2019带电粒子在复合场场中运动最新模拟题汇编

合集下载

最新高考物理带电粒子在复合场中的运动真题汇编

最新高考物理带电粒子在复合场中的运动真题汇编

一、带电粒子在复合场中的运动专项训练1.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m=12 mv2m-12mv2由题知 v m=ky m若E=0时,粒子以初速度v0沿y轴正向入射,有 qv0B=m2vR在最高处有 v0=kR0联立解得22()mEEv vB B=++考点:带电粒子在符合场中的运动;动能定理.2.如图所示,在坐标系Oxy的第一象限中存在沿y轴正方向的匀强电场,场强大小为E.在其它象限中存在匀强磁场,磁场方向垂直于纸面向里.A是y轴上的一点,它到坐标原点O的距离为h;C是x轴上的一点,到O的距离为L.一质量为m,电荷量为q的带负电的粒子以某一初速度沿x轴方向从A点进入电场区域,继而通过C点进入磁场区域.并再次通过A点,此时速度方向与y轴正方向成锐角.不计重力作用.试求:(1)粒子经过C点速度的大小和方向;(2)磁感应强度的大小B.【来源】2007普通高等学校招生全国统一考试(全国卷Ⅱ)理综物理部分【答案】(1)α=arctan2hl(2)B =2212mhEhl q+ 【解析】 【分析】 【详解】试题分析:(1)以a 表示粒子在电场作用下的加速度,有qE ma =①加速度沿y 轴负方向.设粒子从A 点进入电场时的初速度为0v ,由A 点运动到C 点经历的时间为t , 则有:212h at =② 0l v t =③由②③式得02a v lh=④ 设粒子从C 点进入磁场时的速度为v ,v 垂直于x 轴的分量12v ah =⑤ 由①④⑤式得:22101v v v +==()2242qE h l mh+⑥设粒子经过C 点时的速度方向与x 轴的夹角为α,则有1v tan v α=⑦ 由④⑤⑦式得2h arctanlα=⑧(2)粒子从C 点进入磁场后在磁场中作速率为v 的圆周运动.若圆周的半径为R ,则有qvB =m 2v R⑨设圆心为P ,则PC 必与过C 点的速度垂直,且有PC uuu r =PA R u u u r =.用β表示PA u u u r与y 轴的夹角,由几何关系得:Rcos Rcos h βα=+⑩Rsin l Rsin βα=-解得222242h l R h l hl++=由⑥⑨式得:B =2212mhEh l q+3.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v c ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)【解析】 【分析】 【详解】小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B=(2)从A 到C 根据动能定理:2102f mgh W mv -=-解得:2212f E W mgh m B=-(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212x at = 从D 到P ,根据动能定理:150a a +=,其中2114mv 联立解得:()22222()P Dmg qE v t v m+=+ 【点睛】解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.4.如图所不,在x 轴的上方存在垂直纸面向里,磁感应强度大小为B 0的匀强磁场.位于x 轴下方的离子源C 发射质量为m 、电荷量为g 的一束负离子,其初速度大小范围0〜,这束离子经电势差的电场加速后,从小孔O (坐标原点)垂直x 轴并垂直磁场射入磁场区域,最后打到x 轴上.在x 轴上2a 〜3a 区间水平固定放置一探测板(),假设每秒射入磁场的离子总数为N 0,打到x 轴上的离子数均匀分布(离子重力不计).(1)求离子束从小孔O 射入磁场后打到x 轴的区间;(2)调整磁感应强度的大小,可使速度最大的离子恰好打在探测板右端,求此时的磁感应强度大小B 1;(3)保持磁感应强度B 1不变,求每秒打在探测板上的离子数N ;若打在板上的离子80%被吸收,20%被反向弹回,弹回速度大小为打板前速度大小的0.6倍,求探测板受到的作用力大小.【来源】浙江省2018版选考物理考前特训(2017年10月)加试30分特训:特训7 带电粒子在场中的运动试题【答案】(1);(2)(3)【解析】(1)对于初速度为0的离子,根据动能定理::qU=mv在磁场中洛仑兹力提供向心力:,所以半径:r1==a恰好打在x=2a的位置;对于初速度为v0的离子,qU=mv-m(v0)2r2==2a,恰好打在x=4a的位置故离子束从小孔O射入磁场打在x轴上的区间为[2a,4a](2)由动能定理qU=mv-m(v0)2r3=r3=a解得B1=B0(3)对速度为0的离子qU=mvr4==a2r4=1.5a离子打在x轴上的区间为[1.5a,3a]N=N0=N0对打在x=2a处的离子qv3B1=对打在x=3a处的离子qv4B1=打到x轴上的离子均匀分布,所以=由动量定理-Ft=-0.8Nm+0.2N(-0.6m-m)解得F=N0mv0.【名师点睛】初速度不同的粒子被同一加速电场加速后,进入磁场的速度也不同,做匀速圆周运动的半径不同,转半圈后打在x轴上的位置不同.分别求出最大和最小速度,从而求出最大半径和最小半径,也就知道打在x轴上的区间;打在探测板最右端的粒子其做匀速圆周运动的半径为1.5a,由半径公式也就能求出磁感应强度;取时间t=1s,分两部分据动量定理求作用力.两者之和就是探测板受到的作用力.5.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02mT qBπ=.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题【答案】(1)00x y = ,()202qBy m(2)见解析【解析】 【详解】(1)发射源的位置00x y =, 粒子的初动能:()2002k qBy Em=;(2)分下面三种情况讨论: (i )如图1,002k E qU >由02101mv mv mvy R R Bq Bq Bq===、、,和221001122mv mv qU =-,222101122mv mv qU =-, 及()012x y R R =++, 得()()22002224x y yqB mqU yqB mqU qBqB=++++;(ii )如图2,0002k qU E qU <<由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =+, 及()032x y d R =--+,得()222023)2x y d y d q B mqU qB=-++++(;(iii )如图3,00k E qU <由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =-, 及()04x y d R =--+, 得()222042x y d y d q B mqU qB=--+-6.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。

2019年高考物理二轮训练卷:带电粒子在复(组)合场中的运动 专题

2019年高考物理二轮训练卷:带电粒子在复(组)合场中的运动 专题

带电粒子在复(组)合场中的运动一、选择题(本题共8小题,在每小题给出的四个选项中,至少有一项符合题目要求)1.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面、磁感应强度大小可调的均匀磁场,带电粒子可在环中做圆周运动。

A、B为两块中心开有小孔的距离很近的极板,原来电势均为零,每当带电粒子经过A板准备进入A、B之间时,A板电势升高为+U,B板电势仍保持为零,粒子在两板间的电场中得到加速;每当粒子离开B 板时,A板电势又降为零,粒子在电场的加速下动能不断增大,而在环形磁场中绕行半径不变。

若粒子通过A、B 板的时间不可忽略,则能定性反映A板电势U和环形区域内的磁感应强度B随时间t变化的关系的是()【答案】BC2.现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为()A.11 B.12C.121 D.144【答案】D3.(2018届北京师范大学第二附属中学月考)为了测量某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的测量计,该装置由绝缘材料制成,长、宽、高分别为a、b、c,左右两端开口,在垂直于上下底面方向加磁感应强度为B的匀强磁场,在前后两个内侧固定有金属板作为电极,污水充满管口从左向右流经该装置时,电压表将显示两个电极间的电压U.若用Q表示污水流量(单位时间内排出的污水体积),下列说法中正确的是()A. 若污水中正离子较多,则前表面比后表面电势高B. 前表面的电势一定低于后表面的电势,与哪种离子多少无关C. 污水中离子浓度越高,电压表的示数将越大D. 电压表示数U 与污水流量Q 成正比,与a 、b 、c 均无关 【答案】B4. 如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I ,线圈间产生匀强磁场,磁感应强度大小B 与I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H ,与其前后表面相连的电压表测出的霍尔电压U H 满足:U H =k H I Bd,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离。

最新物理带电粒子在复合场中的运动练习题20篇

最新物理带电粒子在复合场中的运动练习题20篇
Hale Waihona Puke 【答案】(1) D1 点电势高
(2)
U0
1 ne
IB0 d
【解析】
(3)
A 1
(1 U1 ) U0

f
1 2t0
【分析】由左手定则可判定电子偏向 D2 边,所以 D1 边电势高;当电压为 U0 时,电子不再 发生偏转,故电场力等于洛伦兹力,根据电流 I 与自由电子定向移动速率 v 之间关系为 I=nevbd 求出 U0 与 I、B0 之间的关系式;图像结合轻杆运动可知,0-t0 内,轻杆向一侧运动 至最远点又返回至原点,则可知轻杆的运动周期,当杆运动至最远点时,电压最小,结合
(9
6
2 )qBh m
(3) v 0.68qBh ; v 0.545qBh ; v 0.52qBh
m
m
m
【解析】
【分析】
(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零;
(2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度;
(3)作出粒子运动轨迹,应用几何知识求出粒子的速度.
一、带电粒子在复合场中的运动专项训练
1.如图,绝缘粗糙的竖直平面 MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方 向水平向右,电场强度大小为 E,磁场方向垂直纸面向外,磁感应强度大小为 B.一质量为 m、电荷量为 q 的带正电的小滑块从 A 点由静止开始沿 MN 下滑,到达 C 点时离开 MN 做 曲线运动.A、C 两点间距离为 h,重力加速度为 g.
将②带入①得U0
IB0 ned
(3)图像结合轻杆运动可知,0-t0 内,轻杆向一侧运动至最远点又返回至原点,则轻杆的
运动周期为 T=2t0

最新高中物理带电粒子在复合场中的运动题20套(带答案)

最新高中物理带电粒子在复合场中的运动题20套(带答案)
收。两虚线之间的区域无电场和磁场存在,离子可匀速穿过。忽略相对论效应和离子所受 的重力。求:
(1)离子经过电场仅加速一次后能打到 P 点所需的磁感应强度大小; (2)能使离子打到 P 点的磁感应强度的所有可能值; (3)打到 P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。 【来源】2015 年全国普通高等学校招生统一考试物理(重庆卷带解析)
电场,不计粒子重力和空气阻力,P、O 两点间的距离为 mv02 。 2qE
(1)求粒子进入磁场时的速度大小 v 以及进入磁场时到原点的距离 x; (2)若粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,求磁场磁感应强度的大小需要 满足的条件。 【来源】2019 年辽宁省辽阳市高考物理二模试题
【答案】(1) 【解析】
【答案】(1) e 3v0 (2) 2L m BL 3
【解析】
(3) 3 L 4
【分析】
根据电子束沿速度 v0 射入磁场,然后进入电场可知,本题考查带电粒子在磁场和电场中的 运动,根据在磁场中做圆周运动,在电场中做类平抛运动,运用牛顿第二定律结合几何知
识并且精确作图进行分析求解;
【详解】
(1)由题意可知电子在磁场中的轨迹半径 r L 3
即:
2 B
2nqUm (n 1, 2,3,
, k 2 1) ;
qkd
(3)加速次数最多的离子速度最大,取 n k 2 1 ,离子在磁场中做 n-1 个完整的匀速圆
周运动和半个圆周打到 P 点。 由匀速圆周运动:
T 2 r 2 m v qB
t磁 =(n
1)T
T 2
(2k 2 3) mkd 2 2qum(k 2 1)
2v0

mv02 qE

【物理】物理带电粒子在复合场中的运动题20套(带答案)

【物理】物理带电粒子在复合场中的运动题20套(带答案)

一、带电粒子在复合场中的运动专项训练1.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。

两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量为+q 的粒子由小孔下方2d处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。

不计粒子的重力。

(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、4mvqD,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.【来源】2015年全国普通高等学校招生统一考试物理(山东卷带解析)【答案】(1)2mv qd(2)4mv qD 或43mv qD (3)5.5πD【解析】 【分析】 【详解】(1)粒子在电场中,根据动能定理2122d Eq mv ⋅=,解得2mv E qd =(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为/2E R 由211v qvB m r =,解得4mv B qD = 则当外切时,半径为e R由212v qvB m r =,解得43mv B qD =(2)若Ⅰ区域的磁感应强度为220932qB L m U =,则粒子运动的半径为0010016819U U U ≤≤;Ⅱ区域的磁感应强度为2012qU mv =,则粒子运动的半径为2v qvB m r=;设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:1112R T v π=;034r L =据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=o;2180θ=o ;60α=o粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间分别为t 1、t 2,可得:r U ∝;1056U L U L=设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2) 联立上述各式可得:s=5.5πD2.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。

带电粒子在复合场中的运动训练题(含详细答案)

带电粒子在复合场中的运动训练题(含详细答案)

《带电粒子在复合场中的运动》训练题班级 姓名 得分1.关于电场力与洛伦兹力,以下说法正确的是( )A .电荷只要处在电场中,就会受到电场力,而电荷静止在磁场中,也可能受到洛伦兹力B .电场力对在电场中的电荷一定会做功,而洛伦兹力对在磁场中的电荷却不会做功C .电场力沿电场线的切线方向,洛伦兹力沿磁感线的切线方向D .只有运动的电荷在磁场中才可能会受到洛伦兹力的作用2.如图所示,在竖直绝缘的平台上,一个带正电的小球以水平速度v 0抛出,落在地面上的A 点,若加一垂直纸面向里的匀强磁场,则小球的落点( )A .仍在A 点B .在A 点左侧C .在A 点右侧D .无法确定3.某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图所示的直线斜向下由A 点向B 点运动,此空间同时存在由A 指向B 的匀强磁场,则下列说法正确的是( )A .小球一定带正电B .小球可能做匀速直线运动C .带电小球一定做匀加速直线运动D .运动过程中,小球的机械能增大4.如图所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是( )A .小球一定带正电B .小球一定带负电C .小球的绕行方向为顺时针D .改变小球的速度大小,小球将不做圆周运动5.如图所示,空间的某个复合场区域内存在着方向相互垂直的匀强电场和匀强磁场.质子由静止开始经一加速电场加速后,垂直于复合场的界面进入并沿直线穿过场区,质子从复合场区穿出时的动能为k E .氘核同样由静止开始经同一加速电场加速后穿过同一复合场后的动能为'k E ,则k E 与'k E 的大小关系为( )A .k k E E ='B .k k E E >'C .k k E E <'D .条件不足,难以确定6.如图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电、电荷量为q 、质量为m 、速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动,以下说法正确的是( )A .只要对着圆心入射,出射后均可垂直打在MN 上B .对着圆心入射的粒子,其出射方向的反向延长线一定过圆心C .对着圆心入射的粒子,速度越大,在磁场中通过的弧长越长,时间也越长D .只要速度满足mqBR v =,沿不同方向入射的粒子出射后均可垂直打在MN 上 7.如图所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片21A A .平板S 下方有磁感应强度为0B 的匀强磁场.下列表述正确的是( )A .质谱仪是分析同位素的重要工具B .速度选择器中的磁场方向垂直纸面向外C .能通过狭缝P 的带电粒子的速率等于BE D .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小8.劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图所示.置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处粒子源产生的质子质量为m 、电荷量为q +,在加速器中由静止开始加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是( )A .质子被加速后的最大速度不可能超过Rf π2B .质子离开回旋加速器时的最大动能与加速电压U 成正比C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为1:2D .保持磁感应强度B 和交流电频率f 不变,该回旋加速器加速粒子的最大动能不变9.如图所示,在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖直放置的足够长的固定绝缘杆MN ,小球P 套在杆上,已知P 的质量为m ,电荷量为q +,电场强度为E ,磁感应强度为B ,P 与杆间的动摩擦因数为μ,重力加速度为g .小球由静止开始下滑直到稳定的过程中( )A .小球的加速度一直减小B .小球的机械能和电势能的总和保持不变C .下滑加速度为最大加速度一半时小球的速度可能是qBm g qE v μμ22-=D .下滑加速度为最大加速度一半时小球的速度可能是qB m g qE v μμ22+=请将选择题答案写在下面的表格中 题号1 2 3 4 5 6 7 8 9 答案10.如图所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为0v 、带相等电荷量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M 点.(1)判断墨滴所带电荷的种类,并求其电荷量;(2)求磁感应强度B 的值;(3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ',则B '的大小为多少?《带电粒子在复合场中的运动》训练题参考答案1.答案 D 解析 静止在磁场中的电荷不可能受到洛伦兹力,A 错;尽管电场力对电荷可以做功,但如果电荷在电场中不动或沿等势面移动,电场力做功为零,B 错;洛伦兹力的方向与磁感线垂直,与运动方向垂直,C 错.只有D 是正确的.2.答案 C 解析 加上磁场后,洛伦兹力虽不做功,但可以改变小球的运动状态(改变速度的方向),小球做曲线运动,在运动中任一位置受力如图所示,小球受到了斜向上的洛伦兹力的作用,小球在竖直方向的加速度a y =mg -q v B cos θm<g ,故小球运动的时间将增加,由x =v 0t 知,落点应在A 点的右侧.3.答案 CD 解析 由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相同,故不受洛伦兹力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电小球的电性,选项A 错误;重力和电场力的合力不为零,故不可能做匀速直线运动,所以选项B 错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速直线运动,选项C 正确;运动过程中由于电场力做正功,故机械能增大,选项D 正确.4.答案 BC 解析 小球做匀速圆周运动,重力必与电场力平衡,则电场力方向竖直向上,结合电场方向可知小球一定带负电,A 错误,B 正确;洛伦兹力充当向心力,由曲线运动轨迹的弯曲方向结合左手定则可得绕行方向为顺时针方向,C 正确,改变小球的速度大小,重力仍与电场力平衡,小球做匀速圆周运动,D 错误.5.答案 B 解析 设质子的质量为m ,则氘核的质量为2m .在加速电场里,由动能定理可得:eU =12m v 2,在复合场里有:Bq v =qE ⇒v =E B,同理对于氘核由动能定理可得其离开加速电场的速度比质子的速度小,所以当它进入复合场时所受的洛伦兹力小于电场力,将往电场力方向偏转,电场力做正功,故动能增大,B 选项正确.6.答案 BD 解析 A .对着圆心入射的粒子,出射后不一定垂直打在MN 上,与粒子的速度有关,故A 错误.B .带电粒子的运动轨迹是圆弧,根据几何知识可知,对着圆心入射的粒子,其出射方向的反向延长线也一定过圆心,故B 正确.C .对着圆心入射的粒子,速度越大,在磁场中轨迹半径越大,弧长越长,根据几何知识可知,轨迹对应的圆心角越小,由T t πθ2=知,运动时间t 越小,故C 错误.D .速度满足v =qBR m 时,轨道半径r =m v qB=R ,入射点P 、出射点M 、磁场圆心O 点与轨迹的圆心O ’构成一个菱形,O ’M 与OP 平行,出射速度与O ’M 垂直,故粒子一定垂直打在MN 板上,故D 正确.7.答案 ABC 解析 粒子在题图中的电场中加速,说明粒子带正电,其通过速度选择器时,电场力与洛伦兹力平衡,则洛伦兹力方向应水平向左,由左手定则知,磁场的方向应垂直纸面向外,选项B 正确;由Eq =Bq v 可知,v =E /B ,选项C 正确;粒子打在胶片上的位置到狭缝的距离即为其做匀速圆周运动的直径D =2m v Bq ,可见D 越小,则粒子的比荷越大,D 不同,则粒子的比荷不同,因此利用该装置可以分析同位素,A 正确,D 错误.8.答案 AC 解析 粒子被加速后的最大速度受到D 形盒半径R 的制约,因v =2πR T=2πRf ,故A 正确;粒子离开回旋加速器的最大动能E km =12m v 2=12m ×4π2R 2f 2=2m π2R 2f 2,与加速电压U 无关,B 错误;根据R =m v Bq ,Uq =12m v 21,2Uq =12m v 22,得质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1,C 正确;因回旋加速器加速粒子的最大动能E km =2m π2R 2f 2与m 、R 、f 均有关,D 错误.9.答案 CD 解析 对小球受力分析如图所示,则mg -μ(Eq -q v B )=ma ,随着v 的增加,小球加速度先增加,当Eq =q v B 时加速度达到最大值a max =g ,继续运动,mg -μ(q v B -Eq )=ma ,随着v 的增加,a 逐渐减小,所以A 错误.因为有摩擦力做功,机械能与电势能总和在减小,B 错误.若在前半段达到最大加速度的一半,则mg -μ(Eq -q v B )=m g 2,得v =2μqE -mg 2μqB,若在后半段达到最大加速度的一半,则mg -μ(q v B -Eq )=m g 2,得v =2μqE +mg 2μqB,故C 、D 正确. 10.答案 (1)负电荷 q =mgd U (2)v 0U gd 2 (3)4v 0U 5gd 2解析 (1)墨滴在电场区域做匀速直线运动,有q U d=mg ① 由①式得:q =mgd U② 由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力,墨滴做匀速圆周运动,有q v 0=m v 20R③ 由几何关系可知墨滴在该区域恰完成四分之一圆周运动,则半径R =d ④由②③④式得B =v 0U gd 2 (3)根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为R ′,有q v 0B ′=m v 20R ′⑤由图可得:R ′2=d 2+(R ′-d 2)2 ⑥由⑥式得:R ′=54d ⑦ 联立②⑤⑦式可得:B ′=4v 0U 5gd 2.。

物理带电粒子在复合场中的运动题20套(带答案)

物理带电粒子在复合场中的运动题20套(带答案)

一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。

极板间存在方向向上的匀强电场,两极板间电压为U 。

质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。

两虚线之间的区域无电场和磁场存在,离子可匀速穿过。

忽略相对论效应和离子所受的重力。

求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。

【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。

【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。

设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。

【物理】物理带电粒子在复合场中的运动练习题含答案

【物理】物理带电粒子在复合场中的运动练习题含答案

neU
1 2
mv02
解得: n eB02R2 2mU
正、负电子在磁场中运动的周期为:T 2 m eB0
正、负电子在磁场中运动的时间为: t n T B0R2
2
2U
D 型盒间的电场对电子做功的平均功率: P W E e2B0U t t m
(3)设电子在匀强磁场中做圆周运动的半径为 r ,由几何关系可得 r sin d n2
故 B2 1 B1 2
若碰撞 n 次,则有:
R1
R 2
mv B1q
R2
R
mv B2q
故 B2 1 B1 n 1
(3)粒子在电场中运动时间:
R1
R n 1
mv B1q
R2
R
mv B2q
2 R mR
t1
4v
2
Eq
在 MN 下方的磁场中运动时间:
t2
n 1 2
2
R1
1 v
R
m EqR
mR Eq
电子在电场和磁场中运动的总时间 t t1 t2
2L 2 m 联立解得: t
v0 3eB
3 电子在磁场中做匀速圆周运动,洛伦兹力提供向心力,
则有 evB m vC2 r
最小矩形区域如图所示,
由数学知识得: CD 2r sin CQ r rcos
2
2
最小矩形区域面积: Smin CD CQ
在 MN 上方的磁场中运动时间:
总时间:
t3
1 2 R2 4v
2
mR Eq
t t1 t2 t3 2
mR Eq
4.在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁 场,如图甲所示.磁场的磁感应强度 B(图像中的 B0 末知)随时间 t 的变化情况如图乙所 示.该区域中有一条水平直线 MN,D 是 MN 上的一点.在 t=0 时刻,有一个质量为 m、 电荷量为+q 的小球(可看做质点),从 M 点开始沿着水平直线以速度 v0 向右做匀速直线运 动,t0 时刻恰好到达 N 点.经观测发现,小球在 t=2t0 至 t=3t0 时间内的某一时刻,又竖 直向下经过直线 MN 上的 D 点,并且以后小球多次水平向右或竖直向下经过 D 点.不考虑 地磁场的影响,求:

带电粒子在复合场中运动专题训练 附参考答案汇编.doc

带电粒子在复合场中运动专题训练 附参考答案汇编.doc

带电粒子在复合场中运动专题训练附参考答案汇编带电粒子在复合场中运动专题训练 1.如图所示,两导体板水平放置,两板间电势差为 U , 带电粒子以某一初速度 v 0 沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场,则粒子射入磁场和射出磁场的 M 、 N 两点间的距离 d 随着 U 和 v 0 的变化情况为() A、 d 随 v 0 增大而增大, d 与 U 无关 B、 d 随 v 0 增大而增大, d 随 U 增大而增大 C、 d 随 U 增大而增大, d 与 v 0 无关 D、 d 随v 0 增大而增大, d 随 U 增大而减小 2.在如图所示的直角坐标系中,在 y0 的区域内有一垂直于 xOy 平面的匀强磁场,在第四象限内有一平行于 x 轴方向的匀强电场。

现使一个质量为 m 的带电粒子,从坐标原点 O 以速度 V 沿 y 轴正方向射入匀强磁场,带电粒子从点 P(a,0)射出磁场,最后再从 Q 点射出匀强电场,射出电场时粒子速度跟 y 轴的夹角为 120 0 。

(粒子重力不计)求:(1)带电粒子从 O 点射入磁场,到达 P 点经历的时间。

(2)匀强电场的场强与匀强磁场的磁感应强度大小的比值 3.在如图所示的空间区域里, y 轴左方有一匀强电场,场强方向跟 y 轴负方向成 30角,大小为E = 4.0105 N/C, y 轴右方有一垂直纸面的匀强磁场,有一质子以速度 0 = 2.0106 m/s 由x 轴上 A 点( OA = 10cm)第一次沿轴正方向射入磁场,第二次沿 x 轴负方向射入磁场,回旋后都垂直射入电场,最后又进入磁场,已知质子质量 m 为 1.610-27 kg,求:(1)匀强磁场的磁感应强度;(2)质子两次在磁场中运动的时间之比;(3)质子两次在电场中运动的时间各为多少. 4.如图所示,在直角坐标系的第一、二象限内有垂直于纸面的匀强磁场,第三象限有沿 y 轴负方向的匀强电场;第四象限无电场和磁场。

(完整版)2019高三物理专项练习-带电粒子在复合场中运动

(完整版)2019高三物理专项练习-带电粒子在复合场中运动

2019高三物理专项练习-带电粒子在复合场中运动注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。

在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。

考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。

只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。

题型一带电粒子在电场和磁场分离的复合场中的运动1、如图甲所示,在第Ⅱ象限内有水平向右的匀强电场,电场强度为E,在第Ⅰ、Ⅳ象限内分别存在如下图的匀强磁场,磁感应强度大小相等、有一个带电粒子以垂直于x轴的初速度v0从x轴上的P点进入匀强电场中,并且恰好与y轴的正方向成45°角进入磁场,又恰好垂直进入第Ⅳ象限的磁场、OP之间的距离为d,那么带电粒子在磁场中第二次经过x轴时,求在电场和磁场中运动的总时间2.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B。

一质量为m、电荷量为q的带正电的粒子从y 轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如下图。

不计粒子重力,求〔1〕M、N两点间的电势差U MN;〔2〕粒子在磁场中运动的轨道半径r;〔3〕粒子从M点运动到P点的总时间t。

3.如下图,直角坐标系在一真空区域里,y轴的左方有一匀强电场,场强方向跟y轴负方向成θ=30º角,y轴右方有一垂直于坐标系平面的匀强磁场,在x轴上的A点有一质子发射器,它向x轴的正方向发射速度大小为v=2.0×106m/s的质子,质子经磁场在y轴的P点射出磁场,射出方向恰垂直于电场的方向,质子在电场中经过一段时间,运动到x轴的Q点.A点与原点O的距离为10cm,Q点与原点O的距离为(203-10)cm,q.求:质子的比荷为C/kg=10⨯0.18m〔1〕磁感应强度的大小和方向;〔2〕质子在磁场中运动的时间;〔3〕电场强度的大小.4.如下图,在x-o-y坐标系中,以(r,0)为圆心、r为半径的圆形区域内存在匀强磁场,磁场的磁感应强度大小为B,方向垂直于纸面向里.在y>r的足够大的区域内,存在沿y轴负方向的匀强电场,场强大小为E.从O点以相同速率向不同方向发射质子,质子的运动轨迹均在纸面内,且质子在磁场中运动的轨迹半径也为r.质子的电荷量为q,质量为m,不计质子所受重力及质子间相互作用力的影响.⑴求质子射入磁场时速度的大小;⑵假设质子沿x轴正方向射入磁场,求质子从O点进入磁场到第二次离开磁场经历的时间;⑶假设质子沿与x轴正方向成夹角θ的方向从O点射入第一象限的磁场中,求质子在磁场中运动的总时间.5.如下图,矩形区域I 和II 内分别存在方向垂直于纸面向外和向里的匀强磁场(AA ′、BB ′、CC ′、DD ′为磁场边界,四者相互平行),磁感应强度大小均为B ,矩形区域的长度足够长,两磁场宽度及BB ′与CC ′之间的距离均相同。

【2019年整理】带电粒子在复合场中的运动练习题(可编辑修改word版)

【2019年整理】带电粒子在复合场中的运动练习题(可编辑修改word版)

绝密★启用前2014-2015 学年度???学校12 月月考卷试卷副标题题号一二三四五六总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)带电荷量不变的微粒在匀强电场和匀强磁场的复合场中受重力、电场力、洛仑磁力(均不为 0)作用,可能做的运动是A.匀变速直线运动B. 匀变速曲线运动C.动能变化的直线运动D.动能不变的曲线运动2.一个带正电荷的小球从 a 点出发水平进入正交垂直的匀强电场和匀强磁场区域,电场方向竖直向上,某时刻小球运动到了 b 点,则下列说法正确的是A.从a 到b,小球可能做匀速直线运动B.从a 到b,小球可能做匀加速直线运动C.从a 到b,小球动能可能不变D.从a 到b,小球机械能可能不变1.D2.C3.C4.C5.AC6.C评卷人得分qgR3. 如图所示,空间有磁感应强度为 B ,方向竖直向上的匀强磁场,一束电子流以初速 v从水平方向射入,为了使电子流经过磁场时不偏转(不计重力),则在磁场区域内必须同时存在一个匀强电场,这个电场的场强大小与方向应是( )A .B/v ,方向竖直向上B .B/v ,方向水平向左C .Bv ,垂直纸面向里D .Bv ,垂直纸面向外4. 如图所示,在相互垂直的匀强电场和匀强磁场中,电荷量为 q 的液滴在竖直面内做半径为 R 的匀速圆周运动,已知电场强度为 E ,磁感应强度为 B ,则油滴的质量和环绕速度分别为( )A .,5. 在空间某一区域中既存在匀强电场,又存在匀强磁场.有一带电粒子,以某一速度射入到该区域中(不计带电粒子受到的重力),则该带电粒子在区域中的运动情况可能是 ( )A.做匀速直线运动B.做匀速圆周运动C.做匀变速直线运动D.做匀变速曲线运动qE , E B . B 2qR , EC .qE , BgR D .B qRg B E B gEg第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)、d 四种离子,它们带等量同种电荷,质量为 m a=m b<m c=m d,以不等的速率 v a<v b=v c<v d进入速度选择器后,有两种离子从选择器中射出,进入磁感应强度为B2的磁场.由此可以判断射向D1的是离子.(不计重力)三、实验题(题型注释)四、计算题(题型注释)OAC(α=30˚)区域内有 B = 0.5T 的匀强磁场,方向如图所示。

高中物理带电粒子在复合场中的运动解题技巧(超强)及练习题

高中物理带电粒子在复合场中的运动解题技巧(超强)及练习题
点睛:本题主要考查了带电粒子由电场进入磁场的情况,电子在电场中做类平抛运动,分别列出竖直和水平方向的方程列式分析求解;在磁场中,关键要画出轨迹图分析,根据几何关系求解.
5.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外 图中未画出 ,质量为m电荷量为q的粒子 不计重力 以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场 电场方向指向O点 ,已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.
解得: =1、2、3……
或 n=1、2、3……;
7.如图所示,A、B两水平放置的金属板板间电压为U(U的大小、板间的场强方向均可调节),在靠近A板的S点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A、B板间的电场加速后从B板上的小孔竖直向上飞出,进入竖直放置的C、D板间,C、D板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E,匀强磁场的方向水平向里,大小为B1。其中一些粒子能沿图中虚线做直线运动到达上方竖直圆上的a点,圆内存在磁感应强度大小为B2、方向水平向里的匀强磁场。其中S、a、圆心O点在同一竖直线上。不计粒子的重力和粒子之间的作用力。求:
【答案】(1) ;(2) ; ;(3) 。
【解析】
【分析】
【详解】
(1)由题可知,粒子进入静电分析器做圆周运动,则有:
解得:
(2)粒子从D到A匀速圆周运动,轨迹如图所示:
由图示三角形区域面积最小值为:
在磁场中洛伦兹力提供向心力,则有:
得:
设MN下方的磁感应强度为B1,上方的磁感应强度为B2,如图所示:
(3)粒子从出发直至到达P点经历时间的所有可能取值: k=1、2、3……或 n=1、2、3……。

2019-2020年高三高考物理一轮复习《带电粒子在组合场复合场中运动》专项练习卷

2019-2020年高三高考物理一轮复习《带电粒子在组合场复合场中运动》专项练习卷

带电粒子在组合场复合场中的运动一、选择题1.(2018·山东省淄博一中三模)为监测某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的长方体流量计.该装置由绝缘材料制成,其长、宽、高分别为a、b、c,左右两端开口.在垂直于上下底面方向加一匀强磁场,前后两个内侧面分别固定有金属板作为电极.污水充满管口从左向右流经该装置时,接在M、N两端间的电压表将显示两个电极间的电压U.若用Q表示污水流量(单位时间内排出的污水体积),下列说法中正确的是()A.M端的电势比N端的高B.电压表的示数U与a和b均成正比,与c无关C.电压表的示数U与污水的流量Q成正比D.若污水中正、负离子数相同,则电压表的示数为02.(多选)(2018·华南师大附中三模)利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等领域.如图所示是霍尔元件的工作原理示意图,磁感应强度B垂直于霍尔元件的工作面向下,当元件中通入图示方向的电流I时,C、D两侧面会形成一定的电势差U.下列说法中正确的是()A.若C侧面电势高于D侧面,则元件中形成电流的载流子带负电B.若C侧面电势高于D侧面,则元件中形成电流的载流子带正电C.在地球南、北极上方测地磁场强弱时,元件工作面竖直放置时U最大D.在地球赤道上方测地磁场强弱时,元件工作面竖直放置且与地球经线垂直时,U最大3.(多选)(2018·甘肃省兰州市三诊)如图所示为磁流体发电机的原理图,将一束等离子体(带有等量正、负离子的高速离子流)喷射入磁场,在磁场中有两块金属板A、B,这时金属板上就会聚集电荷,产生电压.如果射入的等离子体速度为v,两金属板间距离d,板的正对面积为S,匀强磁场的磁感应强度为B,方向与速度方向垂直,负载电阻为R.当发电机稳定发电时电动势为E,电流为I,则下列说法正确的是()A.A板为发电机的正极B.其他条件一定时,v越大,发电机的电动势E越大C .其他条件一定时,S 越大,发电机的电动势E 越大D .板间等离子体的电阻率为S d (Bdv I-R ) 4.(多选)(2019云南省大姚一中第六次月考)如图所示为一种质谱仪的示意图,由加速电场、静电分析器和磁分析器组成.若静电分析器通道中心线的半径为R ,通道内均匀辐射电场,在中心线处的电场强度大小为E ,磁分析器有范围足够大的有界匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一质量为m 、电荷量为q 的粒子从静止开始经加速电场加速后沿中心线通过静电分析器,由P 点垂直边界进入磁分析器,最终打到胶片上的Q 点.不计粒子重力.下列说法正确的是( )A .极板M 比极板N 的电势高B .加速电场的电压U =ERC .直径PQ =2B qmERD .若一群粒子从静止开始经过题述过程都落在胶片上的同一点,则该群粒子具有相同的比荷5.(多选) (2019·甘肃省兰州市一诊)如图是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是( )A .质谱仪是分析同位素的重要工具B .速度选择器中的磁场方向垂直于纸面向外C .能通过狭缝P 的带电粒子的速率等于E BD .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小6.(多选)(2019·辽宁省沈阳市调研)如图所示,空间某处存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,一个带负电的金属小球从M 点水平射入场区,经一段时间运动到N 点,关于小球由M 到N 的运动,下列说法正确的是( )A.小球可能做匀变速运动 B .小球一定做变加速运动C.小球动能可能不变 D .小球机械能守恒7.(2018·山西省孝义市质量检测三)如图所示,竖直平面内存在水平方向的匀强电场,电场强度为E ,同时存在垂直纸面向里的匀强磁场,磁感应强度为B ,纸面内放置一光滑的绝缘细杆,与水平方向成θ=45°角.质量为m 、带电荷量为q 的金属小环套在细杆上,以初速度v 0沿着细杆向下运动,小环离开细杆后,恰好做直线运动,则以下说法正确的是( )A.小球可能带负电B.电场方向可能水平向右C.小球的初速度v 0=2mg qBD.小球离开细杆时的速度v =E B8.(多选)(2018·河南省驻马店市第二次质检)如图所示,平面直角坐标系的第二象限内存在着垂直纸面向外、磁感应强度大小为2B 的匀强磁场,第三象限内存在着垂直纸面向里、磁感应强度大小为B 的匀强磁场.一带负电的粒子从原点O 以某一速度沿与y 轴成30°角方向斜向上射入磁场,且在第二象限运动时的轨迹圆的半径为R ,已知带电粒子的质量为m ,所带电荷量为q ,且所受重力可以忽略.则( )A.粒子在第二象限和第三象限两磁场中运动的轨迹圆半径之比为1∶2B.粒子完成一次周期性运动的时间为2πm 3qBC.粒子从O 位置入射后第二次经过x 轴时的位置到坐标原点的距离为33RD.若仅将粒子的入射速度大小变为原来的2倍,则粒子完成一次周期性运动的时间将减少【答案】 AC9.(多选)(2018·山西省晋城市第一次模拟)足够大的空间内存在着竖直向上的匀强磁场和匀强电场,有一带正电的小球在电场力和重力作用下处于静止状态.现将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v(如图所示),则关于小球的运动,下列说法正确的是()A.小球做类平抛运动B.小球在纸面内做匀速圆周运动C.小球运动到最低点时电势能增加D.整个运动过程中机械能不守恒10.(多选)如图所示是磁流体发电机的示意图,两平行金属板P、Q之间有一个很强的磁场.一束等离子体(即高温下电离的气体,含有大量正、负带电粒子)沿垂直于磁场的方向喷入磁场.把P、Q与电阻R相连接.下列说法正确的是()A.Q板的电势高于P板的电势B.R中有由a向b方向的电流C.若只改变磁场强弱,R中电流保持不变D.若只增大粒子入射速度,R中电流增大三、非选择题1.(2019·广东省汕尾市高三教学质量监测)如图所示,直角坐标系第一象限存在匀强电场,电场方向指向y轴负方向。

2019届物理二轮 带电粒子在复合场中的运动(B) 专题卷 (全国通用)

2019届物理二轮      带电粒子在复合场中的运动(B) 专题卷 (全国通用)

2019届物理二轮带电粒子在复合场中的运动(B)专题卷(全国通用)一、单选题(本大题共6小题,共24.0分)1.如图所示,在匀强电场中将一质量为m、带电量为q的带电小球,由静止释放,带电小球运动轨迹为一直线,该直线与竖直方向夹角为θ.不能忽略小球的重力,则匀强电场的场强大小为()A. 唯一值是B. 最大值是C. 最小值是D. 最小值是2.一个静止的质点,在0 4s时间内受到力F的作用,力的方向始终在同一直线上,力F随时间的变化如同所示,则质点在()A. 第2s末速度改变方向B. 第2s末位移改变方向C. 第4s末回到原出发点D. 第4s末运动速度为零3.从空中A点以E1=1J的初动能水平抛出一小球,小球刚要落地时的动能E2=5J,落地点在B点.不计空气阻力,则A、B两点的连线与水平面间的夹角为()A. B. C. D.4.一个电荷只在电场力作用下从电场中的A点移到B点过程中,电场力做了2×10-6 J的正功,那么()A. 电荷的动能减少了 6 JB. 电荷在B处时具有 6 J的动能C. 电荷的电势能减少了 6 JD. 电荷在B处时具有 6 J的电势能5.如图,质量为m、带电量为+q的滑块,沿绝缘斜面匀速下滑,当滑块滑至竖直向下的匀强电场区时,滑块运动的状态为()A. 继续匀速下滑B. 加速下滑C. 减速下滑D. 先加速下滑后减速下滑6.一个带电荷量为-q的油滴,从坐标原点O以速度v0射入匀强电场,v0方向与与场强E的方向成θ角,如图所示,已知油滴质量为m测得它在电场中运动到最高点P时的速度大小恰为v0,设P点的坐标为(x p,y p),则应为()A. B.C. D. 条件不足,无法确定二、多选题(本大题共2小题,共8.0分)7.地面附近,存在着一有界电场,边界MN将某空间分成上下两个区域Ⅰ、Ⅱ,在区域Ⅱ中有向上的匀强电场,在区域Ⅰ中离边界某一高度由静止释放一质量为m的带电小球A,如图甲所示,小球运动的v-t图象如图乙所示,已知重力加速度为g,不计空气阻力,则()A. 在s时,小球经过边界MNB. 小球受到的重力与电场力之比为3:5C. 在小球向下运动的整个过程中,重力做的功与电场力做的功大小相等D. 在小球运动的整个过程中,小球的机械能与电势能总和先变大再变小8.滑沙是国内新兴的,也是黄金海岸独有的旅游项目,深受游客欢迎.如图所示,某人坐在滑沙板上从沙坡斜面的顶端由静止沿直线下滑到斜面底端时,速度为v,设人下滑时所受阻力恒定不变,沙坡长度为L,斜面倾角为θ,人的质量为m,滑沙板质量不计,重力加速度为g.则()A. 人沿沙坡斜面的顶端下滑到底端所受阻力做的功为B. 人沿沙坡下滑时所受阻力的大小为C. 人沿沙坡斜面的顶端下滑到底端重力做的功为mgLD. 人在下滑过程中重力功率的最大值为三、填空题(本大题共1小题,共4.0分)9.如图,质量为m的带电小球A用长L的绝缘细线悬挂于O点,带电小球B固定在O点正下方绝缘柱上.其中O点与小球B的间距为L,当小球A静止时,细线与竖直方向的夹角θ=30°.A、B间库仑力大小为.其他条件不变,改变B球的电荷量,当小球A再次平衡且细线与竖直方向的夹角θ=90°时,B球现在的电荷量与原电荷量之比为.(重力加速度为g)四、计算题(本大题共3小题,共30.0分)10.如图甲所示,有一倾角为θ=30°的光滑固定斜面,斜面底端的水平面上放一质量为M的木板,斜面与木板平滑连接,滑块经过斜面与木板交界处的动能损失可忽略不计。

2019带电粒子在复合场场中运动最新模拟题汇编

2019带电粒子在复合场场中运动最新模拟题汇编

带电粒子在复合场场中运动最新模拟题汇编【例一】如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B 1=0.20 T ,方向垂直纸面向里,电场强度E 1=1.0×105V/m ,PQ 为板间中线。

竖靠平行板右侧边缘xOy 坐标系的第一象限内,有一边界线AO ,与y 轴的夹角∠AOy =45°,边界线的上方有垂直纸面向外的匀强磁场,磁感应强度B 2=0.25 T ,边界线的下方有竖直向上的匀强电场,电场强度E 2=5.0×105V/m 。

一束带电荷量q =8.0×10-19C 、质量m =8.0×10-26kg 的正离子从P 点射入平行板间,沿中线PQ 做直线运动,穿出平行板后从y 轴上坐标为(0,0.4 m)的Q点垂直y 轴射入磁场区,多次穿越边界线OA 。

求:(1)离子运动的速度;(2)离子从进入磁场到第二次穿越边界线OA 所需的时间。

【分析题意】11qvB qE =-------------------------------------------------------------------------------------------------------①代入数据解得v =5.0×105 m/s 。

(2)粒子进入磁场做匀速圆周运动由牛顿第二定律:rv m qvB 22=---②解得m r 2.0=-----------------------------------------------------③ 做出粒子的轨迹图由几何关系得圆弧QC 的圆心角为2πθ=--------------④粒子在磁场中运动的周期为22qB mT π=-----------------------------------⑤ 运动时间T t πθ21=---------------------------------------------⑥ ④⑤⑥得s t 71028.61-⨯=--------------------------------------⑦粒子过C 点的速度竖直向下,平行于电场线做匀减速直线运动速度减为0的时间设为2t 则由牛顿第二定律ma qE =2--------------------------------⑧运动学公式 2at v =----------------------------------------------⑨粒子再次返回到C 点的时间为3t 根据运动的对称性知:32t t =,所以离子从进入磁场到第二次穿越边界线OA 所需的时间:-7321108.28⨯=++=t t t t 。

高中物理带电粒子在复合场中的运动题20套(带答案)

高中物理带电粒子在复合场中的运动题20套(带答案)

一、带电粒子在复合场中的运动专项训练1.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02mT qBπ=.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题【答案】(1)00x y = ,()202qBy m(2)见解析【解析】 【详解】(1)发射源的位置00x y =, 粒子的初动能:()2002k qBy Em=;(2)分下面三种情况讨论: (i )如图1,002k E qU >由02101mv mv mvy R R Bq Bq Bq===、、,和221001122mv mv qU =-,222101122mv mv qU =-, 及()012x y R R =++, 得()()22002224x y yqB mqU yqB mqU qBqB=++++;(ii )如图2,0002k qU E qU <<由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =+, 及()032x y d R =--+,得()222023)2x y d y d q B mqU qB=-++++(;(iii )如图3,00k E qU <由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =-, 及()04x y d R =--+, 得()222042x y d y d q B mqU qB=--+-2.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)3.如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由.【来源】带电粒子在电场中运动压轴大题【答案】(1)mgEq=,方向沿y轴正方向;mvBqR=,方向垂直xOy平面向外(2)通过坐标原点后离开;理由见解析(3)范围是x>0;理由见解析【解析】【详解】(1)带电微粒平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E,由:mg qE=可得电场强度大小:mg qE =方向沿y 轴正方向;带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a )所示:考虑到带电微粒是从C 点水平进入磁场,过O 点后沿y 轴负方向离开磁场,可得圆周运动半径r R =;设磁感应强度大小为B ,由:2v qvB m R=可得磁感应强度大小:mv B qR=根据左手定则可知方向垂直xOy 平面向外;(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为(sin ,cos )R R θθ-,圆周运动轨迹方程为:222(sin )(cos )x R y R R θθ++-=而磁场边界是圆心坐标为(0,R )的圆周,其方程为:22()x y R R +-=解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为0x y =⎧⎨=⎩或:sin {(1cos )x R y R θθ=-=+坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:(2)2m v r R qB'== 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.答:(1)电场强度mg qE = ,方向沿y 轴正方向和磁感应强度mvB qR=,方向垂直xOy 平面向外.(2)这束带电微粒都是通过坐标原点后离开磁场的;(3)若这束带电微粒初速度变为2v ,这束带电微粒与x 轴相交的区域范围是x >0。

物理带电粒子在复合场中的运动题20套(带答案)

物理带电粒子在复合场中的运动题20套(带答案)

一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。

在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。

(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。

(2)求粒子在板板间做圆周运动的最大半径(用h表示)。

(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。

【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。

设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。

在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。

(完整版)带电粒子在复合场中的运动典型例题汇编

(完整版)带电粒子在复合场中的运动典型例题汇编

专题八带电粒子在复合场中的运动考纲解读 1.能分析计算带电粒子在复合场中的运动.2.能够解决速度选择器、磁流体发电机、质谱仪等磁场的实际应用问题1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图1所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,则下列说法正确的是()A.小球一定带正电B.小球可能做匀速直线运动C.带电小球一定做匀加速直线运动;D.运动过程中,小球的机械能增大;图1 2.[带电粒子在复合场中的匀速圆周运动]如图2所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是() A.小球一定带正电B.小球一定带负电;C.小球的绕行方向为顺时针;D.改变小球的速度大小,小球将不做圆周运动图2考点梳理一、复合场1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.2.三种场的比较项目名称力的特点功和能的特点重力场大小:G=mg方向:竖直向下重力做功与路径无关重力做功改变物体的重力势能静电场大小:F=qE方向:a.正电荷受力方向与场强方向相同b.负电荷受力方向与场强方向相反电场力做功与路径无关W=qU电场力做功改变电势能磁场洛伦兹力F=q v B方向可用左手定则判断洛伦兹力不做功,不改变带电粒子的动能二、带电粒子在复合场中的运动形式1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.3. [质谱仪原理的理解]如图3所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是 ( )A .质谱仪是分析同位素的重要工具 ;B .速度选择器中的磁场方向垂直纸面向外;C .能通过狭缝P 的带电粒子的速率等于E /BD .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小 ; 图3 4. [回旋加速器原理的理解]劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图4所示.置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速, 且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是 ( )A .质子被加速后的最大速度不可能超过2πRf ;B .质子离开回旋加速器时的最大动能与加速电压U 成正比C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1 ;D .不改变磁感应强度B 和交流电频率f ,该回旋加速器的最大动能不变 图4 规律总结带电粒子在复合场中运动的应用实例 1. 质谱仪(1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成.图5(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12m v 2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式q v B =m v 2r .由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 2. 2. 回旋加速器(1)构造:如图6所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处 接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由q v B =m v 2r ,得 E km =q 2B 2r 22m,可见粒子获得的最大动能由磁感应强度B 和D 形盒 图6半径r 决定,与加速电压无关.(特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动) 的原理.)3. 速度选择器(如图7所示)(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =q v B ,即v =EB . 图74. 磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图8中的B 是发电机正极.(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q UL =q v B 得两极板间能达到的最大电势差U =BL v . 图85. 电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负 离子),在洛伦兹力的作用下横向偏转,a 、b间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:q v B =qE =q U d ,所以v =U Bd ,因此液体流量Q =S v =πd 24·U Bd =πdU4B . 图9考点一 带电粒子在叠加场中的运动1. 带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题. (3)电场力、磁场力、重力并存 ①若三力平衡,一定做匀速直线运动. ②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2. 带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例1 如图10所示,带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为B 的圆形匀强磁场区域 ,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.若撤去磁场,质子仍从O 1点以相同速度射入,则经t 02时间打到极板上. 图10(1)求两极板间电压U ;(2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动L ∶(L -2R )=t 0∶t 02,解得L =4R粒子在电场中做类平抛运动:L -2R =v 0·t 02a =qE mR =12a (t 02)2在复合场中做匀速运动:q U2R=q v 0B联立各式解得v 0=4R t 0,U =8R 2Bt 0(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R因为R =12qE m (t 02)2,所以qE m =q v 0B m =8R t20根据牛顿第二定律有q v B =m v 2r,解得v =2(2-1)Rt 0所以,粒子在两板左侧间飞出的条件为0<v <2(2-1)Rt 0答案 (1)8R 2Bt 0 (2)0<v <2(2-1)R t 0技巧点拨带电粒子(带电体)在叠加场中运动的分析方法1.弄清叠加场的组成. 2.进行受力分析.3.确定带电粒子的运动状态,注意运动情况和受力情况的结合. 4.画出粒子运动轨迹,灵活选择不同的运动规律.(1)当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.(2)当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解. (3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解. (4)对于临界问题,注意挖掘隐含条件. 5.记住三点:(1)受力分析是基础; (2)运动过程分析是关键;(3)根据不同的运动过程及物理模型,选择合适的定理列方程求解.方法点拨解决带电粒子在组合场中运动问题的思路方法突破训练1 如图11所示,空间存在着垂直纸面向外的水平匀强磁场,磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,速度减小到原来的一半,并沿x 轴正方向做匀速直线运动,已知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静电力忽略不计.(1)求两液滴相撞后共同运动的速度大小;(2)求液滴b 开始下落时距液滴a 的高度h . 图11答案 (1)E B (2)2E 23gB 2解析 液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用. (1)设液滴a 质量为m 、电荷量为q ,则液滴b 质量为m 、电荷量为-2q , 液滴a 平衡时有qE =mg ① a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态, 重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上, 因此满足q v B +qE =2mg ②由①、②两式,可得相撞后速度v =EB(2)对b ,从开始运动至与a 相撞之前,由动能定理有W E +W G =ΔE k ,即(2qE +mg )h =12m v 20 ③a 、b 碰撞后速度减半,即v =v 02,则v 0=2v =2EB再代入③式得h =m v 204qE +2mg =v 206g =2E 23gB 2考点二 带电粒子在组合场中的运动1. 近几年各省市的高考题在这里的命题情景大都是组合场模型,或是一个电场与一个磁场相邻,或是两个或多个磁场相邻.2. 解题时要弄清楚场的性质、场的方向、强弱、范围等. 3. 要进行正确的受力分析,确定带电粒子的运动状态. 4. 分析带电粒子的运动过程,画出运动轨迹是解题的关键.例2 (2012·山东理综·23)如图12甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子由S 1静止释放,粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)(1)求粒子到达S 2时的速度大小v 和极板间距d .(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.(3)若已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小. 审题指导 1.粒子的运动过程是什么?2.要在t =3T 0时使粒子再次到达S 2,且速度为零,需要满足什么条件?解析 (1)粒子由S 1至S 2的过程,根据动能定理得qU 0=12m v 2 ①由①式得v = 2qU 0m②设粒子的加速度大小为a ,由牛顿第二定律得q U 0d=ma ③由运动学公式得d =12a (T 02)2 ④联立③④式得d =T 04 2qU 0m⑤(2)设磁感应强度的大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,由牛顿第二定律得q v B =m v 2R⑥要使粒子在磁场中运动时不与极板相撞,需满足2R >L2⑦联立②⑥⑦式得B <4L 2mU 0q(3)设粒子在两边界之间无场区向左匀速运动的过程所用时间为t 1,有d =v t 1 ⑧ 联立②⑤⑧式得t 1=T 04⑨若粒子再次到达S 2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t 2,根据运动学公式得d =v2t 2 ⑩联立⑧⑨⑩式得t 2=T 02 ⑪设粒子在磁场中运动的时间为tt =3T 0-T 02-t 1-t 2 ⑫联立⑨⑪⑫式得t =7T 04⑬设粒子在匀强磁场中做匀速圆周运动的周期为T ,由⑥式结合运动学公式得T =2πmqB⑭由题意可知T =t ⑮联立⑬⑭⑮式得B =8πm7qT 0.答案 (1) 2qU 0m T 04 2qU 0m (2)B <4L 2mU 0q(3)7T 04 8πm 7qT 0突破训练2 如图13所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E 和E/2;区域Ⅱ内有垂直向外的水平匀强磁场,磁感应强度为B .一质量为m 、带电荷量为q 的带负电粒子(不计重力)从左边界O 点正上方的M 点以速度v 0水平射入电场,经水平分界线OP 上的A 点与OP 成60°角射入区域Ⅱ的磁场,并垂直竖直边界CD 进入Ⅲ区域的匀强电场中.求:(1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径; (2)O 、M 间的距离;(3)粒子从M 点出发到第二次通过CD 边界所经历的时间. 图13答案 (1)2m v 0qB (2) 3m v 022qE (3)(8+3)m v 0qE +πm3qB审题指导 1.粒子的运动过程是怎样的? 2.尝试画出粒子的运动轨迹.3.注意进入磁场时的速度的大小与方向.解析 (1)粒子的运动轨迹如图所示,其在区域Ⅰ的匀强电场中做类平抛运动,设粒子过A 点时速度为v ,由类平抛运动规律知v =v 0cos 60°粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得Bq v =m v 2R ,所以R =2m v 0qB(2)设粒子在区域Ⅰ的电场中运动时间为t 1,加速度为a .则有qE =ma ,v 0tan 60°=at 1,即t 1=3m v 0qEO 、M 两点间的距离为L =12at 21=3m v 022qE(3)设粒子在Ⅱ区域磁场中运动时间为t 2 则由几何关系知t 2=T 16=πm3qB设粒子在Ⅲ区域电场中运动时间为t 3,a ′=qE 2m =qE2m则t 3=2×2v 0a ′=8m v 0qE粒子从M 点出发到第二次通过CD 边界所用时间为t =t 1+t 2+t 3=3m v 0qE +πm 3qB +8m v 0qE =(8+3)m v 0qE +πm3qB42.带电粒子在交变电场和交变磁场中的运动模型问题的分析解析 (1)粒子在磁场中运动时q v B =m v 2R(2分)T =2πRv (1分)解得T =2πm qB =4×10-3 s (1分)(2)粒子的运动轨迹如图所示,t =20×10-3 s 时粒子在坐标系内做了两个 圆周运动和三段类平抛运动,水平位移x =3v 0T =9.6×10-2 m (1分)竖直位移y =12a (3T )2 (1分)Eq =ma (1分) 解得y =3.6×10-2 m故t =20×10-3 s 时粒子的位置坐标为:(9.6×10-2 m ,-3.6×10-2 m) (1分) (3)t =24×10-3 s 时粒子的速度大小、方向与t =20×10-3 s 时相同,设与水平方向夹角为 α (1分)则v =v 20+v 2y (1分)v y =3aT (1分)tan α=v yv 0 (1分)解得v =10 m/s (1分)与x 轴正向夹角α为37°(或arctan 34)斜向右下方 (1分)答案 (1)4×10-3 s (2)(9.6×10-2 m ,-3.6×10-2 m) (3)10 m/s 方向与x 轴正向夹角α为37°(或arctan 34)突破训练3 如图15甲所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上的场强大小为E =2.5×102 N/C 的匀强电场(上、下及左侧无界).一个质量为m =0.5 kg 、电荷 量为q =2.0×10-2 C 的可视为质点的带正电小球,在t =0时刻以大小为v 0的水平初速度 向右通过电场中的一点P ,当t =t 1时刻在电场所在空间中加上一如图乙所示随时间周期 性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点, PD 间距为L ,D 到竖直面MN 的距离DQ 为L /π.设磁感应强度垂直纸面向里为正.(g = 10 m/s 2)图15(1)如果磁感应强度B 0为已知量,使得小球能竖直向下通过D 点,求磁场每一次作用时 间t 0的最小值(用题中所给物理量的符号表示);(2)如果磁感应强度B 0为已知量,试推出满足条件的时刻t 1的表达式(用题中所给物理量 的符号表示);(3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小(用题中所给物理量的符号表示).答案 (1)3πm 2qB 0 (2)L v 0+mqB 0 (3)2πm v 0qL 6L v 0解析 (1)当小球仅有电场作用时:mg =Eq ,小球将做匀速直线运 动.在t 1时刻加入磁场,小球在时间t 0内将做匀速圆周运动,圆周 运动周期为T 0,若竖直向下通过D 点,由图甲分析可知: t 0=3T 04=3πm 2qB 0(2)PF -PD =R ,即: 甲 v 0t 1-L =Rq v 0B 0=m v 20/R所以v 0t 1-L =m v 0qB 0,t 1=L v 0+mqB 0(3)小球运动的速率始终不变,当R 变大时,T 0也增加,小球在电 磁场中的运动的周期T 增加,在小球不飞出电磁场的情况下,当T 最大时有:DQ =2R =L π=2m v 0qB 0 B 0=2πm v 0qL ,T 0=2πR v 0=Lv 0 乙由图分析可知小球在电磁场中运动的最大周期: T =8×3T 04=6Lv 0,小球运动轨迹如图乙所示.高考题组1. (2012·课标全国·25)如图16,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线从圆上的a 点射入柱形区域,从圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为3/5R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线从a 点射入柱形区域,也从b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小. 答案 14qRB 25m解析 粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛伦兹力公式得q v B =m v 2r ①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 点和d 点.由几何关系知,线段ac 、bc 和过a 、b 两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此ac =bc =r ② 设cd =x ,由几何关系得ac =45R +x ③bc =35R +R 2-x 2 ④联立②③④式得r =75R ⑤再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设 其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE =ma ⑥粒子在电场方向和直线方向运动的距离均为r ,由运动学公式得r =12at 2 ⑦r =v t ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E =14qRB 25m .2. (2012·浙江理综·24)如图17所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M 点.(1)判断墨滴所带电荷的种类,并求其电荷量;(2)求磁感应强度B 的值; 图17 (3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?答案 (1)负电荷 mgdU (2)v 0U gd 2 (3)4v 0U 5gd 2解析 (1)墨滴在电场区域做匀速直线运动,有q Ud=mg ① 由①式得:q =mgdU ②由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力, 墨滴做匀速圆周运动,有q v 0B =m v 02R ③考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知墨滴在该区域恰完成四分之 一圆周运动,则半径R =d ④由②③④式得B =v 0Ugd 2(3)根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为R ′,有q v 0B ′=m v 02R ′ ⑤由图可得:R ′2=d 2+(R ′-d2)2 ⑥由⑥式得:R ′=54d ⑦联立②⑤⑦式可得:B ′=4v 0U 5gd 2.3. (2012·重庆理综·24)有人设计了一种带电颗粒的速率分选装置,其原理如图18所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM 矩形区域内还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1k的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′O 进入两金属板之间,其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板,重力加速度为g ,PQ =3d , NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间的相互作用.求:(1)电场强度E 的大小; (2)磁感应强度B 的大小;(3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离. 图18 答案 见解析解析 (1)设带电颗粒的电荷量为q ,质量为m .由于粒子从Q 点离开磁场后做匀速直线运 动,则有Eq =mg将q m =1k 代入,得 E =kg .(2)如图所示,粒子在磁场区域内由洛伦兹力提供其做圆周运动的向心力,则有q v 0B =m v 20R ①而由几何知识有R 2=(3d )2+(R -d )2 ②联立①②解得B =k v 05d . ③(3)设速度为λv 0的颗粒在磁场区域运动时竖直方向的位移为y 1, 离开磁场后做匀速直线运动时竖直方向的位移为y 2,偏转角为θ,如图所示,有qλv 0B =m (λv 0)2R 1④将q m =1k 及③式代入④式,得 R 1=5d λ tan θ=221)3(3d R d -y 1=R 1-)3(221d R - y 2=l tan θ则速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离为 y =y 1+y 2解得y =d (5λ-25λ2-9)+3l25λ2-9.模拟题组4. 如图19所示,坐标平面第Ⅰ象限内存在大小为E =4×105 N/C 、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向里的匀强磁场.质荷比为m q =4×10-10 N/C 的带正电粒子从x轴上的A 点以初速度v 0=2×107 m/s 垂直x 轴射入电场,OA =0.2 m ,不计重力.求: 图19 (1)粒子经过y 轴时的位置到原点O 的距离;(2)若要求粒子不能进入第三象限,求磁感应强度B 的取值范围(不考虑粒子第二次进入 电场后的运动情况.)答案 (1)0.4 m (2)B ≥(22+2)×10-2 T解析 (1)设粒子在电场中运动的时间为t ,粒子经过y 轴时的位置与原点O 的距离为y ,则:s OA =12at 2a =F m E =F qy =v 0t联立解得a =1.0×1015 m/s 2 t =2.0×10-8 s y =0.4 m (2)粒子经过y 轴时在电场方向的分速度为: v x =at =2×107 m/s粒子经过y 轴时的速度大小为: v =v x 2+v 02=22×107 m/s 与y 轴正方向的夹角为θ,θ=arctanv xv 0=45° 要使粒子不进入第三象限,如图所示,此时粒子做匀速圆周 运动的轨道半径为R ,则:R +22R ≤yq v B =m v 2R联立解得B ≥(22+2)×10-2 T.5. 如图20甲所示,在以O 为坐标原点的xOy 平面内,存在着范围足够大的电场和磁场,一个带正电小球在t =0时刻以v 0=3gt 0的初速度从O 点沿+x 方向(水平向右)射入该空 间,在t 0时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强大小E 0=mg q ,磁场垂直于xOy 平面向外,磁感应强度大小B 0=πmqt 0,已知小球的质量为m ,带电荷量为q ,时间单位为t 0,当地重力加速度为g ,空气阻力不计.试求:图20(1)t 0末小球速度的大小;(2)小球做圆周运动的周期T 和12t 0末小球速度的大小;(3)在给定的xOy 坐标系中,大体画出小球在0到24t 0内运动轨迹的示意图; (4)30t 0内小球距x 轴的最大距离. 答案 (1)10gt 0 (2)2t 013gt 0 (3)见解析图(4)⎝ ⎛⎭⎪⎫92+3+32πgt 20 解析 (1)由题图乙知,0~t 0内,小球只受重力作用,做平抛运动,在t 0末: v =v 0x 2+v 0y 2=(3gt 0)2+(gt 0)2=10gt 0(2)当同时加上电场和磁场时,电场力F 1=qE 0=mg ,方向向上因为重力和电场力恰好平衡,所以小球只受洛伦兹力而做匀速圆周运动,有q v B 0=m v 2r运动周期T =2πrv ,联立解得T =2t 0由题图乙知,电场、磁场同时存在的时间正好是小球做匀速圆周运动周期的5倍,即在 这10t 0内,小球恰好做了5个完整的匀速圆周运动.所以小球在t 1=12t 0时刻的速度相 当于小球做平抛运动t =2t 0时的末速度. v y 1=g ·2t 0=2gt 0,v x 1=v 0x =3gt 0 所以12t 0末v 1=v x 12+v y 12=13gt 0(3)24t 0内运动轨迹的示意图如图所示.(4)分析可知,小球在30t 0时与24t 0时的位置相同,在24t 0内小球相当于做了t 2=3t 0的平 抛运动和半个圆周运动.23t 0末小球平抛运动的竖直分位移大小为y 2=12g (3t 0)2=92gt 20竖直分速度v y 2=3gt 0=v 0,所以小球与竖直方向的夹角为θ=45°,速度大小为 v 2=32gt 0此后小球做匀速圆周运动的半径r 2=m v 2qB 0=32gt 20π30t 0内小球距x 轴的最大距离:y 3=y 2+(1+cos 45°)r 2=⎝ ⎛⎭⎪⎫92+3+32πgt 20专题突破练 带电粒子在复合场中的运动(限时:60分钟)►题组1 对带电粒子在叠加场中运动的考查1. 如图1所示,在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖直足够长固定绝缘杆MN ,小球P 套在杆上,已知P 的质量为m , 电荷量为+q ,电场强度为E ,磁感应强度为B ,P 与杆间的动摩擦 因数为μ,重力加速度为g .小球由静止开始下滑直到稳定的过程中( )A .小球的加速度一直减小B .小球的机械能和电势能的总和保持不变 图1C .下滑加速度为最大加速度一半时的速度可能是v =2μqE -mg2μqBD .下滑加速度为最大加速度一半时的速度可能是v =2μqE +mg2μqB答案 CD解析 对小球受力分析如图所示,则mg -μ(Eq -q v B )=ma ,随着v 的增加,小球加速度先增加,当Eq =q v B 时加速度达到最大值a max。

高考物理带电粒子在复合场中的运动真题汇编

高考物理带电粒子在复合场中的运动真题汇编

一、带电粒子在复合场中的运动专项训练1.离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图所示,截面半径为R 的圆柱腔分为两个工作区.I 为电离区,将氙气电离获得1价正离子;II 为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.I 区产生的正离子以接近0的初速度进入II 区,被加速后以速度v M 从右侧喷出.I 区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α<90◦).推进器工作时,向I 区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在I 区内不与器壁相碰且能到达的区域越大,电离效果越好.......................已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞).(1)求II 区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断I 区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(浙江卷带解析)【答案】(1)22Mv L(2)垂直于纸面向外(3)043mv B eR >(4)()max 342sin eRB v m α=-【解析】 【分析】 【详解】(1)离子在电场中加速,由动能定理得:212M eU Mv =,得:22M Mv U e =.离子做匀加速直线运动,由运动学关系得:22Mv aL =,得:22Mv a L=.(2)要取得较好的电离效果,电子须在出射方向左边做匀速圆周运动,即为按逆时针方向旋转,根据左手定则可知,此刻Ⅰ区磁场应该是垂直纸面向外.(3)当90α=︒时,最大速度对应的轨迹圆如图一所示,与Ⅰ区相切,此时圆周运动的半径为34r R =洛伦兹力提供向心力,有2maxmaxv Bev m r= 得34max BeRv m=即速度小于等于34BeRm 此刻必须保证043mv B BR>. (4)当电子以α角入射时,最大速度对应轨迹如图二所示,轨迹圆与圆柱腔相切,此时有:90OCO α∠'=︒﹣2ROC =,OC r '=,OO R r '=﹣ 由余弦定理有222(29022R R R r r r cos α⎛⎫=+⨯⨯︒ ⎪⎝⎭﹣)﹣(﹣),90cos sin αα︒-=() 联立解得:()342Rr sin α=⨯-再由:maxmv r Be=,得 ()342max eBRv m sin α=-.考点:带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动 【名师点睛】该题的文字叙述较长,要求要快速的从中找出物理信息,创设物理情境;平时要注意读图能力的培养,以及几何知识在物理学中的应用,解答此类问题要有画草图的习惯,以便有助于对问题的分析和理解;再者就是要熟练的掌握带电粒子在磁场中做匀速圆周运动的周期和半径公式的应用.2.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求(1)M、N两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.【来源】带电粒子在电场、磁场中的运动【答案】1)U MN=(2)r=(3)t=【解析】【分析】【详解】(1)设粒子过N点时的速度为v,有:解得:粒子从M点运动到N点的过程,有:解得:(2)粒子在磁场中以O′为圆心做匀速圆周运动,半径为r,有:解得:(3)由几何关系得:设粒子在电场中运动的时间为t 1,有:粒子在磁场中做匀速圆周运动的周期:设粒子在磁场中运动的时间为t 2,有:3.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求: (1)粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (2)M 点的横坐标x M .【来源】磁场 【答案】(1)20122R H h at h =+=+;(2)22000724M x R R R h h =++- 【解析】【详解】(1)做直线运动有,根据平衡条件有:0qE qB =v ①做圆周运动有:2000qB m R =v v ②只有电场时,粒子做类平抛,有:qE ma =③00R t =v ④ y v at =⑤解得:0y v v =⑥ 粒子速度大小为:22002y v v v v =+=⑦速度方向与x 轴夹角为:π4θ=⑧ 粒子与x 轴的距离为:20122R H h at h =+=+⑨(2)撤电场加上磁场后,有:2v qBv m R=⑩解得:02R R =⑾. 粒子运动轨迹如图所示圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,有几何关系得C 点坐标为:02C x R =⑿02C R y H R h =-=-⒀ 过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==⒁2C R CD y h ==-⒂) 解得:22220074DM CM CD R R h h =-=+-⒃ M 点横坐标为:22000724M x R R R h h =++-⒄4.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。

2019年高考物理三轮冲刺:带电粒子在复合场中的运动问题押题重点练习(含解析)

2019年高考物理三轮冲刺:带电粒子在复合场中的运动问题押题重点练习(含解析)

2019年高考物理三轮冲刺:带电粒子在复合场中的运动问题押题重点练习(含解析)1、设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示。

已知一离子在电场力和洛伦兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,以下说法中正确的是A.这离子必带正电荷B.A点和B点位于同一高度C.离子在C点时速度最大D.离子到达B点后,将沿原曲线返回A点【解析】从图中可以看出,上极板带正电,下极板带负点,带电粒子由静止开始向下运动,说明受到向下的电场力,可知粒子带正电,选项A 正确;离子具有速度后,它就在向下的电场力F及总与速度垂直并不断改变方向的洛伦兹力f作用下沿ACB曲线运动,因洛伦兹力不做功,电场力做功等于动能的变化,而离子到达B点时的速度为零,所以从A到B电场力所做正功与负功加起来为零,这说明离子在电场中的B点与A点的电势能相等,即B点与A点位于同一高度,选项B正确。

在由A经C到B的过程中,在C点时,电势最低,此时粒子的电势能最小,由能量守恒定律可知此时具有最大动能,所以此时的速度最大,选项C正确;只要将离子在B点的状态与A点进行比较,就可以发现它们的状态(速度为零,电势能相等)相同,如果右侧仍有同样的电场和磁场的叠加区域,离子就将在B 之右侧重现前面的曲线运动,因此,离子是不可能沿原曲线返回A点的,如图所示,选项D错误。

2、如图所示为速度选择器装置,场强为E的匀强电场与磁感应强度为B的匀强磁场互相垂直。

一带电量为+q,质量为m的粒子(不计重力)以速度v水平向右射入,粒子恰沿直线穿过,则下列说法正确的是A.若带电粒子带电量为+2q,粒子将向下偏转B.若带电粒子带电量为-2q,粒子仍能沿直线穿过C .若带电粒子速度为2v ,粒子不与极板相碰,则从右侧射出时电势能一定增大D .若带电粒子从右侧水平射入,粒子仍能沿直线穿过 【解析】粒子恰沿直线穿过,电场力和洛伦兹力均垂直于速度,故合力为零,粒子做匀速直线运动;根据平衡条件,有:qvB qE =,解得:v E B =,只要粒子速度为EB ,就能沿直线匀速通过选择器;若带电粒子带电量为2q +,速度不变,仍然沿直线匀速通过选择器,故A 错误;若带电粒子带电量为2q -,只要粒子速度为EB ,电场力与洛伦兹力仍然平衡,仍然沿直线匀速通过选择器,故B 正确;若带电粒子速度为2v ,电场力不变,洛伦兹力变为2倍,故会偏转,克服电场力做功,电势能增加,故C 正确;若带电粒子从右侧水平射入,电场力方向不变,洛伦兹力方向反向,故粒子一定偏转,故D 错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在复合场场中运动最新模拟题汇编【例一】如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B 1=0.20 T ,方向垂直纸面向里,电场强度E 1=1.0×105V/m ,PQ 为板间中线。

竖靠平行板右侧边缘xOy 坐标系的第一象限内,有一边界线AO ,与y 轴的夹角∠AOy =45°,边界线的上方有垂直纸面向外的匀强磁场,磁感应强度B 2=0.25 T ,边界线的下方有竖直向上的匀强电场,电场强度E 2=5.0×105V/m 。

一束带电荷量q =8.0×10-19C 、质量m =8.0×10-26kg 的正离子从P 点射入平行板间,沿中线PQ 做直线运动,穿出平行板后从y 轴上坐标为(0,0.4 m)的Q 点垂直y 轴射入磁场区,多次穿越边界线OA 。

求:(1)离子运动的速度;(2)离子从进入磁场到第二次穿越边界线OA 所需的时间。

【规范解答】11qvB qE =-------------------------------------------------------------------------------------------------------① 代入数据解得v =5.0×105 m/s 。

(2)粒子进入磁场做匀速圆周运动由牛顿第二定律:rv m qvB 22=---②解得m r 2.0=-----------------------------------------------------③ 做出粒子的轨迹图由几何关系得圆弧QC 的圆心角为2πθ=--------------④粒子在磁场中运动的周期为22qB mT π=-----------------------------------⑤ 运动时间T t πθ21=---------------------------------------------⑥ ④⑤⑥得s t 71028.61-⨯=--------------------------------------⑦粒子过C 点的速度竖直向下,平行于电场线做匀减速直线运动速度减为0的时间设为2t 则由牛顿第二定律ma qE =2--------------------------------⑧ 运动学公式 2at v =----------------------------------------------⑨粒子再次返回到C 点的时间为3t 根据运动的对称性知:32t t =,所以离子从进入磁场到第二次穿越边界线OA 所需的时间:-7321108.28⨯=++=t t t t 。

【例二】如图所示,在x >0的空间中,存在沿x 轴方向的匀强电场,电场强度正E=10N/C ;在x <O 的空间中,存在垂直xoy 平面方向的匀强磁场,磁感应强度B=0.5T .一带负电的粒子(比荷q/m=160C/kg ),在x=0.06m 处的d 点以v 0=8m/s 的初速度沿y 轴正方向开始运动,不计带电粒子的重力,求:(1)带电粒子开始运动后第一次通过y 轴时距O 点的距离. (2)带电粒子进入磁场后经多长时间返回电场. (3)带电粒子运动的周期.向外;在第四象限存在匀强电场,方向沿x 轴负向。

在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度发射出一带正电荷的粒子,该粒子在(d,0)点沿垂直于x 轴的方向进入电场。

不计重力。

若该粒子离开电场时速度方向与y 轴负方向的夹角为θ,求(1)电场强度大小与磁感应强度大小的比值; (2)该粒子在电场中运动的时间。

【分析题意】粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0。

由题给条件和几何关系可知R 0=d----------------------①由牛顿第二定律qv 0B =m v 20R 0------------------②①②得比荷dBv m q 0=-----③ 设电场强度大小为E ,粒子进入电场后沿x 轴负方向的加速度大小为a x ,在电场中运动的时间为t ,离开电场时沿x 轴负方向的速度大小为v x 。

由牛顿第二定律及运动学公式得Eq =ma x ④ v x =a x t ⑤ v x2t =d ⑥由于粒子在电场中做类平抛运动(如图),有 tan θ=v x v 0⑦联立④⑤⑥⑦得Edv m q 2tan 22θ=⑧联立③⑧得E B =12v 0tan 2θ(2)联立⑥⑦式得 t =2d v 0tan θ。

【例四】如图所示,平面直角坐标系的第二象限内存在水平向左的匀强电场和垂直纸面向里的匀强磁场,一质量为m 、带电荷量为+q 的小球从A 点以速度v 0沿直线AO 运动,AO 与x 轴负方向成37°角。

在y 轴与MN 之间的区域Ⅰ内加一电场强度最小的匀强电场后,可使小球继续做直线运动到MN 上的C 点,MN 与PQ 之间区域Ⅱ内存在宽度为d 的竖直向上的匀强电场和垂直纸面向里的匀强磁场,小球在区域Ⅱ内做匀速圆周运动并恰好不能从右边界飞出,已知小球在C 点的速度大小为2v 0,重力加速度为g ,sin 37°=0.6,cos 37°=0.8,求:(1)第二象限内电场强度E 1的大小和磁感应强度B 1的大小; (2)区域Ⅰ内最小电场强度E 2的大小和方向;(3)区域Ⅱ内电场强度E 3的大小和磁感应强度B 2的大小。

【分析题意】三力满足如图1所示关系且小球只能做匀速直线运动。

由图1知tan 37°=qE 1mg ,解得:E 1=3mg 4qcos 37°=mg B 1qv 0,解得:B 1=5mg 4qv 0(2)区域Ⅰ中小球做直线运动,电场强度最小,受力如图2所示(电场力方向与速度方向垂直),小球做匀加速直线运动,由图2知cos 37°=qE 2mg ,解得:E 2=4mg5q方向与x 轴正方向成53°角,方向斜向上(3)小球在区域Ⅱ内做匀速圆周运动,所以mg =qE 3,解得:E 3=mg q因小球恰好不从右边界穿出,小球运动轨迹如图3所示,由几何关系得r =58d由洛伦兹力提供向心力知B 2q ·2v 0=m 4v 2r联立解得:B 2=16mv 05qd。

【例五】如图所示,空间中存在着水平向右的匀强电场,电场强度大小E =53N/C ,同时存在着水平方向的匀强磁场,其方向与电场方向垂直,磁感应强度大小B =0.5 T 。

有一带正电的小球,质量m =1×10-6kg ,电荷量q =2×10-6C ,正以速度v 在图示的竖直面内做匀速直线运动,当经过P 点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),取g =10 m/s 2。

求:(1)小球做匀速直线运动的速度v的大小和方向;(2)从撤掉磁场到小球再次穿过P点所在的这条电场线经历的时间t。

为零,有qvB=q2E2+m2g2①代入数据解得v=20 m/s ②速度v的方向与电场E的方向之间的夹角θ满足tan θ=qEmg③代入数据解得tan θ= 3θ=60°④(2)解法一撤去磁场,小球在重力与电场力的合力作用下做类平抛运动。

设其加速度为a,有a=q2E2+m2g2m⑤设撤掉磁场后小球在初速度方向上的分位移为x ,有x =vt设小球在重力与电场力的合力方向上分位移为y ,有 y =12at 2⑦a 与mg 的夹角和v 与E 的夹角相同,均为θ,又 tan θ=yx⑧联立④⑤⑥⑦⑧式,代入数据解得t =2 3 s =3.5 s ⑨ 解法二撤去磁场后,由于电场力垂直于竖直方向,它对竖直方向的分运动没有影响,以P 点为坐标原点,竖直向上为正方向,小球在竖直方向上做匀减速运动,其初速度为v y =v sin θ⑤若使小球再次穿过P 点所在的电场线,仅需小球的竖直方向上分位移为零,则有v y t -12gt 2=0 ⑥联立⑤⑥式,代入数据解得t =2 3 s =3.5 s ⑦【例六】如图所示,真空有一个半径r=0.5m 的圆形磁场,与坐标原点相切,磁场的磁感应强度大小B=2×10-3T,方向垂直于纸面向里,在x=r 处的虚线右侧有一个方向竖直向上的宽度为L 1=0.5m 的匀强电场区域,电场强度E=1.5×103N/C.在x=2m 处有一垂直x 方向的足够长的荧光屏,从O 点处向不同方向发射出速率相同的荷质比=1×109C/kg 带正电的粒子,粒子的运动轨迹在纸面内,一个速度方向沿y 轴正方向射入磁场的粒子,恰能从磁场与电场的相切处进入电场。

不计重力及阻力的作用。

求: (1)粒子进入电场时的速度和粒子在磁场中的运动的时mq间?(2)速度方向与y 轴正方向成30°(如图中所示)射入磁场的粒子,最后打到荧光屏上,该发光点的位置坐标。

【分析题意】解析:(1)由题意可知:粒子在磁场中做匀速圆周运动的轨道半径R=r=0.5m ,有Bqv=,可得粒子进入电场时的速度v=在磁场中运动的时间t 1= (2)粒子在磁场中转过120°角后从P 点垂直电场线进入电场,如图所示, 在电场中的加速度大小a=粒子穿出电场时v y =at 2=) tan α=在磁场中y 1=1.5r=1.5×0.5=0.75m 在电场中侧移y 2=飞出电场后粒子做匀速直线运动y 3=L 2tan α=(2-0.5-0.5)×0.75=0.75m故y=y 1+y 2+y 3=0.75m+0.1875m+0.75m=1.6875m 则该发光点的坐标(2 ,1.6875)Rm v 2s m mqBR/1015.010*******⨯=⨯⨯⨯⨯=-s Bq m T 7391085.710210114.32124141--⨯=⨯⨯⨯⨯=⨯=π21293/105.1101105.1s m mEq⨯=⨯⨯⨯=s m v L a /1075.01015.0105.166121⨯=⨯⨯⨯=⨯75.01011075.066=⨯⨯=x yv v m at 1875.0)1015.0(105.12121261222=⨯⨯⨯⨯=【例七】如图,空间XOY的第一象限存在垂直XOY平面向里的匀强磁场,第四象限存在平行该平面的匀强电场(图中未画出);OMN是一绝缘弹性材料制成的等边三角形框架,边长L 为4m,OM边上的P处开有一个小孔,OP距离为1m.现有一质量m为1×10-18kg,电量q为1×10-15C的带电微粒(重力不计)从Y轴上的C点以速度V0=1×102m/s平行X轴射入,刚好可以垂直X轴从点P进入框架,CO距离为2m.粒子进入框架后与框架发生若干次垂直的弹性碰撞,碰撞过程中粒子的电量和速度大小均保持不变,速度方向与碰前相反,最后粒子又从P点垂直X轴射出,求:(1)所加电场强度的大小;(2)所加磁场磁感应强度大小;(3)求在碰撞次数最少的情况下,该微粒回到C点的时间间隔【分析题意】.(2)设粒子在框架内的圆周运动半径为R由分析可知(1+2n)R=OP解得:在电场中的运动时间. 在磁场中运动的时间.回到C 点的时间t =0.1028s .【例八】如图所示,在竖直平面内建立坐标系xOy ,第Ⅰ象限坐标为(x ,d )位置处有一粒子发射器P ,第Ⅱ、Ⅲ、Ⅳ象限有垂直纸面向里的匀强磁场和竖直向上的匀强电场。

相关文档
最新文档