平面直角坐标系教学设计15(精品)

合集下载

平面直角坐标系教学设计5人教版(精品篇)

平面直角坐标系教学设计5人教版(精品篇)

平⾯直⾓坐标系教学设计5⼈教版(精品篇)《平⾯直⾓坐标系》教案三维⽬标1.理解平⾯直⾓坐标系,以及横轴、纵轴、原点、坐标等概念.2.认识并能画出平⾯直⾓坐标系;能在给定的坐标系中,?由点的位置写出它的坐标. 3.通过建⽴平⾯直⾓坐标系的过程,发展学⽣的形象思维,?数形结合的意识,学会与他⼈交流合作.4.经历平⾯直⾓坐标系建⽴的过程,?初步认识数学与⼈类⽣活的密切联系及对⼈类历史发展的作⽤,体验数学活动充满着探索和创造.教学重点1.理解平⾯直⾓坐标系的有关概念.2.在给定的直⾓坐标系中,会根据点的位置写出此点的坐标,?特别是特殊位置的点的坐标.教学难点根据点的位置写出点的坐标.教学过程导⼊新课活动1.问题:图1是⼀条数轴.(1)请指出点A和点B分别表⽰哪⼀个数?(2)已知数-1,5,请⽤数轴上的点C和点D表⽰这两个数.设计意图:由学⽣熟悉的数轴出发,给出数轴上点的坐标的定义,建⽴点与坐标的对应关系,从⽽得到确定直线上点的位置的⽅法.平⾯直⾓坐标系的构成是两条互相垂直、原点重合的数轴,坐标平⾯内点的坐标是根据数轴上的点的坐标定义的,平⾯内点的坐标的对应关系相似于数轴上点与坐标的对应关系.本节从数轴引⼊,使学⽣顺利地实现由⼀维到⼆维的过渡.师⽣⾏为:学⽣参与活动,⼩组讨论、交流问题并发表见解;教师在学⽣回答的基础上,进⼀步引导学⽣回忆发现数学问题.在数轴上,确定⼀个点,这个点所表⽰的数就确定了;反过来,已知⼀个数,在数轴上总有⼀个确定的点和它相对应,即表⽰这个数的点在数轴上的位置也就确定了.由此可知,数轴上的点可以⽤⼀个数来表⽰,这个数叫做这个点的坐标.如图1,点A在数轴上的坐标为-4,点B?在数轴上的坐标为2.反过来-1是点C的坐标,5是点D的坐标.本次活动中,教师应重点关注:(1)学⽣能否发现⼀个数与数轴上的点的对应关系;(2)学⽣在活动中发表个⼈见解的勇⽓;(3)学⽣能否很顺利地理解数轴上点的坐标的定义.推进新课在活动与探究中认识平⾯直⾓坐标系及相关概念活动2.思考:类似于利⽤数轴确定直线上点的位置,能不能找到⼀种⽅法来确定平⾯内点的位置呢(如图2中A、B、C、D各点)?设计意图:设置“思考”栏⽬,激发学⽣思维的⽕花,使学⽣通过类⽐,利⽤数轴上点的位置的确定⽅法来确定平⾯内点的位置,从⽽引出本⼩节的课题──平⾯直⾓坐标第.师⽣⾏为:上⼀节,学⽣已体验到有序数对可以确定平⾯内点的位置,在我们的实际⽣活中这样的例⼦有很多,但我们是在某种约定的情况下,明⽩了有序数对所对应的位置.教师要引导学⽣在⼀个数与数轴上的点的对应关系,去发现利⽤有序数对确定平⾯内点的位置.本次活动中,教师应重点关注:(1)学⽣在上⼀节课的基础上,意识到建⽴平⾯直⾓坐标系的意义所在;(2)学⽣⽤数学语⾔表述⾃⼰的观点的能⼒;(3)学⽣的合情推理能⼒;(4)学⽣在⼩组活动中的合作交流意识.⽣:有序数对可以表⽰平⾯内点的位置,图3中表⽰平⾯内A、B、C、D?四个点的位置也可⽤有序数对来表⽰.⼀条数轴上点的位置可以⽤⼀个数来表⽰.平⾯内⼀个点的位置可⽤有序数对来表⽰,因此需⽤两条数轴.师:你的想法很“伟⼤”,这就是我们今天要给⼤家介绍的法国数学家笛卡⼉的伟⼤发现──平⾯直⾓坐标系.“直⾓坐标系”的诞⽣还有⼀个有趣的故事呢!⼀天,数学家笛卡⼉躺在病塌上,仰望着天花板出神,只见蜘蛛正忙着在墙⾓落结⽹,它⼀会⼉在雪⽩的天花板上爬来爬去,⼀会⼉⼜顺着蛛丝爬上爬下.这精彩的“杂技”牢牢地把笛卡⼉吸引住了.这⼀有趣的现象使笛卡⼉受到启发,他马上联想到了那个他朝思暮想⾄今仍悬⽽未决的难题.他想:这只悬在半空中的蜘蛛不正是⼀个移动的点吗?能不能⽤两⾯墙的交线及墙与天花板的交线来确定它的空间位置呢?他在纸上画了三条两两垂直的直线,分别表⽰两墙的交线和墙与天花板的交线,并在空间点出⼀个P点代表蜘蛛,P到两墙的距离分别⽤x和y表⽰,到天花板的距离⽤z表⽰.这样x、y、z就有了准确的数值,P点的位置就完全确定了.?于是直⾓坐标系诞⽣了,尽管笛卡⼉由对墙⾯、天花板和玩杂技般的蜘蛛的观赏转到了对点、线、⾯的抽象思索,但他仍饶有兴趣,思维异常活跃,因为在数学家眼⾥,枯燥的点、线⽐活蹦乱跳的⼩鸟还逗⼈喜爱.他的这⼀伟⼤发现开辟了⽤代数⽅法研究⼏何图形的先河.下⾯我们看如何来确定平⾯内A、B、C、D的位置.如图3.我们可以在平⾯内画两条互相垂直的数轴,且使它们原点重合,就组成了平⾯直⾓坐标系.⽔平的数轴称为x轴或横轴,习惯上取向右的⽅向为正⽅向;?竖直的数轴称为y轴或纵轴,取向上的⽅向为正⽅向;?两坐标轴的交点为直⾓坐标系的原点.有了平⾯直⾓坐标系,平⾯内的点就可以⽤⼀个有序数对来表⽰了.例如由点A分别向x 轴和y轴作垂线,垂⾜M在x轴上的坐标是3,垂⾜N在y轴上的坐标为4,我们说点A的横坐标为3,纵坐标为4,有序数对(3,4)就叫做点A的坐标,记作A(3,4).类似地,请写出点B、C、D的坐标.⽣:过B作x轴、y轴的垂线,可知B点的横坐标为-3,纵坐标为-4,所以B(-3,-4);?同理,过C也作x轴、y轴的垂线,可知C点的横坐标为0,纵坐标为2,所以C(0,2);同理,D(0,-3).活动3.思考:(1)原点O的坐标是什么?x轴与y轴上的点的坐标有什么特点?(2)在图4中,确定A、B、C、D、E、F、G的坐标.(3)写出图5中的多边形ABCDEF各个顶点的坐标.设计意图:通过思考特殊位置上的点的坐标的特点及练习已知点的位置写出点的坐标.突出本节的重点和难点.通过⼩组活动,调动学⽣学习数学的积极性,并使学⽣在活动中获得成就感,在⼩组合作中学会尊重理解他⼈.同时也希望扩⼤学⽣⾃主学习的空间.师⽣⾏为:学⽣分组讨论、交流;教师深⼊⼩组参与活动倾听学⽣交流.本次活动中,教师应关注:(1)学⽣是否明确平⾯直⾓坐标系的概念;(2)学⽣是否能很清晰地确定⼀个点的坐标;(3)学⽣能否理解由于平⾯直⾓坐标系建⽴的不同,点的坐标也不同;(4)学⽣运⽤数学语⾔描述问题及运⽤数学思想⽅法解决实际问题的能⼒.⽣:(1)根据平⾯内点的坐标的定义,原点O的坐标是(0,0)即横坐标、?纵坐标都为零;x轴上的点的坐标的特点是纵坐标都为零;y轴上的点的坐标的特点是横坐标为零.⽣:(2)如图4中,A(-4,4),B(-3,0),C(-2,-2),D(1,-4),E(1,-1),F(3,0),G(2,3).(3)如图5中,A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).师:当坐标轴的位置发⽣变动时,各点的坐标变不变?⽣:各点的坐标也发⽣变化.例如在图6中,BC所在的直线为x轴,纵轴(y轴)?位置不变,则六个顶点的坐标为A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).师:你还能建⽴不同的坐标系,确定各点的坐标吗?请在⼩组内交流.活动4.练习:1.写出图7中A、B、C、D、E、F的坐标.设计意图:根据点的位置写出点的坐标是本节课的重点.此练习各个点分布在不同的位置,希望通过此练习扩⼤学⽣⾃主学习的空间.师⽣⾏为:学⽣分组讨论、交流;教师到⼩组去参与活动倾听学⽣的交流,特别是特殊位置的点的坐标的特点.本次活动中,教师要关注:(1)学⽣学习经验的积累;(2)学⽣能否主动与同学合作,交流各⾃的想法;(3)学⽣运⽤数学语⾔描述问题.课堂⼩结本节学习了以下主要内容:1.理解平⾯直⾓坐标系,以及横轴、纵轴、原点、坐标等概念;2.能建⽴平⾯直⾓坐标系,并由点位置确定点的坐标.布置作业习题6.1 2、3.活动与探究已知点M(3,-2)与点M′(x,y)在同⼀平⾏于x轴的直线上,⽤M′到y?轴的距离等于4,那么点M′的坐标为()A.(4,2)或(-4,2) B.(4,-2)或(-4,-2)C.(4,-2)或(-5,-2) D.(4,-2)或(-1,-2)[过程]画出平⾯直⾓坐标系,观察不难发现结论、特点,注意点到x轴、y?轴的距离与点的横、纵坐标的联系与区别.[结果]点M(3,-2)与点M′(x,y)在同⼀条平⾏于x轴的直线上,所以M′的纵坐标y=-2.⼜因为M′到y轴的距离为4,所以x=4或-4.所以应选B.备课资料⼀、笛卡⼉揭榜破题的故事笛卡⼉是法国著名哲学家、数学家、物理学家,他早年就读于拉弗莱什公学时,因孱弱多病,被允许早晨在床上读书,养成了喜欢安静、善于思考的习惯.1617年5⽉,法国公爵奥伦治的军队屯驻在荷兰南部的布勒达城.?刚从⼤学毕业的笛卡⼉正在这⽀部队从军.⼀天,他在街头散步,忽听⼈声喧嚷,不知何事.他上前探询,只见众⼈正围观⼀张榜⽂,议论纷纷,榜⽂是⽤荷兰⽂写的,他看不懂,只好请旁边⼀位颇有风度的学者翻译成法语.原来榜⽂的内容是⼀道⼏何题,他认真揣摩思索了⼏个⼩时,就破解了这道难题.如此奇迹,使那位“翻译”⼤吃⼀惊,并盛加赞扬,邀请他到家中叙谈,果然话语投机,遂结为⾦兰之好.这位翻译就是当地有名的多特⼤学的校长毕克门.他为笛卡⼉的数学才华感到⾼兴,但⼜为他弃学从军感到可惜.他劝笛卡⼉,既然在数学⽅⾯有如此才能,何不脱离军界,专门学习数学呢?笛卡⼉的破题成功,加上毕克门校长的评价赞扬,更好激发了他学习数学的兴趣,从⽽促使他改变了从军的初志,转向数学探索,并在后来的创造性⼯作中,将过去对⽴着的两个研究对象“数”和“形”统⼀了起来.他在数学中引⼊了“变量”,完成了数学史上⼀项划时代的变⾰.⾰命导师恩格斯把它称为数学的转折点.此后,⼈类进⼊变量数学阶段.⼆、参考练习1.如图8(1),某地为了发展城市群,在现有的四个中⼩城市A,B,C,D?附近新建机场E.试建⽴适当的直⾓坐标系,写出各点的坐标.2.如图9(1),四边形ACEG和四边形BDFH都是正⽅形,BF的长为8.建⽴适当的直⾓坐标系,写出点A,B,C,D,E,F,G,H的坐标.3.图10(1)是⼀种活动门的⽰意图,平时不⽤的时候推到⼀边去,?晚上要⽤的时候拉过来锁上,不占地⽅,⾮常⽅便.他是由⼀个个菱形组成的.图中菱形的⼀个⾓是60°,请⽤适当的⽅式表⽰菱形各顶点的位置.答案:1.建⽴如图8(2)所⽰的直⾓坐标系:A(0,0),B(8,0),C(8,7),D (5,6).2.解:设以C为原点建⽴如图9(2)所⽰的直⾓坐标系,则A(0,8),B(0,4),C(0,0),D(4,0),E(8,0),F(8,4),G(8,8),H(4,8).3.解:建⽴如图10(2)所⽰的直⾓坐标系A(2B(3,0),C(2,D(1,0),E(0),F(-1,0),G(0,),H(-2,M(-3,0),N(-2,、。

教学设计平面直角坐标系

教学设计平面直角坐标系

教学设计平面直角坐标系一、教学目标:1.了解平面直角坐标系的基本概念与要素。

2.掌握如何在平面直角坐标系中表示点的位置。

3.理解和应用平面直角坐标系进行坐标计算和几何图形的描述。

二、教学准备:1.教学工具:黑板、彩色粉笔、投影仪。

2.教学材料:教材、课件、练习册。

三、教学内容和步骤:步骤1:引入通过提问激发学生对平面直角坐标系的认识和理解,例如:“你们曾在什么情况下接触过坐标系?在哪些场景下会用到坐标系?”引导学生思考坐标系的实际应用。

步骤2:概念解释通过投影仪或黑板,展示平面直角坐标系的图像并解释各要素的含义和作用,“横坐标和纵坐标的数值分别代表了点在水平和竖直方向上的位置,坐标原点(0,0)是坐标系的起点,所有点的位置都可以通过横纵坐标配对表示。

”引导学生掌握坐标系的基本概念。

步骤3:坐标表示通过一些简单的例子,让学生掌握如何在平面直角坐标系中表示点的位置,例如让学生找出指定点的坐标。

步骤4:坐标计算让学生学习如何通过坐标计算两点之间的距离,引导学生思考如何在坐标系上表达和计算线段的长度。

步骤5:几何图形描述通过教材或自行设计相关例题,让学生学习如何在平面直角坐标系中描述和绘制简单的几何图形,如直线、曲线、矩形、正方形等。

步骤6:实际应用展示一些实际应用问题,引导学生运用平面直角坐标系解决问题,如航空控制、地理定位等。

四、教学方法:1.课堂讲授与板书相结合,通过教师引导学生掌握知识点。

2.让学生通过练习和实际问题解决来巩固所学知识,培养学生应用知识解决问题的能力。

五、教学评价:1.在课堂中设置自主训练环节,让学生运用所学知识解决简单问题。

2.在课后布置作业,测试学生对平面直角坐标系的理解和运用能力。

3.对学生的作业进行批改与评价,及时给予学生反馈。

六、拓展延伸:教学以示例为主的方法能帮助学生更好地掌握平面直角坐标系的基本概念和应用。

教师可以鼓励学生自行设计例题,并与同学分享探讨,拓展学生的思维能力和应用能力。

初中数学初二数学上册《平面直角坐标系》教案、教学设计

初中数学初二数学上册《平面直角坐标系》教案、教学设计
b.坐标的平移、对称性质在几何问题中如何应用?
c.如何利用坐标系解决实际问题?
2.各小组汇报讨论成果,教师进行点评总结坐标系的实际应用和坐标性质的作用。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
a.填空题:给出一些点的坐标,让学生填写对应的点。
b.选择题:判断坐标的性质,如平移、对称等。
4.小组合作,探讨坐标系的平移、对称性质在解决几何问题中的应用。要求每组选取一个典型问题进行详细解答,并在课堂上进行分享。这个作业有助于培养学生的团队协作能力和表达能力。
5.针对课堂学习内容,撰写学习心得体会,总结自己在平面直角坐标系知识方面的收获和不足。要求字数不少于300字,让学生在反思中不断提高。
4.分层次设计练习题,针对不同水平的学生,提高他们在坐标系知识方面的掌握程度。同时,注重题目的实际应用背景,培养学生的数学建模能力。
5.教学过程中,注重启发式教学,引导学生主动发现问题、解决问题,提高学生的自主探究能力。
6.定期进行课堂小结,帮助学生总结所学知识,形成知识体系。同时,关注学生的学习反馈,调整教学策略,提高教学效果。
2.完成教材课后练习题,包括填空题、选择题和计算题。这些题目涵盖了本节课的重点知识,有助于学生巩固坐标的表示方法和性质,提高运算能力。
3.设计一道实际问题,要求学生运用坐标系知识进行解答。例如:在学校的平面图上,标出教学楼、操场和食堂的位置,并计算它们之间的距离。这个作业旨在培养学生将实际问题转化为数学问题的能力,提高数学建模能力。
难点:将抽象的坐标系与实际情境相结合,运用数学知识解决现实问题。
(二)教学设想
1.采用情境导入法,以生活中的实际问题为例,引导学生认识到坐标系在解决实际问题时的重要性,激发学生的学习兴趣。

平面直角坐标系教案15篇

平面直角坐标系教案15篇

平面直角坐标系教案平面直角坐标系教案15篇在教学工作者开展教学活动前,很有必要精心设计一份教案,教案是教学活动的依据,有着重要的地位。

我们应该怎么写教案呢?以下是小编帮大家整理的平面直角坐标系教案,欢迎阅读,希望大家能够喜欢。

平面直角坐标系教案1一教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书,七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。

平面直角坐标系是图形与数量之间的桥梁,有了它我们便可以把几何问题转化为代数问题,也可以把代数问题转化为几何问题。

本章内容从数的角度刻画了第五章有关平移的内容,对学生以后的学习起到铺垫作用,6.1.2节平面坐标系主要是介绍如何建立平面坐标系,如何确定点的坐标和由点的坐标寻找点的位置,以及平面坐标系中特殊部位点的坐标特征,根据学生的接受能力,我把本内容分为2课时,这是第一课时,主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。

2、教学目标根据新课标要求,数学的教学不仅要传授知识,更要注重学生在学习中所表现出来的情感态度,帮助学生认识自我、建立信心。

知识能力:①认识平面直角坐标系,了解点与坐标的对应系;②在给定的直角坐标系中,能由点的位置写出点坐标。

数学思考:①通过寻找确定位置,发展初步的空间观念;②通过学习用坐标的位置,渗透数形结合思想解决问题:通过运用确定点坐标,发展学生的应用意识。

情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标,培养学生合作交流与探索精神;②通过介绍数学家的故事,渗透理想和情感的教育。

3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误,确定本节重难点为:重点:认识平面坐标系难点:根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征,以及他们现有知识水平,通过科学家发现点的坐标形成的经过启迪学生思维,通过小组合作与交流及尝试练习,促进学生共同进步,并用肯定和激励的言语鼓舞、激励学生。

平面直角坐标系教案

平面直角坐标系教案

平面直角坐标系教案一、教学目标1.了解平面直角坐标系的定义及其基本性质;2.能够在平面直角坐标系中表示点的位置;3.能够计算平面直角坐标系中两点之间的距离和斜率;4.能够解决与平面直角坐标系相关的问题。

二、教学重点1.平面直角坐标系的定义及其基本性质;2.点的位置和坐标的表示方法;3.两点之间的距离和斜率的计算。

三、教学难点1.平面直角坐标系的性质的理解和应用;2.两点之间距离和斜率的计算。

四、教学过程1.导入(约5分钟)引导学生回忆直角坐标系的概念,回顾平面直角坐标系的定义。

2.讲解(约20分钟)(1)平面直角坐标系的定义:两条相互垂直的数轴(x轴和y轴)组成的直角坐标系称为平面直角坐标系。

(2)平面直角坐标系的基本性质:-x轴和y轴的交点为原点O,原点为坐标轴的起点;-x轴正方向为右方,y轴正方向为上方;-x轴和y轴的单位长度相等;-x轴和y轴的正半轴方向与数轴的正方向一致;-x轴和y轴被均匀地分成相等的小段,每一段的长度为1单位。

(3)点的位置和坐标的表示方法:-点在直角坐标系中的位置由它到x轴和y轴的位置决定;-在点A的上方(或下方)的点的y坐标与A的y坐标相比有正(或负)的关系;-在点A的右方(或左方)的点的x坐标与A的x坐标相比有正(或负)的关系;-坐标的表示方法为(x,y),x表示点在x轴上的位置,y表示点在y 轴上的位置。

(4)两点之间的距离和斜率的计算方法:-两点A(x1,y1)和B(x2,y2)之间的距离d可以用勾股定理计算:d=√((x2-x1)²+(y2-y1)²);-两点A(x1,y1)和B(x2,y2)之间的斜率k可以用斜率公式计算:k=(y2-y1)/(x2-x1)。

3.实例分析(约20分钟)通过具体的实例,引导学生理解平面直角坐标系的定义和基本性质,并能够据此计算两点之间的距离和斜率。

4.练习与巩固(约15分钟)教师出示一系列练习题,让学生进行练习和巩固,检验学生对平面直角坐标系的理解程度。

人教版数学七年级下册7.1《平面直角坐标系》教学设计

人教版数学七年级下册7.1《平面直角坐标系》教学设计

人教版数学七年级下册7.1《平面直角坐标系》教学设计一. 教材分析《平面直角坐标系》是初中数学的重要内容,对于学生理解数学的抽象概念,培养空间想象能力有着至关重要的作用。

人教版数学七年级下册7.1节的内容,主要介绍了平面直角坐标系的定义、各象限内点的坐标特征、坐标轴的性质等。

这部分内容是学生学习函数、几何等后续知识的基础,因此,掌握本节课的内容对于学生来说至关重要。

二. 学情分析学生在七年级上学期已经学习了有理数,对数的概念有了一定的理解,但空间想象能力还不够强。

因此,在教学过程中,需要引导学生将已有的数学知识与新的知识相结合,通过实际操作,提高空间想象能力,理解并掌握平面直角坐标系的相关概念。

三. 教学目标1.了解平面直角坐标系的定义,掌握各象限内点的坐标特征。

2.能正确画出简单的平面直角坐标系,并确定给定点在坐标系中的位置。

3.理解坐标轴的性质,能运用坐标系解决实际问题。

四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征。

2.难点:坐标轴的性质,坐标系在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探索,发现问题,解决问题。

2.利用数形结合的思想,让学生在实际操作中感受坐标系的作用。

3.采用小组合作学习,培养学生的团队协作能力。

六. 教学准备1.准备平面直角坐标系的教具,如PPT、黑板等。

2.准备一些实际问题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如地图上的两点距离、体育比赛中运动员的位置等,引导学生思考如何用数学工具来表示这些位置。

从而引出平面直角坐标系的概念。

2.呈现(10分钟)通过PPT或黑板,呈现平面直角坐标系的定义、各象限内点的坐标特征、坐标轴的性质等。

在呈现过程中,引导学生主动参与,发现问题,解决问题。

3.操练(10分钟)让学生分组进行实际操作,如在坐标系中确定给定点的位置,画出简单的函数图象等。

教师巡回指导,解答学生疑问。

平面直角坐标系(评优课)教案

平面直角坐标系(评优课)教案

平面直角坐标系(评优课)教案一、教学目标:1. 让学生掌握平面直角坐标系的定义、构成及基本性质。

2. 培养学生运用坐标系解决实际问题的能力。

3. 通过对平面直角坐标系的学习,提高学生的空间想象能力和逻辑思维能力。

二、教学内容:1. 平面直角坐标系的定义及构成。

2. 坐标轴、坐标点、坐标值的概念。

3. 坐标系的变换:平移、旋转。

4. 实际问题中的坐标系应用。

三、教学重点与难点:1. 重点:平面直角坐标系的定义、构成及基本性质。

2. 难点:坐标系的变换及实际问题中的坐标系应用。

四、教学方法:1. 采用讲授法,讲解平面直角坐标系的定义、构成及基本性质。

2. 采用案例分析法,分析实际问题中的坐标系应用。

3. 采用互动教学法,引导学生参与课堂讨论,提高学生的参与度。

五、教学过程:1. 导入:通过生活实例,引导学生了解坐标系的概念,激发学生的学习兴趣。

2. 新课导入:讲解平面直角坐标系的定义、构成及基本性质。

3. 案例分析:分析实际问题中的坐标系应用,让学生体会坐标系在解决问题中的重要性。

4. 课堂互动:引导学生参与课堂讨论,分享自己对坐标系的认识和理解。

教案剩余部分(六至十)待补充。

六、教学评价:1. 课后作业:布置有关平面直角坐标系的练习题,检验学生对知识的掌握程度。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

3. 小组讨论:组织学生进行小组讨论,评价学生在团队合作中的表现。

七、课后作业:1. 绘制一个平面直角坐标系,标出坐标轴、坐标点、坐标值。

2. 选择一个实际问题,运用坐标系进行解决,并将解题过程写成报告。

八、课堂表现评价标准:1. 参与程度:学生是否能积极参与课堂讨论,提出问题、分享观点。

2. 提问回答:学生是否能准确回答老师提出的问题。

3. 团队合作:学生在小组讨论中是否能积极贡献自己的想法,与团队成员良好沟通。

九、教学反思:1. 反思教学内容:是否全面讲解了平面直角坐标系的定义、构成及基本性质。

《平面直角坐标系》教案

《平面直角坐标系》教案

《平面直角坐标系》教案精选平面直角坐标系教案。

教案课件在老师少不了一项工作事项,这就要老师好好去自己教案课件了。

教案是落实教学目标的有效手段,写一篇教案课件要具备哪些步骤?下面是我为大家整理的关于“《平面直角坐标系》教案”的资料,请保藏好,以便下次再读!《平面直角坐标系》教案篇1教学目标:1、理解平面直角坐标系的意义;把握在平面直角坐标系中刻画点的位置的方法。

2、把握坐标法解决几何问题的步骤;体会坐标系的作用。

教学难点:能够建立适当的直角坐标系,解决数学问题。

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按方案完成科学考察任务后,平安、精确的返回地球,从火箭升空的时刻开头,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上经常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。

要消失正确的背景图案,需要缺点不同的画布所在的位置。

在平面上,当取定两条相互垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。

它使平面上任一点P 都可以由惟一的实数对(x,y)确定。

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。

它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满意:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置例2已知B村位于A村的正西方1公里处,原方案经过B村沿着北偏东60的方向设一条地下管线m、但在A村的西北方向400米出,发觉一古代文物遗址W、依据初步勘探的结果,文物管理部门将遗址W四周100米范围划为禁区、试问:埋设地下管线m的方案需要修改吗?1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程通过平面变换可以把曲线变为中心在原点的单位圆,恳求出该复合变换?2、利用平面直角坐标系解决相应的数学问题。

《平面直角坐标系》教学设计

《平面直角坐标系》教学设计

《平面直角坐标系》教学设计一、教材分析平面直角坐标系架起了数与形之间的桥梁,它是数学乃至其它学科研究问题的有力工具,新教科书提前安排此内容,其目的是让学生尽早接触这个数学工具,尽早感受数形结合的思想。

二、教学目标知识与技能:认识平面直角坐标系,了解点与坐标的对应关系;在给定的直角坐标系中能根据坐标描出点,能由点的位置写出其坐标。

数学思考与解决问题:1.能根据问题的需要,建立适当的平面直角坐标系(在方格纸上),以此来发展学生的空间观念,体会平面直角坐标系在解决问题中的作用。

2.通过“思考”与“探究”等数学活动,培养学生独立思考的学习习惯,体验数学中的探索与创造,发展创新精神。

情感态度与价值观:通过同学之间,师生之间的交流与讨论,培养学生善于与人合作的良好习惯。

三、教学重点:平面直角坐标系的建立及点的坐标概念四、教学方法:自主探究,合作交流(模式)五、教学媒体:投影仪、坐标纸六、教学过程(一)课题引入1、生活中我们可以用什么来表示位置?例如:影剧院中的座位,教室里的座位等。

2、如图:A B-5 -4 -3 -2 -1 0 1 2 3 4 5请你写出A和B两点所对应的数,反过来,请你描出数-2和4所对应的点,这个数叫做这个点的坐标。

由此可见,利用数轴可以确定直线上点的位置。

3、上面两个问题启发我们找到一种办法来确定平面内的点的位置。

板书课题:平面直角坐标系(二)授新课1、教师引导学生对教科书90页的“思考”栏目中的问题进行独立思考,并观察教科书中图3.1-3,再图中建立平面直角坐标系。

(在教师的启发、引导下,学生会在方格纸上建立起直角坐标系,然后同学之间交流思维过程和结果,全班同学会得出多种建立直角坐标系的方法。

)2、利用投影仪向学生展示教科书中图3.1-4,教师利用此图向学生介绍平面直角坐标系有关知识及点的坐标概念。

3、在教师点拨和指导下,由学生完成教科书中92页例题。

(这中间教师要多关注学困生的情况,多给他们以帮助。

平面直角坐标系教案

平面直角坐标系教案

平面直角坐标系教案一、教学目标1. 知识与技能:(1)理解平面直角坐标系的定义及构成;(2)学会在平面直角坐标系中确定点的位置;(3)掌握坐标系的变换方法。

2. 过程与方法:(1)通过实例培养学生的观察、分析能力;(2)利用数形结合思想,培养学生解决问题的能力;(3)学会用坐标系描述和分析实际问题。

3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养学生的抽象思维能力;(2)培养学生勇于探索、积极进取的精神;(3)感受数学与生活的密切联系,提高学生应用数学知识解决实际问题的能力。

二、教学重点与难点1. 教学重点:(1)平面直角坐标系的定义及构成;(2)坐标系中点的表示方法;(3)坐标系的变换方法。

2. 教学难点:(1)坐标系中点的位置确定;(2)坐标系的变换方法。

三、教学方法1. 情境教学法:通过生活实例引入平面直角坐标系,使学生感受数学与生活的密切联系;2. 数形结合法:利用图形辅助学生理解坐标系中点的表示方法及坐标系的变换;3. 实践操作法:让学生动手实践,在实际操作中掌握坐标系的相关知识。

四、教学准备1. 教具:黑板、粉笔、多媒体课件;2. 学具:练习本、尺子、圆规。

五、教学过程1. 导入新课:(1)利用生活实例,如地图、棋盘等,引导学生思考如何表示点的位置;(2)展示平面直角坐标系图形,引导学生观察其特点。

2. 自主探究:(1)让学生自行研究坐标系中点的表示方法;(2)引导学生发现坐标系的变换规律。

3. 教师讲解:(1)讲解坐标系的定义及构成;(2)详细讲解坐标系中点的表示方法;(3)阐述坐标系的变换方法。

4. 课堂练习:(1)让学生在坐标系中确定给定点的位置;(2)让学生运用坐标系的变换方法解决问题。

5. 总结拓展:(1)让学生总结本节课所学知识;(2)引导学生思考坐标系在实际生活中的应用。

六、教学评估1. 课堂提问:通过提问了解学生对平面直角坐标系概念的理解程度,以及学生在坐标系中表示点和解决问题时的操作能力。

北师大版八年级数学上册:3.2《平面直角坐标系》教案

北师大版八年级数学上册:3.2《平面直角坐标系》教案

北师大版八年级数学上册:3.2《平面直角坐标系》教案一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。

本节课主要让学生了解平面直角坐标系的定义、特点及应用,掌握坐标轴、坐标点、坐标值等基本概念,并能够利用坐标系解决一些实际问题。

教材通过引入实际情境,激发学生的学习兴趣,引导学生主动探究,培养学生的空间观念和数学思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了实数、一次函数等基础知识,具备了一定的逻辑思维能力和探究能力。

但部分学生对坐标系的概念和应用可能还比较陌生,因此在教学过程中,需要关注这部分学生的学习需求,通过具体实例和操作活动,帮助他们理解和掌握平面直角坐标系的相关知识。

三. 教学目标1.了解平面直角坐标系的定义、特点及应用。

2.掌握坐标轴、坐标点、坐标值等基本概念。

3.能够利用坐标系解决一些实际问题。

4.培养学生的空间观念和数学思维能力。

四. 教学重难点1.重点:平面直角坐标系的定义、特点及应用。

2.难点:坐标轴、坐标点、坐标值等基本概念的理解和运用。

五. 教学方法1.情境导入:通过实际情境引发学生对坐标系的兴趣,激发学生的学习热情。

2.自主探究:引导学生通过观察、操作、思考,自主发现和总结坐标系的基本概念和性质。

3.合作交流:学生进行小组讨论,分享学习心得,互相启发,共同进步。

4.实例分析:通过具体实例,让学生体会坐标系在解决实际问题中的应用价值。

5.练习巩固:设计适量练习题,让学生在实践中巩固所学知识。

六. 教学准备1.教学课件:制作精美、清晰的课件,辅助教学。

2.教学素材:准备一些实际问题和相关图片,用于实例分析。

3.练习题:设计一些具有针对性的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用实际情境,如商场购物时的优惠券坐标系,引导学生关注坐标系在生活中的应用,激发学生的学习兴趣。

提问:你们知道坐标系是什么吗?坐标系有什么作用?2.呈现(10分钟)呈现平面直角坐标系的定义、特点及应用,引导学生初步认识坐标系。

《平面直角坐标系》 教学设计

《平面直角坐标系》 教学设计

《平面直角坐标系》教学设计一、教学目标1、知识与技能目标理解平面直角坐标系的有关概念,能画出平面直角坐标系。

在给定的平面直角坐标系中,能由点的位置写出坐标,由坐标描出点的位置。

2、过程与方法目标经历平面直角坐标系的建立过程,体会数学中的数形结合思想。

通过观察、操作、交流等活动,提高学生的数学思维能力和合作交流能力。

3、情感态度与价值观目标让学生感受数学与生活的密切联系,激发学生学习数学的兴趣。

培养学生勇于探索、敢于创新的精神。

二、教学重难点1、教学重点平面直角坐标系的概念。

点的坐标的确定与表示。

2、教学难点理解坐标平面内的点与有序实数对的一一对应关系。

三、教学方法讲授法、演示法、讨论法、练习法四、教学过程1、情境导入展示一张电影院的座位图,提问学生如何准确地找到自己的座位。

引导学生思考需要通过行数和列数来确定位置。

接着,展示一张地图,提问如何确定一个地点的位置。

从而引出本节课的主题——平面直角坐标系。

2、讲授新课(1)平面直角坐标系的概念教师在黑板上画出两条互相垂直的数轴,水平的数轴称为 x 轴(或横轴),取向右为正方向;竖直的数轴称为 y 轴(或纵轴),取向上为正方向。

两轴的交点 O 称为原点。

这样就建立了一个平面直角坐标系。

(2)点的坐标教师在平面直角坐标系中任意选取一个点 P,过点 P 分别向 x 轴和y 轴作垂线,垂足分别为 M 和 N。

点 M 在 x 轴上对应的数为 a,点 N在 y 轴上对应的数为 b,则有序实数对(a,b)叫做点 P 的坐标。

(3)象限两坐标轴把平面分成四个部分,每个部分称为象限。

坐标轴上的点不属于任何象限。

第一象限:x > 0,y > 0;第二象限:x < 0,y > 0;第三象限:x < 0,y < 0;第四象限:x > 0,y < 0。

3、巩固练习(1)教师在平面直角坐标系中给出一些点,让学生写出它们的坐标。

(2)给出一些坐标,让学生在平面直角坐标系中描出相应的点。

平面直角坐标系教案

平面直角坐标系教案

平面直角坐标系教案一、引言平面直角坐标系是数学中重要的基础概念之一,它为我们描述和分析平面上的几何图形提供了有力的工具。

本教案旨在帮助学生深入理解平面直角坐标系的概念、特点和应用,并能够熟练运用它进行问题的解答。

二、概念说明1. 平面直角坐标系的定义- 平面直角坐标系由两个相互垂直的数轴组成,分别称为x轴和y 轴。

- 坐标系的原点是x轴和y轴的交点,用O表示。

- x轴和y轴上的单位长度相等,通常记作1。

- 坐标系将平面分成四个部分,分别称为象限。

象限的编号顺时针依次为第一象限、第二象限、第三象限和第四象限。

2. 点的坐标表示- 在平面直角坐标系中,每个点都可以用一对有序实数表示,记作(x, y)。

- x值表示该点在x轴上的位置,y值表示该点在y轴上的位置。

- 坐标系中每个点都有唯一的坐标表示。

三、平面直角坐标系的特点1. 对称性- 坐标系关于原点对称,即对任意点(x, y),有(-x, -y)也在坐标系中。

- 坐标系关于x轴对称,即对任意点(x, y),有(x, -y)也在坐标系中。

- 坐标系关于y轴对称,即对任意点(x, y),有(-x, y)也在坐标系中。

2. 距离计算- 两点在平面直角坐标系中的距离可以用勾股定理来计算:AB的距离= √((x₂ - x₁)² + (y₂ - y₁)²)四、平面直角坐标系的应用1. 函数图像绘制- 平面直角坐标系可以用来绘制函数的图像。

- 将函数的自变量和函数值代入直角坐标系,通过连结各个点得到函数的图像。

2. 几何图形研究- 平面直角坐标系可以帮助我们研究各种几何图形的性质。

- 通过坐标系中的点来表示图形的特点,比如直线的斜率、圆的方程等。

3. 问题求解- 平面直角坐标系可以用来解决各种问题,如线性方程组的求解、几何图形的相交关系判断等。

五、练习题1. 在平面直角坐标系中,求点A(3, 4)与点B(1, -2)之间的距离。

2. 给出函数y = 2x + 1的图像在坐标系中的位置。

《平面直角坐标系》教学设计#(精选.)

《平面直角坐标系》教学设计#(精选.)

《平面直角坐标系》教学设计学科教学数学陈亚会 2015050117一、教学目标知识与技能:1.理解平面直角坐标系的有关概念,并能正确画出平面直角坐标系;2.能在给定的直角坐标系中根据点的坐标描出点的位置,由点的位置写出点的坐标。

过程与方法:经历画坐标系、描点、看图等过程,让学生感受“数形结合”的数学思想。

情感态度与价值观:利用游戏、观察、实践、归纳等方法,积淀学生的数学文化涵养,培养热爱数学,勇于探索的精神。

二、教学重点、难点1.教学重点:使学生能正确画出平面直角坐标系,并能在给定的直角坐标系中,根据点的坐标描出点的位置,由点的位置写出它的坐标。

2.教学难点:理解坐标平面内的点与有序实数对的一一对应关系。

三、教学方法探究式教学法。

从学生的生活经验和已有的认知水平出发,提出问题,让学生通过合作交流,解决问题,掌握新知。

四、教学准备多媒体课件。

五、教学设计(一)创设情境引入新课引例:我们的教室共有32个座位,自前向后分为7排,自左向右分为5列,每位同学对应了一个位置,我们来个“点将”的游戏,你们是“将”,由我来点。

同时说明游戏规则:(1)老师报出学生姓名,学生起立并说出座位号;(2)老师说出座位号,对应的同学起立。

再提问你是如何确定自己的座位?(二)讲解概念合作探究1、结合图形讲解平面直角坐标系的有关概念(1)在这个图中,我们使用了两条数轴。

请同学们观察一下,这两条数轴有何关系呢?根据学生回答,教师投影显示平面直角坐标系的概念。

(电脑突出显示坐标轴与原点)说明:通常横轴取向右为正方向,纵轴取向上为正方向,两坐标轴的单位长度一般相同。

(2)为了便于研究,我们把2条坐标轴将平面分成的4个区域成为象限,按逆时针方向依次记作第一、二、三、四象限。

(教师课件演示)提醒:坐标轴不属于任何象限。

2、动手操作,师生互动(1)让学生画一个平面直角坐标系,单位长度为1厘米,(教师巡视指导)(2)在直角坐标系中,由一对有序实数(a,b)可以确定一个点P的位置。

《平面直角坐标系》教学设计

《平面直角坐标系》教学设计

《平面直角坐标系》教学设计《平面直角坐标系》一、教材分析“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。

因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。

直角坐标系的基本知识是学习全章至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好教学要求,是教好、学好本小节的关键。

(2)过程与方法目标:通过寻找确定点的位置,发展初步的空间观念;通过学习用坐标表示点的位置,渗透数形结合思想,发展学生的应用意识。

(3)情感态度与价值观:通过学习过程中的感受和体会,培养学生合作精神和积极参与、勤于思考、勇于创新的意识,让每个学生都获得自己力所能及的数学知识,增强学生的自信心。

3、教学重、难点与关键教学重点:理解平面直角坐标系的有关概念,由点的位置写出坐标,由坐标描出点的位置。

教学难点:由点的位置写出坐标,并让学生形成数形结合的意识。

关键:横、纵坐标的确定。

二、学情分析:学生在学习了数轴的概念后,已经有了一定的数形结合的意识,积累了一定的由数轴坐标描出数轴上的点及由数轴上的点写出数轴上点的坐标的经验,同时经过前一节《有序数对》的学习,对平面上的点由一个有序数对表示,有了一定的认识,并且经过一个学期的学习,已经具备了初步的逻辑推理能力和空间想象能力,自主探究、合作交流已经成为他们学习数学的重要方式。

三、教法与学法分析教法与学法:数学是一门培养和发展人的思维的重要学科,为了体现以学生为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,所以本节课我采用情景教学法与引导发现法;并以学生独立思考、自主探究、合作交流为主要形式的学习模式。

平面直角坐标系教学设计(20201109215951)

平面直角坐标系教学设计(20201109215951)

平面直角坐标系教学设计教学目标:教学知识点:① 、认识并能画出平面直角坐标系;能在方格纸上建立适当的直角坐标系; ② 、初步理解坐标系平面内点与有序实数对的一一对应关系, 并能熟练地由点的位置求坐标;明确数轴上点的数据特征和四个象限中的点的符号特征。

能力训练要求:1通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识.2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相 同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力.情感与价值观要求:培养学生细致、认真的学习习惯。

通过介绍笛卡儿建立直角坐标系的背景知识, 激励学生敢于探索,勇攀科学高峰。

教学重、难点:重点:平面直角坐标系的运用及认识象限。

难点:坐标的确认,特殊点的坐标特征理解。

(2)“校门”的位置在“综合楼”西多少格, 南多少格?用有序数对表示“校门”的位置; (3)“餐厅”的位置在“综合楼”西多少格,北多少格?怎样用有序数对表示“餐厅”的 位置?(让学生通过对问题的思考引出今天的课题“平面直角坐标系”预习要求:1. 什么是数轴?数轴的三要素?2. 数轴上的点与实数之间的关系是什么? 教学过程:一.情境引入如图是某中学新校舍示意图.如果把“综合楼”的位置作为起始点,用一组有系数对,记注:(1)创设情境引入,可以提高学生的学 习积极性。

(2) 这里提前介绍有序数对, 为下面的 坐标的引出做好辅垫。

(3) 学生先看图,同桌讨论,然后试着 解决下面的问题。

为(0,0),分别记向北为正,向东为正-3 -二.新知探索1.在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

通常,两条数 轴分别置于水平位置与铅直位置、取向右与向上的方向分别为两条数轴的正方向。

水平的数 轴叫做X 轴或横轴,竖直的数轴叫做y 轴或纵轴,两条数轴的交点0称为直角坐标系的原点。

对于平面内任意一点 P,过点P 分别向x 轴、y 轴作垂线,垂足在 x 轴、y 轴上对应的(让学生更好的掌握点的坐标的表示方法)注意点:横轴坐标在前,纵轴坐标在后2.象限相关知识坐标轴上的点不属于任何一个象限。

《平面直角坐标系》教学设计

《平面直角坐标系》教学设计

平面直角坐标系教学设计教学内容:人教版义务教育教科书数学七年级下册7.1.2平面直角坐标系(教材65-67页)教学目标:(1)理解平面直角坐标系的相关概念.(2)在给定的平面直角坐标系中,会由点的位置写出点的坐标,由点的坐标确定点的位置.教材简析:上节课学习在具体情境中用有序数对表示物体的位置。

本节课先介绍数轴上的点与坐标一一对应,在此基础上说明建立平面直角体系的必要性和合理性,引入相关概念,得出平面内点与坐标是一一对应的结论。

教学重点:平面直角坐标系及相关概念.教学难点:理解建立平面直角坐标系的必要性,体会平面直角坐标系中点与坐标一一对应关系。

教学时间:45分钟教学准备:教学PPT教学过程一、复习引入1.回答下列问题:(1)什么是数轴?请画出一条数轴.(2)如图,A,B两点所表示的数分别是什么?在数轴上描出“-3”表示的点.归纳:数轴上的点可以用一个数表示,这个数叫做这个点的坐标.2.在数轴上已知点能说出它的坐标,由坐标能在数轴上找到对应点的位置.那么数轴上的点与坐标有怎样的关系?归纳:数轴上的点与坐标是“一一对应”的.也就是说,在数轴上每一个点都可以用一个坐标来表示,任何一个坐标都可以在数轴上找到唯一确定的点.3. 类似于利用数轴确定直线上点的位置,结合已学习的有序数对,你能找到一种办法来确定平面内点P的位置吗?二、新知探究(一)提出问题1、点P所在的平面内有一些方格线,利用上节课所学的有序数对,约定“列数在前,排数在后”.如图,点P在“第1列第2排”,记为(1,2).2、在图中,点P记为(1,2),类比点P,你能分别写出点M,N分别记为什么吗?M记为(-2,-2);N记为(-1,3).3、根据以前查阅的资料,哪位同学能给大家简单介绍平面直角坐标系的产生以及数学家笛卡儿对数学产生的影响吗?(二)形成概念4如图,自己看书第66,67页后回答下列问题:①说一说组成平面直角坐标系的两条数轴具备什么特征?②什么是横轴?什么是纵轴?什么是坐标原点?③坐标平面被两条坐标轴分成了哪几个部分,分别对应什么象限?师生共同归纳: a.平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴.b. 水平的数轴称为x轴或横轴,取向右方向为正方向;c.竖直的数轴称为y轴或纵轴,取向上方向为正方向.d.两坐标轴的交点为平面直角坐标系的原点.e.建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限。

数学《平面直角坐标系》教案

数学《平面直角坐标系》教案

《平面直角坐标系》教学设计一、教材分析平面直角坐标系是数形结合的平台,是学生函数图象和平面解析几何的必要基础。

基于学生对数轴的认识,课本首先提出了“怎样建立平面上的点与实数的联系”这一问题,引导学生进行思考。

从电影院里的每一个座位与有序的“正整数对”的对应关系引起联想,通过平面“无限延展”与电影院“座位有限”的差异比较进行理性分析,然后建立平面直角坐标系。

为了降低学习的难度,课本中把平面直角坐标系应含“点与有序实数对的对应法则”,通过具体的操作活动来阐述,再进一步指出“平面内每一个点有唯一的有序实数对与它对应”,由此引进点的坐标的概念。

15.1平面直角坐标系分两课时,这是第一课时.二、学生状态分析学生在实数的学习中知道,每一个实数可以用数轴上唯一的一个点来表示,反过来,数轴上的每一个点也都可以用唯一的一个实数来表示.这样把”数”与”形”相互联系起来研究数学问题,学生并不陌生,再加上为引起学生的联想所给的情景都是学生熟悉的,这样为学生思考”怎样建立平面上的点与实数的联系”提供了直观的认识基础.估计学生在写点的坐标时,横坐标与纵坐标搞反,或不打括号。

强调点的坐标的写法,同时,对于坐标轴上点的坐标表示方法,学生可能存在理解困难,应予以强调。

三、教学目标知识与技能:1.理解平面直角坐标系的有关概念,并能正确画出平面直角坐标系;2.能在给定的直角坐标系中根据点的坐标描出点的位置,由点的位置写出点的坐标。

过程与方法:经历画坐标系、描点、看图等过程,让学生感受“数形结合”的数学思想。

情感态度与价值观:利用游戏、观察、实践、归纳等方法,积淀学生的数学文化涵养,培养热爱数学,勇于探索的精神。

四、教学重点、难点1.教学重点:使学生能正确画出平面直角坐标系,并能在给定的直角坐标系中,根据点的坐标描出点的位置,由点的位置写出它的坐标。

2.教学难点:理解坐标平面内的点与有序实数对的一一对应关系。

五、教学方法探究式教学法。

平面直角坐标系教学设计

平面直角坐标系教学设计

《平面直角坐标系》教学设计一、教学目标:(一)【知识目标】1、了解平面直角坐标系的产生过程;2、认识平面直角坐标系及其相关概念;3、探索象限内点的特征与坐标轴上点的特征。

(二)【技能目标】1、会正确画出平面直角坐标系;2、在给定的平面直角坐标系中,能够根据坐标指出点的位置,并且已知点的位置写出它对应的坐标;3、在给定的条件下,能够根据象限内点的特征与坐标轴上点的特征,结合特殊点,利用方程、不等式等已有的知识解决一些简单的数学问题;4、初步培养学生把现实问题抽象成数学模型的能力。

(三)【情感目标】1、能使学生感受到数学与现实世界的联系,增强学生“用数学”的意识,感受数学之用;2、培养学生严谨朴实的科学态度和勤奋自强的探索精神,以及独立思考与合作交流的学习习惯,感受数学之实。

3、让学生得到尝试、成功的情感体验,感受数学之美。

二、教学重点与难点:1、教学重点:能在给定的平面直角坐标系中,由点求出坐标,由坐标描出点。

2、教学难点:探索象限内点的特征与坐标轴上点的特征,以及它们特征的简单运用。

三、教学过程:(一)创设问题情境引例:我们的教室共有56个座位,自前向后分为7排,自左向右分为8列,每位学生对应了一个座位,我们来玩个“点将”游戏,你们是“将”,由我来点,点到的同学说出自己的座位号几排几列)。

同时演示“点将”游戏,游戏规则:(1)老师报到学生姓名,学生起立并说出座位号;(2)老师说出座位号,对应的学生起立。

奖励:同学们的掌声。

再提问你如何来确定自己的座位?先让学生自己思考,也可以进行小范围的讨论,学生可以归纳出:要确定一个学生的座位必须有两个数,一个是排数,一个是列数。

那么再问2排3列与3排2列是否是同一个座位?由此你认为表示座位与两个数的顺序有关吗?结合课件演示,让学生进行讨论与思考,可以发现:一个“将”的座位应该由一对有序的数组构成的。

(二)构建数学模型由上面的例子中我们可以发现,我们学生的座位是由一对有序的数组构成的,那么就我们已有的数学知识而言,我们能否将其也用数学知识来解决呢?教师在这个时间可以先提问一个数是如何来确定它的位置的,学生马上可以想到有关数轴的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“平面直角坐标系”教学设计
【教学内容】
浙教版《义务教育课程标准实验教科书·数学》八年级上册第六章“平面直角坐标系”第二节“平面直角坐标系”第一课时。

【教材分析】
“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。

平面直角坐标系的基本知识是学习全章及至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好本小节的教学要求,是教好、学好本小节的关键。

如果没有透彻理解这部分知识,就很难学好整个一章内容。

【学情分析】
学生已有知识水平:学生已了解数轴与实数的一一对应关系及它的画法,探索确定位置的方法之一是用正有序实数对来表示。

【教学目标】
1、使学生了解平面直角坐标系的产生过程;
2、会正确画出平面直角坐标系;
3、使学生能在平面直角坐标系中,由点求坐标,由坐标描点;
4、初步培养学生把实际问题抽象成数学模型的能力;
【重点难点】
重点:能画直角坐标系及由点求坐标,由坐标描点
难点:探索象限内点的特征与坐标轴上点的特征,以及它们特征的简单运用。

【教学程序】
【教学过程】
一、
温故旧知,探索新知
1、温故旧知
①如果规定列号写在前面,行号写在后面,
你能用数对表示出人民公园的位置吗?
②数对(2,4)在图上表示什么地方?
2、探索新知
③如果示意图中的列号及行号如图中所标,规定列号写在前面,行号写在后面,你能表示出人民公园的位置吗?
④南溪中学的位置又该如何表示呢?
⑤仿照刚才的方法,你能表示出新华书店的位置吗?
(设计意图:回顾用正有序实数对来表示位置,通过改变行号、列号,再来表示同一个点的位置,使学生打破传统思维,发现若改变了行号及列号位置,单单用正有序实数对并不能够准确全面的表示和确定物体(点)的位置,迫使学生联想起数轴负半轴(负数),从而有必要反向延长行号和列号,此时自然的将整个部分分割成四部分,初步形成直角坐标系的模型。


二、概括整理、形成概念
1、概括整理
这时学生很容易的把规定的行号,列号联想成2条数轴(由此可以联系到数轴的三要素:原点、正方向、单位长度),从而在方格当形成了2条特殊位置的数轴,然后再观察这2条数轴有怎样的特征?
(设计意图:通过这几个环节的处理,使学生能清晰的理解平面直角坐标系的产生过程,也能够认清日常生活确实需要用到平面直角坐标系)
2、形成概念
教师用PPT呈现完整的直角坐标系(一步步呈现),从而自然的规定横的那条数轴为横轴(X 轴)竖的那条数轴为纵轴(Y轴),交点为2条数轴公共的原点。

4个部分分别为4个象限。

此时平面直角坐标系的特征也能够完整的概括出来:2条数轴、公共原点、互相垂直。

再通过历史人物笛卡尔的介绍进一步激发学生的兴趣。

最后通过下面2个问题进行巩固。

问题1:判一判下列四个直角坐标系的画法是否正确,若不正确请指出来, 问题2:自己动手画一个直角坐标系。

(设计意图:通过错误判断和自己动手操作画一个这样的反馈,能够及时的发现和纠正错误并能加深对直角坐标系的印象) 三、例题练习、探究特征 1、例题练习
例1:由点写坐标,由坐标描点
问题1:写出图中P ,B ,C ,D ,E ,F 各点的坐标。

(如图1)
从P 点分别向x 轴与y 轴作垂线,垂足分别为M 、N ,点M 、N 在x 轴与y 轴上所的对应的数,就是点P 的横坐标与纵坐标,由此得出的有序实数对就是点P 的坐标P (3,2)。

以下就可以让学生自己处理,可以交流。

问题2:在同一平面直角坐标系中,描出下列各点: A(-3,0)、B (-2,1)、C (0,-4)、D (2,3)、E (3,0)。

(设计意图:因为有了前一节的规定:有序实数对列号写在前、行号写在后,多数学生能够表示,但这里教师还是需要规范下作垂线来表示横、纵坐标,为了以后能够更好的避免横、纵坐标颠倒位置。


问题3:想一想:D (2,3)和P(3,2)的位置一样吗?
(设计意图:让学生充分体验:平面上的点与有序实数对一一对应)
图1-1
2、探究特征:
问题4:X 轴上的点有什么特征?
(通过类比:学生自我归纳Y 轴上的点有什么特征)
问题5:写出一两个属于第二象限的点,并总结第二象限点的特征。

(先由学生自我归纳,教师补充归纳,在通过类比:学生自我归纳其他三个象限点的特征)
(设计意图:关键要学生自我归纳,能够使知识让学生主动归纳获取,体现以学生为主体性) 例2:先说出下列各点在哪个象限或哪条数轴上:再在坐标平面上描出各点。

A (4,3), B (-2,3),C (-4,-1),D (2,-2),E(5,0) , F(0,5),O(0,0),
(设计意图:能够让学生判断出点的位置,进一步巩固点的特征,为描点做好充分准备) 四、小结拓展、作业布置 1、小结拓展
你能用今天所学的完成下列2个问题吗?(方格纸已准备) ①在方格子上建立直角坐标系,并把点A (5,3),B (2,0)标在上面 ②在坐标平面上找一点C ,使得△ABC 为等腰直角三角形,∠C 为Rt ∠,并写出点C 的坐标. (设计意图:本小结最后由点形成了图形,为接下去学习“坐标平面内的图形变换”做铺垫, 又体现了分类的数学思想,能给优生“吃饱”。

) 2、作业布置 必做题:作业本
选择题:书本B 组题 【教学设计说明】
本课是作者开放日活动中上的一节研讨课.本节课在设计时不拘泥于教材,能依据地理实际情形,充分显示数学来源于生活,应用于生活。

本课最大的亮点在于在引入过程中,通过问题的设计,碰撞学生已学知识的局限性及思维能力,及时拓展形成概念。

相关文档
最新文档