2015二模22应用题集锦

合集下载

2015年上海中考数学二模19-23题

2015年上海中考数学二模19-23题

2015年宝山嘉定联合模拟考试数学试卷三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:xx x x x x x x 124122222++---+- ,其中13-=x .20.(本题满分10分)解方程组:⎩⎨⎧=--=+.,0658222y xy x y x ②①21.(本题满分10分,每小题满分各5分)某住宅小区将现有一块三角形的绿化地改造为一块圆形的绿化地如图6.已知原来三角形绿化地中道路AB 长为216米,在点B 的拐弯处道路AB 与BC 所夹的B ∠为︒45,在点C 的拐弯处道路AC 与BC 所夹的C ∠的正切值为2(即2tan =∠C ),如图7. (1)求拐弯点B 与C 之间的距离; (2)在改造好的圆形(圆O )绿化地中,这个圆O 过点A 、C ,并与原道路BC 交于点D ,如果点A 是圆弧(优弧)道路DC 的中点,求圆O 的半径长.A .OB C D 图7 图622.(本题满分10分,每小题满分各5分)已知一水池的容积V (公升)与注入水的时间t (分钟)之间开始是一次函数关系,表(1)求这段时间时关于的函数关系式(不需要写出函数的定义域);(2)从t 为25分钟开始,每分钟注入的水量发生变化了,到t 为27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率.23.(本题满分12分,每小题满分各6分)如图8,已知△ABC 和△ADE 都是等边三角形,点D 在边BC 上,点E 在边AD 的右侧,联结CE .(1)求证:︒=∠60ACE ;(2)在边AB 上取一点F ,使BD BF =,联结DF 、EF .求证:四边形CDFE 是等腰梯形.图8崇明县2014学年第二学期教学质量调研测试卷(2)九年级数学三、解答题(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-. 20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩ 21.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点, AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =. (1)求线段AE 的长; (2)求sin DAE ∠的值.(第21题图)CABED22.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为千米/小时,在甲地游玩的时间为小时;(2)小明从家出发多少小时的时候被妈妈追上?此时离家多远?23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H . (1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.(第22题图))A BDHG FEC(第23题图)2014学年奉贤区调研测试九年级数学三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:1o )12(45cos 22218-++--+.20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧-≤-+<-x x x x 2371211513)(,将其解集在数轴上表示出来,并写出这个不等式组的最小整数解......21.(本题满分10分,每小题满分各5分)已知:如图,在△ABC 中,AB=AC =6,BC =4,AB 的垂直 平分线交AB 于点E ,交BC 的延长线于点D . (1)求∠D 的正弦值; (2)求点C 到直线DE 的距离.CBA(第21题图)EDS22.(本题满分10分)某学校组织为贫困地区儿童捐资助学的活动,其中七年级捐款总数为1000元,八年级捐款总数比七年级多了20%.已知八年级学生人数比七年级学生人数少25名,而八年级的人均捐款数比七年级的人均捐款数多4元.求七年级学生人均捐款数.23.(本题满分12分,每小题满分各6分)已知:如图,在四边形ABCD中,AB//CD,点E是对角线AC上一点,∠DEC=∠ABC,且CACECD⋅=2.(1)求证:四边形ABCD是平行四边形;(2)分别过点E、B作AB和AC的平行线交于点F,联结CF,若∠FCE=∠DCE,求证:四边形EFCD是菱形.B(第23题图)A黄浦区2015年九年级学业考试模拟考数学试卷三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:.20. (本题满分10分)解方程组:21. (本题满分10分,第(1)满分7分,(2)小题满分3分)温度通常有两种表示方法:华氏度(单位:)与摄氏度(单位:).已知华氏度数y与摄氏度数x 之间是一次函数关系.下表列出了部分华氏度与摄氏度之间的对应关系.(1)选用表格中给出的数据,求y 关于x 的函数解析式(不需要写出该函数的定义域); (2)已知某天的最低气温是,求与之对应的华氏度数.)1134811-+-+-2222, 1. x y x y ⎧-=-⎨-=⎩①②FC 5-C22. (本题满分10分,第(1)、(2)小题满分各5分)如图5,在梯形ABCD 中,AD //BC ,AB ⊥BC ,已知AD =2,,梯形ABCD 的面积是9.(1)求AB 的长;(2)求的值.23. (本题满分12分,第(1),(2)小题满分各6分)如图6,在正方形ABCD 中,点E 在对角线AC 上,点F 在边B C 上,联结BE 、DF ,DF 交对角线AC 于点G ,且DE =DG . (1)求证:AE =CG ;(2)求证:BE //DF .4cot 3ACB ∠=tan ACD ∠图5图6F2014学年金山区第二学期期中质量检测 初三数学试卷三、(本题共有7题,满分78分) 19.(本题满分10分)化简:(12122+---+x x x x x x )22)1(1-+÷x x x20.(本题满分10分)解方程组⎩⎨⎧=-+-=+-04440122y xy x y x21.(本题满分10分)如图,点P 表示某港口的位置,甲船在港口北偏西30方向距港口50海里的A 处,乙船在港口北偏东45方向距港口60海里的B 处,两船同时出发分别沿AP 、BP 方向匀速驶向港口P ,1小时后乙船在甲船的正东方向处,已知甲船的速度是10海里/时,求乙船的速度.东第21题图22.(本题满分10分)为了解本区初中学生的视力情况,教育局有关部门采用抽样调查的方法,从全区2万名中学生中抽查了部分学生的视力,分成以下四类进行统计注:(4.3—4.5之间表示包括4.3及4.5)根据图表完成下列问题:(1) 填完整表格及补充完整图一;(2) “类型D ”在扇形图(图二)中所占的圆心角是度; (3) 本次调查数据的中位数落在类型内;(4) 视力在5.0以下(不含5.0)均为不良,那么全区视力不良的初中学生估计人 .AB视力 类型 图二 第22题图23.(本题满分12分)已知:如图,在中ABC Rt ∆中,︒=∠90ACB ,BC AC =,点E 在边AC 上,延长BC 至D点,使CD CE =,延长BE 交AD 于F ,过点C 作CG //BF ,交AD 于点G ,在BE 上取一点H ,使DCG HCE ∠=∠. (1)求证:ACD BCE ∆≅∆; (2) 求证:四边形FHCG 是正方形.G FE D BAC第23题图H静安、青浦区2014学年第二学期教学质量调研九年级数学2015.4三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简:))(111(222x x x x x +---,并求当02133-=x 时的值.20.(本题满分10分)求不等式组⎪⎩⎪⎨⎧+≥++<-12)132(6,34)1(7x x x x 的整数解.21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在直角坐标系xOy 中,反比例函数图像与直线2-=x y 相交于横坐标为3的点A . (1)求反比例函数的解析式;(2)如果点B 在直线2-=x y 上,点C 在反比例函数图像上,BC //x 轴,BC = 4,且BC 在点A 上方,求点B 的坐标.22.(本题满分10分)甲乙两人各加工30个零件,甲比乙少用1小时完成任务;乙改进操作方法,使生产效率提高了一倍,结果乙完成30个零件的时间比甲完成24个零件所用的时间少1小时.问甲乙两人原来每小时各加工多少个零件.23.(本题满分12分,第小题满分6分)如图,在梯形ABCD 中,AB //CD ,AD =BC ,E 是CD 的中点,BE 交AC 于F ,过点F 作FG ∥AB ,交AE 于点G .(1) 求证:AG=BF ;(2) 当CF CA AD ⋅=2时,求证:AC AG AD AB ⋅=⋅.E D CG FAB(第23题图)闵行区2014学年第二学期九年级质量调研考试数学试卷三、解答题:(本大题共7题,满分78分)19.(本题满分10分).20.(本题满分10分)解方程:22212,320.x yx x y y+=⎧⎨-+=⎩21.(本题满分10分,其中每小题各5分)如图,已知在△ABC中,AB AC==,sin B∠=D为边BC的中点.E为边BC延长线上一点,且CE = BC.联结AE,F为线段AE的中点.求:(1)线段DF的长;(2)∠CAE的正切值.AB CD EF(第21题图)22.(本题满分10分,其中每小题各5分)货车在公路A 处加满油后,以每小时60千米的速度匀速行驶,前往与A 处相距360千米的B 处.下表记录的是货车一次加满油后油箱内剩余油量y (升)与行驶时间x (时)之间关系:(范围);(2)在(1)的条件下,如果货车的行驶速度和每小时的耗油量都不变,货车行驶4小时后到达C 处,C 的前方12千米的D 处有一加油站,那么在D 处至少加多少升油,才能使货车到达B 处卸货后能顺利返回D 处加油?(根据驾驶经验,为保险起见,油箱内剩余油量应随时不少于10升)23.(本题满分12分,其中每小题各6分)如图,已知在梯形ABCD 中,AD // BC ,∠A = 90º,AB = AD .点E 在边AB 上,且DE ⊥CD ,DF 平分∠EDC ,交BC 于点F ,联结CE 、EF . (1)求证:DE = DC ; (2)如果2BE BF BC =⋅,求证:∠BEF =∠CEF .(第23题图)A BCDEF浦东新区初三教学质量检测数学试卷 (2015.4.21)三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简并求值:12)111(22+-÷-+x x x x ,其中12+=x . 20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧->--≥+,1262,6325x x x x 并写出它的非负整数解.21.(本题满分10分,其中每小题各5分)已知:如图,在△ABC 中,D 是边BC 上一点,以点D 为圆心、CD 为半径作半圆,分别与边AC 、BC 相交于点E 和点F .如果AB =AC =5,cos B =54,AE =1. 求:(1)线段CD 的长度;(2)点A 和点F 之间的距离.C(第21题图)22.(本题满分10分)小张利用休息日进行登山锻炼,从山脚到山顶的路程为12千米.他上午8时从山脚出发,到达山顶后停留了半小时,再原路返回,下午3时30分回到山脚.假设他上山与下山时都是匀速行走,且下山比上山时的速度每小时快1千米,求小张上山时的速度.23.(本题满分12分,其中每小题各6分)如图,已知在平行四边形ABCD中,AE⊥BC,垂足为点E,AF⊥CD,垂足为点F.(1)如果AB=AD,求证:EF∥BD;(2)如果EF∥BD,求证:AB=AD. AB C DEF (第23题图)普陀区2014学年度第二学期初三质量调研数学试卷三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:()121245sin 13210+--︒+--.20.(本题满分10分)解方程组:2230240x y ,x xy y .-=⎧⎨-+-=⎩21.(本题满分10分)已知:如图7,在平面直角坐标系xOy 中,直线1122y x =+与x 轴交于点A ,在第一象限内与反比例函数图像交于点B ,BC 垂直于x 轴,垂足为点C ,且OC =2AO .求(1)点C 的坐标;(2)反比例函数的解析式.图722.(本题满分10分)本市为了给市容营造温馨和谐的夜间景观,准备在一条宽7.4米的道路上空利用轻轨桥墩,安装呈大中小三个同心圆的景观灯带(如图8-1所示). 如图8-2,已知EF 表示路面宽度,轻轨桥墩的下方为等腰梯形ABCD ,且AD ∥EF ,DC AB =,∠=ABC 37°.在轻轨桥墩上设有两处限高标志,分别表示等腰梯形的下底边到路面的距离为2.9米和等腰梯形的上底边到路面的距离为3.8米.大圆直径等于AD ,三圆半径的比等于1∶2∶3.试求这三个圆形灯带的总长为多少米?(结果保留π)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)23.(本题满分12分)如图9,在△ABC 中,点D 、E 分别在边BC 、AC 上,BE 、AD 相交于点G ,EF ∥AD 交BC 于点F ,且2BF BD BC = ,联结FG . (1)求证:FG ∥CE ;(2)设BAD C ∠=∠,求证:四边形AGFE 是菱形.图9CG FEDBADA图图2.93.8B2015年松江区初中毕业生学业模拟考试数学试卷三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:323112---÷-+x x x x )(20.(本题满分10分)解方程组:⎩⎨⎧=--=+0548322y xy x y x21.(本题满分10分)某品牌电动车经销商一月份销售该品牌电动车100辆,二月份的销售量比一月份增加10%,二月份每辆电动车的售价比一月份每辆电动车的售价低80元,二月份的销售总额比一月份销售总额多12200元,问一月份每辆电动车的售价是多少?22.(本题满分10分,每小题各5分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,且CD =24,点M 在⊙O 上,MD 经过圆心O ,联结MB .(1)若BE =8,求⊙O 的半径; (2)若∠DMB=∠D ,求线段OE 的长.23.(本题满分12分,每小题各6分)如图,已知在正方形ABCD 中,点E 在CD 边上,过C 点作AE 的垂线交于点F ,联结DF ,过点D 作DF 的垂线交AF 于点G ,联结BG . (1)求证:△ADG ≌△CDF ;(2)如果E 为CD 的中点,求证:BG ⊥AF .A(第23题图)EGDFB(第22题图)2014学年第二学期徐汇区学习能力诊断卷初三数学试卷(时间100分钟满分150分)2015.4 三.(本大题共7题,19~22每题10分,23、24每题10分,25题14分,满分78分)19.化简并求值:22256()32x x xxx x x-+⋅+--,其中x=.20.解方程组:2222699,440. x xy yx y x y⎧++=⎪⎨--+=⎪⎩21.某公司市场营销部的某营销员的个人月收入与该营销员每月的销售量成一次函数关系,其图像如图所示.根据图像提供的信息,解答下列问题:(1)求营销员的个人月收入y元与该营销员每月的销售量x万件(x≥0)之间的函数关系式;(2)若两个月内该营销员的销售量从2万件猛增到5万件,月收入两个月大幅度增长,且连续两个月的月收入的增长率是相同的,试求这个增长率 1.414≈,保留到百分位);AD22.如图,在Rt △ABC 中,∠CAB =90º,sin C=35,AC =6,BD 平分∠CBA 交AC 边于点D . 求:(1)线段AB 的长; (2)tan ∠DBA 的值23.已知:如图,正方形ABCD ,BM 、DN 分别是正方形的两个外角平分线,∠MAN =45°, 将∠MAN 绕着正方形的顶点A 旋转,边AM 、AN 分别交两条角平分线于点M 、N ,联结MN .(1)求证:ABM ADN ∆∆ ;(2)联结BD ,当∠BAM 的度数为多少时,四边形BMND 为矩形,并加以证明.杨浦区2014学年度第二学期初三质量调研数 学 试 卷一、 解答题(第19~22题每题10分,第23~24题每题12分,第25题14分,满分78分) 19.(本题满分10分)计算:0111)2cos30()12-︒+.20.(本题满分10分) 解方程组:223240.xy x xy y =⎧⎨-+-=⎩21. (本题满分10分)如图,在一笔直的海岸线 上有A 、B 两个观察站,A 在B 的正东方向,A 与B 相距2千米。

2015西城中考数学二模题及答案(完整版)

2015西城中考数学二模题及答案(完整版)

2015二模统一练习(二)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.2015年羊年除夕夜的10点半,在央视春晚送红包的活动中,微信“摇一摇”峰值的摇动 次数达到8.1亿次/分钟,送出微信红包120 000 000个.将120 000 000用科学记数法表示 应为A. 90.1210⨯B. 71.210⨯C. 81.210⨯D. 71210⨯ 2.如图,BD ∥AC ,AD 与BC 交于点E ,如果∠BCA =50°,∠D =30°, 那么∠DEC 等于A. 75°B. 80°C. 100°D. 120° 3.64的立方根是A. 8±B. 4±C. 8D. 44.函数y =x 的取值范围是A.2x ≠B. x ≥2C. x >2D. x ≥2-5.如图,△ABC 中,D ,E 两点分别在AB ,AC 边上,且DE ∥BC , 如果23AD AB =,AC =6,那么AE 的长为 A. 3 B. 4 C. 9 D. 126.某居民小区开展节约用电活动,该小区100户家庭4月份的节电情况如下表所示.那么4月份这100户家庭的节电量(单位:千瓦时)的平均数是 A. 35 B. 26 C. 25 D. 20 7.若一个正六边形的半径为2,则它的边心距等于A. 2B. 1C.8.如图,△ABC 的边AC 与⊙O 相交于C ,D 两点,且经过圆心O , 边AB 与⊙O 相切,切点为B .如果∠A =34°,那么∠C 等于 A .28° B .33° C .34° D .56°9.如图,将正方形OABC 放在平面直角坐标系xOy 中,O 是原点,若点A 的坐标为,则点C 的坐标为A .B .(-C .(D .(1)-10.在平面直角坐标系xOy 中,点M 的坐标为(,1)m .如果以原点为圆心,半径为1的⊙O 上 存在点N ,使得45OMN ∠=︒,那么m 的取值范围是A .1-≤m ≤1 B. 1-<m <1 C. 0≤m ≤1 D. 0<m <1 二、填空题(本题共18分,每小题3分)11.若2(2)0m ++ 则m n -= .12.若一个凸n 边形的内角和为1080︒,则边数n = . 13.两千多年前,我国的学者墨子和他的学生做了小孔成像的实验.他的做法是,在一间黑暗的屋子里,一面墙上 开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小 华在学习了小孔成像的原理后,利用如下装置来验证小孔 成像的现象.已知一根点燃的蜡烛距小孔20cm ,光屏在距 小孔30cm 处,小华测量了蜡烛的火焰高度为2cm ,则光屏上火焰 所成像的高度为______cm .14.请写出一个图象的对称轴是直线1x =,且经过(0,1)点的二次函数的表达式: _____________.15.如图,在平面直角坐标系xOy 中,直线3y x =与双曲线y =(n ≠0)在第一象限的公共点是(1,)P m .小明说:以看出,满足3nx x>的x 的取值范围是1x >.”你同意他的 观点吗?答: .理由是 .16.如图,在平面直角坐标系xOy 中,点D 为直线2y x = 象限内的任意一点,1DA ⊥x 轴于点1A ,以1DA 为边在1DA 作正方形111A B C D ;直线1OC 与边1DA 交于点2A ,以2DA 2DA 的右侧作正方形222A B C D ;直线2OC 与边1DA 交于点3A ,以3DA 为边在3DA 的右侧作正方形333A B C D ,……,按这种方式进行下去,则直线1OC 对应的函数表达式为 ,直线3OC 对应的函数表达式为 . 三、解答题(本题共30分,每小题5分)17.如图,△ABC 是等边三角形,D ,E 两点分别在AB ,BC 的延长线上,BD =CE ,连接AE ,CD .求证:∠E =∠D .18.计算:1012cos 30()1(3)3π-++-.19.已知2540x x --=,求代数式(2)(2)(21)(2)x x x x +----的值.20.解方程:231233x x x x-=--.21.列方程(组)解应用题:某超市的部分商品账目记录显示内容如下:求第三天卖出牙膏多少盒.22.已知关于x 的函数 2(3)3y mx m x =+--.(1)求证:无论m 取何实数,此函数的图象与x 轴总有公共点;(2)当m >0时,如果此函数的图象与x 轴公共点的横坐标为整数,求正整数m 的值.四、解答题(本题共20分,每小题5分)23.如图,将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D的落点记为点D′ ,折痕为EF,连接CF.(1)求证:四边形AFCE是菱形;(2)若∠B=45°,∠FCE=60°,AB=D′F的长.24.1949年以来,北京市人口结构变迁经历了5个阶段,从2001年至今已进入第五个阶段——人口膨胀增长阶段.以下是根据北京市统计局2015年1月的相关数据制作的统计图.根据以上信息解决下列问题:(1)以下说法中,正确的是(请填写所有正确说法的序号)①从2011年至2014年,全市常住人口数在逐年下降;②2010年末全市常住人口数达到近年来的最高值;③ 2014年末全市常住人口比2013年末增加36.8万人;④从2011年到2014年全市常住人口的年增长率连续递减.(2)补全“2014年末北京市常住人口分布图”,并回答:2014年末朝阳、丰台、石景山、海淀四区的常住人口总数已经达到多少万人?(3)水资源缺乏制约着北京市的人口承载能力,为控制人口过快增长,到2015年底,北京市要将全市常住人口数控制在2180万以内(即不超过2180万).为实现这一目标,2015年的全市常住人口的年增长率应不超过.(精确到0.1%)25.如图1,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点F 在线段ED 上.连接AF 并延长交 ⊙O 于点G ,在CD 的延长线上取一点P ,使PF=PG .(1)依题意补全图形,判断PG 与⊙O 的位置关系,并证明你的结论;(2)如图2,当E 为半径OA 的中点,DG ∥AB ,且OA PG 的长.26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD ∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且=C D E A C B ∠∠.如果AB =1,求CD 边的长.小明在解题过程中发现,图1中,△CDE 与△ 相似,CD 的长度等于 ,线段CD 与线段 的长度相等;他进一步思考:如果ACB α∠=(α是锐角),其他条件不变,那么CD 的长度可以表示为CD = ;(用含α的式子表示)(2)受以上解答过程的启发,小明设计了如下的画图题:在Rt△OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得NPQ ONM ∠=∠.请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)已知一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,二次函数2224y x ax =-+(其中a >2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a 的代数式表示); (2)利用函数图象解决下列问题:①若25=a ,求当10y >且2y ≤0时,自变量x 的取值范围;②如果满足10y 且2y≤0时的自变量x的取值范围内恰有一个整数,直接写出a的取值范围.28.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.29.对于平面直角坐标系xOy中的点P和图形G,给出如下定义:在图形G上若存在两点M,N,使△PMN为正三角形,则称图形G为点P的τ型线,点P为图形G的τ型点,△PMN为图形G关于点P的τ型三角形.(1)如图1,已知点(0,A,(3,0)B,以原点O为圆心的⊙O的半径为1.在A,B 两点中,⊙O的τ型点是____,画出并回答⊙O关于该τ型点的τ型三角形;(画出一个即可)(2)如图2,已知点(0,2)F m(其中m>0).若线段EF为原点O的τ型线,E,点(,0)且线段EF关于原点O的τ,求m的值;(3)若(0,2)H-是抛物线2=+的τ型点,直接写出n的取值范围.y x n北京市西城区2015年初三二模数学试卷参考答案及评分标准 2015. 6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分)17.证明:如图1.∵ △ABC 是等边三角形,∴ AC =BC ,∠ACB=∠ABC =60°.……………………………………………… 1分∵ D ,E 两点分别在AB ,BC 的延长线上,∴ ∠ACE =∠CBD =120°. …………………2分在△ACE 和△CBD 中,,,AC CB ACE CBD CE BD =⎧⎪∠∠⎩=⎪⎨,= ……………………… 3分∴ △ACE ≌△CBD .……………………… 4分∴ ∠E =∠D .…………………………………………………………………… 5分18.解: 1012cos 30()1(3)3π-++- 2311=+- ………………………………………………………………4分 1=. ………………………………………………………………………… 5分 19.解: (2)(2)(21)(2)x x x x +----=224(252)x x x ---+………………………………………………………………2分 =224252x x x --+-=256x x -+-.………………………………………………………………………3分 ∵ 2540x x --=,∴ 254x x -=.…………………………………………………………………… 4分∴ 原式=2(5)64610x x ---=--=-.……………………………………………5分 20.解:去分母,得 3(3)2x x --=.…………………………………………………… 1分 去括号,得 332x x -+=. ………………………………………………………2分 整理,得 21x =-.……………………………………………………………… 3分 解得 12x =-. …………………………………………………………………… 4分 经检验,12x =-是原方程的解. …………………………………………………5分 所以原方程的解是12x =-.21.解:设牙膏每盒x 元,牙刷每支y 元.…………………………………………………1分 由题意,得 713121,1415187.x y x y +=+=⎧⎨⎩…………………………………………………… 2分解得 85.x y ==⎧⎨⎩,……………………………………………………………………… 3分(124125)88-⨯=(盒). ………………………………………………………… 4分 答:第三天卖出牙膏8盒.………………………………………………………………5分 22.解:(1)当m =0 时,该函数为一次函数33y x =--,它的图象与x 轴有公共点.……………………………………………………………… 1分当m ≠0 时,二次函数2(3)3y mx m x =+--.2(3)4(3)m m ∆=--⨯-26912m m m =-++2269(3)m m m =++=+. ∵ 无论m 取何实数,总有2(3)m +≥0,即∆≥0, ∴ 方程2(3)30mx m x +--=有两个实数根.∴ 此时函数2(3)3y mx m x =+--的图象与x 轴有公共点.……………2分 综上所述,无论m 取何实数,该函数的图象与x 轴总有公共点.(2)∵m >0,∴ 该函数为二次函数,它的图象与x 轴的公共点的横坐标为(3)(3)2m m x m--±+=.∴ 11x =-,23x m=. ……………………………………………………… 3分∵ 此抛物线与x 轴公共点的横坐标为整数,∴正整数m =1或3.……………………………………………………………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:如图2.∵点C 与点A 重合,折痕为EF ,∴12∠=∠,AE =EC .∵ 四边形ABCD 为平行四边形, ∴ AD ∥BC . ∴ 32∠=∠.∴ 13∠=∠.∴ AE =AF1分 ∴ AF =EC . 又∵ AF ∥EC ,∴ 四边形AFCE 是平行四边形.………………………………………… 2分 又AE =AF ,∴ 四边形AFCE 为菱形.………………………………………………… 3分(2)解:如图3,作AG ⊥BE 于点G ,则∠AGB=∠AGE=90°. ∵ 点D 的落点为点D ′ ,折痕为EF , ∴D F DF '=.∵ 四边形ABCD 为平行四边形, ∴ AD =BC .又∵AF =EC ,∴AD AF BC EC -=-,即DF BE =.∵在Rt△AGB 中,∠AGB=90°,∠B =45°,AB =∴ AG =GB =6.∵ 四边形AFCE 为平行四边形, ∴ AE ∥FC .∴ ∠4=∠5=60°.∵ 在Rt△AGE 中,∠AGE =90°,∠4=60°, ∴ tan60AGGE ==︒∴ 6BE BG GE =+=+.∴ 6D F '=+.…………………5分 24.解:(1)③④.………………………………… 2分(2)补全统计图见图4. ………………… 3分 1055万人. ………………………… 4分(3)1.3%. …………………………………………………………………………… 5分 25. 解:(1)补全图形如图5所示. ………………………………………………………… 1分 答:PG 与⊙O 相切.证明:如图6,连接OG .∵ PF =PG , ∴ ∠1=∠2.又∵OG =OA , ∴ ∠3=∠A .∵ CD ⊥AB 于点E ,∴ ∠A +∠AFE =90°.又∵∠2 =∠AFE ,∴ ∠3+∠1=90°. ……………………… 2分 即 OG ⊥PG .∵ OG 为⊙O 的半径,∴ PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG . ∵ CD ⊥AB 于点E ,∴ ∠OEC =90°. ∵ DG ∥AB ,∴∠GDC =∠OEC =90°. ∵∠GDC 是⊙O 的圆周角, ∴ CG 为⊙O 的直径. ∵ E 为半径OA 的中点,∴ 22OA OCOE ==. ∴ ∠OCE =30°即∠GCP =30°.又∵∠CGP=90°,2CG OA ==∴tan 4PG CG GCP =⋅∠==. …………………………… 5分 26.解:(1)CADBC . …………………………………………………………… 3分1tan α.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点 1P ,2P 为符合题意的点.……………………………………………… 5分 方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与2m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点. ……………………………………… 5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.解:(1)∵ 一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点, ∴ 20,4 1.k b k b +=⎧⎨+=⎩解得1,21.k b ⎧=⎪⎨⎪=-⎩……………………………………………………………… 1分∴ 1211-=x y . ………………………………………………………… 2分 ∵ 22224)(42a a x ax x y -+-=+-=,∴ 二次函数图象的顶点坐标为2(,4)a a -.………………………………… 3分(2)①当25=a 时,4522+-=x x y .………………………………… 4分 如图10,因为10y >且2y ≤0,由图象得2<x ≤4. (6)分②136≤a <52.……………………………7分 28.解:(1)CH=AB . ………………………………… 1分 (2)结论成立.………………………………… 2分证明:如图11,连接BE . 在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°. ∵ DE=DF , ∴ AF=CE .在△ABF 和△CBE 中,,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2.……………………………………………………………………3分 ∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上. ∴ ∠3=∠2. ∴ ∠3=∠1.∵ ∠3+∠4=90°,∠1+∠HBC =90°, ∴ ∠4=∠HBC .∴ CH=CB .………………………………………………………………… 5分 ∴ CH=AB .………………………………………………………………… 6分(3)3.………………………………………………………………………7分29.解:(1)点A .………………………………………1分 画图见图12.(画出一个即可)…………2分 △AMN (或△AJK ). (3)分(2)如图13,作OL ⊥EF 于点L .∵ 线段EF 为点O 的τ型线, ∴ OL 即为线段EF 关于点O 的τ型三角形的高.∵线段EF 关于点O 的τ∴OL =. ……………………………… 4∵ 2OE =,OF m =,∴EL =. ∴ cos 1EL OE ∠==∴ cos 2cos 1OL OLOF ==∠∠∴m =………………………………………………………………………6分 (3)n ≤54-.……………………………………………………………………………8分。

2015年上海中考各区二模数学试题及答案汇总

2015年上海中考各区二模数学试题及答案汇总
2 2 2 2
BC OC = ∴ OC ,∴ OD
2 2
x r 2 − x2
2
=
r 2 − x2 r
2
,…………………(1 分)
∴ xr = r − x , x + rx − r − 0 , 5 ∵ r ≠ 0 , ( rx ) + rx − 1 ≠ 0 , rx = − 1 ± (负值舍去) ,………………………(1 分) 2 BC x 5 −1 ∴sin∠ODC=sin∠COB = OB .……………(1 分) = = r 2
2 2 2 2
年长宁区初三数学教学质量检测试卷 长宁区初三数学教学质量检测试卷参考答案 初三数学教学质量检测试卷参考答案
2
x
2
2
2
∆ADE
2
∆ADE
1
2
D
E
H
F
C
P
G R
O
A
Q
B
初三数学基础考试卷—3—
2015
年上海各区县中考二模试题及答案
∴DE=CF. (1 分) (2)据题意,设 DP=t,PA=10-t,AQ=3t,QB=12-3t,BR=1.5t(0 < t < 4). (1 分) ∵矩形 ABCD ∴∠A=∠B=90° 若△PAQ 与△QBR 相似,则有 AP AQ 10 - t 3t 14 ① QB = (2 分) = t= BR 12 - 3t 1.5t 5
25
D P E F C
O R
A
Q
B
第 25 题图
初三数学基础考试卷—2—
2015
年上海各区县中考二模试题及答案
2015 18. 1
或 11 . 6 24.(本题满分 12 分) 解:(1) y = x − 2tx + t − 2 = (x - t ) - 2 ∴A(t,-2)(2 分) y ∵点 C 的横坐标为 1,且是线段 AB 的中点 ∴t =2 (1 分) ∴ y = (x - 2 ) - 2 D ∴P(1,-1).(1 分) O (2)据题意,设 C(x,-2)(0< x < t),P(x, ( x − t ) − 2 )E P B C A AC= t-x,PC= ( x − t ) (1 分) 第 24 题图 ∵AC=PC ∴t-x = ( x − t ) ∵x < t ∴ t - x=1 即 x = t - 1 ∴AC=PC=1 (2 分) AC ∵DC//y 轴 ∴ PC ∴EB= t ∴OE=2-t = EB AB 1 1 3 ∴S = 1 (OE + DP) × OD = (3 − t )(t − 1) = − t + 2t − (1< t <2). (2 分) 2 2 2 2 1 1 1 (3) S = 2 DP × AB = 2 ×1× t = 2 t (1 分) 1 3 ∵ S = 2S ∴ 1 t = 2( − t + 2t − ) 2 2 2 3 解得 t = 3 , t = 2 (不合题意)∴ t = .(2 分) 2 2 25.(本题满分 14 分) (1)证:作 OH⊥DC 于点 H,设⊙O 与 BC 边切于点 G,联结 OG. (1 分) ∴∠OHC=90° ∵⊙O 与 BC 边切于点 G ∴OG=6,OG⊥BC ∴∠OGC=90° ∵矩形 ABCD ∴∠C=90° ∴四边形 OGCH 是矩形 ∴CH=OG ∵OG=6 ∴CH=6 (1 分) ∵矩形 ABCD ∴AB=CD 第 25 题图(1) ∵AB=12 ∴CD=12 ∴DH=CD﹣CH=6 ∴DH= CH ∴O 是圆心且 OH⊥DC ∴EH=FH (2 分)

2015年区二模数学答案

2015年区二模数学答案

3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=

2015北京中考一模22题(应用题)汇编

2015北京中考一模22题(应用题)汇编

1.(海淀)22.列方程或方程组解应用题:为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)2.(西城)21、从北京到某市可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米。

如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比乘坐普通列车少用3小时,求高铁的平均速度是多少千米/时.3.(东城)21.列方程或方程组解应用题:2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?4.(朝阳)22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?5.(丰台)22.列方程或方程组解应用题:中国国家博物馆由原中国历史博物馆和中国革命博物馆两馆合并改扩建而成.新馆的展厅总面积与原两馆大楼的总建筑面积相同,成为目前世界上最大的博物馆.已知原两馆大楼的总建筑面积比原两馆大楼的展览面积的3倍少0.4万平方米,新馆的展厅总面积比原两馆大楼的展览面积大4.2万平方米,求新馆的展厅总面积和原两馆大楼的展览面积.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.下图是张磊家2014年3月和4月所交电费的收据:请问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?7.(平谷)22.列方程或方程组解应用题:为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?8.(门头沟)22.列方程或方程组解应用题:北京快速公交4号线开通后,为响应“绿色出行”的号召,家住门头沟的李明上班由自驾车改为乘公交.已知李明家距上班地点18千米,他乘公交平均每小时行驶的路程比他自驾车平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交所用时间是自驾车所用时间的37,问李明自驾车上班平均每小时行驶多少千米?八年级的学生去距学校10千米的科技馆参观,一部分学生骑自行车先走,过了20分钟,其余的学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑自行车学生速度的2倍,求骑车学生每小时走多少千米?10.(通州)22.为了把通州区打造成宜居的北京城市副中心,区政府对地下污水排放设施进行改造.某施工队承担铺设地下排污管道任务共2200米,为了减少施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设管道的长度比原计划多10%,结果提前两天完成任务.求原计划平均每天铺设排污管道的长度.11.(怀柔)21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》.其中《三国演义》的单价比《红岩》的单价多28元.若学校购买《三国演义》用了1200元,购买《红岩》用了400元,求《三国演义》和《红岩》的单价各多少元.12.(石景山)22.列方程或方程组解应用题:小辰和小丁从学校出发,到离学校2千米的“首钢篮球馆”看篮球比赛.小丁步行16分钟后,小辰骑自行车出发,结果两人同时到达.已知小辰的速度是小丁速度的3倍,求两人的速度.。

2015年北京中考二模列方程解应用题

2015年北京中考二模列方程解应用题

21.列方程(组)解应用题:某超市的部分商品账目记录显示内容如下:求第三天卖出牙膏多少盒.22.列方程或方程组解应用题:22.列方程或方程组解应用题几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出这些小伙伴的人数.22.列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?21.列方程或方程组解应用题:周末小明和爸爸准备一起去商场购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商场都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价30元,茶杯每把定价5元,且两家都有优惠.甲商场买一送一大酬宾(买一把茶壶送一只茶杯);乙商场全场九折优惠.小明的爸爸需茶壶5把,茶杯若干只(不少于5只).当去两家商场付款一样时,求需要购买茶杯的数量.21.列方程或方程组解应用题:小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小李与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.22.自从2012年9月1日昌平区首批50辆纯电动出租车正式运营以来,电动出租车以绿色环保受到市民的广泛欢迎,给市民的生活带来了很大方便.下表是行驶15公里以内普通燃油出租车和纯电动出租车的运营价格:老张每天从家去单位打出租车上班(路程在15公里以内),结果发现正常情况下乘坐纯电动出租车比燃油出租车平均每公里节省0.8元,求老张家到单位的路程是多少公里?21.A,B两个火车站相距360km.一列快车与一列普通列车分别从A,B两站同时出发相向而行,快车的速度比普通列车的速度快54km/h,当快车到达B站时,普通列车距离A 站还有135km.求快车和普通列车的速度各是多少?22.列方程或方程组解应用题:为开阔学生的视野在社会大课堂活动中,某校组织初三年级学生参观科技馆,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.求该校初三年级有学生多少人?原计划租用多少辆45座客车?22.列方程或方程组解应用题小明到学校的小卖部为班级运动会购买奖品,若购买4根荧光笔和8个笔记本需要100元,若购买8根荧光笔和4个笔记本需要80元,请问荧光笔和笔记本的单价各是多少元?四、解答题(每题4分,共12分)22.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元。

2015北京中考数学二模试题28题汇编及答案

2015北京中考数学二模试题28题汇编及答案

2015北京中考数学二模试题28题汇编及答案28.如图1,在△ABC中,AB=AC,∠ABC =α,D是BC边上一点,以AD为边作△ADE,使AE=AD,DAE∠+BAC∠=180°.(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.图1 图2 图328.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH 的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.28. 如图1,在ABC Rt △中,90ACB ∠=︒,E 是边AC 上任意一点(点E 与点A ,C 不重合),以CE 为一直角边作ECD Rt △,90ECD ∠=︒,连接BE ,AD . (1) 若CA CB =,CE CD =,①猜想线段BE ,AD 之间的数量关系及所在直线的位置关系,直接写出结论; ②现将图1中的ECD Rt △绕着点C 顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2) 若8CA =,6CB =,3CE =,4CD =,ECD Rt △绕着点C 顺时针旋转锐角α,如图3,连接BD ,AE ,计算22BD AE +的值.28. 已知△ABC 是锐角三角形,BA =BC ,点E 为AC 边的中点,点D 为AB 边上一点,且∠ABC =∠AED =α.(1)如图1,当α=40°时,∠ADE = °;(2) 如图2,取BC 边的中点F ,联结FD ,将∠AED 绕点E 顺时针旋转适当的角度β(β<α),得到∠MEN ,EM 与BA 的延长线交于点M , EN 与FD 的延长线交于点N . ①依题意补全图形;②猜想线段EM 与EN 之间的数量关系,并证明你的结论.图3EAC图1 图228.如图1,点O 为正方形ABCD 的中心.(1)将线段OE 绕点O 逆时针方向旋转︒90,点E 的对应点为点F ,连结EF ,AE ,BF ,请依题意补全图1;(2)根据图1中补全的图形,猜想并证明AE 与BF 的关系;(3)如图2,点G 是OA 中点,△EGF 是等腰直角三角形,H 是EF 的中点,︒=∠90EGF,AB =2=GE ,△EGF 绕G 点逆时针方向旋转α角度,请直接写出旋转过程中BH 的最大值.ECCBH EFGODA图1图228.数学活动课上,老师提出这样一个问题:如果AB=BC,∠ABC=60°,∠APC=30°,连接PB,那么P A、PB、PC之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P在BA延长线上(如图1),得到了一个猜想: P A2+PC2=PB2 .小东:我假设点P在∠ABC的内部,根据题目条件,这个图形具有“共端点等线段特点,可以利用旋转解决问题,旋转△P AB后得到△P′CB ,并且可推出△PBP′ ,△PCP′分别是等边三角形、直角三角形,就能得到猜想和证明方法.这时老师对同学们说,请大家完成以下问题:(1)如图2,点P在∠ABC的内部,①P A=4,PC=PB= .②用等式表示P A、PB、PC之间的数量关系,并证明.(2)对于点P的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.图1 图228.如图,△ABC中,∠BAC=90°,AB=AC,边BA绕点B顺时针旋转α角得到线段BP,连结PA,PC,过点P作PD⊥AC于点D.(1)如图1,若α=60°,求∠DPC的度数;(2)如图2,若α=30°,直接写出∠DPC的度数;(3)如图3,若α=150°,依题意补全图,并求∠DPC的度数.EF OA BCD28.在△ABC 中,AB =BC=2,∠ABC =90°,BD 为斜边AC 上的中线,将△ABD 绕点D 顺时针旋转α(0°<α<180°)得到△EFD ,其中点A 的对应点为点E ,点B 的对应点为点F . BE 与FC 相交于点H .(1)如图1,直接写出BE 与FC 的数量关系:____________; (2)如图2,M 、N 分别为EF 、BC 的中点.求证:MN = 22FC ;(3)连接BF ,CE ,如图3,直接写出在此旋转过程中,线段BF 、CE 与AC 之间的数量关系: .28.如图,在平行四边形ABCD 中,AB =5,BC =12,对角线交于点O ,∠BAD 的平分线交BC 于E 、交BD 于F ,分别过顶点B 、D 作AE 的垂线,垂足为G 、H ,连接OG 、OH . (1)补全图形; (2)求证:OG =OH ;(3)若OG ⊥OH ,直接写出∠OAF 的正切值.图3CDD图2图1ABPCBCPA图2图1图328.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD 是“等对角四边形”,∠A ≠∠C ,∠A =70°,∠B =80°.则∠C = 度,∠D = 度. (2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形ABCD ”(如图2),其中∠ABC =∠ADC ,AB =AD ,此时她发现CB =CD 成立.请你证明此结论;(3)已知:在“等对角四边形ABCD ”中,∠DAB =60°,∠ABC =90°,AB =5,AD =4.求对角线AC 的长.28.如图1,在△ABC 中,CA =CB ,∠ACB =90°,D 是△ABC 内部一点,∠ADC =135°,将线段CD 绕点C 逆时针旋转90°得到线段CE ,连接DE . (1)① 依题意补全图形;② 请判断∠ADC 和∠CDE 之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE ,过点C 作CM ⊥DE ,请判断线段CM ,AE 和BE 之间的数量关系,并说明理由.(3)如图2,在正方形ABCD 中,AB =2,如果PD =1,∠BPD =90°,请直接写出点A到BP 的距离.图1 图2DAB CPDC AB图1图228.如图①,∠MON =60°,点A ,B 为射线OM ,ON 上的动点(点A ,B 不与点O 重合),且AB =34,在∠MON 的内部、△AOB 的外部有一点P ,且AP =BP ,∠APB =120°. (1)求AP的长;(2)求证:点P 在∠MON 的平分线上;(3)如图②,点C ,D ,E ,F 分别是四边形AOBP 的边AO ,OB ,BP ,P A 的中点,连接CD ,DE ,EF ,FC ,OP .当A B ⊥OP 时,请直接..写出四边形CDEF 周长的值.图① 图②OO答案28.(本小题满分7分) (1)∠ADE=90α︒-.…………………………………………………………… ……………………….…1分(2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴EDC ABC α∠=∠=. …………………………….……2分 由(1)知,∠ADE =90α︒-,∴90ADC ADE EDC ∠=∠+∠=︒. …………………...……3分 ∴AD ⊥BC . ∵AB =AC , ∴BD =CD .……………………………………………………………………………………..……………4分 ②证明:∵AB =AC ,∠ABC =, ∴C B α∠=∠=.∵四边形ABFE 是平行四边形,∴AE ∥BF , AE =BF . ∴EAC C α∠=∠=.……………………………………………………………………………………………5分由(1)知,2DAE α∠=, ∴DAC α∠=.…………………………………………………………………………………………………6分 ∴DAC C ∠=∠.α∴AD =CD . ∵AD =AE =BF , ∴BF =CD . ∴BD =CF .………………………………………………………………………………………………………7分28.解:(1)CH=AB . ………………………………… 1分 (2)结论成立.………………………………… 2分 证明:如图11,连接BE . 在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°. ∵ DE=DF , ∴ AF=CE .在△ABF 和△CBE 中,,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2.……………………………………………………………………3分 ∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上. ∴ ∠3=∠2. ∴ ∠3=∠1.∵ ∠3+∠4=90°,∠1+∠HBC =90°, ∴ ∠4=∠HBC .∴ CH=CB .………………………………………………………………… 5分 ∴ CH=AB .………………………………………………………………… 6分 (3)3.………………………………………………………………………7分28.(1)①解: BE AD =,BE AD ⊥;……2分 ②BE AD =,BE AD ⊥仍然成立;证明:设BE 与AC 的交点为点F ,BE 与AD 的交点为点G ,如图1. ∵90ACB ECD ∠=∠=︒, ∴ACD BCE ∠=∠. 在ACD △和BCE △中,,,,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴ACD BCE △≌△.∴AD BE =,CAD CBE ∠=∠.……3分∵BFC AFG ∠=∠,90BFC CBE ∠+∠=︒, ∴90AFG CAD ∠+∠=︒. ∴90AGF ∠=︒. ∴BE AD ⊥.……4分(2)证明:设BE 与AC 的交点为点F ,BE 的延长线与AD 的交点为点G ,如图2. ∵90ACB ECD ∠=∠=︒, ∴ACD BCE ∠=∠.∵8CA =,6CB =,3CE =,4CD =,∴43CA CD CB CE ==. ∴ACD BCE △∽△.……5分∴CAD CBE ∠=∠.∵BFC AFG ∠=∠,90BFC CBE ∠+∠=︒,∴90AFG CAD ∠+∠=︒. ∴90AGF ∠=︒. ∴BG AD ⊥.……6分 ∴90AGE BGD ∠=∠=︒.∴222AE AG EG =+,222BD BG DG =+. ∴222222BD AE AG EG BG DG +=+++. ∵222AG BG AB +=,222EG DG ED +=,∴22222222125BD AE AB ED CA CB CD CE +=+=+++=.……7分28. 解:(1)°70ADE ∠=;…….1分(2)①见右图;…….2分②EM EN =.…….3分 证明:∵ABC AED α∠=∠=,BAC BAC ∠=∠. ∴°902EDA ACB α∠=∠=-.∵BA BC =, ∴ACB BAC ∠=∠,即EDA BAC ∠=∠. ∴EA ED = . …….4分 ∵E 是AC 中点,∴EA EC =. ∴EA EC ED ==. ∴点,,A D C 在以AC 为直径的圆上.∴°90ADC ∠=.. …….5分 而°°°°180180(90)9022EAM EAD αα∠=-∠=--=+.∵点F 是BC 中点,∴FD FB =.∴FDB ABC α∠=∠=. ∴°°909022EDN EDA ADN EDA FDB ααα∠=∠+∠=∠+∠=-+=+.∴EAM EDN ∠=∠.…….6分 ∵ ∠AED 绕点E 顺时针旋转适当的角度,得到∠MEN , ∴ ∠AED=∠MEN ,∴∠AED - ∠AEN=∠MEN -∠AEN ,即 ∠MEA=∠NED . ∴ ΔEAM ≌ΔEPN . ∴ EM=EN .…….7分28.解:(1)正确画出图形;………………1分(2)延长EA 交OF 于点H ,交BF 于点G …2分 ∵O 为正方形ABCD 的中心, ∴OB OA =,∠AOB =90……3分∵OE 绕点O 逆时针旋转90角得到OF ∴OF OE =∴∠AOB =∠EOF =90∴∠EOA =∠FOB ……4分 在△EOA 和△FOB 中,OF OE =,OB OA =,∠EOA =∠FOB ,∴△EOA ≌△FOB ∴BF AE =.……5分 ∴∠OEA =∠OFB ∵∠OEA +∠OHA ∴∠OFB +∠FHG =90 ∴AE ⊥BF ……6分(3)BH 的最大值为25+……8分28. (1)①72;……………………………………………………………………………1分②222PB PC PA =+. …………………………………………………………2分证明:作∠PBP ′=∠ABC =60°,且使BP ′=BP ,连接P ′C 、P ′P . ……………3分∴∠1=∠2. ∵AB =CB ,∴△ABP ≌△CBP ′. …………………………4分 ∴PA =P ′C ,∠A =∠BCP ′. 在四边形ABCP 中,∵∠ABC =60°,∠APC =30°, ∴∠A +∠BCP =270°.∴∠BCP ′+∠BCP =270°.∴∠PCP ′=360°-(∠BCP ′+∠BCP )=90°. ……………………………………5分 ∵△PBP ′是等边三角形. ∴PP ′=PB .在Rt △PCP ′中,222''P P PC C P =+.……………………………………………6分 ∴222PB PC PA =+.(2)点P 在其他位置时,不是始终具有②中猜想的结论,举例: 如图,当点P 在CB 的延长线上时,结论为222PC PB PA =+.(说明:答案不惟一)……………………………………………………………………………………………7分28.解:(1)∵边BA 绕点B 顺时针旋转α角得到线段BP , ∴BA = BP ,∵α=60°,∴△ABP 是等边三角形,..................................1分 ∴∠BAP =60º,AP = AC , 又∵∠BAC =90°,∴∠PAC =30º,∠ACP =75º,∵PD⊥AC于点D,∴∠DPC=15º.....................................................................2分(2)结论:∠DPC=75º...................................................3分(3)画图.............................................................................4分过点A作AE⊥BP于E.∴∠AEB=90º,∵∠ABP=150°,∴∠1=30º,∠BAE=60º,又∵BA= BP,∴∠2=∠3=15º,∴∠PAE=75º,∵∠BAC=90°,∴∠4=75º,∴∠PAE=∠4,∵PD⊥AC于点D,∴∠AEP=∠ADP =90º,∴△APE≌△APD,..............................................................5分∴AE= AD,在Rt△ABE中,∠1=30º,∴12AE AB=,又∵AB=AC,∴1122AE AD AB AC ===,∴AD=CD,又∵∠ADP=∠CDP=90º,∴△ADP≌△CDP,.............................................................6分∴∠DCP=∠4=75º,∴∠DPC=15º........................................................................7分4123EDBAC PEBC P321EAPC BD28.(1)=BE CF . ………………………………………………………………2分 (2)证明:如图2,∵AB =BC ,∠ABC =90°,BD 为斜边中线 ∴BD =AD =CD =12AC ,BD ⊥AC∵ △EFD 是由△ABD 旋转得到的,∴DE =DF =DB =DC ,∠EDF =∠ADB =∠BDC =90° ∴∠EDF +∠BDF =∠BDC +∠BDF ,即∠BDE =∠FDC ∴△BDE ≌△FDC ∴BE =FC 且∠1=∠2 又∵∴ ,即…………………………………………3分 连接BF ,取BF 中点G ,连接MG 、NG . ∵M 为EF 中点,G 为BF 中点,N 为BC 中点 ∴MG ∥BE ,MG =12BE ;NG ∥FC ,NG =12FC 又∵EB =FC ,BE ⊥FC ∴MG =NG ,∠MGN =90° ∴△MGN 为等腰直角三角形∴MN =22FC …………………………………………………………………5分 (3) ……………………………………………………………7分28.解:(1)………………………………∠3=∠4FHE FDE ︒==90∠∠BE CF ⊥222BF CE AC +=B图2………… 1分 (2)证明:如图,延长AE 、DC 交于点P .∵ 四边形ABCD 是平行四边形, ∴ AD //BC ,AB //CD . ∴∠DAE =∠AEB,∠BAE =∠DPA . ……………………………………… 2分∵ AE 平分∠ BAD , ∴ ∠ DAE =∠ BAE ,∴ ∠ BAE =∠ AEB ,∠ DAE =∠ DPA . ∴BA =BE,DA =DP , ……………………………………………………… 3分又 ∵ BG ⊥ AE ,DH ⊥ AE , ∴G为AE中点,H为AP中点. …………………………………………… 4分又 ∵O 为AC 中点,AD =BC , ∴ ()()111222OG CE BC BE AD AB ==-=-, ()()111222OH CP DP CD AD AB ==-=- . …………………………… 5分∴OG =OH . ………………………………………………………………… 6分 (3)717. ……………………………………………………………………………… 7分28.解:(1)∠D =80°, (1)B∠C =130°; (2)(2)①如图2,连接BD , ∵AB =AD ,∴∠ABD =∠ADB .………………………………………………3 ∵∠ABC =∠ADC ,∴∠ABC ﹣∠ABD =∠ADC ﹣∠ADB . ∴∠CBD =∠CDB .∴CB =CD .………………………………………………………4 (3)(Ⅰ)如图,当∠ADC =∠ABC =90°时,延长AD ,BC 相交于点E , ∵∠ABC =90°,∠DAB =60°,AB =5, ∴AE =10.∴DE =AE ﹣AD =10﹣4═6.……………………………………5 ∵∠EDC =90°,∠E =30°,∴CD∴AC=2 (6)(Ⅱ)如图,当∠BCD =∠DAB =60°时,过点D 作DM ⊥AB 于点M ,DN ⊥BC 于点N , ∵DM ⊥AB ,∠DAB =60°,AD =4, ∴AM =2,DM=2∴BM =AB ﹣AM =5﹣2=3.………………………………………7 ∵四边形BNDM 是矩形, ∴DN =BM =3,BN =DM∵∠BCD =60°, ∴CN∴BC =CN +BN∴AC=2……………………………………………………8 即AC28.(本小题满分7分)解:(1)① 依题意补全图形(如图);…………………………………………1分 ② ∠ADC +∠CDE =180°.……………………………………………2分 (2)线段CM ,AE 和BE 之间的数量关系是AE =BE +2CM ,理由如下: ∵ 线段CD 绕点C 逆时针旋转90°得到线段CE , ∴ CD =CE ,∠DCE =90°. ∴ ∠CDE =∠CED =45°.又∵ ∠ADC =135°, ∴ ∠ADC +∠CDE =180°,∴ A 、D 、E 三点在同一条直线上.∴ AE =AD +DE . …………………………………………………………3分 又∵ ∠ACB =90°,AAMDABCE∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.………………………………………………………………4分∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.…………………………………………………………5分∴AE=BE+2CM.……………………………………………………6分(3)点A到BP的距离为.…………………………………………7分。

2015年度中考二模数学

2015年度中考二模数学

,则a等于__ ▲___.
(第16题图) (第15题图)
(第12题图)
12.如图,AB∥CD,CP交AB于点O,AO=PO,∠C = 50°, 则∠A= ▲ °.
13.已知扇形的半径为2cm,弧长为10cm,则这个扇形的面积为 ___▲__cm2. 14.在平面直角坐标系中,若点P(m-2,m+1)在第二象限,则m的取 值范围为__ ▲___. 15.在Rt△ABC中,AD是斜边BC边上的中线,G是△ABC重心,如果
F,求EF的长. (3)设点P(m,n)为⊙O上的任意一点,当的值最大时,求此
时直线BP 相应的函数表达式.
(备用图) (第26题图)
BC=6, 那么线段AG的长为__▲__. 16.如图,⊙P的半径是1,圆心P在函数(x>-2)的图像上运动,当⊙P
与坐标轴相切时,圆心P的坐标为 ▲ . 三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作 答,解答时应写出必要的文字说明、证明过程或演算步骤)
17.(本题满分12分)(1)计算:;
1.2的倒数是(▲)
A. B. C. 2
D. 2
2.下列运算中,正确的是(▲)
A. B. C. D.
3.主视图、左视图和俯视图完全相同的几何体是(▲)
4.某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的
中位数和众数分别是(▲)
A.4,5
B.5,4
C.6,4
D.
10,6
5.若点A(-2,y1)、B(-1,y2)、C(1,y3)在反比例函数的图象 上,则( ▲ )
(1)当点P坐标为(4,4)时,求点E的坐标; (2)当点P坐标为(5,4)时,在线段AD上是否存在不同于P的点Q,

浙江省杭州市2015年中考二模数学试题及答案

浙江省杭州市2015年中考二模数学试题及答案

2015年中考模拟(二) 数学试卷考生须知:本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.答题时,不能使用计算器,在答题卷指定位置内写明校名,姓名和班级,填涂考生号. 所有答案都做在答题卡标定的位置上,请务必注意试题序号和答题序号相对应.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标(-a b 2,ab ac 442-) 圆锥的侧面积公式:S =πr l (其中S 是侧面积,r 是底面半径,l 是母线长)一.仔细选一选 (本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列各几何体中,主视图是圆的是( )2.如图,已知Rt △ABC 边长分别为1,2,3,则下列三角函数表示正确的是( )A .sinA =23B .cosA =36C .tanA =2D .tanA =223.已知圆的面积为7π,估计该圆的半径r 所在范围正确的是( )A .1<r <2B .2<r <3C .3<r <4D .4<r <54.若反比例函数图象经过二次函数742+-=x x y 的顶点,则这个反比例函数的解析式为( )A .x y 6=B .xy 6-= C .x y 14= D .x y 2-= 5.如图,已知直线a ∥b ,同时与∠POQ 的两边相交,则下列结论中错误的是( )A .∠3+∠4=180°B .∠2+∠5>180°C .∠1+∠6<180°D .∠2+∠7=180°6.在一次演讲比赛中,某班派出的5名同学参加年级竞赛的成绩如下表(单位:分),其中隐去了3号同学的成绩,但得知5名同学的平均成绩是21分,那么5名同学成绩的方差是( )A .2.4B .6C .6.8D .7.57.若不等式组⎪⎩⎪⎨⎧-+≤+<+132211x x a x 的解是x <a -1,则实数a 的取值范围是( ) A .a ≤-6 B .a ≤-5 C .a ≤-4 D .a <-48.如图是某市11月1日至10日的空气质量指数折线图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月7日中的某一天到达该市旅游,到达的当天作为第一天连续停留4天.则此人在该市停留期间恰好有两天空气质量优良的概率是( )A .72B .73C .52D .94 9.已知关于x 的一元二次方程02)(2=-+++c a bx x c a ,其中a 、b 、c 分别为△ABC 三边的长. 下列关于这个方程的解和△ABC 形状判断的结论错误的是( )A .如果x =-1是方程的根,则△ABC 是等腰三角形;B .如果方程有两个相等的实数根,则△ABC 是直角三角形;C .如果△ABC 是等边三角形,方程的解是x =0或 x =-1;D .如果方程无实数解,则△ABC 是锐角三角形.10.已知□ABCD 中,AD =2AB ,F 是BC 的中点,作AE ⊥CD ,垂足E 在线段CD 上,连结EF 、AF ,下列结论:①2∠BAF =∠BAD ;②EF=AF ;③S △ABF ≤S △AEF ;④∠BFE =3∠CEF.中一定成立的是( )A .①②④B .①③C .②③④D .①②③④二.认真填一填 (本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(1)用科学记数法表示0.000 048为 ;(2)计算+-2)3(3)2(-= .12.(1)已知53=b a ,则=+bb a ; (2)若两个相似三角形面积之比为1︰2,则它们的周长之比为 .13.已知五月某一天,7个区(市)的日平均气温(单位℃)是20.1, 19.5, 20.2, 19.8,20.1,21.3,18.9 ,则这7个区(市)气温的众数是 ;中位数是 .14.如图,是一个半圆和抛物线的一部分围成的“芒果”,已知点A 、B 、C 、D 分别是“芒果”与坐标轴的交点,AB 是半圆的直径,抛物线的解析式为23232-=x y ,则图中CD 的长为 . 15.若函数k x k x k y ++++=)1()2(2的图象与x 轴只有一个交点,那么k的值为 .16.如图,PQ 为⊙O 的直径,点B 在线段PQ 的延长线上,OQ =QB =1,动点A 在⊙O 的上半圆运动(含P 、Q 两点),连结AB ,设∠AOB =α.有以下结论:①当线段AB 所在的直线与⊙O 相切时,AB =3;②当线段AB 与⊙O 只有一个公共点A 点时,α的范围是0°≤α≤60°;③当△OAB 是等腰三角形时,tan α=215; ④当线段AB 与⊙O 有两个公共点A 、M 时,若AO ⊥PM ,则AB =6.其中正确结论的编号是 .三.全面答一答 (本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本小题6分)如图是某企业近五年的产值年增长率折线统计图和年产值条形统计图(不完整).(1)员工甲看了统计图说2013年的产值比2012年少,请你判断他的说法是否正确(不必说理);(2)补全条形统计图(条形图和数字都要补上);(3)求这5年平均年产值是多少万元.18.(本小题8分)填空和计算:(1)给出下列代数式:21,xx 212+,21+x ,5-x ,122-x ,22+-x x ,其中有 个是分式; 请你从上述代数式中取出一个分式为 ,对于所取的分式:①当x 时分式有意义;②当x =2时,分式的值为 .(2)已知223-=x ,223+=y ,求代数式226y xy x ++的值.19.(本小题8分)(1)尺规作图:以线段a 为斜边,b 为直角边作直角三角形(不写画法,保留痕迹);(2)将所作直角三角形绕一条直角边所在直线旋转一周,设a =5,b =3,求所得几何体的表面积.20.(本小题10分)如图,已知点A (1,4),点B (6,32)是一次函数b kx y +=图象与反比例函数)0(>=m xm y 图象的交点,AC ⊥y 轴于点C ,BD ⊥x 轴于点D .(1)根据图象直接回答:在第一象限内,当x 取何值时,一次函数的值小于反比例函数的值?(2)求一次函数解析式及m 的值;(3)设P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB面积相等,求点P 坐标.21.(本小题10分)如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,AB =AD =6,∠BAD =60°:(1)证明:BC =CD ;并求BC 的长;(2)设点E 、F 分别是AB 、AD 边上的中点,连结EF 、EC 、FC ,求△CEF 三边的长和cos ∠ECF 的值.22.(本小题12分)如图,面积为8cm 2的正方形OABC 的边OA ,OC 在坐标轴上,点P 从点O 出发,以每秒1个单位长度的速度沿x 轴向点C 运动;同时点Q 从C 点出发以相同的速度沿x 轴的正方向运动,规定P 点到达点C 时,点Q 也停止运动,过点Q 作平行于y 轴的直线l .连结AP ,过P 作AP 的垂线交l 于点D ,连结AD ,AD 交BC 于点E.设点P 运动的时间为t 秒.(1)计算和推理得出以下结论(直接填空):①点B 的坐标为 ;②在点P 的运动过程中,总与△AOP 全等的三角形是 ; ③用含t 的代数式表示点D 的坐标为 ;④∠PAD = 度;(2)当△APD 面积为5 cm 2时,求t 的值;(3)当AP =AE 时,求t 的值(可省略证明过程,写出必要的数量关系列式求解).23.(本小题12分)如图,直线42+=x y 与x 轴、y 轴相交于B 、C 两点,抛物线c ax ax y +-=32过点B 、C ,且与x 轴另一个交点为A ,过点C 作x 轴的平行线l ,交抛物线于点G .(1)求抛物线的解析式以及点A 、点G 的坐标;(2)设直线m x =交x 轴于点E (m >0),且同时交直线AC 于点M ,交l 于点F ,交抛物线于点P ,请用含m 的代数式表示FM 的长、PF 的长;(3)当以P 、C 、F 为顶点的三角形与△MEA 相似时,求出m 的值.2015中考二模数学答案一.选择题(每小题3分) CCBAD CCBDD二.填空题 (每小题4分) 11.(1)4.8×10-5 ;(2)1 ; 12.(1)58;(2)1︰2; 13.20.1;20.1 ;14.25; 15.3323±-或-2; 16.①②④17.(6分) (1)不正确--------------------------------------------1分(2)补全条形统计图、数字500、 900---------3分(3)784(万元)------------------------------------2分18.(8分)(1) 3 ;取出一个分式为(xx 212+,122-x ,22+-x x 之一),①分别(对应)x ≠0;x ≠±1;x ≠-2时分式有意义;②当x =2时,分式的值为(对应)45;32;0 (共4分,每空1分)(2)原式=xy y x 4)(2++=(+-223223+)2+4(⨯-223223+)=3+4 ×41=4-------4分,直接代值硬算不扣分;如果算错了,但能化为 xy y x 4)(2++或xy y x 8)(2+-得1分19.(8分)(1)尺规作图(略)---------------------------------------------------4分(2) 分类,分别绕不同的直角边:① 24π;②36π ---------4分(各2分)20.(10分)(1)一次函数的值小于反比例函数的值时x 取范围是0<x <1或6<x <7--------------------2分(2)待定系数法得到:31432+-=x y --------------------------2分, m =4 ----------------------2分 (3)设P (x ,31432+-x ), S △PCA =)314324(121-+⨯⨯x ----1分,S △PDB =)6(3221x -⨯⨯-----1分 解得P (37,27)-------------------------------------------------------------------------------------2分 21.(10分)(1) 连结AC ,在△ABC 和△ADC 中,∠B =∠D =90°,AB =AD ,AC =AC ,∴△ABC ≌△ADC (HL )-------------2分 ;∴BC =CD , -----------------1分∵△ABC ≌△ADC ,∴∠CAB =30°,AB =6,∴BC =32 -----------2分(2) ∵∠BAD =60°,AE =AF =3,∴EF =3,--------------------------------1分EC =FC ==+22)32(321 ---------------------------------------------------2分作EG ⊥CF ,设CG =x ,则 212-x 2=EG 2=32-2)21(x - 解得x =142111------------1分∴cos ∠ECF =142111/21=1411------------------------------------------------------------------------1分22.(12分)(1)①点B (22 ,22), 写(8,8)不扣分; ②与△AOP 全等的三角形是△PDQ ;③点D (22+t , t );④∠PAD =45度;-------------------------4分(每空1分)(2)∵PD =22QD PQ +=28t +,S △APD =21PD 2 =5, -----------2分∴8+t 2=10,∴t =2-------------------------------------------------2分(3)解法1:过D 作DG ⊥y 轴,则由三角形相似得GD AB EG BE = EG =t 222---------------1分;t 22222t =-t-----------1分; 解得t =4―22----------2分 解法2:当AP =AE 时,△AOP ≌△ABE (HL );连结PE ,作AG ⊥PE ,可得5个三角形全等,PC =EC =22―t ,∴PE =2OP ,∴PE =2PC =2(22―t )=4―2t -----------1分又PE =2OP =2 t--------------------------------------------1分∴4―2t =2 t ,解得t =4―22-----------------------2分(解题过程不必分析证明,只要数量关系正确即可。

2015年北京市丰台区中考数学二模试卷-含详细解析

2015年北京市丰台区中考数学二模试卷-含详细解析

2015年北京市丰台区中考数学二模试卷副标题一、选择题(本大题共10小题,共30.0分)1.的倒数等于()A. 3B.C.D.2.一根头发丝的直径约为0.00 006纳米,用科学记数法表示0.00 006,正确的是()A. B. C. D.3.下面的几何体中,主视图为三角形的是()A. B.C. D.4.函数中,自变量x的取值范围是()A. B. C. D. 或5.妈妈在端午节煮了10个粽子,其中5个火腿馅,3个红枣馅,2个豆沙馅(除馅料不同外,其它都相同).煮好后小明随意吃一个,吃到红枣馅粽子的概率是()A. B. C. D.6.下面的几何图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.7.如图,A,B是函数y=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,如果△ABC的面积记为S,那么()A.B.C.D.8.甲、乙、丙、丁四位同学角逐“汉字听写大赛”的决赛资格,表中统计了他们五次测试成绩的平均分和方差.如果从这四位同学中,选出一位成绩较好且状态稳定的同“”)甲乙 C. 丙 D. 丁9.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A. B. C. D.10.如图,点N是以O为圆心,AB为直径的半圆上的动点,(不与点A,B重合),AB=4,M是OA的中点,设线段MN的长为x,△MNO的面积为y,那么下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)11.因式分解:a3-4a=______.12.如图,在△ABC中,D为AB边上一点,DE∥BC交AC于点E,如果=,AE=6,那么EC的长为______.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是______m.14.将二次函数y=x2-4x+5化为y=(x-h)2+k的形式,那么h+k=______.15.在四边形ABCD中,如果AB=AD,AB∥CD,请你添加一个条件,使得该四边形是菱形,那么这个条件可以是______.16.如图,在平面直角坐标系xOy中,直线l的表达式是y=x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交y 轴于点A2;再过点A2作y轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,按此作法进行下去,点B4的坐标为______,OA2015=______.三、计算题(本大题共2小题,共10.0分)17.计算:(-1)2015+-|-|+2cos45°.18.已知=3,求代数式(1-)•的值.四、解答题(本大题共11小题,共62.0分)19.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.20.解不等式组:.21.已知关于x的方程mx2-(m+3)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)如果方程的两个实数根都是整数,且有一根大于1,求满足条件的整数m的值.22.列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?23.如图,在▱ABCD中,E为BC边上的一点,将△ABE沿AE翻折得到△AFE,点F恰好落在线段DE上.(1)求证:∠FAD=∠CDE;(2)当AB=5,AD=6,且tan∠ABC=2时,求线段EC的长.24.某校九年级有200名学生参加《中小学生国家体质健康标准》测试赛活动.为了解本次测试的成绩分布情况,从中抽取了20名学生的成绩进行分组整理.现已完成前15个数据的整理,还有后5个数据尚未累计:62,83,76,87,70,(1)请将剩余的5个数据累计在“学生测试成绩频数分布表”中,填上各组的频数与频率,并补全“学生测试成绩频数分布直方图”;(2)这20个数据的中位数所在组的成绩范围是______;(3)请估计这次该校九年级参加测试赛的学生中约有多少学生成绩不低于80分.25.如图,AB是⊙O的直径,以AB为边作△ABC,使得AC=AB,BC交⊙O于点D,联结OD,过点D作⊙O的切线,交AB延长线于点E,交AC于点F.(1)求证:OD∥AC;(2)当AB=10,cos∠ABC=时,求BE的长.26.问题背景:在△ABC中,AB,BC,AC三边的长分别为,3,,求这个三角形的面积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC的高,借用网格就能计算出它的面积.(1)请你直接写出△ABC的面积______;思维拓展:(2)如果△MNP三边的长分别为,2,,请利用图2的正方形网格(每个小正方形的边长为1)画出相应的格点△MNP,并直接写出△MNP的面积.27.在平面直角坐标系xOy中,抛物线y=ax2+bx+1经过A(1,3),B(2,1)两点.(1)求抛物线及直线AB的解析式;(2)点C在抛物线上,且点C的横坐标为3.将抛物线在点A,C之间的部分(包含点A,C)记为图象G,如果图象G沿y轴向上平移t(t>0)个单位后与直线AB只有一个公共点,求t的取值范围.28.已知△ABC是锐角三角形,BA=BC,点E为AC边的中点,点D为AB边上一点,且∠ABC=∠AED=α.(1)如图1,当α=40°时,∠ADE=______°;(2)如图2,取BC边的中点F,联结FD,将∠AED绕点E顺时针旋转适当的角度β(β<α),得到∠MEN,EM与BA的延长线交于点M,EN与FD的延长线交于点N.①依题意补全图形;②猜想线段EM与EN之间的数量关系,并证明你的结论.29.对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数,在所有满足条件的M中,其最小值称为这个函数的上确界.例如,图中的函数是有上界函数,其上确界是2.(1)分别判断函数y=-(x<0)和y=2x-3(x<2)是不是有上界函数?如果是有上界函数,求其上确界;(2)如果函数y=-x+2(a≤x≤b,b>a)的上确界是b,且这个函数的最小值不超过2a+1,求a的取值范围;(3)如果函数y=x2-2ax+2(1≤x≤5)是以3为上确界的有上界函数,求实数a的值.答案和解析1.【答案】A【解析】解:∵3×=1,∴的倒数等于3.故选:A.根据倒数的定义求解.主要考查了倒数的定义:两个乘积为1的数互为倒数,0没有倒数.2.【答案】B【解析】解:0.00006=6×10-5,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.4.【答案】B【解析】解:根据题意得:x-2≥0,解得:x≥2.故选:B.根据二次根式的性质,被开方数大于等于0,就可以求解.本题考查的知识点为:二次根式的被开方数是非负数.5.【答案】C【解析】解:∵共10个粽子,红枣馅的有3个,∴P(吃到红枣馅粽子)=,故选:C.用红枣馅的粽子个数除以所有粽子的个数即可利用概率公式求得概率.本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=.6.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.【答案】A解:设点A的坐标为(x,y),则B(-x,-y),xy=2.∴AC=2y,BC=2x.∴△ABC的面积=2x×2y÷2=2xy=2×2=4.故选:A.本题可根据A、B两点在曲线上可设出A、B两点的坐标以及取值范围,再根据三角形的面积公式列出方程,即可得出答案.本题主要考查了反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系,即S=|k|.解决本题的关键是根据反比例函数关系式得到所求三角形的两直角边的积.8.【答案】D【解析】解:由于丁的方差较小、平均数较大,故选丁.故选:D.此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的运动员参赛.本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.【答案】A【解析】解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠EHG=∠HEF=90°,∵∠AEF=143°,∴∠AEH=∠AEF-∠HEF=53°,∠EAH=37°,在△EAH中,∠EHA=90°,∠EAH=37°,AE=1.2米,∴EH=AE•sin∠EAH≈1.2×0.60=0.72(米),∵AB=1.2米,∴AB+EH≈1.2+0.72=1.92≈1.9米.故选:A.过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.先求出∠AEH=53°,则∠EAH=37°,然后在△EAH中,利用正弦函数的定义得出EH=AE•sin∠EAH,则栏杆EF段距离地面的高度为:AB+EH,代入数值计算即可.本题考查了解直角三角形在实际中的应用,难度适中.关键是通过作辅助线,构造直角三角形,把实际问题转化为数学问题加以计算.10.【答案】D【解析】解:∵AB=4,∴OA=OB=2,∵M是OA的中点,∴OM=AM=1,∵点N是以O为圆心,AB为直径的半圆上的动点,(不与点A,B重合),线段MN的长为x,∴1<x<3,故B选项错误;连结AN,BN,过点N作NP⊥AB于P,∠ANB=90°,设PM=a,则AP=1-a,BP=a+3.易证△ANP∽△NBP,∴=,∴NP2=AP•BP=(1-a)(a+3)=-a2-2a+3,∵NP2=MN2-PM2=x2-a2,∴x2-a2=-a2-2a+3,∴a=,∴NP2=x2-a2=x2-()2==,∵y=OM•NP=×1×=,∴当x=时,NP有最大值2,此时y=1.最大A选项中,y与x是一次函数关系,不符合题意;C选项中,y取最大值时,x<2,不符合题意;只有D选项符合题意.故选:D.先求出自变量x的取值范围是1<x<3,得出B选项错误;再连结AN,BN,过点N作NP⊥AB于P,求出y与x的函数关系式为y=,进而判断D选项正确.本题考查了动点问题的函数图象,求出y与x的函数关系式是解题的关键,有一定难度.11.【答案】a(a+2)(a-2)【解析】解:a3-4a=a(a2-4)=a(a+2)(a-2).故答案为:a(a+2)(a-2).首先提取公因式a,进而利用平方差公式分解因式得出即可.此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.12.【答案】10【解析】解:∵DE∥BC,∴==,∵AE=6,∴EC=10,故答案为:10.根据DE∥BC,可得==,再根据AE=6可得EC=AE÷=10,进而可选出答案.本题主要考查了平行线分线段成比例定理,关键是掌握平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.13.【答案】【解析】解:根据题意,可得,∴(m),即的长是m.故答案为:.首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.【答案】3【解析】解:y=x2-4x+5=(x-2)2+1,则h=2,k=1,所以h+k=2+1=3.故答案是:3.利用配方法把二次函数的一般形式配成二次函数的顶点式.本题考查了二次函数的三种形式,二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).15.【答案】AB=CD【解析】解:条件可以为AB=CD,理由是:∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD是菱形,故答案为:AB=CD.此题是一道开放型的题目,答案不唯一,如AD∥BC或AC⊥BC等.本题考查了菱形的判定定理,平行四边形的判定的应用,能正确运用菱形的判定定理进行推理是解此题的关键,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.16.【答案】(8,8);22014【解析】解:直线y=x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l于点B1,可知B1点的坐标为(,1),以原点O为圆心,OB1长为半径画弧交y一轴于点A2,OA2=OB1=2OA1=2,点A2的坐标为(0,2),这种方法可求得B2的坐标为(2,2),故点A3的坐标为(0,4),B3的坐标为(4,4),点A4的坐标为(0,8),B4的坐标为(8,8),此类推便可求出点A n的坐标为(0,2n-1).所以点A2015的坐标为(0,22014).所以OA2015=22014.故答案为:(8,8),22014.先根据一次函数方程式求出B1点的坐标,在根据B1点的坐标求出A2点的坐标,由此得到点A4的坐标,以此类推总结规律便可求出点A n的坐标,进而求得OA2015的值.本题主要考查了一次函数的应用,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.17.【答案】解:原式=-1+2-+2×=1.【解析】原式第一项利用乘方的意义化简,第二项利用立方根的定义计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【答案】解:原式=•=•=,由=3,得到x=3y,则原式==.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.【答案】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中,∴△ABC≌△AED(ASA),∴BC=ED.【解析】由∠1=∠2可得:∠EAD=∠BAC,再有条件AB=AE,∠B=∠E可利用ASA证明△ABC≌△AED,再根据全等三角形对应边相等可得BC=ED.此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.20.【答案】解:∵解不等式①得:x≤-2,解不等式②得:x<0,∴不等式组的解集为x≤-2.【解析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.本题考查了解一元一次不等式(组)的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.21.【答案】(1)证明:∵m≠0,∴方程mx2-(m+3)x+3=0(m≠0)是关于x的一元二次方程,∴△=(m+3)2-4×m×3=(m-3)2,∵(m-3)2≥0,即△≥0,∴方程总有两个实数根;(2)解:∵x=,∴x1=1,x2=,∵方程的两个实数根都是整数,且有一根大于1,∴为大于1的整数,∵m为整数,∴m=1.【解析】(1)先计算判别式得到△=(m+3)2-4×m×3=(m-3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;(2)利用公式法可求出x1=1,x2=,然后利用整除性即可得到m的值.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.22.【答案】解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:=4×,解得:x=15,经检验x=15是原方程的解且符合实际意义.答:小张用骑公共自行车方式上班平均每小时行驶15千米.【解析】首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可.此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程,注意不要忘记检验.23.【答案】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,∵将△BAE沿AE翻折得到△FAE,点F恰好落在线段DE上,∴△ABE≌△AFE,∴∠B=∠AFE,∴∠AFE=∠ADC,∵∠FAD=∠AFE-∠1,∠CDE=∠ADC-∠1,∴∠FAD=∠CDE;(2)过点D作DG⊥BE,交BE的延长线于点G.∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,CD=AB=5,∴∠2=∠B,∠3=∠EAD,由(1)可知,△ABE≌△AFE,∴∠B=∠AFE,∠3=∠4,∴∠4=∠EAD,∴ED=AD=6,在Rt△CDG中,tan∠2=tan∠ABC==2,∴DG=2CG,∵DG2+CG2=CD2,∴(2CG)2+CG2=52,∴CG=,DG=2,在Rt△EDG中,∵EG2+DG2=DE2,∴EG=4,∴EC=4-.【解析】(1)由平行四边形的性质和翻折的性质得出∠B=∠ADC,∠B=∠AFE,得出∠AFE=∠ADC,即可得出结论;(2)过点D作DG⊥BE,交BE的延长线于点G.由平行四边形的性质得出∠2=∠B,∠3=∠EAD,由翻折的性质得出∠B=∠AFE,∠3=∠4,得出∠4=∠EAD.得出ED=AD=6,由三角函数得出DG=2CG,根据勾股定理得出DG2+CG2=CD2,求出CG、DG,再根据勾股定理求出EG,即可得出EC.本题考查了平行四边形的性质、全等三角形的判定与性质、翻折变换、勾股定理;熟练掌握平行四边形和翻折变换的性质,并能进行推理计算是解决问题的关键.24.【答案】2;0.10;4;0.20;6;0.30;80≤x<90【解析】解:(1)如表和图:(3)200×(0.30+0.25)=110.(1)根据尚未累计的5个数所在的组,以及频数的计算公式即可补全图表;(2)根据中位数的定义,就是大小处于中间位置的数即可做出判断;(3)利用总人数乘以对应的频率即可求解.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.【答案】解:(1)∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠OBD=∠ODB,∴∠C=∠ODB,∴OD∥AC,(2)连接AD,∵AB为直径,∴AD⊥BD,∴∠ADC=90°,∵AB=10,cos∠ABC=,∴BD=BD=AB•cos∠ABC=2,∵DF是圆的切线,∴OD⊥DF,∴∠ODF=90°,在Rt△CDF中,cos C==,∴CF=2.∴AF=8.∵OD∥AC,∴△ODE∽△AFE,∴=,∴=,∵OB=OA=OD=AB=5,∴BE=.【解析】(1)若要证明OD∥AC,则可转化为证明∠C=∠ODB即可;(2)连接AD,首先利用已知条件可求出BD的长,再证明△ODE∽△AFE,利用相似三角形的性质,对应边的比值相等即可求出BE的长.本题考查了圆的切线性质,及解直角三角形的知识和相似三角形的判定和性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.26.【答案】4.5【解析】解:(1)△ABC的面积是4.5,理由是:S△ABC=S-S△CMA-S△AOB-S△BNC矩形MONC=4×3-×4×1-×2×1-×3×3=4.5,故答案为:4.5;(2)如图2的△MNP,-S△MON-S△PAN-S△MBPS△MNP=S矩形MOAB=5×3-×5×1-×2×4-×3×1=7,即△MNP的面积是7.-S△CMA-S△AOB-S△BNC,根据面积公式求(1)根据图形得出S△ABC=S矩形MONC出即可;(2)先画出符合的三角形,再根据图形和面积公式求出即可.本题考查了勾股定理和三角形的面积公式的应用,解此题的关键是能正确画出格点三角形,难度不是很大.27.【答案】解:(1)∵抛物线y=ax2+bx+1经过A(1,3),B(2,1)两点.∴ ,解得,.∴抛物线的表达式是y=-2x2+4x+1.设直线AB的表达式是y=mx+n,∴ ,解得,,∴直线AB的表达式是y=-2x+5;(2)∵点C在抛物线上,且点C的横坐标为3.∴C(3,-5).点C平移后的对应点为点C′(3,t-5),代入直线表达式y=-2x+5,解得t=4.结合图象可知,符合题意的t的取值范围是0<t≤4.【解析】(1)把点A、B分别代入二次函数解析式,列出关于a、b的方程组,通过解方程组求得系数a、b的值;同理,求得直线方程;(2)结合图象解题.本题考查了待定系数法求函数解析式,二次函数图象的几何变换,要熟练掌握画图的能力和识别图形的能力.28.【答案】70【解析】解:(1)70;∵AB=BC,∠ABC=α=40°,∴∠A=70°,∵∠AED=α=40°∴∠ADE=70°;(2)①见右图;②EM=EN.证明:∵∠ABC=∠AED=α.BA=BC,∴∠A=∠EDA=∠ACB=90°-,∴EA=ED,∵E是AC中点,∴EA=EC,∴EA=EC=ED,∴∠ADC=90°,∵∠EAM=180°-∠EAD=180°-(90°-)=90°+,∵点F是BC中点,∴FB=FD,∴∠FDB=∠ABC=α,∴∠EDN=∠EDA+∠ADN=∠EDA+∠FDB=90°-+α=90°+,∴∠EAM=∠EDN,∵∠AED绕点E顺时针旋转适当的角度,得到∠MEN,∴∠AED=∠MEN,∴∠AED-∠AEN=∠MEN-∠AEN,即∠MEA=∠NED,在△EAM和△EPN中,∴△EAM≌△EPN(ASA),∴EM=EN.(1)根据等腰三角形的性质和三角形的内角和定理可求;(2)①根据题意画图即可;②首先证明EA=ED=EC,得到∠ADC=90°,然后求出∠EAM=∠EDN,易证△EAM≌△EDN,所以EM=EN.本题主要考查了等腰三角形的性质和判定,直角三角形斜边中线等于斜边的一半,如果三角形一边中线等于这条边的一半,那么这个三角形是直角三角形,三角形内角和定理以及三角形全等的性质与判定,挖掘三角形全等的条件是解决问题的关键.29.【答案】解:(1)根据有界函数定义,y=(x<0)不是有上界函数;y=2x-3(x<2)是有上界函数,上确界是1;(2)∵在y=-x+2中,y随x的增大而减小,∴上确界为2-a,即2-a=b,又b>a,所以2-a>a,解得a<1,∵函数的最小值是2-b,∴2-b≤2a+1,得a≤2a+1,解得a≥-1,综上所述:-1≤a<1;(3)函数的对称轴为x=a,①当a≤3时,函数的上确界是25-10a+2=27-10a,∴27-10a=3,解得a=,符合题意;②当a>3时,函数的上确界是1-2a+2=3-2a,∴3-2a=3,解得a=0,不符合题意.综上所述:a=.【解析】(1)根据有界函数函数的定义和上确界定义分析即可;(2)根据函数的上确界和函数增减性得到2-a=b,函数的最小值为2-b,根据b >a,函数的最小值不超过2a+1,列不等式求解集即可;(3)根据对称轴方程x=a和上确界为3,分类讨论a≤3时和a>3时,列方程求解.本题主要考查了对定义函数的理解和一次函数的性质的灵活运用;一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降;能够正确理解有界函数和上确界是解决问题的关键.。

南通市2015届中考数学二模考试试题及答案

南通市2015届中考数学二模考试试题及答案

一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. 下列各数中,最大的数是A .0B .-2C .2D .122. 若三角形的三边长分别为3,4,x ,则x 的值可能是A .1B .6C .7D .103. 某几何体的三视图如图所示,则这个几何体是A .球B .圆柱C .圆锥D .正方体4. PM 2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为 A .0.25×10-5B .0.25×10-6 C .2.5×10-5 D .2.5×10-65. 某校九年级6个班合作学习小组的个数分别是:8,7,9,7,8,7,这组数据的众数和中位数分别是A .7和7.5B .7和8C .9和7.5D .7.5和76. 下列运算中,正确的是A .3a+2a 2=5a 3B .44a a a ⋅=C .632a a a ÷=D .3263)9x x =(- 7. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,若∠ABC =70°,则∠BDC 的度数为A .40°B .30°C .20°D .10°B (第3题)主视图 左视图 俯视图8. 若关于x 的一元一次不等式组0221x a x x ->⎧⎨-<-⎩,有解,则a 的取值范围是A . a >1B .a ≥1C .a <1D .a ≤1 9. 若关于x 的方程2213m x x x+-=- 无解,则m 的值为 A .-1.5 B .1 C .-1.5或2 D .-0.5或-1.5 10. 如图是一张边长为8的正方形纸片,在正方形纸片上剪下一个腰长为5的等腰三角形(要求: 等腰三角形的一个顶点与正方形的一个顶点重合,其余两个顶点在正方形的边上),则剪下的等腰三角形的底边长是A .B.C. 或D. 或二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.在实数范围内有意义,则x 的取值范围是 ▲ . 12.已知∠α=20°,则∠α的补角等于 ▲ 度.13.在平面直角坐标系中,将点A (-2,3)向右平移2个单位长度,再向下平移6个单位长度得点B ,则点B 的坐标是 ▲ .14.已知x ,y 满足2722x y x y +=⎧⎨+=⎩,,则x -y 的值是 ▲ .15.若关于x 的方程x 2+2x +m =0有实数根,则m16.如图,圆锥的底面半径为5 cm ,侧面积为55π cm 2,设圆锥的母线与高的夹角为α,则s inα的值为 ▲ .17.如图,四边形ABCD 是菱形,∠DAB =50°,对角线AC ,BD 相交于点O , DH ⊥AB 于H ,连接OH ,则∠DHO = ▲ 度. 18.对于二次函数y=x 2-2mx -3,有下列说法:①如果当x ≤1时y 随x 的增大而减小,则m ≥1;②如果它的图象与x 轴的两交点的距离是4,则m =±1;③如果将它的图象向左平移3个单位后的函数的最小值是-4,则m =-1; ④如果当x =1时的函数值与x =2013时的函数值相等,则当x =2014时的函数值为-3. 其中正确的说法是 ▲三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字(第17题) B ADOCH(第10题)说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算101()1(3)2-+-π-(2)化简2221412211a aa a a a--⋅÷+-+-.20.(本小题满分8分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下。

2015年中考二模名校联考数学试题

2015年中考二模名校联考数学试题

2015年中考二模名校联考数学试题时间 100分钟 满分100分 2015/3/4一、选择题(每小题2分,共20分).1. -2的绝对值是( )A .2B .-2C .0D .21 2. 下列计算正确的是( ).A .325a a a +=B .326a a a ⋅=C .()326aa = D .2222a a ⎛⎫=⎪⎝⎭3. 如图,由三个小立方块搭成的俯视图是( )4. 下列各式计算正确的是( ) A .2222-=-B .a a 482=(a >0)C .)9()4(-⨯-=4-9-⨯D .336=÷5. 如果整式252n x x --+是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .66. 如图,河堤横断面如图所示,堤高BC =6米,迎水坡AB 的坡比为1:3,则AB 的长为( )米.A .12B .43C .53D .637. 如图,在⊙O 中,弦BC =1,点A 是圆上一点,且∠BAC =30°,则⊙O 半径是( ).A .2B .3C . 1D .5BA第7题图CO正面A B C DABC第6题图8. 把a a a +-232分解因式的结果是( ).A . a a a +-)2(2B . )2(2a a a -C . )1)(1(-+a a aD . 2)1(-a a9. 如图,爸爸从家(点O )出发,沿着扇形AOB 上OA AB BC →→的路径去匀速散步.设爸爸距家(点O )的距离为s ,散步的时间为t ,则下列图形中能大致刻画s 与t 之间函数关系的图象是( )10. 袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球.B .摸出的三个球中至少有一个球是白球.C .摸出的三个球中至少有两个球是黑球.D .摸出的三个球中至少有两个球是白球.二、填空题(每小题3分,共15分)11. 方程0122=--x x 的解是 .12. 截止5月初,受H7N9禽流感的影响,家禽养殖业遭受了巨大的冲击,最新数据显示,损失已超过400亿元,用科学记数法表示为 元.13. 圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图形的圆心角为__________. 14. 如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 m .ACDA BC D 第9题图15. 命题“直角三角形的两个锐角互余”的条件是 .三、解答题(在答题卡上作答,写出必要的解题步骤.16~20题每小题7分, 21、22题每小题8分,23题10分,24题14分,共75分.)16. 解不等式组:并将解集在数轴上表示出来。

2015年各区二模27题汇总

2015年各区二模27题汇总

1、(15昌平227) 已知抛物线2y ax bx c =++经过原点O 及点A (-4,0)和点B (-6,3). (1)求抛物线的解析式以及顶点坐标;(2)如图1,将直线2y x =沿y 轴向下平移后与(1)中所求抛物线只有一个交点C ,平移后的直线与y 轴交于点D ,求直线CD 的解析式;(3)如图2,将(1)中所求抛物线向上平移4个单位得到新抛物线,请直接写出新抛物线上到直线CD 距离最短的点的坐标及该最短距离.图12、(15朝阳227) 已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且21y ax x =+,求这个函数的表达式;(3)在(2)的条件下,结合函数的图象回答:若使231y a ≤-+,则自变量a 的取值范围为 .xyO3、(15东城227) 在平面直角坐标系中,抛物线2+3y ax bx =+()0≠a 与x 轴交于点A (-3,0)、B (1,0)两点, D 是抛物线顶点,E 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)若点F 和点D 关于x 轴对称, 点P 是x 轴上的一个动点,过点P 作PQ ∥OF 交抛物线于点Q ,是否存在以点O ,F ,P ,Q 为顶点的平行四边形?若存在,求出点P 坐标;若不存在,请说明理由.4、(15海淀227) 在平面直角坐标系xOy 中,抛物线224y mx m m x -++=与y 轴交于点A (0,3),与x 轴交于点B ,C (点B 在点C 左侧). (1)求该抛物线的表达式及点B ,C 的坐标;(2)抛物线的对称轴与x 轴交于点D ,若直线y kx b =+经过点D 和点 E (1,2)--,求直线DE 的表达式;(3)在(2)的条件下,已知点P (t ,0),过点P 作垂直于x 轴的直线交抛物线于点M ,交直线DE 于点N ,若点M 和点N 中至少有一个点在x 轴下方,直接写出t 的取值范围.5、(15门头沟227) 在平面直角坐标系xOy 中,抛物线214y x bx c =-++经过点A (4,0)和B (0,2).(1)求该抛物线的表达式;(2)在(1)的条件下,如果该抛物线的顶点为C ,点B 关于抛物线对称轴对称的点为D ,求直线 CD 的表达式;(3)在(2)的条件下,记该抛物线在点A ,B 之间的部分(含点A ,B )为图象G ,如果图象G 向上平移m (m >0)个单位后与直线CD 只有一个公共点,请结合函数的图象,直接写出m 的取值范围.()6、(15顺义227) 已知关于x 的方程()2230x m x m +-+-=. (1)求证:方程()2230x m x m +-+-=总有两个实数根; (2)求证:抛物线()223y x m x m =+-+-总过x 轴上的一个定点;(3)在平面直角坐标系xOy 中,若(2)中的“定点”记作A ,抛物线()223y x m x m =+-+-与x 轴的另一个交点为B 与y 轴交于点C ,且△OBC 的面积小于或等于8,求m 的 取值范围. 27.7、(15西城227) 已知一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,二次函数2224y x ax =-+(其中a >2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a 的代数式表示);(2)利用函数图象解决下列问题: ①若25=a ,求当10y >且2y ≤0时,自变量x 的取值范围; ②如果满足10y >且2y ≤0时的自变量x 的取值范围内恰有一个整数,直接写出a的取值范围.8、(15丰台227)在平面直角坐标系xOy 中,抛物线21y ax bx =++经过(13)A ,,(21)B ,两点.(1)求抛物线及直线AB 的解析式;(2)点C 在抛物线上,且点C 的横坐标为3.将抛物线在 点A ,C 之间的部分(包含点A ,C )记为图象G ,如 果图象G 沿y 轴向上平移t (0t >)个单位后与直线 AB 只有一个公共点,求t 的取值范围.9(15石景山227)已知关于x 的方程()231220mx m x m --+-=.(1)求证:无论m 取任何实数时,方程恒有实数根;(2)若关于x 的二次函数()23122y mx m x m =--+-的图象经过坐标原点,得到抛物线1C .将抛物线1C 向下平移后经过点()0,2A -进而得到新的抛物线2C ,直线l 经过点A 和点()2,0B ,求直线l 和抛物线2C 的解析式;(3)在直线l 下方的抛物线2C 上有一点C ,求点C 到直线l 的距离的最大值.(通州)27.已知关于x 的方程mx 2-(3m -1)x +2m -2=0 (1)求证:无论m 取任何实数时,方程恒有实数根. (2)若关于x 的二次函数y = mx 2-(3m -1)x +2m -2的图象与x 轴两交点间的距离为2时,求二次函数的表达式.(房山)27.已知关于x 的一元二次方程()23130kx k x +++= (k ≠0).(1)求证:无论k 取何值,方程总有两个实数根;(2)点()()120,0A x B x ,、在抛物线()2313y kx k x =+++上,其中12x x <0<,且12x x 、和k 均为整数,求A ,B 两点的坐标及k 的值;(3) 设(2)中所求抛物线与y 轴交于点C ,问该抛物线上是否存在点E ,使得ABE ABC S S = ,若存在,求出E 点坐标,若不存在,说明理由.(怀柔)27. 已知:抛物线y=x ²+bx+c 经过点(2,-3)和(4,5).(1)求抛物线的表达式及顶点坐标; (2)将抛物线沿x 轴翻折,得到图像G ,求图像G 的表达式;(3)在(2)的条件下,当-2<x<2时, 直线y=m 与该图像有一个公共点, 求m 的值或取值范围.(平谷)27.如图,在平面直角坐标系中,点 A点Q 是线段BC 上一个动点,点P 的坐标是且与x 轴交于点D .(1)求点C 的坐标及b 的值;(2)求k 的取值范围;(3)当k 为取值范围内的最大整数时,过点B ∥x 轴,交PQ 于点E ,若抛物线y=ax 2﹣5ax (的顶点在四边形ABED 的内部,求ayx11O。

2015年江西省22校联考中考物理模拟试卷(二)(解析版)

2015年江西省22校联考中考物理模拟试卷(二)(解析版)

一、填空题(共20分,每空1分)1.穿高跟鞋行走往往会发出“咯哒咯哒”的响声,这是鞋跟敲击地面发声.中考为了不影响考生答题,监考老师不穿高跟鞋来监考,是从处控制噪声的.2.日常生活中很多俗语蕴含着丰富的物理知识.如俗话说“人往高处走,水往低处流”,“水往低处流”是因为水受到重力,重力的方向总是的;又如“爬得高,摔得狠”是因为爬高的人重力势能随着高度的增加而,摔下来就狠了.3.请你正确填写单位,小明在商场挑选篮球时,发现上面标注谢的尺码为“41码”,表示其长度约为25.5;在家电专柜,看见某空调连续正常制冷60min消耗的电能2.1.4.雾是水蒸气遇冷在空气中而形成的.“霾”是态有害物质,导致能见度极低,严重造成了视程障碍.5.如图所示,是景德镇名瓷﹣﹣﹣高白釉茶壶.茶壶是根据的原理设计的;在壶盖上有一个小孔,倒茶时,茶水在的作用下流出.6.家庭电路中各用电器是联的.用试电笔辨别火线和零线时,如图所示正确的是(填“甲”或“乙”).7.如图所示是一种开瓶器.使用时将螺旋钻头旋进软木塞,再用双手按压把即可将瓶塞拔出.开瓶器的钻头做得尖细是为了,压把相当于.8.功率是表示的物理量.下列各物理量的单位:①J、②J/s、③N•m、④W、⑤W•s 中属于功率的单位有(填序号).9.在用磁感线描述磁体外部的磁场时,磁感线都是从磁体的极出发回到另一磁极;通电导线在磁场中受到力的作用,根据这一原理人们制成了机.10.为测量待测电阻R x阻值,小东设计了如图所示的甲、乙两个电路,R0的阻值已知,且电源电压不变,在不改拆电路的情况下,用图她不能测出R x的阻值,这是因为拔动开关时,有一次会造成电压表的,从而无法读数或损坏电压表.二、选择题(共20分,把你认为正确选项的代号填涂在答题卷的相应位置上.第11~14小题,每小题只有一个正确答案,每小题3分;第15、16小题为不定项选择,每小题有一个或几个正确答案,每小题3分.全部选择正确得4分,不定项选择正确但不全得2分,不选、多选或错选得0分.)11.人体很多部位与物理知识相关,以下说法正确的是()A.手臂可看成省力杠杆B.手掌上纹路可以增大摩擦C.眼睛中晶状体相当于凹透镜D.牙齿尖利可以增大对食物的压力12.乒乓球静止在水平桌面上,以下叙述中正确的是()A.因为乒乓球是静止的,所以乒乓球没有惯性B.乒乓球受到桌面对它的摩擦力、支持力和重力三个力C.乒乓球受到的重力和桌面对它的支持力彼此平衡D.乒乓球对桌面的压力和桌面对它的支持力彼此平衡13.酒精测试仪可检测驾驶员是否为酒后驾车,如图是其原理图.图中酒精气体传感器的电阻R 与酒精气体的浓度成反比,如果测试到的酒精气体浓度变大,则通过传感器的电流和电压表的示数变化分别()A.电流变大,电压表示数变大B.电流变小,电压表示数变大C.电流变大,电压表示数变小D.电流变小,电压表示数变小14.如图所示,下列实验仪器工作时,不是把电能转化为机械能的是()A.电流表 B.电压表C.发电机D.电动机15.下列说法中正确的是()A.寒冷的冬天,玻璃窗上出现冰花,属于凝华现象B.炎热的夏天,雪糕周围出现的“白气”是雪糕冒出的水蒸气液化形成的C.将﹣18℃的冰块放在冰箱的0℃保鲜室中,一段时间后,冰块的内能一定增加D.用锯条锯木板,锯条的温度升高,是由于锯条从木板吸收了热量16.下面关于家庭生活中所涉及的电学知识,说法正确的是()A.电熨斗是利用电流的热效应来工作的B.电视机待机(只有指示灯亮)时也会耗电C.家庭电路中,开关短路时会使保险丝熔断D.给手机充电时,电能转化为化学能三、计算题(共20分,第17小题4分,第18、19小题各5分,第20小题6分)17.随着科技的发展和人们生活水平的提高,轿车进入家庭越来越多.请列举两个力学知识或原理在轿车上的应用.18.如图所示,将边长为a的实心正方体木块轻轻放入装满水的溢水杯中,设水的密度为ρ水.木块静止时,从杯中溢出水的质量为m,求:(1)木块受到的浮力;(2)木块的密度;(3)木块下表面受到的压强.19.文川家新买了一台家用电热淋浴器,且准备在浴室将原来控制灯的开关拆除,改装新买的“一开三孔”开关,如图14所示是开关的实物图和反面接线示意图,“A”“B”是从开关接线柱接出的两根导线.(1)请你帮文川家电路连接完整;(2)本淋浴器说明书的部分内容如下表所示,插座装好后,让淋浴器装满水后,淋浴器所带温度计示数显示25℃,通电50min后,温度计示数为45℃,请你计算:①该淋浴器加热过程消耗的电能?20.如图所示电路,电源电压不变,灯泡L标有“6V 3W”,滑动变阻器标有“18Ω 5A”字样,当S1、S2都断开时,滑片P从b端滑到某一位置c时,电流表示数增大了0.1A,灯泡恰好正常发光;保持滑片P的位置不变,闭合S1、S2,电流表示数又增大了1.5A,求:(1)灯泡正常工作时的电流和电阻;(2)电源电压;(3)当S1、S2都闭合时,调节滑片P,电路消耗总功率的最小值.四、实验题(共16分,每小题各8分)21.在以下基本测量仪器的使用中,请你回答相关的问题:(1)如图1所示,秒表的分针圈中的分度值为s,秒表此时的示数为s.(2)常用温度计是根据的性质来测量温度的.如图2所示,体温计的示数为℃.(3)如图3所示,弹簧测力计的量程为,读数为N.(4)液化气瓶、氧气瓶瓶口都装有类似于图4所示的仪表.这是测量的仪表(填物理量名称),针所示的值是MPa.22.星开同学想测量妈妈从海南给她带来的小贝壳密度,她准备了托盘天平(配了砝码)、大烧杯、小烧杯、细线和水等器材.(1)如图甲所示是她在调节天平的平衡螺母,从图中可以发现她在使用天平过程中存在的错误是:.(2)纠正错误后,再测贝壳的质量,所用天平的标尺如图乙所示,最小砝码的质量与标尺最大刻度值相同.测量时按规定在盘加入15g的砝码后,天平的指针偏向左侧,这时贝壳的质量(选填“小于”、“等于”或“大于”)15g,再另加入5g的砝码后,指针偏向右侧,接下来的操作是:,直至天平平衡.图乙所示为天平最后平衡时的情景,则贝壳的质量m=g.(3)测出空小烧杯的质量m1.(4)将装有水的大烧杯和空的小烧杯如上图丙所示放置(水至溢水口).(5)用细线悬挂贝壳缓缓浸没于大烧杯中,有部分水溢出进入小烧杯.(6)测出溢出的水和小烧杯的总质量m2.由上述实验可得:溢出水的体积是:,贝壳的密度是:(都用物理量符号表示,水的密度为ρ水).五、探究题(共24分,每小题各8分))分析第一次实验数据.为了验证杠杆的平衡条件,必须先计算等于多少,后计算等于多少,初步得出杠杆平衡条件为.(前两空均填算式)(2)①杠杆在生活中行很多应用如图2所示,跷跷板静止,你认为这时跷硗板受到,(填“平衡力”或“非平衡力”)的作用.②如果要使静止的跷跷板发生转动,可采取的做法是:甲不动,,请写出使这个晓跷板发生转动的条件:F甲L甲(填“<”“=”或“>”)F乙L乙.24.科铭物理实验小组的同学用以下实验器材,共同动手动脑,协作完成了测定“额定电压为2.5V 的小灯泡电功率”的实验:(1)小组中泽藩同学负责连接电路,连接完后,科铭组长检查发现有2根导线连接错误,拆除这2根导线后,剩下如图甲所示电路由楚睿同学正确连接完成了,且接通电路滑片P向右移动灯会变亮.请你用笔画线代替导线将楚睿同学正确的连线展示出来.(2)栩沁同学发现连好线,滑片P还在图中位置不对,她将滑动变阻器调到后,闭合开关,移动滑片P到某处时,电压表示数如图乙所示,若马上想测量小灯泡的额定功率,接下来的操作应将滑片P向(选填“A”或“B”)端移动,同时,注意观察表,当其读数为时,停止移动滑片,并记录另一表的示数.(3)哲灵同学连接好电路想重做一次,闭合开关,移动滑片P,发现小灯泡始终不亮,电压表有示数,电流表无示数,原因可能是灯出现(选填“短路”或“开路”).(4)经小组同学共同努力,做了多次实验,记录了多组U、I数据,并绘制了如图丙所示的I﹣U图象,根据图象信息,小灯泡的额定功率是W.25.【实验名称】探究电流与电压、电阻的关系【实验器材】电压表(0﹣3V,0﹣15V);电流表(0﹣0.6A,0﹣3A);滑动变阻器(0﹣15Ω);阻值为5、10Ω的定值电阻各一个;开关一只和导线若干.实验中两位同学商定电压表的示数保持2V不变,为顺利完成实验,现有电压为4.5V和6V的两电池组可供选择,则A.只能选择4.5V的电池组B.只能选择6V的电池组C.两电池组均可选用D.须将其变成10.5V的电池组使用【设计实验与制定计划】同学们设计了如图1所示甲、乙、丙三个电路①根据设计的电路图进行电路连接,小明在连线时还有部分线没有完成,请你将实物电路连接完整(导线不得交叉,且要求闭合开关前滑动变阻器连入电路的电阻最大②小明通过实验得出了下表中的数据,请读出图2中两表的示数,记在表中最后一列的空格处.电压U/V 0.5 1.0 1.5 2.0电流I/A 0.05 0.1 0.15 0.22015年江西省22校联考中考物理模拟试卷(二)参考答案与试题解析一、填空题(共20分,每空1分)1.穿高跟鞋行走往往会发出“咯哒咯哒”的响声,这是鞋跟敲击地面振动发声.中考为了不影响考生答题,监考老师不穿高跟鞋来监考,是从声源处控制噪声的.2.日常生活中很多俗语蕴含着丰富的物理知识.如俗话说“人往高处走,水往低处流”,“水往低处流”是因为水受到重力,重力的方向总是竖直向下的;又如“爬得高,摔得狠”是因为爬高的人重力势能随着高度的增加而增大,摔下来就狠了.3.请你正确填写单位,小明在商场挑选篮球时,发现上面标注谢的尺码为“41码”,表示其长度约为25.5cm;在家电专柜,看见某空调连续正常制冷60min消耗的电能2.1度.4.雾是水蒸气遇冷在空气中液化而形成的.“霾”是固态有害物质,导致能见度极低,严重造成了视程障碍.5.如图所示,是景德镇名瓷﹣﹣﹣高白釉茶壶.茶壶是根据连通器的原理设计的;在壶盖上有一个小孔,倒茶时,茶水在大气压的作用下流出..点评:茶壶是常见的生活用品,它里面包含了连通器的知识、大气压的知识,值得引起我们的注意,尤其是壶盖上的小孔,在这里起到了重要的作用,是不应被我们忽略的.6.家庭电路中各用电器是并联的.用试电笔辨别火线和零线时,如图所示正确的是甲(填“甲”或“乙”).7.如图所示是一种开瓶器.使用时将螺旋钻头旋进软木塞,再用双手按压把即可将瓶塞拔出.开瓶器的钻头做得尖细是为了增大压强,压把相当于省力杠杆.8.功率是表示物体做功快慢的物理量.下列各物理量的单位:①J、②J/s、③N•m、④W、⑤W•s中属于功率的单位有②④(填序号).9.在用磁感线描述磁体外部的磁场时,磁感线都是从磁体的N极出发回到另一磁极;通电导线在磁场中受到力的作用,根据这一原理人们制成了电动机.10.为测量待测电阻R x阻值,小东设计了如图所示的甲、乙两个电路,R0的阻值已知,且电源电压不变,在不改拆电路的情况下,用乙图她不能测出R x的阻值,这是因为拔动开关时,有一次会造成电压表的正负接线柱反接,从而无法读数或损坏电压表.二、选择题(共20分,把你认为正确选项的代号填涂在答题卷的相应位置上.第11~14小题,每小题只有一个正确答案,每小题3分;第15、16小题为不定项选择,每小题有一个或几个正确答案,每小题3分.全部选择正确得4分,不定项选择正确但不全得2分,不选、多选或错选得0分.)11.人体很多部位与物理知识相关,以下说法正确的是(b)A.手臂可看成省力杠杆B.手掌上纹路可以增大摩擦C.眼睛中晶状体相当于凹透镜D.牙齿尖利可以增大对食物的压力12.乒乓球静止在水平桌面上,以下叙述中正确的是(c)A.因为乒乓球是静止的,所以乒乓球没有惯性B.乒乓球受到桌面对它的摩擦力、支持力和重力三个力C.乒乓球受到的重力和桌面对它的支持力彼此平衡D.乒乓球对桌面的压力和桌面对它的支持力彼此平衡13.酒精测试仪可检测驾驶员是否为酒后驾车,如图是其原理图.图中酒精气体传感器的电阻R与酒精气体的浓度成反比,如果测试到的酒精气体浓度变大,则通过传感器的电流和电压表的示数变化分别(a)A.电流变大,电压表示数变大B.电流变小,电压表示数变大C.电流变大,电压表示数变小D.电流变小,电压表示数变小14.如图所示,下列实验仪器工作时,不是把电能转化为机械能的是(c)A.电流表B.电压表C.发电机D.电动机15.下列说法中正确的是(ac)A.寒冷的冬天,玻璃窗上出现冰花,属于凝华现象B.炎热的夏天,雪糕周围出现的“白气”是雪糕冒出的水蒸气液化形成的C.将﹣18℃的冰块放在冰箱的0℃保鲜室中,一段时间后,冰块的内能一定增加D.用锯条锯木板,锯条的温度升高,是由于锯条从木板吸收了热量16.下面关于家庭生活中所涉及的电学知识,说法正确的是(abd)A.电熨斗是利用电流的热效应来工作的B.电视机待机(只有指示灯亮)时也会耗电C.家庭电路中,开关短路时会使保险丝熔断D.给手机充电时,电能转化为化学能三、计算题(共20分,第17小题4分,第18、19小题各5分,第20小题6分)17.随着科技的发展和人们生活水平的提高,轿车进入家庭越来越多.请列举两个力学知识或原理在轿车上的应用.解答:答:(1)轿车流线型的形状可以减小空气的阻力;(2)轿车做成流线型(上凸下平),与飞机机翼的作用一样,可以利用快速运动时气流对其产生的向上的压力差,减小汽车对地面的压力,从而减小摩擦,利于加速,利于节能.18.如图所示,将边长为a的实心正方体木块轻轻放入装满水的溢水杯中,设水的密度为ρ水.木块静止时,从杯中溢出水的质量为m,求:(1)木块受到的浮力;(2)木块的密度;(3)木块下表面受到的压强.解答:解:(1)木块受到的浮力:F浮=G排=G溢出=mg.(2)因为木块漂浮,F浮=G木=m木g,木块质量m木=m,木块体积V=a3,木块密度:ρ木==;(3)因为木块受到的浮力:F浮=F下表面﹣F上表面=F下表面,下表面受的压力为:F=F浮=mg,下表面受的压强为:p==.19.文川家新买了一台家用电热淋浴器,且准备在浴室将原来控制灯的开关拆除,改装新买的“一开三孔”开关,如图14所示是开关的实物图和反面接线示意图,“A”“B”是从开关接线柱接出的两根导线.(1)请你帮文川家电路连接完整;(2)本淋浴器说明书的部分内容如下表所示,插座装好后,让淋浴器装满水后,淋浴器所带温度计示数显示25℃,通电50min后,温度计示数为45℃,请你计算:①该淋浴器加热过程消耗的电能?解答:解:(1)电路连接如下图,A与火线连接,B与灯泡连接.这样使开关控制电灯,又不影响插座供其它电器使用.(2)①该热水器加热过程中消耗的电能W=Pt=1500W×50×60s=4.5×106J.②满箱水的质量m=ρV=1000kg/m3×0.05m3=50kg.加热过程中水吸收的热量Q吸=cm(t﹣t0)=4.2×103J/kg•℃×50kg×(45℃﹣25℃)=4.2×106J,该淋浴器的热效率η=×100%=×100%=93.3%.20.如图所示电路,电源电压不变,灯泡L标有“6V 3W”,滑动变阻器标有“18Ω 5A”字样,当S1、S2都断开时,滑片P从b端滑到某一位置c时,电流表示数增大了0.1A,灯泡恰好正常发光;保持滑片P的位置不变,闭合S1、S2,电流表示数又增大了1.5A,求:(1)灯泡正常工作时的电流和电阻;(2)电源电压;(3)当S1、S2都闭合时,调节滑片P,电路消耗总功率的最小值.解答:解:当S1、S2都断开,滑片P位于b端时,等效电路图如图1所示;当S1、S2都断开,滑片P位于c端时,等效电路图如图2所示;当S1、S2都闭合,滑片P位于b端时,等效电路图如图3所示.(1)灯泡正常发光时的电压为6V,电功率为3W,根据P=UI可得,灯泡正常发光时的电流:I L===0.5A,根据欧姆定律可得,灯泡的电阻:R L===12Ω;(2)如图2所示等效电路可知,灯泡正常发光,根据串联电路中各处的电流相等可知,电路中的电流I′=0.5A,图1中的电阻大于图2中的电阻,根据欧姆定律可得,图1中的电流小于图2中的电流,即I=0.5A﹣0.1A=0.4A,图1中,电源的电压:U=I(R L+R ab)=0.4A×(R L+R ab)=0.4A×(12Ω+18Ω)=12V;(3)图2中的总电阻:R总===24Ω,滑动变阻器接入电路中的电阻:R ac=R总﹣R L=24Ω﹣12Ω=12Ω,图3中干路电流I″=I′+1.5A=0.5A+1.5A=2A,并联电路中各支路两端的电压相等,通过滑动变阻器的电流:I滑===1A,并联电路中干路电流等于各支路电流之和,R0====12Ω,当S1、S2都闭合,滑动变阻器接入电路中的电阻最大时,电路的总功率最小,电路的最小功率:P min=+=+=20W.答:(1)灯泡正常工作时的电流为0.5A,电阻为12Ω;(2)电源电压为12V;(3)当S1、S2都闭合时,调节滑片P,电路消耗总功率的最小值为20W.四、实验题(共16分,每小题各8分)21.在以下基本测量仪器的使用中,请你回答相关的问题:(1)如图1所示,秒表的分针圈中的分度值为30s,秒表此时的示数为69.5s.(2)常用温度计是根据液体热胀冷缩的性质来测量温度的.如图2所示,体温计的示数为37.2℃.(3)如图3所示,弹簧测力计的量程为0~5N,读数为 2.6N.(4)液化气瓶、氧气瓶瓶口都装有类似于图4所示的仪表.这是测量压强的仪表(填物理量名称),针所示的值是0.2MPa.22.星开同学想测量妈妈从海南给她带来的小贝壳密度,她准备了托盘天平(配了砝码)、大烧杯、小烧杯、细线和水等器材.(1)如图甲所示是她在调节天平的平衡螺母,从图中可以发现她在使用天平过程中存在的错误是:调节平衡螺母前,没有将游码拨到标尺左端的零刻度线处.(2)纠正错误后,再测贝壳的质量,所用天平的标尺如图乙所示,最小砝码的质量与标尺最大刻度值相同.测量时按规定在右盘加入15g的砝码后,天平的指针偏向左侧,这时贝壳的质量大于(选填“小于”、“等于”或“大于”)15g,再另加入5g的砝码后,指针偏向右侧,接下来的操作是:取下5g的砝码,拨动游码,直至天平平衡.图乙所示为天平最后平衡时的情景,则贝壳的质量m=18.2g.(3)测出空小烧杯的质量m1.(4)将装有水的大烧杯和空的小烧杯如上图丙所示放置(水至溢水口).(5)用细线悬挂贝壳缓缓浸没于大烧杯中,有部分水溢出进入小烧杯.(6)测出溢出的水和小烧杯的总质量m2.由上述实验可得:溢出水的体积是:,贝壳的密度是:×ρ水(都用物理量符号表示,水的密度为ρ水).五、探究题(共24分,每小题各8分))分析第一次实验数据.为了验证杠杆的平衡条件,必须先计算1N×15cm等于多少,后计算1.5N×10cm等于多少,初步得出杠杆平衡条件为动力×动力臂=阻力×阻力臂(或F1L1=F2L2).(前两空均填算式)(2)①杠杆在生活中行很多应用如图2所示,跷跷板静止,你认为这时跷硗板受到平衡力,(填“平衡力”或“非平衡力”)的作用.②如果要使静止的跷跷板发生转动,可采取的做法是:甲不动,乙向远离支点方向移动,请写出使这个晓跷板发生转动的条件:F甲L甲<(填“<”“=”或“>”)F乙L乙.24.科铭物理实验小组的同学用以下实验器材,共同动手动脑,协作完成了测定“额定电压为2.5V 的小灯泡电功率”的实验:(1)小组中泽藩同学负责连接电路,连接完后,科铭组长检查发现有2根导线连接错误,拆除这2根导线后,剩下如图甲所示电路由楚睿同学正确连接完成了,且接通电路滑片P向右移动灯会变亮.请你用笔画线代替导线将楚睿同学正确的连线展示出来.(2)栩沁同学发现连好线,滑片P还在图中位置不对,她将滑动变阻器调到A端(或左端)后,闭合开关,移动滑片P到某处时,电压表示数如图乙所示,若马上想测量小灯泡的额定功率,接下来的操作应将滑片P向B(选填“A”或“B”)端移动,同时,注意观察电压表,当其读数为2.5V时,停止移动滑片,并记录另一表的示数.(3)哲灵同学连接好电路想重做一次,闭合开关,移动滑片P,发现小灯泡始终不亮,电压表有示数,电流表无示数,原因可能是灯出现开路(选填“短路”或“开路”).(4)经小组同学共同努力,做了多次实验,记录了多组U、I数据,并绘制了如图丙所示的I﹣U图象,根据图象信息,小灯泡的额定功率是0.5W.25.【实验名称】探究电流与电压、电阻的关系【实验器材】电压表(0﹣3V,0﹣15V);电流表(0﹣0.6A,0﹣3A);滑动变阻器(0﹣15Ω);阻值为5、10Ω的定值电阻各一个;开关一只和导线若干.实验中两位同学商定电压表的示数保持2V不变,为顺利完成实验,现有电压为4.5V和6V的两电池组可供选择,则AA.只能选择4.5V的电池组B.只能选择6V的电池组C.两电池组均可选用D.须将其变成10.5V的电池组使用【设计实验与制定计划】同学们设计了如图1所示甲、乙、丙三个电路①根据设计的电路图进行电路连接,小明在连线时还有部分线没有完成,请你将实物电路连接完整(导线不得交叉,且要求闭合开关前滑动变阻器连入电路的电阻最大②小明通过实验得出了下表中的数据,请读出图2中两表的示数,记在表中最后一列的空格处.电压U/V 0.5 1.0 1.5 2.0 2.4电流I/A 0.05 0.1 0.15 0.2 0.24。

2015年中考数学二模试题附答案

2015年中考数学二模试题附答案

2015年中考数学二模试题(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列运算中,正确的是 ……………………………………………………………………( )(A)1293=±3(C)030-=()(D)2139-=2.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为 ………………………( )(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是 ………………………………………………………………( ) (A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是 …………………………………………………………………( )(A)12y y >(B)12y y <(C)12y y =(D)无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )(A) (B) (C) (D) 6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 …………………………………………………………………( ) (A)AC BD =, AB CD ∥, AB CD = (B)AD BC ∥, A C ∠=∠(C)AO BO CO DO ===, AC BD ⊥(D)AO CO =, BO DO =, AB BC =二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.因式分解:34x x -= ▲ . 8.2,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为 ▲ .10.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为▲ . 11.已知在方程222232x x x x++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是 ▲ .12.布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为 ▲ .13.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨.14.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a =,AD b =,如果用向量,a b表示向量BC ,那么BC = ▲ .15.如图,已知ABC ∆和ADE∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为 ▲ .16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD = ▲ .17.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将(第14题图)ABCD(第15题图)A BCEFD(第16题图)B[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 ▲ .18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-.20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩21.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点, AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =. (1)求线段AE 的长;(2)求sin DAE ∠的值.22.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为 千米/小时,在甲地游玩的时间为 小时; (2)小明从家出发多少小时的时候被妈妈追上?A C FED(第18题图)(第21题图) CAB E D此时离家多远?23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H . (1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.24.(本题满分12分,每小题各6分) 如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.(第24题图)A BDHG FEC(第23题图)25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E ,点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域;(2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图)(备用图1)BA CB九年级数学参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分) 1.D ; 2.C ;3.A ; 4.B ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.(2)(2)x x x +- 8.1 9.2 10. 10 11. 2320y y -+= 12.2513. 540 14.22b a - 15.216. 17.[]68, 18. 35三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6302x tan =-. 解:原式=21(1)212x x x x x --+-+……………………………………………………2分 122x x x x -=-++ ………………………………………………………2分 12x =+………………………………………………………………2分∵6302x tan =-6223=⨯-=………………………………………2分 ∴原式6=………………………………………………………………2分 20. (本题满分10分) 解方程组:222230x y x xy y -=⎧⎨--=⎩...............(1) (2)解:由(2)可得:(3)()0x y x y -+=∴30x y -=,0x y += ………………………………2分∴原方程组可化为:230x y x y -=⎧⎨-=⎩,2x y x y -=⎧⎨+=⎩ …………………………4分解得原方程组的解为1131x y =⎧⎨=⎩,2211x y =⎧⎨=-⎩ ………………………………4分21.(本题满分10分,第(1)小题5分、第(2)小题5分)(1)解:909oBAC AC ∠==∵, 93cos 5AC C AB BC ===∴ …………………………………………1分 15BC =∴ ………………………………………………………………2分 90oBAC ∠=∵,点E 是BC 的中点 11522AE BC ==∴ ……………………………………………………2分 (2)解:AD BC ⊥∵ 90oADC ADB ∠=∠=∴3cos 95CD CD C AC ===∴ 275CD =∴ …………………………………………………2分∵点E 是BC 的中点,BC=15 ∴CE=152 ∴DE=2110………………………………………1分 ∵90oADB ∠= ∴sin DAE ∠=2127101525DE AE =⨯= ……………………………2分 22. (本题满分10分,第(1)小题4分,第(2)小题6分)(1) 20;0.5 ……………………………………………………………各2分 (2)解:设小明出发x 小时的时候被妈妈追上.420(1)10203()3x x -+=⨯- ……………………………………3分解得:74x =……………………………………………………1分 ∴320(1)102010254x -+=⨯+= ……………………………1分答:当小明出发74小时的时候被妈妈追上,此时他们离家25千米.…1分23.(本题满分12分,每小题各6分)(1)证明:∵点D 、E 分别是BC 、AC 的中点∴DE//AB ,BC=2BD …………………………………………………1分 ∵AF//BC∴四边形ABDF 是平行四边形 ……………………………………………2分 ∵BC=2AB∴AB=BD …………………………………………………………………1分 ∴四边形ABDF 是菱形. …………………………………………………2分(2)证明:∵四边形ABDF 是菱形 ∴AF=DF∵点G 是AF 的中点 ∴FG=12AF ∵点E 是AC 的中点 ∴AE=CE ∵AF//BC ∴1EF AEDE CE== ∴EF=12DF , ∴FG=EF ……………………………………………………………1分 在△AFE 和△DFG 中AF DF F F EF GF =⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DFG (S.A.S )∴∠FAE=∠FDG ………………………………………………………1分 ∵AF//BC ∴∠FA E=∠C∴∠FDG=∠C ………………………………………………………1分 又∵∠EHD=∠DHC (公共角)∴△HED ∽△HDC ……………………………………………………2分 ∴HE HDHD HC= ∴2DH HE HC = ………………………………………………………1分 24.(本题满分12分,每小题各6分)(1)解:∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩……………………………………………………1分解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩………………………………………………2分∴这个抛物线的解析式为:2142y x x =-- ………………………………1分 顶点为9(1,)2- ……………………………………………………………2分(2)如图:取OA 的中点,记为点N ∵OA=OC=4,∠AOC=90° ∴∠ACB=45°∵点N 是OA 的中点 ∴ON=2 又∵OB=2 ∴OB=ON 又∵∠BON=90° ∴∠ONB=45° ∴∠ACB=∠ONB ∵∠OMB+∠OAB=∠ACB ∠NBA+∠OAB=∠ONB∴∠OMB=∠NBA ………………………………………………………………2分 1° 当点M 在点N 的上方时,记为M 1 ∵∠BAN=∠M 1AB ,∠NBA=∠OM 1B , ∴△ABN ∽△AM 1B ∴1AN ABAB AM =又∵AN=2,∴110AM = 又∵A (0,—4)∴1(0,6)M ………………………………………………………………………2分 2° 当点M 在点N 的下方时,记为M 2点M 1与点M 2关于x 轴对称,∴2(0,6)M - ……………………………………2分 综上所述,点M 的坐标为(0,6)或(0,6)-25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)解:过点P 作PH ⊥AD ,垂足为点H∵∠ACB=90°,43tanB = ∴35sinA =∵PA x = ∴35PH x = ∵∠PHA=90° ∴222PH AH PA += ∴45AH x =……………………1分 ∵在⊙P 中,PH ⊥弦AD ∴45DH AH x ==, ∴85AD x = 又∵AC=8 ∴885CD x =- ………………………………………………1分∵∠PHA=∠BCA=90°,∴PH ∥BE ∴PH DHCE CD = ∴3455885x xy x=- ……………………………1分 ∴665y x =- (x 0<<5) (1)(2)∵PA=PD ,PH ⊥AD ∴∠1=∠2 ∵PH ∥BE∴∠1=∠B ,∠2=∠3 ∴PB=PE ∵Q 是BE 的中点∴PQ ⊥BE ………………………………………………………………………1分 ∴43PQ tanB =BQ = ∴35BQ cosB =BP = ∵PA x = ∴10PB x =- ∴365BQ x =-, 485PQ x =- 1°当⊙Q 和⊙P 外切时:PQ=AP+BQ∴438655x x x -=+- …………………………………………………………1分 53x = …………………………………………………………………1分2°当⊙Q 和⊙P 内切时,此时⊙P 的半径大于⊙Q 的半径,则PQ=A P —BQ ∴438(6)55x x x -=-- …………………………………………………………1分 321HQABP CED- 11 - 356x = ……………………………………………………………………1分 ∴当⊙Q 和⊙P 相切时,⊙P 的半径为53或356. (3)当△PMC 是等腰三角形,存在以下几种情况: 1°当MP=MC x =时 ,∵336(6)55QC x x =--= ∴45MQ x = 若M 在线段PQ 上时,PM+MQ=PQ ∴44855x x x +=- 4013x = ……………………………………………………………………1分 若M 在线段PQ 的延长线上时,PM —MQ=PQ ∴44855x x x -=- 8x = …………………………………………………………………………1分 2°当CP=CM 时∵CP=CM ,CQ ⊥PM∴PQ=QM=1122PM x = ∴41852x x -= 8013x = …………………………………………………………………………1分 3°当PM=PC x =时∵AP x = ∴PA=PC 又∵PH ⊥AC ∴AH=CH∵PH ∥BE ∴1AP AH BP CH== ∴110x x =- 5x = …………………………………………………………………………1分 综上所述:当△PMC 是等腰三角形时,AP 的长为4013或8013或5或8.。

2015年中考第二次模考数学试题卷

2015年中考第二次模考数学试题卷

2015年初中毕业学业第二次模拟考试数学题卷时量:120分钟总分:120分一、选择题(本大题共10道小题,每小题3分,满分30分,每道小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填在答题卡相应题号下的方框里)1.-2的相反数的倒数是A.2 B.2-C.12-D.122.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.用科学记数法表示为:A.3.5×107 B.3.5×108 C. 3.5×109 D.3.5×10103.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有:A.4个B.3个C.2个D.1个4.一元二次方程ax2+bx+c=0(a≠0)有实数根,则b2﹣4ac满足的条件是:A. b2﹣4ac=0B. b2﹣4ac>0C. b2﹣4ac<0D. b2﹣4ac≥05.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则与∠ABD相等的角是:A. ∠ACDB. ∠ADBC. ∠AEDD. ∠ACB6.下列说法正确的是:A.了解某班同学的身高情况适合用全面调查B.数据2、3、4、2、3的众数是2C.数据4、5、5、6、0的平均数是5D.甲、乙两组数据的平均数相同,方差是S=3.2,S=2.9,则甲组数据更稳定78有:A.7盒B.8盒C.9盒D.10盒9. 若x、y满足方程组,则x﹣y的值等于A.-1B.1C.2D.310.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,11.不等式组的解集是___________.12.在一个不透明的袋子中,装有大小、形状、质地等都相同的红色、黄色、白色小球各1个,从袋子中随机摸出一个小球,之后把小球放回袋子中并摇匀,再随机摸出一个小球,则两次摸出的小球颜色相同的概率是___________.13.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=__________.?1)?1)? .14.计算:15.四边形ABCD为圆O的内接四边形,已知∠BOD=100°,则∠BCD=________ 16.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO 在y 轴上,点B 1,B 2,B 3,…都在直线y=x 上,则A 2015的坐标是 _________________.17.如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,OA=OC ,OB=OD ,添加一个条件使四边形ABCD 是菱形,那么所添加的条件可以是(写出一个即可).18.将二次函数y=x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是_________________.三、解答题(本大题共2道小题,每小题6分,满分12分)19.计算:)201123-⎛⎫+- ⎪⎝⎭-2cos45° 20. 先化简,再求值:222222()2a b a b b a a ab b a ab-+÷--+-, 其中a ,b+|b |=0.四、解答题(本大题共2道小题,每小题8分,满分16分)21.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查,被调查的每个学生按A (非常喜欢)、B (比较喜欢)、C (一般)、D (不喜欢)四个等级对活动评价,图1和图2是该小组采集数据后绘制的两幅统计图,经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息.解答下列问题:(1)此次调查的学生人数为 ___________;(2)在图2中补画条形统计图中不完整的部分;(3)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?22.如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).五、解答题(本大题共2道小题,每小题9,满分18分)23某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买。

2015年北京二模机械能汇编

2015年北京二模机械能汇编

高三机械能2015年各区二模试题汇编【2015西城二模】22.(16分)如图所示为竖直放置的四分之一圆弧轨道,O点是其圆心,半径R=0.8m,OA水平、OB竖直。

轨道底端距水平地面的高度h=0.8m。

从轨道顶端A由静止释放一个质量m=0.1kg 的小球,小球到达轨道底端B时,恰好与静止在B点的另一个相同的小球发生碰撞,碰后它们粘在一起水平飞出,落地点C与B点之间的水平距离x=0.4m。

忽略空气阻力,重力加速度g=10m/s2。

求:(1)两球从B点飞出时的速度大小v2;(2)碰撞前瞬间入射小球的速度大小v1;(3)从A到B的过程中小球克服阻力做的功W f。

【答案】22.(16分)解:(1)两球做平抛运动竖直方向上解得〖3分〗水平方向上解得〖3分〗(2)两球碰撞,根据动量守恒定律〖3分〗解得〖2分〗(3)入射小球从A运动到B的过程中,根据动能定理〖3分〗解得【2015昌平二模】18.一个质量为m的带电小球,在竖直方向的匀强电场中水平抛出,不计空气阻力,测得小球的加速度大小为,方向向下,其中g为重力加速度。

则在小球下落h高度的过程中,下列说法正确的是(D)A.小球的动能增加mgh B.小球的电势能减小mghC.小球的重力势能减少mgh D.小球的机械能减少mgh【答案】18.D【2015昌平二模】22.(16分)如图8所示,水平桌面长L=3m,距水平地面高h=0.8m,桌面右端放置一个质量m2=0.4kg的小物块B,桌面的左端有一质量m1=0.6kg的小物块A。

某时刻物块A以初速度v0=4m/s开始向右滑动,与B发生正碰后立刻粘在一起,它们从桌面水平飞出,落到地面上的D点。

已知物块A与桌面间的动摩擦因数μ=0.2,重力加速度g=10m/s2。

求:(1)物块A与物块B碰前瞬间,A的速度大小v1;(2)物块A与物块B碰后瞬间,A、B整体的速度大小v2;(3)A、B整体的落地点D距桌面右边缘的水平距离x。

【答案】22.(16分)(1)物块A向右做匀减速直线运动,μmg =ma………………………………(2分)v12-v02 =-2aL ……………………………………………………(2分)v1=2m/s ………………………………………………(2分)(2) A与B碰撞过程动量守恒m1v1=(m1+m2)v2……………………………………………(2分)v2=1.2m/s ……………………………………………(2分)(3) A、B整体做平抛运动h =gt2……………………………………………(2分)x=v2t ……………………………………………(2分)x =0.48m ……………………………………………(2分)【2015东城二模】22.(16分)某同学在模仿杂技演员表演“水流星”节目时,用不可伸长的轻绳系着盛水的杯子在竖直平面内做圆周运动,当杯子运动到最高点时杯里的水恰好不流出来。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015二模各区22应用题集锦
(海淀)21.小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小李与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.
(朝阳)22.
(东城)21.A,B两个火车站相距360km.一列快车与一列普通列车分别从A,B两站同时出发相向而行,快车的速度比普通列车的速度快54km/h,当快车到达B站时,普通列车距离A站还有135km.求快车和普通列车的速度各是多少?
(丰台)为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?
(石景山)小明到学校的小卖部为班级运动会购买奖品,若购买4根荧光笔和8个笔记本需要100元,若购买8根荧光笔和4个笔记本需要80元,请问荧光笔和笔记本的单价各是多少元?
(西城)某超市的部分商品账目记录显示内容如下:
第一天第二天第三天
商品时

牙膏(盒) 7 14 ?
牙刷(支)13 15 12
营业额(元)121 187 124 求第三天卖出牙膏多少盒.
(通州)22.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球
共需310元,购买2个足球和5个篮球共需500元。

(1)求购买一个足球、一个篮球各需多少元?
(2)根据学校实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?
(昌平)22. 自从2012年9月1日昌平区首批50辆纯电动出租车正式运营以来,电动出租车以绿色环保受到市民的广泛欢迎,给市民的生活带来了很大方便.下表是行驶15公里以内普通燃油出租车和纯电动出租车的运营价格:
车型起步公里数起步价格超出起步公里数后的单价普通燃油型 3 13元 2.3元/公里
纯电动型 3 8元2元/公里老张每天从家去单位打出租车上班(路程在15公里以内),结果发现正常情况下乘坐纯电动出租车比燃油出租车平均每公里节省0.8元,求老张家到单位的路程是多少公里?
(房山)22.列方程或方程组解应用题
几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:
根据对话中的信息,请你求出这些小伙伴的人数.
(怀柔)21.列方程或方程组解应用题:
周末小明和爸爸准备一起去商场购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商场都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价30元,茶杯每把定价5元,且两家都有优惠.甲商场买一送一大酬宾(买一把茶壶送一只茶杯);乙商场全场九折优惠.小明的爸爸需茶壶5把,茶杯若干只(不少于5只).当去两家商场付款一样时,求需要购买茶杯的数量.
(平谷)为开阔学生的视野在社会大课堂活动中,某校组织初三年级学生参观科技馆,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.求该校初三年级有学生多少人?原计划租用多少辆45座客车?
(顺义)随着市民环保意识的增强,烟花爆竹销售量逐年下降.某销售点2012年销售烟花爆竹2 000箱,2014年销售烟花爆竹为1 280箱.求2012年到2014年烟花爆竹销售量的年平均下降率.
(门头沟)2014年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的
3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.
过两天就是“儿童节”了,那时候来看这场演出,票价会打六折,我们每人一张票,还能剩72元钱呢!
如果今天看演出,我们每人一张票,正好差两张票的钱.。

相关文档
最新文档