)x +p 2k 24=0.设M (x 1,y 1),N (x 2,y 2),则x 1x 2=p 24.又F ⎝ ⎛⎭⎪⎫p 2,0,点M 为线段EF 的中点,得x 1=p 22=p 4.由|NF |=x 2+p 2=12,得x 2=12-p2.由x 1x 2=p 4⎝ ⎛⎭⎪⎫12-p 2=p 24,得p =8或p =0(舍去).答案 815.(2020·长郡中学适应性考试)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点M ,N ,E 分别为棱AA 1,AB ,AD 的中点,以A 为圆心,1为半径,分别在面ABB 1A 1和面ABCD 内作弧MN 和NE ,并将两弧各五等分,分点依次为M ,P 1,P 2,P 3,P 4,N 以及N ,Q 1,Q 2,Q 3,Q 4,E .一只蚂蚁欲从点P 1出发,沿正方体的表面爬行至点Q 4,则其爬行的最短距离为________.(参考数据:cos 9°≈0.987 7,cos 18°≈0.951 1,cos 27°≈0.891 0)解析 在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点M ,N ,E 分别为棱AA 1,AB ,AD 的中点,以A 为圆心,1为半径,分别在平面ABB 1A 1和平面ABCD 内作弧MN 和NE .将平面ABCD 绕AB 旋转至与平面ABB 1A 1共面的位置,如图(1),则∠P 1AQ 4=180°10×8=144°,所以P 1Q 4=2sin 72°.将平面ABCD 绕AD 旋转至与平面ADD 1A 1共面的位置,将ABB 1A 1绕AA 1旋转至与平面ADD 1A 1共面的位置,如图(2),则∠P 1AQ 4=90°5×2+90°=126°,所以P 1Q 4=2sin 63°.因为sin 63°<sin 72°,且由诱导公式可得sin 63°=cos 27°,所以最短距离为|P 1Q 4|=2sin 63°≈2×0.891 0=1.782 0.图(1)图(2)答案 1.782 016.已知函数f (x )=⎩⎨⎧x +2,x <a ,x 2,x ≥a ,若函数f (x )在R 上是单调的,则实数a 的取值范围是________;若对任意的实数x 1<a ,总存在实数x 2≥a ,使得f (x 1)+f (x 2)=0,则实数a 的取值范围是________(本小题第一空2分,第二空3分).解析 令x +2=x 2,得x =-1或x =2.作出函数y =f (x )的图象如图所示,若函数f (x )在R 上单调,只需a ≥2.若对任意的实数x 1<a ,总存在实数x 2≥a ,使得f (x 1)+f (x 2)=0,可得x 1+2+x 22=0,即-x 22=x 1+2,即有a +2≤0,解得a ≤-2.答案 [2,+∞) (-∞,-2]限时练(五)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数z =i1+i(i 是虚数单位)的虚部是( ) A.12B.-12C.12iD.-12i解析 z =i 1+i =i (1-i )(1+i )(1-i )=i 2+12,∴z 的虚部为12.答案 A 2.已知集合A ={-1,0,1,2,3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x +1≥0,则A ∩B 中元素的个数为( )A.1B.2C.3D.4解析 由x -2x +1≥0,得x ≥2或x <-1,则B ={x |x ≥2,或x <-1},∴A ∩B ={2,3},A ∩B 中有2个元素.答案 B3.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x ≤0,2x +1,x >0,则f (-2)+f (1)=( )A.6+32B.6-32C.72D.52解析 f (-2)=sin ⎝ ⎛⎭⎪⎫-2π+π6=12,f (1)=21+1=3.∴f (-2)+f (1)=3+12=72. 答案 C4.在某项检测中,测量结果服从正态分布N (2,1),若P (X <1)=P (X >1+λ),则λ=( ) A.0B.2C.3D.5解析 依题意,正态曲线关于x =2对称,又P (X <1)=P (X >1+λ),因此1+λ=3,∴λ=2. 答案 B5.(2020·天津适应性测试)如图,长方体ABCD -A 1B 1C 1D 1的体积为36,E 为棱CC 1上的点,且CE =2EC 1,则三棱锥E -BCD 的体积是( )A.3B.4C.6D.12解析 ∵CE =2EC 1,∴V E -BCD =13×12×23×V ABCD -A 1B 1C 1D 1=19×36=4.故选B. 答案 B6.函数f (x )=x 2-2ln|x |的图象大致是( )。

2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-6-2

2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-6-2

专题限时训练 (小题提速练)(建议用时:45分钟)一、选择题1.若∀x 1,x 2∈⎝ ⎛⎭⎪⎫0,π2,x 2>x 1,y 1=sin x 1x 1,y 2=sin x 2x 2,则( ) A .y 1=y 2 B .y 1>y 2 C .y 1<y 2D .y 1,y 2的大小关系不能确定 答案:B解析:设y =sin x x ,则y ′=(sin x )′·x -sin x ·(x )′x 2=x cos x -sin x x 2.因为在⎝ ⎛⎭⎪⎫0,π2上x <tan x ,所以x cos x -sin x <0,所以y ′<0,所以y =sin x x 在⎝ ⎛⎭⎪⎫0,π2上单调递减,所以y 1>y 2.2.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( ) A .[1,+∞) B .[1,2) C.⎣⎢⎡⎭⎪⎫1,32 D .⎣⎢⎡⎭⎪⎫32,2答案:C解析:f ′(x )=4x -1x =(2x -1)(2x +1)x .∵x >0,∴由f ′(x )=0得x =12.令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.由题意得⎩⎨⎧k -1≥0,k -1<12<k +1⇒1≤k <32.3.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是( )A .[0,1)B .(-1,1) C.⎝ ⎛⎭⎪⎫0,12 D .(0,1)答案:D解析:f ′(x )=3x 2-3a =3(x 2-a ). 当a ≤0时,f ′(x )>0,∴f (x )在(0,1)内单调递增,无最小值. 当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增, 当x ∈(-a ,a )时,f (x )单调递减,所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值.4.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( ) A .(-∞,+∞) B .(-2,+∞) C .(0,+∞) D .(-1,+∞)答案:D解析:∵2x (x -a )<1,∴a >x -12x . 令f (x )=x -12x ,∴f ′(x )=1+2-x ln 2>0. ∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1, ∴a 的取值范围为(-1,+∞).5.(2019·曲靖二模)已知偶函数f (x )的定义域是(-∞,0)∪(0,+∞),其导函数为f ′(x ),对定义域内的任意x ,都有2f (x )+xf ′(x )>0成立,若f (2)=1,则不等式x 2f (x )<4的解集为( ) A .{x |x ≠0,±2} B .(-2,0)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-2)∪(0,2) 答案:B解析:令g (x )=x 2f (x )-4,g (2)=0. ∵g (-x )=x 2f (-x )-4=x 2f (x )-4=g (x ),∴g (x )在定义域(-∞,0)∪(0,+∞)上为偶函数.当x >0时,g ′(x )=2xf (x )+x 2f ′(x )=x [2f (x )+xf ′(x )]>0成立. ∴函数g (x )在(0,+∞)上为增函数. ∴不等式x 2f (x )<4⇔g (|x |)<g (2). ∴|x |<2,x ≠0.解得x ∈(-2,0)∪(0,2).6.已知f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的0<a <b ,则必有( ) A .af (b )≤bf (a ) B .bf (a )≤af (b ) C .af (a )≤f (b ) D .bf (b )≤f (a )答案:A解析:因为xf ′(x )≤-f (x ),f (x )≥0, 所以⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2≤-2f (x )x 2≤0,则函数f (x )x 在(0,+∞)上单调递减. 由于0<a <b ,则f (a )a ≥f (b )b ,即af (b )≤bf (a ).7.(2019·甘肃模拟)若点(m ,n )在函数f (x )=13x 3-x (x >0)的图象上,则n -m +22的最小值是( ) A.13 B .23 C.223 D .2 2答案:C解析:∵点(m,n)在函数f(x)=13x3-x(x>0)的图象上,∴n=13m3-m,则n-m+22=13m3-2m+2 2.令g(m)=13m3-2m+22(m>0),则g′(m)=m2-2,可得g(m)在(0,2)递减,在(2,+∞)递增,∴g(m)的最小值是g(2)=223.8.定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数,且(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系是()A.f(x1)<f(x2) B.f(x1)=f(x2)C.f(x1)>f(x2) D.不确定答案:C解析:由(x-1)f′(x)<0可知,当x>1时,f′(x)<0,函数单调递减.当x<1时,f′(x)>0,函数单调递增.因为函数f(x+1)是偶函数,所以f(x+1)=f(1-x),f(x)=f(2-x),即函数f(x)图象的对称轴为x=1.所以,若1≤x1<x2,则f(x1)>f(x2);若x1<1,则x2>2-x1>1,此时有f(x2)<f(2-x1),又f(2-x1)=f(x1),所以f(x1)>f(x2).综上,必有f(x1)>f(x2).9.已知函数f(x)=ax-1+ln x,若存在x0>0,使得f(x0)≤0有解,则实数a的取值范围是()A.a>2 B.a<3 C.a≤1 D.a≥3 答案:C解析:函数f(x)的定义域是(0,+∞),不等式ax-1+ln x≤0有解,即a≤x-x ln x在(0,+∞)上有解,令h(x)=x-x ln x,可得h′(x)=1-(ln x+1)=-ln x.令h′(x)=0,可得x=1,当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,可得当x=1时,函数h (x )=x -x ln x 取得最大值1,要使不等式a ≤x -x ln x 在(0,+∞)上有解,只要a 小于等于h (x )的最大值即可,即a ≤1.10.直线y =a 分别与直线y =2(x +1),曲线y =x +ln x 交于点A ,B ,则|AB |的最小值为( ) A .3 B .2 C.324 D .32答案:D解析:解方程2(x +1)=a ,得x =a2-1.设方程x +ln x =a 的根为t (t >0),则t +ln t =a , 则|AB |=⎪⎪⎪⎪⎪⎪t -a 2+1=⎪⎪⎪⎪⎪⎪t -t +ln t 2+1=⎪⎪⎪⎪⎪⎪t 2-ln t 2+1. 设g (t )=t 2-ln t2+1(t >0), 则g ′(t )=12-12t =t -12t (t >0).令g ′(t )=0,得t =1.当t ∈(0,1)时,g ′(t )<0;当t ∈(1,+∞)时,g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为32.11.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .⎣⎢⎡⎦⎥⎤-6,-98C .[-6,-2]D .[-4,-3]答案:C解析:当x ∈(0,1]时,得a ≥-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x ,令t =1x ,则t ∈[1,+∞),a ≥-3t 3-4t 2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)·(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6.同理,当x ∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立, 故实数a 的取值范围为[-6,-2].12.设函数f (x )=3sin πm x ,若存在f (x )的极值点x 0满足x 20+f 2(x 0)<m 2.则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 答案:C解析:由正弦函数的图象知,f (x )的极值点x 0满足f (x 0)=±3. ∴πx 0m =k π+π2,k ∈Z .∴x 0=⎝ ⎛⎭⎪⎫k +12·m .∴不等式x 20+f 2(x 0)<m 2⇔⎝ ⎛⎭⎪⎫k +122m 2+3<m 2(k ∈Z )⇔m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3(k ∈Z ). 存在f (x )的极值点x 0满足x 20+f 2(x 0)<m 2⇔存在整数k 使不等式m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠0且k ≠-1时,必有⎝ ⎛⎭⎪⎫k +122>1,此时不等式显然不成立.∴k =0或-1时,m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3⇔34m 2>3⇔m >2或m <-2. 二、填空题13.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是__________. 答案:⎝ ⎛⎭⎪⎫-22,0解析:作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0.解得-22<m <0.14.(2019春·潍坊期中)已知函数f (x )的定义域为R ,f (-2)=-2,若对∀x ∈R ,f ′(x )<3,则不等式f (x )>3x +4的解集为________. 答案:(-∞,-2)解析:根据题意,设g (x )=f (x )-3x -4,则g ′(x )=f ′(x )-3.由对∀x ∈R ,f ′(x )<3,则g ′(x )<0,即g (x )在R 上为减函数. 又由f (-2)=-2,则g (-2)=f (-2)+6-4=0, 则f (x )>3x +4⇒f (x )-3x -4>0⇒g (x )>g (-2), 即不等式的解集为(-∞,-2).15.(2019·南开区二模)已知函数f (x )=e x -1e x -2sin x ,其中e 为自然对数的底数,若f (2a 2)+f (a -3)<0,则实数a 的取值范围为________. 答案:⎝ ⎛⎭⎪⎫-32,1解析:∵f (x )=e x -1e x -2sin x ,∴f (-x )=e -x -e x +2sin x =-f (x ), ∵f (x )′=e x +1e x -2cos x ≥2e x ·e -x -2cos x ≥0,∴f (x )在R 上单调递增且为奇函数.由f (2a 2)+f (a -3)<0,可得f (2a 2)<-f (a -3)=f (3-a ), ∴2a 2<-a +3,解得-32<a <1. 16.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案:⎣⎢⎡⎭⎪⎫94,+∞解析:由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立.令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min .又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.专题限时训练 (大题规范练)(建议用时:30分钟)1.(2019·河南模拟)已知函数f (x )=x ln x +e. (1)若f (x )≥ax 恒成立,求实数a 的最大值; (2)设函数F (x )=e x -1f (x )-x 2-2x +1,求证:F (x )>0. 解析:(1)函数f (x )=x ln x +e 的定义域为(0,+∞), f (x )≥ax 恒成立⇔a ≤x ln x +e x .令φ(x)=x ln x+ex,则φ′(x)=x-ex2,可得φ(x)在(0,e)上单调递减,在(e,+∞)上单调递增,∴φ(x)min=φ(e)=2,∴a≤2.故实数a的最大值为2.(2)由(1)可知f(x)≥2x,只需证明2x≥x2+2x-1e x-1.令g(x)=2x-x2+2x-1e x-1,则g′(x)=2-3-x2e x-1=2e x-1+x2-3e x-1.令h(x)=2e x-1+x2-3,h′(x)=2e x-1+2x>0在(0,+∞)恒成立.注意到h(1)=0,所以当x∈(0,1)时,h(x)<0,g′(x)<0,x∈(1,+∞)时,h(x)>0,g′(x)>0,∴g(x)在(0,1)单调递减,在(1,+∞)单调递增,∴g(x)min=g(1)=0.∴2x≥x2+2x-1e x-1.当且仅当x=1时取等号,而f(x)≥2x,当且仅当x=e时取等号,∴F(x)>0.2.(2019·蓉城名校联盟联考)已知函数f(x)=ax2-2(a+1)x+2ln x,a∈R.(1)讨论函数f(x)的单调性;(2)是否存在最大整数k,当a≤k时,对任意的x≥2,都有f(x)<e x(x-1)-ax-ln x成立?(其中e为自然对数的底数,e=2.718 28…),若存在,求出k的值;若不存在,请说明理由.解析:(1)f (x )的定义域为(0,+∞), f ′(x )=2ax -2(a +1)+2x =2(ax -1)(x -1)x,所以当a ∈(-∞,0]时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a ∈(0,1)时,f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;当a =1时,f (x )在(0,+∞)上单调递增;当a ∈(1,+∞)时,f (x )在⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)上单凋递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减.(2)ax 2-2(a +1)x +2ln x <e x (x -1)-ax -ln x 对x ≥2恒成立⇔ax 2-(a +2)x +3ln x <e x (x -1). ①当x =2时,得4a -(a +2)×2+3ln 2<e 2, 所以2a <e 2+4-ln 8<8+4-2=10, 所以a <5,则整数k 的最大值不超过4.下面证明:当a ≤4时,不等式①对于x ≥2恒成立, 设g (x )=ax 2-(a +2)x +3ln x -e x (x -1)(x ≥2), 则g ′(x )=2ax -(a +2)+3x -x e x . 令h (x )=2ax -(a +2)+3x -x e x .则h ′(x )=2a -3x 2-(x +1)e x <2a -(x +1)e x ≤2a -3e 2≤8-3e 2<0,所以h (x )在[2,+∞)上单调递减,所以h (x )=2ax -(a +2)+3x -x e x ≤h (2)=3a -12-2e 2≤232-2e 2<0. 即当x ∈[2,+∞)时,g ′(x )<0, 所以g (x )在[2,+∞)上单调递减,所以g(x)=ax2-(a+2)x+3ln x-e x(x-1)≤g(2)=2a-4+3ln 2-e2<8-4+3-e2=7-e2<0.所以a≤4时,不等式①恒成立,所以k的最大值为4.。

高考数学二轮复习客观题满分限时练2理

高考数学二轮复习客观题满分限时练2理

限时练2(时间:45分钟,满分:80分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2022北京,1)已知全集U={x|3<x<3},集合A={x|2<x≤1},则∁U A=()A.(2,1]B.(3,2)∪[1,3)C.[2,1)D.(3,2]∪(1,3)2.(2023全国甲,理2)若复数(a+i)(1a i)=2,则a=()A.1B.0C.1D.23.(2023全国甲,理6)某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为()A.0.8B.0.6C.0.5D.0.44.(2023四川泸州三模)执行下图所示的程序框图,若输入N的值为8,则输出S的值为()A. B. C.0 D.5.(2023江西南昌二模)已知函数f(x)=2sin x,命题p:∃x1,x2∈(0,π),使得f(x1)+f(x2)=2,命题q:∀x1,x2∈(),当x1<x2时,都有f(x1)<f(x2),则下列命题中为真命题的是()A.p∨qB.p∧qC.p∧( q)D.( p)∧( q)6.(2023河南郑州三模)若向量a,b满足|a|=|b|=|a+b|,则向量b与向量ab的夹角为()A.30°B.60°C.120°D.150°7.(2023安徽黄山二模)先后掷两次骰子,落在水平桌面后,记正面朝上的点数分别为x,y,设事件A=“x+y为奇数”,事件B=“x,y满足x+y<6”,则概率P(B|A)=()A. B. C. D.8.(2023山东泰安一模)若的二项展开式中x6的系数是16,则实数a的值是()A.2B.1C.1D.29.(2023河南郑州一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知角C=,b sin(+A)a sin(+B)=c,则角B=()A. B. C. D.10.在直三棱柱ABCA1B1C1中,已知AB⊥BC,AB=BC=2,CC1=2,则异面直线AC1与A1B1所成的角为()A.30°B.45°C.60°D.90°11.(2023河北张家口一模)已知实数a,b,c满足log a2=e,b=,ln c=,则()A.log c a>log a bB.a c1>b a1C.log a c<log b cD.c a>b c12.已知F1,F2分别为双曲线C:=1(a>0,b>0)的左、右焦点,点P在第二象限内,且满足|F1P|=a,()·=0,线段F1P与双曲线C交于点Q,若|F1P|=3|F1Q|,则C的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分.13.(2023宁夏银川一中一模改编)已知函数f(x)=对任意x1,x2∈R,且x1≠x2,都有>0成立,则a的取值范围是.14.在△ABC中,a,b,c分别是角A,B,C的对边,且2sin A sin C=1+2cos A cos C,a+c=3sin B,则b的最小值为.15.(2022浙江,17)设点P在单位圆的内接正八边形A1A2…A8的边A1A2上,则+…+的取值范围是.16.(2023河北邯郸二模)已知O为坐标原点,椭圆C:=1(a>b>0)的右焦点为F,上顶点为B,线段BF的中垂线交C于M,N两点,交y轴于点P,=2,△BMN的周长为16,则椭圆的标准方程为.限时练21.D解析∵U={x|3<x<3},∴∁U A=(3,2]∪(1,3),故选D.2.C解析由(a+i)(1a i)=2,可得a+i a2i+a=2,即2a+(1a2)i=2,所以解得a=1.故选C.3.A解析从该校的学生中任取一名学生,记A表示事件:“取到的学生爱好滑冰”,B表示事件:“取到的学生爱好滑雪”.由题设知P(A)=0.6,P(B)=0.5,P(A∪B)=0.7.由P(A∪B)=P(A)+P(B)P(AB),得P(AB)=P(A)+P(B)P(A∪B)=0.6+0.50.7=0.4.所求的概率为P(A|B)==0.8.4.C解析程序运行可得S=sin+sin+sin+sin+sin+sin+sin+sin+1++01+0=0.故选C.5.A解析命题p:当0<x<π时,0<sin x≤1,所以1<2sin x≤2,即1<f(x)≤2,则∀x1,x2∈(0,π),f(x1)+f(x2)>2,故命题p为假命题;命题q:当<x<时,由复合函数的单调性得f(x)=2sin x在()上是增函数,所以当<x1<x2<时,f(x1)<f(x2),故命题q为真命题.则命题p∨q为真,故A正确;命题p∧q为假,故B错误;命题p∧( q)为假,故C错误;命题( p)∧( q)为假,故D错误.故选A. 6.D解析由题意|a+b|2=(a+b)2=|a|2+2a·b+|b|2=|a|2=|b|2,所以2a·b=|a|2,所以|ab|=|a|.b(ab)=|b||ab|cos<b,ab>=|a|2cos<b,ab>,又b(ab)=b·ab2=|a|2|a|2=|a|2,所以|a|2cos<b,ab>=|a|2,cos<b,ab>=,又0°≤<b,ab>≤180°,所以<b,ab>=150°.故选D.7.B解析用(x,y)表示先后掷两次骰子分别得到的点数,基本事件的个数为6×6=36.记事件C=“x+y为奇数,且x+y<6”,所以事件A包含的基本事件的个数为3×3×2=18,事件C包含的基本事件个数为(1,2),(1,4),(2,3),(2,1),(4,1),(3,2),共6个,根据古典概率公式知,P(A)=,P(C)=P(AB)=,P(B|A)=故选B.8.D解析(x)8的二项展开式的通项公式为T r+1=x8r·()r=(a)r x82r,0≤r≤8,r∈N*.令82r=6,得到r=1.由x6的系数是16,得到(a)1=16,解得a=2.故选D.9.C解析由题意及正弦定理,得sin B·sin(+A)sin A sin(+B)=sin C,整理得(sin B cos A sin A cos B)=,即sin(BA)=1.因为A,B∈(0,),所以BA∈(),所以BA=又B+A=,所以B=故选C.10.C解析由题画图(图略),连接AC1,BC1,又AB∥A1B1,则∠BAC1为异面直线AC1与A1B1所成的角或其补角.∵AB⊥BC,且三棱柱为直三棱柱,∴AB⊥CC1,BC∩CC1=C,∴AB⊥平面BCC1B1,∴AB⊥BC1,又AB=BC=2,CC1=2,∴BC1==2,∴tan∠BAC1=,∴∠BAC1=60°.故选C.11.D解析由log a2=e,得a e=2,∴a=又b=,函数y=2x在R上是增函数,∴a<b<20=1.由ln c=>0,得c>1,∴c>1>b>a>0,∴y=log c x在(0,+∞)上是增函数,y=log a x在(0,+∞)上是减函数,故log c a<log c1=0,log a b>log a1=0,∴log c a<log a b,A错;由c1>0,得a c1<1.∵a1<0,∴b a1>1,故a c1<b a1,B错;∵log a c=,log b c=,且log c a<log c b<0,,即log a c>log b c,C错;∵c a>c0=1,b c<b0=1,故c a>b c,D对.故选D.12.C解析取线段F1P的中点E,连接F2E,因为()=0,所以F2E⊥F1P,所以△F1F2P是等腰三角形,且|F2P|=|F1F2|=2c,在Rt△F1EF2中,cos∠F2F1E=,连接F2Q,又|F1Q|=,点Q在双曲线C上,由|F2Q||F1Q|=2a,则|F2Q|=,在△F1QF2中,cos∠F2F1Q=,整理得12c2=17a2,所以离心率e=故选C.13.(1,2]解析因为对任意x1≠x2,都有>0成立,所以f(x)在定义域内是增函数,所以解得1<a≤2,即a的取值范围是(1,2].14解析因为2sin A sin C=1+2cos A cos C,整理可得cos(A+C)=因为A+B+C=π,所以cos B=又因为0<B<π,所以B=由余弦定理可得b2=a2+c2ac=(a+c)23ac,又因为a+c=3sin B=,所以b2=3ac3()2=,当且仅当a=c=时等号成立,所以b的最小值为15.[12+2,16]解析如图,以圆心为原点,A3A7所在直线为x轴,A1A5所在直线为y轴建立平面直角坐标系,则A1(0,1),A2(),A3(1,0),A4(,),A5(0,1),A6(,),A7(1,0),A8().设P(x,y),则+…+=8(x2+y2)+8.因为cos22.5°≤|OP|≤1,所以x2+y2≤1,故所求取值范围为[12+2,16].16=1解析设椭圆的半焦距为c.如图,由=2,得点P在线段BO上,且|BP|=b,|PO|=b.连接PF,由点P在线段BF的中垂线上,得|BP|=|PF|.在Rt△POF中,由勾股定理得|OP|2+|OF|2=|PF|2,所以(b)2+c2=(b)2,整理得b2=3c2,所以a2c2=3c2,即a2=4c2,所以a=2c.在Rt△BOF中,cos∠BFO=,所以∠BFO=设直线MN交x轴于点F',交BF于点H,在Rt△HFF'中,有|FF'|==a=2c,所以F'为椭圆C的左焦点.又|MB|=|MF|,|NB|=|NF|,所以△BMN的周长等于△FMN的周长.又△FMN的周长为4a,所以4a=16,解得a=4,所以c=2,b2=a2c2=12.故答案为=1.。

高考数学大二轮复习专题二数列第一讲等差数列等比数列限时规范训练理

高考数学大二轮复习专题二数列第一讲等差数列等比数列限时规范训练理

第一讲 等差数列、等比数列1.(2019·宽城区校级期末)在等差数列{a n }中,已知a 2+a 5+a 12+a 15=36,则S 16=( ) A .288 B .144 C .572D .72解析:a 2+a 5+a 12+a 15=2(a 2+a 15)=36, ∴a 1+a 16=a 2+a 15=18, ∴S 16=16(a 1+a 16)2=8×18=144,故选B. 答案:B2.(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2 解析:由题意知⎩⎪⎨⎪⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C.答案:C3.(2019·咸阳二模)《周髀算经》中一个问题:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为( )A .15.5尺B .12.5尺C .10.5尺D .9.5尺解析:设此等差数列{a n }的公差为d ,则a 1+a 4+a 7=3a 1+9d =37.5,a 1+11d =4.5, 解得:d =-1,a 1=15.5. 故选A. 答案:A4.(2019·德州一模)在等比数列{a n }中,a 1=1,a 5+a 7a 2+a 4=8,则a 6的值为( ) A .4 B .8 C .16D .32解析:设等比数列{a n }的公比为q , ∵a 1=1,a 5+a 7a 2+a 4=8, ∴a 1(q 4+q 6)a 1(q +q 3)=8,解得q =2. 则a 6=25=32. 故选D. 答案:D5.(2019·信州区校级月考)已知等差数列{a n }的首项a 1=2,前n 项和为S n ,若S 8=S 10,则a 18=( )A .-4B .-2C .0D .2解析:∵等差数列{a n }的首项a 1=2,前n 项和为S n ,S 8=S 10, ∴8a 1+7×82d =10a 1+10×92d ,即16+28d =20+45d ,解得d =-417,∴a 18=a 1+17d =2+17×⎝ ⎛⎭⎪⎫-417=-2.故选B. 答案:B6.(2019·南充模拟)已知等比数列{a n }中的各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 10+a 11a 8+a 9=( ) A .1+ 2 B .1- 2 C .3+2 2D .3-2 2解析:等比数列{a n }中的各项都是正数, 公比设为q ,q >0,a 1,12a 3,2a 2成等差数列,可得a 3=a 1+2a 2, 即a 1q 2=a 1+2a 1q , 即q 2-2q -1=0,解得q =1+2(负的舍去),则a 10+a 11a 8+a 9=q 2(a 8+a 9)a 8+a 9=q 2=3+2 2. 故选C. 答案:C7.(2019·林州市校级月考)在正数x 、y 之间插入数a ,使x ,a ,y 成为等差数列,又在x ,y 之间插入数b 、c ,且x ,b ,c ,y 成等比数列,则有( )A .a 2≤bc B .a 2>bc C .a 2=bcD .a 2≥bc解析:在正数x 、y 之间插入数a ,使x ,a ,y 成为等差数列, 又在x ,y 之间插入数b 、c ,且x ,b ,c ,y 成等比数列,∴⎩⎨⎧2a =x +y ≥2xy ,xy =bc ,∴a 2≥bc . 故选D. 答案:D8.(2019·龙岩期末测试)等差数列{a n }中,若a 4+a 7=2,则2a 1·2a 2·2a 3·…·2a 10=( )A .256B .512C .1 024D .2 048解析:等差数列{a n }中,若a 4+a 7=2, 可得a 1+a 10=a 4+a 7=2, 则2a 1·2a 2·2a 3·…·2a 10=2a 1+a 2+…+a 10=212×10(a 1+a 10)=25×2=1 024.故选C. 答案:C9.(2019·长春模拟)等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( )A .6B .7C .8D .9 解析:由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d2>0,所以前8项和为前n 项和的最小值,故选C.答案:C10.(2019·合肥质检)已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n=1+a n a n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1, 因为b n =1+a n a n =1+1a n,又对任意的n ∈N *都有b n ≥b 8成立, 所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n ∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧8+a -1<0,9+a -1>0,解得-8<a <-7. 答案:A11.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),4a 5=a 3.设T n=S n -1S n,则数列{T n }中最大项的值为( )A.34B.45C.56D.78解析:设等比数列{a n }的公比为q ,则q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12,故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n-1=(-1)n -1×32n,S n=1-⎝ ⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对任意的n ∈N *,总有-712≤S n -1S n <0或0<S n -1S n ≤56,即数列{T n }中最大项的值为56.故选C.答案:C12.(2019·合肥二模)“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是100-200⎝ ⎛⎭⎪⎫910n万元,则n 的值为( )A .7B .8C .9D .10解析:由题意可得第n 层的货物的价格为a n =n ·⎝ ⎛⎭⎪⎫910n -1,设这堆货物总价是S n =1·⎝ ⎛⎭⎪⎫9100+2·⎝ ⎛⎭⎪⎫9101+3·⎝ ⎛⎭⎪⎫9102+…+n ·⎝ ⎛⎭⎪⎫910n -1,①由①×910可得910S n =1·⎝ ⎛⎭⎪⎫9101+2·⎝ ⎛⎭⎪⎫9102+3·⎝ ⎛⎭⎪⎫9103+…+n ·⎝ ⎛⎭⎪⎫910n,②由①-②可得110S n =1+⎝ ⎛⎭⎪⎫9101+⎝ ⎛⎭⎪⎫9102+⎝ ⎛⎭⎪⎫9103+…+⎝ ⎛⎭⎪⎫910n -1-n ·⎝ ⎛⎭⎪⎫910n =1-⎝ ⎛⎭⎪⎫910n1-910-n ·⎝ ⎛⎭⎪⎫910n=10-(10+n )·⎝ ⎛⎭⎪⎫910n,∴S n =100-10(10+n )·⎝ ⎛⎭⎪⎫910n,∵这堆货物总价是100-200⎝ ⎛⎭⎪⎫910n万元,∴n =10, 故选D. 答案:D13.(2019·高考全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________.解析:∵{a n }为等差数列,a 3=5,a 7=13, ∴公差d =a 7-a 37-3=13-54=2,首项a 1=a 3-2d =5-2×2=1, ∴S 10=10a 1+10×92d =100.答案:10014.(2019·安徽合肥二模)已知各项均为正数的数列{a n }前n 项和为S n ,若S 1=2,3S 2n -2a n +1S n =a 2n +1,则a n =________.解析:由S 1=2,得a 1=S 1=2. 由3S 2n -2a n +1S n =a 2n +1, 得4S 2n =(S n +a n +1)2.又a n >0,∴2S n =S n +a n +1,即S n =a n +1. 当n ≥2时,S n -1=a n , 两式作差得a n =a n +1-a n ,即a n +1a n=2. 又由S 1=2,3S 21-2a 2S 1=a 22,求得a 2=2. ∴当n ≥2时,a n =2×2n -2=2n -1.验证当n =1时不成立,∴a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.答案:⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥215.已知数列{a n }满足a n +2-2a n +1+a n =0,且a 4=π2,若函数f (x )=sin 2x +2cos 2x 2,记y n =f (a n ),则数列{y n }的前7项和为________.解析:根据题意,数列{a n }满足a n +2-2a n +1+a n =0,则数列{a n }是等差数列, 又由a 4=π2,则a 1+a 7=a 2+a 6=a 3+a 5=2a 4=π,函数f (x )=sin 2x +2cos 2x2=sin 2x +cos x +1,f (a 1)+f (a 7)=sin 2a 1+cos a 1+1+sin 2a 7+cos a 7+1=sin 2a 1+cos a 1+1+sin 2(π-a 1)+cos (π-a 1)+1=2,同理可得:f (a 2)+f (a 6)=f (a 3)+f (a 5)=2,f (a 4)=sin π+cos π2+1=1,则数列{y n }的前7项和f (a 1)+f (a 2)+f (a 3)+f (a 4)+f (a 5)+f (a 6)+f (a 7)=7; 故答案为7. 答案:716.如图,点D 为△ABC 的边BC 上一点,BD →=2DC →,E n (n ∈N )为AC 上一列点,且满足:E n A →=(4a n -1)E n D →+14a n +1-5E n B →,其中实数列{a n }满足4a n -1≠0,且a 1=2,则1a 1-1+1a 2-1+1a 3-1+…+1a n -1=________.解析:点D 为△ABC 的边BC 上一点, BD →=2DC →,E n D →-E n B →=2(E n C →-E n D →),∴E n C →=32E n D →-12E n B →又E n A →=λE n C →=3λ2E n D →-λ2E n B →,4a n -1=-3×14a n +1-5,∴4a n +1-5=-34a n -1,4a n +1-4=1-34a n -1=4a n -44a n -1,a n +1-1=a n -14a n -1, 1a n +1-1=4a n -1a n -1=4+3a n -1,∴1a n +1-1+2=3⎝ ⎛⎭⎪⎫1a n -1+2,∴1a n -1+2=3n, 1a n -1=3n-2. S n =3×(1-3n)1-3-2n =3n +1-3-4n2. 故答案为:3n +1-3-4n2. 答案:3n +1-3-4n2。

2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-2-1

2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-2-1

专题限时训练 (小题提速练)(建议用时:45分钟)一、选择题1.(2018·高考全国卷Ⅰ)设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12答案:B解析:设该等差数列的公差为d ,根据题中的条件可得3⎝ ⎛⎭⎪⎫3×2+3×22×d =2×2+d +4×2+4×32×d ,整理解得d =-3,所以a 5=a 1+4d =2-12=-10,故选B.2.(2017·江西省五市联考)已知等差数列{a n }的前10项和为30,a 6=8,则a 100=( ) A .100 B .958 C .948 D .18 答案:C解析:法一 因为等差数列{a n }的前10项和为30,所以a 1+a 10=6,即a 5+a 6=6,因为a 6=8,所以a 5=-2,公差d =10,所以-2=a 1+4×10,即a 1=-42,所以a 100=-42+99×10=948,故选C.法二 设等差数列{a n }的公差为d ,由已知得⎩⎨⎧a 1+5d =8,10a 1+10×92d =30,解得⎩⎪⎨⎪⎧a 1=-42,d =10,所以a 100=-42+99×10=948,故选C. 3.已知数列{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .110答案:D解析:a 7是a 3与a 9的等比中项,公差为-2,所以a 27=a 3·a 9. 所以a 27=(a 7+8)(a 7-4),所以a 7=8,所以a 1=20, 所以S 10=10×20+10×92×(-2)=110.故选D.4.(2019·吉林模拟)已知等比数列{a n }的前n 项和为S n ,若1a 1+1a 2+1a 3=2,a 2=2,则S 3=( ) A .8 B .7 C .6 D .4答案:A解析:1a 1+1a 2+1a 3=a 1+a 3a 1a 3+1a 2=a 1+a 2+a 3a 22=S 34=2,则S 3=8.故选A.5.(2019·怀化三模)《孙子算经》是中国古代重要的数学著作,书中有一道题为:今有出门望见九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,毛有九色,问各几何?若记堤与枝的个数分别为m ,n ,一等差数列{a n }的前n 项和为S n ,且a 2=m ,S 6=n ,则a 5为( ) A .18 B .81 C .234 D .243 答案:C解析:∵a 2=9,S 6=93, ∴729=6(a 2+a 5)2=3(a 5+9),∴a 5=234.故选C.6.(2018·昆明市调研测试)已知等差数列{a n }的公差为2,且a 4是a 2与a 8的等比中项,则{a n }的通项公式a n =( ) A .-2nB .2nC .2n -1D .2n +1答案:B解析:由题意,得a 2a 8=a 24.又a n =a 1+2(n -1),所以(a 1+2)(a 1+14)=(a 1+6)2,解得a 1=2,所以a n =2n .故选B.7.在等差数列{a n }中,首项a 1=0,公差d ≠0,若a k =a 1+a 2+a 3+…+a 7,则k =( ) A .22 B .23 C .24 D .25答案:A解析:{a n }为等差数列,所以a k =a 1+a 2+…+a 7=7a 4,则a 1+(k -1)d =7(a 1+3d ).因为a 1=0,所以(k -1)d =21d ,d ≠0,解得k =22,故选A.8.正项等比数列{a n }中的a 1,a 4 037是函数f (x )=13x 3-4x 2+6x -3的极值点,则log6a 2 019=()A .1B .2 C. 2 D .-1答案:A解析:因为f ′(x )=x 2-8x +6,且a 1,a 4 037是方程x 2-8x +6=0的两根,所以a 1·a 4 037=a 22 019=6,即a 2 019=6,所以log6a 2 019=1,故选A.9.(2018·湖北八校联考)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=( ) A .36 B .33 C .32 D .31答案:D解析:设{a n }的公比为q (q >0),因为a 1a 6=2a 3,而a 1a 6=a 3a 4,所以a 3a 4=2a 3,所以a 4=2.又a 4+2a 6=3,所以a 6=12,所以q =12,a 1=16,所以S 5=16⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=31.故选D.10.(2018·大连模拟)在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n 等于( ) A .n (3n -1) B .n (n +3)2 C .n (n +1) D .n (3n +1)2答案:C解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项,2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1),选C.11.已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( ) A.32 B .53 C.256 D .不存在答案:A解析:∵a 7=a 6+2a 5,∴a 5q 2=a 5q +2a 5,∴q 2-q -2=0,∴q =2.∵存在两项a m ,a n 使得a m a n =4a 1,∴a m a n =16a 21,∴q m +n -2=16=24,而q =2,∴m +n -2=4,∴m +n =6,∴1m +4n =16(m +n )·⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16×(5+4)=32,当且仅当m =2,n =4时,等号成立,∴1m +4n 的最小值为32.故选A.12.数列{a n }的通项a n =n 2⎝ ⎛⎭⎪⎫cos 2n π3-sin 2n π3,其前n 项和为S n ,则S 30为( )A .470B .490C .495D .510答案:A解析:由于cos 2n π3-sin 2n π3=cos 2n π3以3为周期,故S 30=⎝ ⎛⎭⎪⎫-12+222+32+⎝ ⎛⎭⎪⎫-42+522+62+…+⎝ ⎛⎭⎪⎫-282+2922+302=∑k =110⎣⎢⎡⎦⎥⎤-(3k -2)2+(3k -1)22+(3k )2 =∑k =110 ⎝ ⎛⎭⎪⎫9k -52=9×10×112-25=470.二、填空题13.(2019·北京四中热身卷)若等差数列{a n }满足a 1=12,a 4+a 6=5,则a 2 019=________. 答案:2 0192解析:∵等差数列{a n }满足a 1=12,a 4+a 6=5, ∴12+3d +12+5d =5, 解得d =12,∴a 2 019=12+2 018×12=2 0192.14.等比数列{a n }的前n 项和为S n ,若S 1,S 3,S 2成等差数列,则{a n }的公比q =__________. 答案:-12解析:由题意得,2S 3=S 1+S 2,∴2(a 1+a 2+a 3)=a 1+(a 1+a 2),整理得a 2+2a 3=0,∴a 3a 2=-12,即公比q =-12.15.(2017·石家庄市高三质量检测)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n ,…,若S k =14,则a k =__________.答案:78解析:因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+nn +1=1+2+…+n n +1=n 2, 所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n4.令T n =n 2+n 4=14,解得n =7,所以a k =78.16.(2018·云南师大附中月考)已知数列{a n }满足a 1=2,且a n =2na n -1a n -1+n -1(n ≥2,n ∈N *),则a n =________.答案:n ·2n2n -1解析:由a n =2na n -1a n -1+n -1,得n a n =n -12a n -1+12,于是n a n -1=12⎝ ⎛⎭⎪⎪⎫n -1a n -1-1(n ≥2,n ∈N *). 又1a 1-1=-12,∴数列⎩⎨⎧⎭⎬⎫n a n -1是以-12为首项,12为公比的等比数列,故n a n-1=-12n ,∴a n =n ·2n 2n-1(n ∈N *). 专题限时训练 (大题规范练)(建议用时:60分钟)1.(2019·河北模拟)已知数列{a n }满足a 1=2且a n +1=3a n +2n -1(n ∈N *). (1)求证:数列{a n +n }为等比数列; (2)求数列{a n }的通项公式; (3)求数列{a n }的前n 项和S n .解析:(1)数列{a n }满足a 1=2且a n +1=3a n +2n -1, 可得a n +1+n +1=3a n +3n =3(a n +n ),可得数列{a n +n }是首项为3,公比为3的等比数列. (2)a n +n =3n ,即a n =3n -n (n ∈N *). (3)S n =(3+9+…+3n )-(1+2+…+n ) =3(1-3n )1-3-12n (n +1)=32(3n -1)-12n (n +1).2.(2017·山西省八校联考)已知等比数列{a n }的公比q >1,a 1=1,且2a 2,a 4,3a 3成等差数列.(1)求数列{a n }的通项公式;(2)记b n =2na n ,求数列{b n }的前n 项和T n .解析:(1)由2a 2,a 4,3a 3成等差数列可得2a 4=2a 2+3a 3,即2a 1q 3=2a 1q +3a 1q 2. 又q >1,a 1=1,故2q 2=2+3q , 即2q 2-3q -2=0,得q =2, 因此数列{a n }的通项公式为a n =2n -1. (2)b n =2n ×2n -1=n ×2n ,T n =1×2+2×22+3×23+…+n ×2n , ① 2T n =1×22+2×23+3×24+…+n ×2n +1, ② ①-②得-T n =2+22+23+…+2n -n ×2n +1,-T n =2(2n -1)2-1-n ×2n +1,T n =(n -1)×2n +1+2.3.(2017·福建省高中毕业班质量检测)已知等差数列{a n }的前n 项和为S n ,且a 2=2,S 5=15,数列{b n }的前n 项和T n 满足T n =(n +5)a n . (1)求a n ;(2)求数列{1a nb n}的前n 项和.解析:(1)设等差数列{a n }的公差为d ,依题意有⎩⎪⎨⎪⎧ a 2=2,S 5=15,即⎩⎪⎨⎪⎧a 1+d =2,5a 1+10d =15,解得a 1=d =1,所以a n =n .(2)由(1)得,a n =n ,所以T n =n (n +5).当n ≥2时,b n =T n -T n -1=n (n +5)-(n -1)(n +4)=2n +4, 当n =1时,b 1=T 1=6也满足上式, 所以b n =2n +4(n ∈N *).所以1a n b n =1n (2n +4)=12n (n +2)=14⎝ ⎛⎭⎪⎫1n -1n +2. 设{1a nb n }的前n 项和为P n ,则当n ≥2时,P n =1a 1b 1+1a 2b 2+…+1a n b n =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12+13+…+1n -⎝ ⎛⎭⎪⎫13+14+…+1n +1n +1+1n +2 =14⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=38-14(n +1)-14(n +2).当n =1时,P 1=1a 1b 1=16也满足上式.综上,P n =38-14(n +1)-14(n +2).4.已知数列{a n }满足:a 1=1,na n +1=2(n +1)a n +n (n +1)(n ∈N *). (1)若b n =a nn +1,试证明数列{b n }为等比数列; (2)求数列{a n }的通项公式a n 及其前n 项和S n .解析:(1)证明:由na n +1=2(n +1)a n +n (n +1)得a n +1n +1=2a nn +1,得a n +1n +1+1=2a n n +2=2⎝ ⎛⎭⎪⎫a n n +1,即b n +1=2b n .又b 1=2,所以数列{b n }是以2为首项,2为公比的等比数列. (2)由(1)知b n =2n ,得a nn +1=2n ,即a n =n (2n -1),∴S n =1×(2-1)+2×(22-1)+3×(23-1)+…+n (2n -1) =1×2+2×22+3×23+…+n ·2n -(1+2+3+…+n ) =1×2+2×22+3×23+…+n ·2n-n (n +1)2.令T n =1×2+2×22+3×23+…+n ·2n , 则2T n =1×22+2×23+3×24+…+n ·2n +1, 两式相减,得-T n =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1,∴T n =2(1-2n )+n ·2n +1=(n -1)·2n +1+2,n(n+1)∴S n=(n-1)·2n+1+2-2.。

人教版新高考数学二轮复习习题训练--专题突破练1 常考小题点过关检测(word版含解析)

人教版新高考数学二轮复习习题训练--专题突破练1 常考小题点过关检测(word版含解析)

专题突破练1 常考小题点过关检测一、单项选择题1.(2021·山东潍坊一模)已知集合A={-2,0},B={x|x 2-2x=0},则下列结论正确的是( ) A.A=B B.A ∩B={0} C.A ∪B=A D.A ⊆B2.(2021·广东广州二模)已知集合P={x|-3≤x ≤1},Q={y|y=x 2+2x },则P ∪(∁R Q )=( )A.[-3,-1)B.[-1,1]C.(-∞,-1]D.(-∞,1]3.(2021·河北保定一模)设a ,b ∈R ,则“|a+b i |=|1+i |”是“a=b=1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件4.(2021·福建福州一中模拟)在复平面内,复数z=a+b i(a ∈R ,b ∈R )对应向量OZ⃗⃗⃗⃗⃗ (O 为坐标原点),设|OZ⃗⃗⃗⃗⃗ |=r ,以x 轴的非负半轴为始边,射线OZ 为终边的角为θ,则z=r (cos θ+isin θ).法国数学家棣莫弗发现棣莫弗定理:z n =[r (cos θ+isin θ)]n =r n (cos n θ+isin n θ),则(-1+√3i)10=( ) A.1 024-104√3i B.-1 024+1 024√3i C.512-512√3iD.-512+512√3i5.(2021·东北三校第一次联考)土楼有圆形、方形、五角形、八角形、日字形、回字形、吊脚楼等类型.某大学建筑系学生对这七种主要类型的土楼依次进行调查研究.在制定调查顺序时,要求将圆形排在第一个或最后一个,方形、五角形相邻,则共有( )种不同的排法. A.480B.240C.384D.1 4406.(2021·河北唐山一模)记(x +12x)4展开式的偶数项之和为P ,则P 的最小值为( )A.1B.2C.3D.47.(2021·江苏南京三模)在正方形ABCD 中,O 为两条对角线的交点,E 为BC 边上的动点.若AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ +μDO ⃗⃗⃗⃗⃗⃗ (λ>0,μ>0),则2λ+1μ的最小值为( ) A.2B.5C.92D.1438.(2021·山东日照一中月考)已知f (x )=x 2+4x+1+a ,且对任意x ∈R ,f (f (x ))≥0恒成立,则实数a 的取值范围为( ) A.[√5-12,+∞) B.[2,+∞) C.[-1,+∞)D.[3,+∞)二、多项选择题9.(2021·河北张家口一模)如果平面向量a =(2,-4),b =(-6,12),那么下列结论正确的是( ) A.|b |=3|a |B.a ∥bC.a 与b 的夹角为30°D.a ·b =-6010.(2021·河北唐山二模)已知a>b>0,且ab=4,则 ( )A.2a-b >1B.log 2a-log 2b>1C.2a +2b >8D.log 2a ·log 2b<111.(2021·山东临沂模拟)在下列四个条件中,能成为x>y 的充分不必要条件的是( ) A.xc 2>yc 2 B.1x<1y<0 C.|x|>|y| D.ln x>ln y12.(2021·广东茂名模拟)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.这是因为阿基米德认为这个“圆柱容球”是他最为得意的发现,于是留下遗言:他死后,墓碑上要刻上一个“圆柱容球”的几何图形.如图,设圆柱的体积与球的体积之比为m ,圆柱的表面积与球的表面积之比为n ,若f (x )=(mn x 3-1x )8,则( ) A.f (x )的展开式中的常数项是56 B.f (x )的展开式中的各项系数之和为0 C.f (x )的展开式中的二项式系数最大值是70 D.f (i)=-16,其中i 为虚数单位三、填空题13.(2021·福建厦门双十中学月考)设复数z 满足z=4i 1+i,则z 的共轭复数z 在复平面内对应的点位于第象限.14.(2021·上海嘉定二模)将(x √x)7的二项展开式的各项重新随机排列,则有理项互不相邻的概率为 .15.(2021·浙江嘉兴二模)为满足某度假区游客绿色出行需求,某电力公司在该度假区停车楼建设了集中式智慧有序充电站,充电站共建设901个充电桩,其中包括861个新型交流有序充电桩、37个直流充电桩以及3个专门满足新能源大巴快速补电需求的大功率直流充电桩.现有A ,B ,C ,D ,E ,F 六辆新能源大巴,需要安排在某周一的上午或下午在甲、乙、丙3个新能源大巴大功率直流充电桩充电,每个充电桩在上午和下午均只安排一辆大巴充电.若要求A ,B 两大巴不能同时在上午充电,而C 大巴只能在下午充电,且F 大巴不能在甲充电桩充电,则不同的充电方案一共有 种.(用数字作答) 16.(2021·辽宁葫芦岛一模)在边长为2的正三角形ABC 中,D 是BC 边的中点,AE ⃗⃗⃗⃗⃗ =2EB⃗⃗⃗⃗⃗ ,CE 交AD 于点F.若BF ⃗⃗⃗⃗⃗ =x BC ⃗⃗⃗⃗⃗ +y BA ⃗⃗⃗⃗⃗ ,则x+y= ;BF ⃗⃗⃗⃗⃗ ·DE ⃗⃗⃗⃗⃗ = .专题突破练1 常考小题点过关检测1.B 解析: 由题设得B={0,2},所以A ≠B ,A ∩B={0},A ∪B ≠A ,A 不是B 的子集.2.D 解析: 因为Q={y|y=x 2+2x }={y|y=(x+1)2-1}={y|y ≥-1},所以∁R Q={y|y<-1}, 又P={x|-3≤x ≤1},所以P ∪(∁R Q )={x|x ≤1}.3.B 解析: ∵|a+b i |=|1+i |,∴√a 2+b 2=√12+12,即a 2+b 2=2. ∵a 2+b 2=2a=b=1,而a=b=1⇒a 2+b 2=2,∴“a 2+b 2=2”是“a=b=1”的必要不充分条件,即“|a+b i |=|1+i |”是“a=b=1”的必要不充分条件.4.D 解析: 由题意,得(-1+√3i)10=210cos (10×2π3)+isin 10×2π3=1 024cos 20π3+isin 20π3=1 024(-12+√32i)=-512+512√3i .5.A 解析: 当圆形排在第一个时,有A 55A 22=240种不同的排法.同理,当圆形排在最后一个时,有A 55A 22=240种不同的排法.综上,圆形要排在第一个或最后一个,方形、五角形相邻,则共有480种不同的排法.6.B 解析: 由已知得x ≠0,则x 2>0,所以P=C 41x 3·12x+C 43x·(12x )3=2x 2+12x 2≥2√1=2,当且仅当2x 2=12x 2即x=±√22时等号成立. 7.C 解析: 如图所示,以A 为原点,AB ,AD 所在直线分别为x 轴、y 轴建立平面直角坐标系. 设正方形的边长为1,则A (0,0),B (1,0),C (1,1),D (0,1),于是可得O (12,12).设点E 的坐标为(1,m )(0≤m ≤1),则由AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ +μDO⃗⃗⃗⃗⃗⃗ (λ>0,μ>0),可得(1,m )=λ(1,1)+μ(12,-12)(λ>0,μ>0),所以1=λ+12μ(λ>0,μ>0),则2λ+1μ=(2λ+1μ)(λ+12μ)=2+12+μλ+λμ≥52+2√μλ·λμ=92,当且仅当{ λμ=μλ,1=λ+12μ,λ>0,μ>0,即λ=μ=23时取等号,此时2λ+1μ的最小值为92.经检验,此时m=13∈[0,1]符合题意.8.B解析: 由题意,函数f(x)=x2+4x+1+a,令t=f(x),则t=x2+4x+1+a=(x+2)2-3+a≥a-3,又对任意x∈R,f(f(x))≥0恒成立,即f(t)≥0对任意t≥a-3恒成立,当a-3≤-2时,即a≤1时,f(t)min=f(-2)=a-3≥0,解得a≥3,此时无解;当a-3>-2时,即a>1时,f(t)min=f(a-3)=a2-a-2≥0,解得a≥2或a≤-1,所以a≥2.综上可得,实数a的取值范围为[2,+∞).9.ABD解析: 因为a=(2,-4),b=(-6,12),所以b=-3a.所以|b|=3|a|,a∥b,a与b的夹角为180°,a·b=2×(-6)+(-4)×12=-60,故选项A,B,D正确,选项C错误.10.ACD解析: 因为a>b>0,且ab=4,对A,a-b>0,所以2a-b>20=1,故A正确;对B,取a=83,b=32,则log2a-log2b=log2ab=log2169<log22=1,故B错误;对C,2a+2b≥2√2a·2b=2√2a+b,当且仅当a=b时取等号,又因为a+b≥2√ab=4,当且仅当a=b=2时取等号,所以2a+2b≥2√2a+b≥2√24=8,当且仅当a=b=2时取等号,因为a>b>0,所以不能取等号,故C正确;对D,当a>1>b>0时,log2a>0,log2b<0,所以log2a·log2b<1;当a>b>1时,log2a>0,log2b>0,所以log2a·log2b≤(log2a+log2b)24=[log2(ab)]24=1,当且仅当a=b时取等号,因为a>b>0,所以不能取等号,故D正确.11.ABD解析: 对于A选项:若xc2>yc2,则c2≠0,于是x>y,而当x>y,c=0时xc2=yc2,所以“xc2>yc2”是“x>y”的充分不必要条件,故A符合题意;对于B选项:由1x<1y<0可得y<x<0,即能推出x>y;但x>y不能推出1x<1y<0(因为x,y的正负不确定),所以“1x<1y<0”是“x>y”的充分不必要条件,故B符合题意;对于C选项:由|x|>|y|可得x2>y2,则(x+y)(x-y)>0,不能推出x>y;由x>y也不能推出|x|>|y|(如x=1,y=-2),所以“|x|>|y|”是“x>y”的既不充分也不必要条件,故C不符合题意; 对于D选项:若ln x>ln y,则x>y,而由x>y不能推出ln x>ln y,所以“ln x>ln y”是“x>y”的充分不必要条件.故选项D符合题意.12.BC解析: 设内切球的半径为r(r>0),则圆柱的高为2r.于是m=πr2·2r43πr3=32,n=2πr2+2πr·2r4πr2=32,所以mn=1,所以f(x)=(x3-1x)8.对于A,f(x)展开式通项为T r+1=C8r x24-3r·(-1x )r=(-1)r C8r x24-4r,令24-4r=0,解得r=6,所以f(x)展开式中的常数项为(-1)6C86=28,A错误;对于B,f(1)=0,即f(x)展开式的各项系数之和为0,B正确; 对于C,f(x)展开式中二项式系数最大值为C84=70,C正确;对于D,f (i)=(i 3-1i )8=(-i +i)8=0,D 错误. 13.四 解析: 因为z=4i1+i =4i (1-i )(1+i )(1-i )=4i (1-i )2=2i(1-i)=2i -2i 2=2+2i,所以z =2-2i,所以共轭复数z 在复平面内对应的点位于第四象限.14.114解析: (x +1√x )7的展开式的通项为T r+1=C 7r x 7-r ·x -12r =C 7r x 7-32r ,当r=0,2,4,6时,对应的项为有理项,一共4项,当r=1,3,5,7时,对应的项为无理项,一共4项,要使得有理项互不相邻,采用插空法,先把无理项排好,再把有理项插到无理项的5个空档中,共有A 44A 54=2 880种情况,全部的情况有A 88=40 320种,故所求概率P=A 44A 54A 88=2 88040 320=114.15.168 解析: 先排F 大巴,第一种方案,F 大巴在上午充电,有C 21种可能情况,此时再排C大巴,C 大巴在下午充电,有C 31种可能情况,再排A ,B 大巴,又分A ,B 大巴同在下午和一个上午、一个下午两种情况,有(A 22+C 21C 21C 21)种可能情况;第二种方案,F 大巴在下午充电,有C 21种可能情况,此时再排C 大巴,C 大巴在下午充电,有C 21种可能情况,再排A ,B 大巴,只能一个上午、一个下午,有C 21C 31种可能情况.最后再排剩下的两辆大巴,有A 22种可能情况,故共有[C 21C 31(A 22+C 21C 21C 21)+C 21C 21C 21C 31]A 22=168种不同的充电方案. 16.35 -715解析: 如图,过点E 作EM ∥AD 交BC 于点M ,由AE ⃗⃗⃗⃗⃗ =2EB ⃗⃗⃗⃗⃗ ,得EM=13AD ,BM=13BD ,MD=23BD ,又D 是BC 边的中点,得DC=35MC ,∴FD=35EM ,故FD=15AD ,即AF=45AD ,所以AF ⃗⃗⃗⃗⃗ =45AD ⃗⃗⃗⃗⃗ =45(BD ⃗⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )=45(12BC ⃗⃗⃗⃗⃗ -BA ⃗⃗⃗⃗⃗ )=25BC ⃗⃗⃗⃗⃗ −45BA ⃗⃗⃗⃗⃗ ,所以BF ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ =15BA ⃗⃗⃗⃗⃗ +25BC ⃗⃗⃗⃗⃗ ,故x+y=35.易知DE ⃗⃗⃗⃗⃗ =BE ⃗⃗⃗⃗⃗ −BD ⃗⃗⃗⃗⃗⃗ =13BA ⃗⃗⃗⃗⃗ −12BC ⃗⃗⃗⃗⃗ , 由已知得BA=BC=2,<BC ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ >=60°,所以|BA ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |=2,BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =2×2×cos 60°=2.所以BF ⃗⃗⃗⃗⃗ ·DE ⃗⃗⃗⃗⃗ =(15BA ⃗⃗⃗⃗⃗ +25BC ⃗⃗⃗⃗⃗ )·(13BA ⃗⃗⃗⃗⃗ -12BC ⃗⃗⃗⃗⃗ )=115BA ⃗⃗⃗⃗⃗ 2−15BC ⃗⃗⃗⃗⃗ 2+130BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =115×4-15×4+130×2=-715.。

高考二轮复习限时训练(二)

高考二轮复习限时训练(二)

高考二轮复习限时训练(二)(时间:60分钟)班级 姓名 得分一.填空题(每题5分,共60分)1. 已知复数121,2z i z i =-=+,那么12z z ⋅的值是 .2. 集合{}22,A x x x R =-≤∈ {}2|,12B y y x x ==--≤≤,则()R C A B= .3. 函数x y 2sin =向量a 平移后,所得函数的解析式是12cos +=x y ,则模最小的一个向量a = .4. 甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表 (单位:环)如果甲、乙两人中只有1人入选,则入选的最佳人选应是 .5. 曲线在53123+-=x x y 在1=x 处的切线的方程为 .6. 已知实数x ,y 满足22,052yx y x +=++那么的最小值为 .7. 如图,是棱长为2的正四面体的左视图,则其主视图的面积为 . 8. 设数列{}n a 的首项127,5a a =-=,且满足22()n n a a n N ++=+∈,则135a a a a++++ = . 9.已知tan()35πα-=-则22sin cos 3cos 2sin αααα=- .10.阅读下列程序: Read S ←1For I from 1 to 5 step 2 S ←S+I Print S End for End输出的结果是 .11. 设函数()()f x g x 、在R 上可导,且导函数''()()f x g x >,则当a x b <<时,下列不等式:(1)()()f x g x >(2)()()f x g x <(3)()()()()f x g b g x f b +<+(4) ()()()()f x g a g x f a +>+ 正确的有 .12. 已知抛物线的顶点在原点,焦点在x 轴的正半轴上,F 为焦点,,,A B C 为抛物线上的三点,且满足0FA FB FC ++= ,FA + FB + 6FC =,则抛物线的方程为 .二.解答题(每题15分,共30分)13.直三棱柱111C B A ABC -中,11===BB BC AC ,31=AB .(1)求证:平面⊥C AB 1平面CB B 1; (2)求三棱锥C AB A 11-的体积.14.已知二次函数),,(,)(2R c b a c bx ax x f ∈++=满足:对任意实数x ,都有x x f ≥)(,且当∈x (1,3)时,有2)2(81)(+≤x x f 成立。

高考二轮复习限时训练(七)

高考二轮复习限时训练(七)

高考二轮复习限时训练(七)(时间:60分钟)班级 姓名 得分一、填空题:本大题共12小题,每小题5分,共60分.1、已知集合A =},1|{2Z x x y x ∈-=,},12|{A x x y y B ∈-==,则B A = .2、若曲线4()f x x x =-在点P 处的切线平行于直线3x -y =0,则点P 的坐标为 .3、在等比数列{}n a 中,32,317483-=-=+a a a a ,公比q 是整数,则10a = .4、已知a 与b 均为单位向量,它们的夹角为60º,那么| a +3b |等于 .5、已知函数)()(),0()(2x m f x m f a c bx ax x f -=+≠++=且,则m 等于6、如图是利用斜二测画法画出的ABO ∆的直观图,已知''B O =4,且ABO ∆的面积为16,过'A 作'''x C A ⊥轴,则''C A 的长为 .7、 幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图像三等分,即有BM =MN =NA .那么,αβ= ▲ .8、设2≥x ,则函数1)2)(5(+++=x x x y 的最小值是 . 9、已知实数x ,y 满足22,052y x y x +=++那么的最小值为 .10、已知)1(3cos 3)1(3sin )(+-+=x x x f ππ,则(1)(2)(2008)+++= f f f 11、 已知二次函数f (x )满足f x f x ()()11+=-,且f f ()()0011==,,若f x ()在区间[m ,n ]上的值域是[m ,n ],则m = ,n = 。

12、若()sin() 1 (0,||<π)f x A x ωϕωϕ=++>对任意实数t ,都有()()ππ33f t f t +=-+.记 ()cos()1g x A x ωϕ=+-,则π()3g = . 二、解答题:本大题共2小题,共30分,13、在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.14、一个多面体的直观图和三视图如图所示,其中M 、N 分别是AB 、AC 的中点,G 是DF 上的一动点.(1)求证:;AC GN ⊥(7分)(2)当FG=GD 时,在棱AD 上确定一点P ,使得GP//平面FMC,并给出证明.(8分)a a a俯视图左视图 主视图G E F N MD C B A高考二轮复习限时训练(七)一、填空题1.}1,1{- 2.(1,0) 3.-128 4.13 5.ab 2- 6. 22 7. 1 8. 328 910.23 11. m 0 ,n = 1 12.-1 二、解答题:本大题共2小题,共30分,13、解:(1)ABC △的内角和A B C ++=π, 由00A B C π=>>3,,得20B π<<3.应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭. 因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<< ⎪⎪3⎝⎭⎭(2)因为14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪⎝⎭5s i n 3x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭, 所以,当x ππ+=62,即x π=3时,y取得最大值.14、证明:由三视图可得直观图为直三棱柱且底面ADF 中A D ⊥DF,DF=AD=DC(1)连接DB ,可知B 、N 、D 共线,且AC ⊥DN又FD ⊥AD FD ⊥CD ,∴FD ⊥面ABCD∴FD ⊥AC∴AC ⊥面FDN FDN GN 面⊂∴GN ⊥AC(2)点P 在A 点处证明:取DC 中点S ,连接AS 、GS 、GAG 是DF 的中点,∴GS//FC,AS//CM∴面GSA//面FMCGSA GA 面⊂∴GA//面FMC 即GP//面FMC。

(江苏专用)高考数学二轮复习 第二篇 第27练 压轴小题专练(1)试题 理-人教版高三全册数学试题

(江苏专用)高考数学二轮复习 第二篇 第27练 压轴小题专练(1)试题 理-人教版高三全册数学试题

第27练 压轴小题专练(1)[明晰考情] 高考题中填空题的最后2或3个小题,往往出现逻辑思维深刻,难度高档的题目.考点一 与函数有关的压轴小题方法技巧 本类压轴题常以超越方程、分段函数、抽象函数等为载体,考查函数性质、函数零点、参数的X 围和通过函数性质求解不等式.解决该类问题的途径往往是构造函数,进而研究函数的性质,利用函数性质去求解问题是常用方法,其间要注意导数的应用.1.偶函数f (x )满足f (x -1)=f (x +1),且当x ∈[-1,0]时,f (x )=x 2,若函数g (x )=f (x )-|lg x |,则g (x )在(0,10)上的零点个数为________. 答案 10解析 由题意g (x )=f (x )-|lg x |=⎩⎪⎨⎪⎧f (x )-lg x ,lg x ≥0,f (x )+lg x ,lg x <0,∵f (x -1)=f (x +1),∴f (x )=f (x +2),故f (x )是周期函数,且T =2, 又函数f (x )是R 上的偶函数,∴f (1-x )=f (1+x ),∴f (x )的图象关于x =1对称,当x >0时,在同一坐标系中作出y =f (x )和y =|lg x |的图象,如图所示.由图象知函数g (x )的零点个数为10.2.已知函数f (x )=2x-12(x <0)与g (x )=log 2(x +a )的图象上存在关于y 轴对称的点,则a 的取值X 围是________. 答案 (-∞,2)解析 由f (x )关于y 轴对称的函数为h (x )=f (-x )=2-x-12(x >0),令h (x )=g (x ),得2-x-12=log 2(x +a )(x >0),则方程2-x-12=log 2(x +a )在(0,+∞)上有解,作出y =2-x-12与y =log 2(x +a )的图象,如图所示,当a ≤0时,函数y =2-x-12与y =log 2(x +a )的图象在(0,+∞)上必有交点,符合题意;若a >0,两函数在(0,+∞)上必有交点,则log 2a <12,解得0<a <2,综上可知,实数a 的取值X 围是(-∞,2).3.函数f (x )的定义域为D ,若满足:①f (x )在D 内是单调函数;②存在[a ,b ]⊆D 使得f (x )在[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤a 2,b2,则称函数f (x )为“成功函数”.若函数f (x )=log m (m x+2t )(其中m >0,且m ≠1)是“成功函数”,则实数t 的取值X 围为________.答案 ⎝ ⎛⎭⎪⎫0,18 解析 无论m >1还是0<m <1,f (x )=log m (m x+2t )都是R 上的单调增函数,故应有⎩⎪⎨⎪⎧f (a )=a 2,f (b )=b 2,则问题可转化为求f (x )=x2,即f (x )=log m (m x+2t )=x2,即m x+2t =12x m在R 上有两个不相等的实数根的问题,令λ=12x m(λ>0),则m x+2t =12x m可化为2t =λ-λ2=-⎝ ⎛⎭⎪⎫λ-122+14,结合图形(图略)可得t ∈⎝ ⎛⎭⎪⎫0,18. 4.(2018·某某省如东高级中学月考)已知函数f (x )=(x 2-3)e x ,设关于x 的方程f 2(x )-af (x )=0(a ∈R )有4个不同的实数解,则a 的取值X 围是________.答案 ⎩⎨⎧⎭⎬⎫6e 3∪(-2e,0)解析 由题意知,f ′(x )=2x e x +(x 2-3)e x=e x(x 2+2x -3),令f ′(x )=0,解得x =1或x =-3,所以当x <-3或x >1时,f ′(x )>0,当-3<x <1时,f ′(x )<0,所以f (x )在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增,所以当x =-3时,f (x )取得极大值6e3;当x =1时,f (x )取得极小值-2e ,当x →-∞时,f (x )→0, 作出函数f (x )的图象,如图所示,由f 2(x )-af (x )=0,得f (x )=0或f (x )=a , 由图象可知f (x )=0有两解,所以f (x )=a 也有两解, 所以a =6e 3或-2e<a <0.考点二 与数列有关的压轴小题方法技巧 数列与函数的交汇、数列与不等式的交汇问题是高考的热点.解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化,确定数列的通项或前n 项和,利用函数的性质、图象求解最值问题,不等关系或恒成立问题.5.在公比为q 的正项等比数列{a n }中,a 4=4,则当2a 2+a 6取得最小值时,log 2q =________. 答案 14解析 2a 2+a 6≥22a 2a 6=22a 24=82,即2a 2+a 6=2a 4q2+a 4q 2≥82,所以q 4-22q 2+2≥0,即(q 2-2)2≥0,当且仅当q 4=2时取等号,所以log 2q =log 2214=14.6.已知数列{a n }满足:a 1=1,a n +1=a na n +2(n ∈N *).若b n +1=(n -2λ)·⎝ ⎛⎭⎪⎫1a n +1(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值X 围是________. 答案 ⎝ ⎛⎭⎪⎫-∞,23解析 由a n +1=a na n +2,得1a n +1=2a n +1,即1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,所以⎩⎨⎧⎭⎬⎫1a n +1是以1a 1+1为首项,2为公比的等比数列,所以1a n+1=⎝ ⎛⎭⎪⎫1a 1+12n -1=2n ,所以b n +1=(n -2λ)·2n.因为数列{b n }是单调递增数列,所以当n ≥2时,由b n +1>b n ,得(n -2λ)·2n>(n -1-2λ)·2n -1,解得n >2λ-1,即2>2λ-1,所以λ<32;当n =1时,由b 2>b 1得(1-2λ)·2>-λ,解得λ<23,因此λ<23.7.已知S n 和T n 分别为数列{a n }与数列{b n }的前n 项和,且a 1=e 4,S n =e S n +1-e 5,a n =e n b,则当T n 取得最大值时n 的值为________. 答案 4或5解析 由S n =e S n +1-e 5,得S n -1=e S n -e 5(n ≥2),两式相减,得a n =e a n +1(n ≥2),易知a 2=e 3,a 2a 1=e 3e 4=1e ,所以数列{a n }是首项为e 4,公比为1e的等比数列,所以a n =e 5-n .因为a n =e n b,所以b n =5-n .由⎩⎪⎨⎪⎧b n ≥0,b n +1≤0,即⎩⎪⎨⎪⎧5-n ≥0,5-(n +1)≤0,解得4≤n ≤5,所以当n =4或n =5时,T n 取得最大值.8.已知函数f (x )=x 2+(a +8)x +a 2+a -12,且f (a 2-4)=f (2a -8),设等差数列{a n }的前n 项和为S n (n ∈N *),若S n =f (n ),则S n -4aa n -1的最小值为________. 答案378解析 由题意可得a 2-4=2a -8或a 2-4+2a -8=2×⎝⎛⎭⎪⎫-a +82,解得a =1或a =-4.当a =1时,f (x )=x 2+9x -10,数列{a n }不是等差数列; 当a =-4时,f (x )=x 2+4x ,S n =f (n )=n 2+4n , ∴a 1=5,a 2=7,a n =5+(7-5)(n -1)=2n +3,∴S n -4a a n -1=n 2+4n +162n +2=12×(n +1)2+2(n +1)+13n +1=12×⎣⎢⎡⎦⎥⎤(n +1)+13n +1+2≥12⎣⎢⎡⎦⎥⎤2(n +1)×13n +1+2=13+1, 当且仅当n +1=13n +1,即n =13-1(舍负)时取等号, ∵n 为正整数,2<13-1<3,当n =2时,S n -4a a n -1=143;当n =3时,S n -4a a n -1=378,故当n =3时原式取最小值378.1.(2018·全国Ⅱ改编)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=________. 答案 2解析 ∵f (x )是奇函数,∴f (-x )=-f (x ),∴f (1-x )=-f (x -1).∵f (1-x )=f (1+x ), ∴-f (x -1)=f (x +1),∴f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数及其定义域为R 得f (0)=0. 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0,∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50)=0×12+f (49)+f (50)=f (1)+f (2)=2+0=2.2.已知实数f (x )=⎩⎪⎨⎪⎧e x,x ≥0,lg (-x ),x <0,若关于x 的方程f 2(x )+f (x )+t =0有三个不同的实根,则t 的取值X 围为________. 答案 (-∞,-2]解析 设m =f (x ),作出函数f (x )的图象,如图所示,则当m ≥1时,m =f (x )有两个根,当m <1时,m =f (x )有一个根.若关于x 的方程f 2(x )+f (x )+t =0有三个不同的实根,则等价为m 2+m +t =0有两个不同的实数根m 1,m 2,且m 1≥1,m 2<1.当m =1时,t =-2,此时由m2+m -2=0,解得m =1或m =-2,f (x )=1有两个根,f (x )=-2有一个根,满足条件;当m ≠1时,设h (m )=m 2+m +t ,其对称轴为m =-12,则需h (1)<0即可,即1+1+t <0,解得t <-2.综上,实数t 的取值X 围为t ≤-2.3.若存在两个正实数x ,y 使等式2x +m (y -2e x )(ln y -ln x )=0成立(其中e =2.71828…),则实数m 的取值X 围是________.答案 (-∞,0)∪⎣⎢⎡⎭⎪⎫2e ,+∞ 解析 当m =0时,不满足题意,由题意可得m =2x(2e x -y )(ln y -ln x ),则1m =(2e x -y )(ln y -ln x )2x =⎝ ⎛⎭⎪⎫e -12·y x ·ln y x ,令t =yx ()t >0,构造函数g (t )=⎝ ⎛⎭⎪⎫e -t 2ln t (t >0), 则g ′(t )=-12ln t +⎝ ⎛⎭⎪⎫e -t 2×1t=-12ln t +e t -12(t >0),设h (t )=g ′(t ),则h ′(t )=-12t -e t 2=-t +2e 2t 2<0恒成立,则g ′(t )在(0,+∞)上单调递减, 当t =e 时,g ′(t )=0,则当t ∈(0,e)时,g ′(t )>0,函数g (t )单调递增, 当t ∈(e,+∞)时,g ′(t )<0,函数g (t )单调递减, 则当t =e 时,g (t )取得最大值g (e)=e2,且当t →0时,g (t )→-∞, 据此有1m ≤e 2,∴m <0或m ≥2e.综上可得实数m 的取值X 围是(-∞,0)∪⎣⎢⎡⎭⎪⎫2e ,+∞.4.已知函数f (x )=2x 2x +1,函数g (x )=a sin π6x -2a +2(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值X 围是________.答案 ⎣⎢⎡⎦⎥⎤12,43解析 当x ∈[0,1]时,f (x )=2x2x +1是增函数,其值域是[0,1].g (x )=a sin π6x -2a +2(a >0)的值域是⎣⎢⎡⎦⎥⎤2-2a ,2-32a ,因为存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,所以[0,1]∩⎣⎢⎡⎦⎥⎤2-2a ,2-32a ≠∅,若[0,1]∩⎣⎢⎡⎦⎥⎤2-2a ,2-32a =∅,则2-2a >1或2-32a <0,即a <12或a >43,所以a 的取值X 围是⎣⎢⎡⎦⎥⎤12,43.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“精致数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“精致数列”,则数列{b n }的通项公式为__________.答案 b n =2n -1(n ∈N *)解析 设等差数列{b n }的公差为d , 由S n S 2n 为常数,设S nS 2n=k 且b 1=1, 得n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0, 因为对任意正整数n 上式恒成立,则⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,解得⎩⎪⎨⎪⎧d =2,k =14,所以数列{b n }的通项公式为b n =2n -1(n ∈N *). 6.若数列{a n }满足1a n +1-pa n=0,n ∈N *,p 为非零常数,则称数列{a n }为“梦想数列”.已知正项数列⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,且b 1b 2b 3…b 99=299,则b 8+b 92的最小值是________.答案 4解析 依题意可得b n +1=pb n ,则数列{b n }为等比数列.又b 1b 2b 3…b 99=299=b 9950,则b 50=2.b 8+b 92≥2b 8·b 92=2b 50=4,当且仅当b 8=b 92=2,即该数列为常数数列时取等号.7.当n 为正整数时,定义函数N (n )表示n 的最大奇因数.如N (3)=3,N (10)=5,…,S (n )=N (1)+N (2)+N (3)+…+N (2n),则S (5)=________. 答案 342解析 ∵N (2n )=N (n ),N (2n -1)=2n -1,而S (n )=N (1)+N (2)+N (3)+…+N (2n), ∴S (n )=N (1)+N (3)+N (5)+…+N (2n-1)+[N (2)+N (4)+…+N (2n)], ∴S (n )=1+3+5+ (2)-1+[N (1)+N (2)+N (3)+…+N (2n -1)],∴S (n )=1+2n-12×2n2+S (n -1)(n ≥2),即S (n )-S (n -1)=4n -1,又S (1)=N (1)+N (2)=1+1=2,∴S (5)-S (1)=[S (5)-S (4)]+[S (4)-S (3)]+…+[S (2)-S (1)]=44+43+42+4,∴S (5)=2+4+42+43+44=342.8.抛物线x 2=12y 在第一象限内图象上的一点(a i ,2a 2i )处的切线与x 轴交点的横坐标记为a i +1,其中i ∈N *,若a 2=32,则a 2+a 4+a 6=________. 答案 42解析 抛物线x 2=12y 可化为y =2x 2,则y ′=4x ,抛物线在点(a i ,2a 2i )处的切线方程为y -2a 2i=4a i (x -a i ),所以切线与x 轴交点的横坐标为a i +1=12a i ,所以数列{a 2k }是以a 2=32为首项,14为公比的等比数列,所以a 2+a 4+a 6=32+8+2=42. 9.已知等比数列{a n }的前n 项和为S n ,a 2>a 1,S 4=a 1+28,且a 3+2是a 2,a 4的等差中项,若数列⎩⎨⎧⎭⎬⎫a n +1S n S n +1的前n 项和T n ≤2n -2+M 恒成立,则M 的最小值为________. 答案 -16解析 设等比数列{a n }的公比为q ,依题意得2(a 3+2)=a 2+a 4,又S 4=a 1+28,∴a 2+a 3+a 4=28,得a 3=8,∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 3=a 1q 2=8,解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.又a 2>a 1,∴a 1=2,q =2,∴a n =2n,S n =2n +1-2.令b n =a n +1S n S n +1, ∴b n =2n +1(2n +1-2)(2n +2-2)=12n +1-2-12n +2-2, ∴T n =⎝⎛⎭⎪⎫122-2-123-2+⎝ ⎛⎭⎪⎫123-2-124-2+…+⎝ ⎛⎭⎪⎫12n +1-2-12n +2-2=122-2-12n +2-2=12-12n +2-2.故T n -2n -2=12-12n +2-2-2n -2. 又T n -2n -2-(T n +1-2n -1)=2n -2-2n -2⎝⎛⎭⎪⎫2n -12⎝ ⎛⎭⎪⎫2n +1-12>2n -2-2n -2(2n -1)2=22n -2(2n-2)(2n -1)2≥0, 即T n -2n -2>T n +1-2n -1,故数列{T n -2n -2}单调递减,故(T n -2n -2)max =12-123-2-2-1=-16.又T n ≤2n -2+M 恒成立,即M ≥T n -2n -2恒成立,故M ≥-16,所以M 的最小值为-16.10.已知数列{a n }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,数列{a n }的前n 项和为S n ,且满足a 4=S 3,a 9=a 3+a 4,则使得S 2kS 2k -1恰好为数列{a n }的奇数项的正整数k 的值为________. 答案 1解析 设等差数列的公差为d ,等比数列的公比为q , 则a 1=1,a 2=2,a 3=1+d ,a 4=2q ,a 9=1+4d . 因为a 4=S 3,a 9=a 3+a 4,所以1+2+1+d =2q,1+4d =1+d +2q , 解得d =2,q =3,则对于n ∈N *,有a 2n -1=2n -1,a 2n =2×3n -1,所以S 2n =[1+3+…+(2n -1)]+2(1+3+32+…+3n -1)=3n +n 2-1,S 2n -1=S 2n -a 2n =3n -1+n 2-1.若S 2k S 2k -1恰好为数列{a n }的奇数项,则可设S 2kS 2k -1=m (m 为正奇数), 所以S 2k S 2k -1=3k +k 2-13k -1+k 2-1=m ,即(3-m )3k -1=(m -1)(k 2-1).当k =1时,m =3,满足条件;当k ≠1时,3k -1k 2-1=m -13-m ,由3k -1k 2-1>0,得m -13-m>0,解得1<m <3,因为m 为正奇数,所以此时满足条件的正整数k 不存在.综上,k =1. 11.已知函数f (x )=x 2+(ln3x )2-2a (x +3ln3x )+10a 2,若存在x 0使得f (x 0)≤110成立,则实数a 的值为________. 答案130解析 f (x )=x 2+(ln3x )2-2a (x +3ln3x )+10a 2=(x -a )2+(ln3x -3a )2表示点M (x ,ln3x )与点N (a,3a )距离的平方,M 点的轨迹是函数g (x )=ln3x 的图象,N 点的轨迹是直线y =3x ,则g ′(x )=1x .作g (x )的平行于直线y =3x 的切线,切点为(x 1,y 1),则1x 1=3,所以x 1=13,切点为P ⎝ ⎛⎭⎪⎫13,0,所以曲线上点P ⎝ ⎛⎭⎪⎫13,0到直线y =3x 的距离最小,最小距离d =110,所以f (x )≥110,根据题意,要使f (x 0)≤110,则f (x 0)=110,此时N 为垂足,点M 与点P 重合,k MN=3a -0a -13=-13,得a =130. 12.(2018·某某省海安高级中学月考)已知公比不为1的等比数列{a n }中,a 1=1,a 2=a ,且a n+1=k (a n +a n +2)对任意正整数n 都成立,且对任意相邻三项a m ,a m +1,a m +2按某顺序排列后成等差数列,则满足题意的k 的值为________. 答案 -25解析 设等比数列{a n }的公比为q ,则q =a 2a 1=a (a ≠1), 所以a m =am -1,a m +1=a m ,a m +2=am +1.①若a m +1为等差中项,则2a m +1=a m +a m +2, 即2a m=am -1+am +1,解得a =1,不合题意.②若a m 为等差中项,则2a m =a m +1+a m +2, 即2am -1=a m +am +1,化简得a 2+a -2=0,解得a =-2或a =1(舍去).∴k =a m +1a m +a m +2=a m a m -1+a m +1=a 1+a 2=-25.③若a m +2为等差中项,则2a m +2=a m +1+a m , 即2am +1=a m +am -1,化简得2a 2-a -1=0,解得a =-12或a =1(舍去),∴k =a m +1a m +a m +2=a m a m -1+a m +1=a 1+a 2=-25.综上可得满足要求的实数k 有且仅有一个,且k =-25.。

2022年高考数学二轮复习题型专项练1 客观题12+4标准练(A)

2022年高考数学二轮复习题型专项练1 客观题12+4标准练(A)

题型专项练1 客观题12+4标准练(A)一、单项选择题1.若A={x|2x <4},B={x ∈N |-1<x<3},则A ∩B=( ) A.{x|-1<x<2} B.{0,1}C.{1}D.{x|-1<x<3}2.若复数z 满足i·z=z-i,则|z-i |=( ) A.√22B.√2C.1D.2√23.函数y=ln |x |x 2+2的图象大致为( )4.已知圆锥的表面积为3π,它的侧面展开图是一个半圆,则此圆锥的体积为( ) A.√3π2B.√3πC.√3π3D. 2√3π5.已知A (3m ,-m )是角α终边上的一点,则sin2α+sin 2α1+cos2α的值为( )A.718B.-518C.-52 D.726.已知椭圆E 的焦点为F 1,F 2,P 是椭圆E 上一点,若PF 1⊥PF 2,∠PF 2F 1=60°,则椭圆E 的离心率为 ( )A.2-√32B.2-√3C.√3-12D.√3-17.曲线y=e 2x 上的点到直线2x-y-4=0的最短距离是( ) A.√5B.√3C.√2D.18.采取一项单独防疫措施感染COVID -19的概率统计表如下:一次核酸检测的准确率为1-10p.某家庭有3口人,他们每个人只戴口罩,没有做到勤洗手也没有接种COVID -19疫苗,感染COVID -19的概率都为0.01.这3个人不同人的核酸检测结果,以及其中任何一个人的不同次核酸检测结果都是互相独立的.他们3人都落实了表中的三项防疫措施,而且共做了10次核酸检测.以这家人的每个人每次核酸检测被确诊感染COVID -19的概率为依据,这10次核酸检测中,若有X 次结果为确诊,则X 的数学期望为( ) A.1.98×10-6 B.1.98×10-7C.1.8×10-7D.2.2×10-7二、多项选择题9.空气质量指数按大小分为五个等级,指数越大说明污染的情况越严重,对人体危害越大,指数范围在区间[0,50],[51,100],[101,200],[201,300],[301,500]上分别对应“优”“良”“轻度污染”“中度污染”“重度污染”五个等级,某市连续14天的空气质量指数变化趋势如图所示,下列说法正确的是( )A.从2日到5日空气质量越来越好B.这14天中空气质量指数的极差为195C.这14天中空气质量指数的中位数是103.5D.这14天中空气质量指数为“良”的频率为31410.已知△ABC 是边长为2的正三角形,该三角形重心为点G ,P 为△ABC 所在平面内任一点,则下列结论正确的是( ) A.|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |=2B.AB⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =2 C.PA⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =3PG ⃗⃗⃗⃗⃗D.|AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ |=|AB ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ | 11.已知点P (2,4),若过点Q (4,0)的直线l 交圆C :(x-6)2+y 2=9于A ,B 两点,R 是圆C 上一动点,则( ) A.|AB|的最小值为2√5 B.点P 到直线l 的距离的最大值为2√5C.PQ ⃗⃗⃗⃗⃗ ·PR ⃗⃗⃗⃗⃗ 的最小值为12-2√5D.|PR|的最大值为4√2+312.已知三棱柱ABC-A 1B 1C 1为正三棱柱,且AA 1=2,AB=2√3,D 是B 1C 1的中点,点P 是线段A 1D 上的动点,则下列结论正确的是( )A.正三棱柱ABC-A 1B 1C 1外接球的表面积为20πB.若直线PB 与底面ABC 所成角为θ,则sin θ的取值范围为[√77,12]C.若A 1P=2,则异面直线AP 与BC 1所成的角为π4D.若过BC 且与AP 垂直的截面α与AP 交于点E ,则三棱锥P-BCE 的体积的最小值为√32三、填空题13.已知(√x 3-2a x)8的展开式中常数项为112,则实数a 的值为 .14.已知抛物线C :y 2=2px (p>0)的焦点为F ,A 为抛物线C 上一点,以F 为圆心,FA 为半径的圆交抛物线C 的准线于B ,D 两点,若A ,F ,B 三点共线,且|AF|=3,则抛物线C 的准线方程为 . 15.已知函数f (x )=ln(x 2+1)+e x +e -x ,则不等式f (x-2)-f (2x+1)≤0的解集为 . 16.定义在区间(0,+∞)上的函数y=f (x )满足:①当x ∈[1,3)时,f (x )={x -1,1≤x ≤2,3-x ,2<x <3;②f (3x )=3f (x ).(1)f (6)= ;(2)若函数F (x )=f (x )-a 的零点从小到大依次记为x 1,x 2,…,x n ,…,则当a ∈(1,3)时,x 1+x 2+…+x 2n-1+x 2n =.考前强化练题型专项练题型专项练1 客观题12+4标准练(A)1.B 解析 由2x <4,得x<2,所以A={x|x<2}.又B={0,1,2},所以A ∩B={0,1}.2.A 解析 因为i ·z=z-i,所以z=i 1-i =i (1+i )(1-i )(1+i )=-1+i2,所以z-i =-1-i 2=-12−12i .故|z-i |=√(-12)2+(-12)2=√22.3.B 解析 设y=f (x )=ln |x |x 2+2,则函数f (x )的定义域为{x|x ≠0},关于原点对称.又f (-x )=ln |-x |(-x )2+2=f (x ),所以函数f (x )为偶函数,排除AC;当x ∈(0,1)时,ln |x|<0,x 2+2>0 ,所以f (x )<0,排除D . 故选B .4.C 解析 设圆锥的底面半径为r (r>0),母线长为l (l>0),由于它的侧面展开图是一个半圆,所以2πr=πl ,即l=2r ,所以该圆锥的表面积S=πr 2+πrl=3πr 2=3π,解得r=1,所以圆锥的高h=√l 2-r 2=√3, 所以圆锥的体积V=13S 底·h=13×π×12×√3=√3π3. 5.B 解析 因为A (3m ,-m )是角α终边上的一点,所以tan α=-m 3m =-13,所以sin2α+sin 2α1+cos2α=2sinαcosα+sin 2α2cos 2α=tan α+12tan 2α=-13+12×(-13)2=-518. 6.D 解析 在△F 1PF 2中,∠F 1PF 2=90°,∠PF 2F 1=60°,设|PF 2|=m (m>0),则2c=|F 1F 2|=2m ,|PF 1|=√3m , 又由椭圆定义可知2a=|PF 1|+|PF 2|=(√3+1)m , 则离心率e=ca =2c2a =(√3+1)m=√3+1=√3-1.7.A 解析 因为y=e 2x ,所以y'=2e 2x ,设曲线y=e 2x 在点P (x 0,e 2x 0)处的切线与直线2x-y-4=0平行,则2e 2x 0=2,所以2x 0=0,x 0=0,切点P (0,1),曲线y=e 2x 上的点到直线2x-y-4=0的最短距离即为切点P 到直线2x-y-4=0的距离d=√5=√5.8.B 解析 根据条件,p=0.01.一个人落实了表中三项防疫措施后,感染COVID -19的概率为145(1-p )p ·p100=2.2×10-8,一次核酸检测的准确率为1-10×0.01=0.9,这个人再进行一次核酸检测,可知此人核酸检测被确诊感染COVID -19的概率为2.2×10-8×0.9=1.98×10-8.以这家人核酸检测确诊感染COVID -19的概率为依据,这家3口人10次核酸检测中被确诊感染COVID -19的次数为X~B (10,1.98×10-8),∴E (X )=10×1.98×10-8=1.98×10-7.9.BC 解析 从2日到5日空气质量指数越来越大,故空气质量越来越差,故A 错误;这14天中空气质量指数的极差为220-25=195,故B 正确;这14天空气质量指数由小到大排列,中间为86,121,故中位数为86+1212=103.5,故C正确;这14天中1日,3日,12日,13日空气质量指数为良,共4天,所以空气质量指数为“良”的频率为414=27,故D 错误.10.BC 解析 因为△ABC 是边长为2的正三角形,所以|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |=√(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )2=√AB ⃗⃗⃗⃗⃗ 2 +2AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗+AC⃗⃗⃗⃗⃗ 2 =√4+2×2×2×12+4=2√3,故A 错误;AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |·|AC⃗⃗⃗⃗⃗ |cos ∠BAC=2×2×12=2,故B 正确;根据重心的性质可得AG ⃗⃗⃗⃗⃗ =23·12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),所以3PG ⃗⃗⃗⃗⃗ -3PA ⃗⃗⃗⃗⃗ =PB⃗⃗⃗⃗⃗ −PA ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ −PA ⃗⃗⃗⃗⃗ ,所以3PG ⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC⃗⃗⃗⃗⃗ ,故C 正确; 因为|AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ |=|AC⃗⃗⃗⃗⃗ |=2, |AB ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ |=√(AB ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗)2=√AB ⃗⃗⃗⃗⃗ 2 +CB⃗⃗⃗⃗⃗ 2+2AB ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ =√4+4+2×2×2×12=2√3,故D 错误.11.ABD 解析 如图,当直线l 与x 轴垂直时,|AB|有最小值,且最小值为2√5,所以A 正确;当直线l 与PQ 垂直时,点P 到直线l 的距离有最大值,且最大值为|PQ|=2√5,所以B 正确;由题意,设R (6+3cos θ,3sin θ),则PQ ⃗⃗⃗⃗⃗ ·PR ⃗⃗⃗⃗⃗ =(2,-4)·(4+3cos θ,3sin θ-4)=6cos θ-12sin θ+24,所以PQ ⃗⃗⃗⃗⃗ ·PR ⃗⃗⃗⃗⃗ =6√5cos(θ+φ)+24,所以PQ ⃗⃗⃗⃗⃗ ·PR⃗⃗⃗⃗⃗ 的最小值为24-6√5,所以C 错误; 当P ,C ,R 三点共线时,|PR|分别取得最大、最小值,且最大值为|PC|+3=4√2+3,所以D 正确.12.AD 解析 选项A:设△ABC 外接圆的半径为r (r>0),则由正弦定理得2√3sin60°=2r ,所以r=√33×2√3=2.又AA 1=2,所以正三棱柱ABC-A 1B 1C 1外接球的半径R=√4+1=√5,所以外接球的表面积为4πR 2=20π,故A 项正确;选项B:取BC 的中点F ,连接DF ,AF ,BD ,A 1B ,由正三棱柱的性质可知平面AA 1DF ⊥平面ABC ,所以当点P 与A 1重合时,θ最小,当点P 与D 重合时,θ最大,所以sin θ∈[12,2√77],故B 错误;选项C:将正三棱柱补成如图所示的直四棱柱,则∠GAP (或其补角)为异面直线AP 与BC 1所成的角,易得AG=GP=4,AP=2√2,所以∠GAP ≠π4,故C 项错误;选项D:如图所示,因为V P-ABC =13×2×√34×(2√3)2=2√3,所以要使三棱锥P-BCE 的体积最小,则三棱锥E-ABC 的体积最大,设BC 的中点为F ,作出截面如图所示,因为AP ⊥α,所以点E 在以AF 为直径的圆上,所以点E 到底面ABC 距离的最大值为√32×2√3×12=32,所以三棱锥P-BCE 的体积的最小值为2√3−13×32×√34×(2√3)2=√32,故D 项正确. 13.±1 解析 由于(√x 3-2a x )8展开式中的通项公式为T r+1=C 8r (√x 3)8-r·(-2a x )r =C 8r (-2a )rx 8-r 3-r ,令8-r3-r=0,得r=2,可得它的展开式的常数项是C 82(-2a )2,再根据展开式中的常数项是112,可得C 82(-2a )2=112,得a=±1.14.x=-34 解析 如图,设线段BD 的中点为N ,因为A ,F ,B 三点共线,则AB 为圆的直径,即∠ADB=90°,所以AD ⊥BD.由抛物线的定义可得|AD|=|AF|=3,FN 为Rt △ADB 的中位线,所以|FN|=12|AD|=p=32,则抛物线C 的准线方程为x=-34.15.(-∞,-3]∪[13,+∞) 解析 由题意可得,f (x )的定义域为R .因为f (x )=ln(x 2+1)+e x +e -x ,所以f (-x )=ln(x 2+1)+e -x +e x =f (x ),所以f (x )是偶函数.因为f'(x )=2x x 2+1+e x -e -x=2x x 2+1+e 2x -1e x , 当x>0时,f'(x )>0,所以f (x )在区间(0,+∞)上单调递增. 所以f (x-2)-f (2x+1)≤0,即f (x-2)≤f (2x+1),所以|x-2|≤|2x+1|,即3x2+8x-3≥0,解得x≤-3或x≥13.故所求不等式的解集为(-∞,-3]∪[13,+∞).16.(1)3(2)6(3n-1)解析(1)因为f(3x)=3f(x),所以f(6)=3f(2),当x=2时,f(2)=2-1=1,所以f(6)=3f(2)=3.(2)在同一平面直角坐标系内画出函数y=f(x)的图象和直线y=a如图所示.当a∈(1,3)时,利用对称性,依次有x1+x2=2×6=12,x3+x4=2×18=36,……x2n-1+x2n=2×2×3n,所以x1+x2+…+x2n-1+x2n=4×(3+32+…+3n)=4×3(1-3n)1-3=6(3n-1).。

高考数学二轮复习小题限时训练1理

高考数学二轮复习小题限时训练1理

高考数学二轮复习小题限时训练1理一、选择题:本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只要一项为哪一项契合标题要求的.1.[2021·陕西西安期末]选集U ={0,1,2,4,6,8,10},集合A ={2,4,6},B ={1},那么(∁U A)∪B 等于( )A .{0,1,8,10}B .{1,2,4,6}C .{0,8,10}D .∅2.[2021·江西重点协作体第二次联考]i 为虚数单位,a ,b ∈R ,假定()a -2i 3·i=b +2i ,那么a -b =( )A .-2B .0C .2D .43.ξ~B ⎝ ⎛⎭⎪⎫4,13,并且y =2ξ+3,那么方差D (y )=( ) A.329 B.89 C.439 D.5994.[2021·陕西渭南质量检测]假定AC ⊥BC ,AC =BC =1,点P 是△ABC 内一点,那么PA →·PB →的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫-12,12 D .(-1,1) 5.[2021·舒城中学仿真试题]以下说法正确的选项是( ) A .命题p :∀x ∈R ,sin x ≤1的否认为∀x ∈R ,sin x >1B .设a ,b ∈R ,那么〝log 2a >log 2b 〞是〝2a -b>1”的充要条件 C .假定命题p ∧q 为假命题,那么p ,q 都是假命题D .命题〝假定x 2-3x +2=0,那么x =1”的逆否命题为〝假定x ≠1,那么x 2-3x +2≠0”6.[2021·福建福州质检]规则:投掷飞镖3次为一轮,假定3次中至少两次投中8环以上为优秀.依据以往阅历,某选手投掷一次命中8环以上的概率为45.现采用计算机做模拟实验来估量该选手取得优秀的概率:用计算机发生0到9之间的随机整数,用0,1表示该次投掷未在8环以上,用2,3,4,5,6,7,8,9表示该次投掷在8环以上,经随机模拟实验发生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 031 257 393 527 556 488 730 113 537 989 据此估量,该选手投掷1轮,可以拿到优秀的概率为( ) A.45 B.1820 C.112125 D.17207.[2021·天津一中月考]x >0,y >0,lg2x +lg8y=lg4,那么1x +13y的最小值是( )A .4B .2 2C .2D .2 38.[2021·广西钦州市第三次质量检测]变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0x +y -6≤0,x -1≥0那么2x -y 的最小值是( )A .2B .-2C .-3D .-19.[2021·正源期末]函数f (x )=⎩⎪⎨⎪⎧3a -1x +4a ,x <1-ax ,x ≥1满足对恣意的实数x 1≠x 2都有f x 1-f x 2x 1-x 2<0,那么a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫18,13B.⎝ ⎛⎭⎪⎫18,+∞ C.⎝ ⎛⎭⎪⎫0,13 D.⎝⎛⎦⎥⎤-∞,13 10.[2021·唐山统考]设S n 是等比数列{a n }的前n 项和,假定S 4S 2=3,那么S 6S 4=( ) A .2 B.73C.310 D .1或2 11.[2021·合肥第三次教学质量检测]我国现代«九章算术»将上、下两面为平行矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长区分为2和4,高为2,那么该刍童的外表积为( )A .12 5B .40C .16+12 3D .16+12 512.[2021·宁夏六盘山第三次模拟]F 1,F 2是双曲线C :x 2a 2-y 2b2=1的左、右焦点,过F 1的直线l 与C 的左、右两支区分交于A ,B 两点.假定△ABF 2为等边三角形,那么双曲线的离心率为( )A.7B. 3 C .2 D.13二、填空题:本大题共4小题,每题5分,共20分,把答案填在题中的横线上. 13.[2021· 河南新乡市高三第三次模拟测试]非零向量a =(t,0),b =(-1,3),假定a +2b 与a 的夹角等于a +2b 与b 的夹角,那么t =________.14.[2021·山东日照结合考试]奇函数f (x )为R 上的减函数,假定f (3a 2)+f (2a -1)≥0,那么实数a 的取值范围是________.15.[2021·云南昆明月考]设函数f (x )=2x 2+6x +6-m ·e x(m 为非零实数),假定函数f (x )有且仅有一个零点,那么m 的取值范围为________.16.[2021·葫芦岛第二次模拟]以下说法:①线性回归方程y ^=b ^x +a ^必过(x -,y -);②命题〝∀x ≥1,x 2+3≥4”的否认是〝∃x <1,x 2+3<4”; ③相关系数r 越小,说明两个变量相关性越强;④在一个2×2列联表中,由计算得K 2=8.079,那么有99%的掌握以为这两个变量间有关系;其中正确的说法是________(把你以为正确的结论都写在横线上). 附:P (K 2≥k 0) 0.100 0.050 0.010 0.001。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小题限时训练(一)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.[2019·陕西西安期末]已知全集U ={0,1,2,4,6,8,10},集合A ={2,4,6},B ={1},则(∁U A)∪B 等于( )
A .{0,1,8,10}
B .{1,2,4,6}
C .{0,8,10}
D .∅
2.[2019·江西重点协作体第二次联考]已知i 为虚数单位,a ,b ∈R ,若()a -2i3·i =b +2i ,则a -b =( )
A .-2
B .0
C .2
D .4
3.已知ξ~B ⎝ ⎛⎭
⎪⎫4,13,并且y =2ξ+3,则方差D (y )=( ) A.329 B.89
C.439
D.599
4.[2019·陕西渭南质量检测]若AC ⊥BC ,AC =BC =1,点P 是△ABC 内一点,则PA →·PB
→的取值范围是( )
A.⎝ ⎛⎭⎪⎫-12,0
B.⎝ ⎛⎭
⎪⎫0,12 C.⎝ ⎛⎭
⎪⎫-12,12 D .(-1,1) 5.[2019·舒城中学仿真试题]下列说法正确的是( )
A .命题p :∀x ∈R ,sin x ≤1的否定为∀x ∈R ,sin x >1
B .设a ,b ∈R ,则“l og 2a >log 2b ”是“2a -b >1”的充要条件
C .若命题p ∧q 为假命题,则p ,q 都是假命题
D .命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0”
6.[2019·福建福州质检]规定:投掷飞镖3次为一轮,若3次中至少两次投中8环以
上为优秀.根据以往经验,某选手投掷一次命中8环以上的概率为45
.现采用计算机做模拟实验来估计该选手获得优秀的概率:用计算机产生0到9之间的随机整数,用0,1表示该次投掷未在8环以上,用2,3,4,5,6,7,8,9表示该次投掷在8环以上,经随机模拟试验产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
031 257 393 527 556 488 730 113 537 989
据此估计,该选手投掷1轮,可以拿到优秀的概率为( )
A.45
B.1820
C.112125
D.1720
7.[2019·天津一中月考]已知x >0,y >0,lg2x +lg8y =lg4,则1x +13y
的最小值是( ) A .4 B .2 2
C .2
D .2 3
8.[2019·广西钦州市第三次质量检测]已知变量x ,y 满足约束条件
⎩⎪⎨⎪⎧ x -y +2≤0x +y -6≤0,
x -1≥0则2x -y 的最小值是( )
A .2
B .-2
C .-3
D .-1
9.[2019·正源期末]已知函数f (x )=⎩⎪⎨⎪⎧ 3a -1x +4a ,x<1-ax ,x≥1满足对任意的实数
x 1≠x 2都有f x1-f x2x1-x2
<0,则a 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫18,13 B.⎝ ⎛⎭
⎪⎫18,+∞ C.⎝ ⎛⎭⎪⎫0,13 D.⎝
⎛⎦⎥⎤-∞,13 10.[2019·唐山统考]设S n 是等比数列{a n }的前n 项和,若S4S2=3,则S6S4
=( ) A .2 B.73
C.310
D .1或2 11.[2019·合肥第三次教学质量检测]我国古代《九章算术》将上、下两面为平行矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为( )
A .12 5
B .40
C .16+12 3
D .16+12 5
12.[2019·宁夏六盘山第三次模拟]F 1,F 2是双曲线C :x2a2-y2b2
=1的左、右焦点,过F 1的直线l 与C 的左、右两支分别交于A ,B 两点.若△ABF 2为等边三角形,则双曲线的离心率为( ) A.7 B. 3
C .2 D.13
二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上.
13.[2019· 河南新乡市高三第三次模拟测试]已知非零向量a =(t,0),b =(-1,3),若a +2b 与a 的夹角等于a +2b 与b 的夹角,则t =________.
14.[2019·山东日照联合考试]已知奇函数f (x )为R 上的减函数,若f (3a 2)+f (2a -
1)≥0,则实数a 的取值范围是________.
15.[2019·云南昆明月考]设函数f (x )=2x 2+6x +6-m ·e x (m 为非零实数),若函数
f (x )有且仅有一个零点,则m 的取值范围为________.
16.[2019·葫芦岛第二次模拟]下列说法:
①线性回归方程y ^=b ^x +a ^必过(x -,y -);
②命题“∀x ≥1,x 2+3≥4”的否定是“∃x <1,x 2+3<4”;
③相关系数r 越小,表明两个变量相关性越强;
④在一个2×2列联表中,由计算得K 2=8.079,则有99%的把握认为这两个变量间有关
系;
其中正确的说法是________(把你认为正确的结论都写在横线上).
附: P (K 2≥k 0) 0.100 0.050 0.010 0.001
k 0 2.706 3.841 6.635 10.828。

相关文档
最新文档