初中数学七年级下册第6章实数检测卷

合集下载

【数学】人教版初中数学七年级下册第六章《实数》检测卷含答案

【数学】人教版初中数学七年级下册第六章《实数》检测卷含答案

人教版初中数学七年级下册第六章《实数》检测卷含答案一、选择题(每小题3分,共30分) 1.916的平方根是( )A.C. 34D. ±342. ,227,π-20.121 221 222 1…(相邻两个“1”之间依次多一个“2”)中,有理数有( )A. 1个B. 2个C. 3个D. 4个 3. 若x 2=16,则5-x 的算术平方根是( )A. ± 1B. ±4C. 1或9D. 1或3 4. 下列说法中,不正确的是( )A. 0.027的立方根是0.3B. -8的立方根是-2C. 0的立方根是0D. 125的立方根是±55. 的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间 6. 一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A.B. +1C. a +1D.7. 如图,数轴上A ,B 和5.1,则A ,B 两点之间表示整数的点共有( )A. 6个B. 5个C. 4个D. 3个8. ≈0.793 7≈1.710 0,那么下列各式正确的是( )A. B.≈7.937C.D. ≈79.379. 0,则a与b的关系是( )A. a=b=0B. a与b相等C. a与b互为相反数D. a=1 b10. 若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10二、填空题(每小题3分,共24分)11. 比较大小:-5 -26(填“>”“=”或“<”).12. 3-11的相反数是,绝对值是.13. =3,则2x+5的平方根是.14. 小成编写了一个程序:输入x→x2→立方根→倒数→算术平方根→12,则x为.15. 若数m,n满足(m-1)20,则(m+n)5=.16. 已知36=x3,z是16的算术平方根,则2x+y-5z的值为.17. 点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是.18. 对于任意不相等的两个数a,b,定义一种运算※如下:a※b,如3※2= 5.那么12※4=.三、解答题(共66分)19. (8分)计算:(1)3+1+3+||1-3;(2)25+144.20. (8分)求下列各式中的x的值:(1)25(x-1)2=49;(2)64(x-2)3-1=0.21. (9分)已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.22. (9分)已知某正数的两个平方根分别是a+3和2a-15,b的立方根是-2,求3a+b 的算术平方根.23.人教版七年级数学下册第六章实数单元测试题一、选择题1.立方根是-0.2的数是( D )A .0.8B .0.08C .-0.8D .-0.008 2.与最接近的整数是( B )A .0B .2C .4D .5 3.若一个数的算术平方根等于它的相反数,则这个数是( D ) A .0 B .1C .0或 1D .0或±14. 如果是实数,则下列一定有意义的是( D ) A .B .C .D.5.下列说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A .1个B .2个C .3个D .4个 6.若x -3是4的平方根,则x 的值为( C ) A .2 B .±2 C .1或5 D.167.化简:人教版七年级下册 第七章 平面直角坐标系 单元综合检测卷一、选择题(每小题3分,共30分)1、课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5) C.(3,4) D.(4,3)2、点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A.(2,3)B.(-2,-3)C.(3,-2)D.(-3, 2) 3、若点A(m,n)在第二象限,那么点B(-m,│n│)在( )A.第一象限B.第二象限C.第三象限D.第四象限小华小军小刚4、在平面直角坐标系xoy 中,线段AB 的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB ,得到线段A /B /,,已知A /的坐标为(3,-1),则点B /的坐标为( )A.(4,2)B.(5,2)C.(6,2)D.(5,3)5、如图所示,一方队正沿箭头所指的方向前进,A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( )A.(4,5)B.( 5,4)C.(4,2)D.(4,3) 6、点E (a,b )到x 轴的距离是4,到y 轴距离是3,则这样的点有( ) A .1个 B .2个 C .3个 D .4个 7、在平面直角坐标系中,一个三角形的三个顶点的坐标,纵坐标保持不变,横坐标增加4个单位,则所得的图形与原来图形相比( )A.形状不变,大小扩大4倍B.形状不变,向右平移了4个单位C.形状不变,向上平移了4个单位D.三角形被横向拉伸为原来的4倍 8、一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是( )A.(2,2)B.(3,2)C.(3,3)D.(2,3) 9、在平面直角坐标系中,线段BC ∥x 轴,则( )A.点B 与C 的横坐标相等B.点B 与C 的纵坐标相等C.点B 与C 的横坐标与纵坐标分别相等D.点B 与C 的横坐标、纵坐标都不相等 10、小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C 相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A ,B 的位置,正确的是()(1)DCB A五行三行六行六列五列四列三列二列一行一列A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)二、填空题(每小题4分,共24分)11、点M(-1,5)向下平移4个单位长度得N点坐标是.12、已知点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,那么点P的坐标是。

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。

16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。

14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。

新初中数学七年级下册第六章《实数》检测试题(含答案解析)(1)

新初中数学七年级下册第六章《实数》检测试题(含答案解析)(1)

新初中数学七年级下册第六章《实数》检测试题(含答案解析)(1)⼈教版七年级数学下册第六章实数复习检测试题⼀、选择题(每⼩题3分,共30分)1.下列各数中最⼤的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平⽅根B.只有正数有算术平⽅根C.0和正数都有算术平⽅根D.负数有算术平⽅根3.下列语句中,正确的是( )A.⽆理数都是⽆限⼩数B.⽆限⼩数都是⽆理数C.带根号的数都是⽆理数D.不带根号的数都是⽆理数4.的⽴⽅根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多⼀个2),3.14这些数中,⽆理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点⼀⼀对应;②不含根号的数⼀定是有理数;③负数没有平⽅根;④是17的平⽅根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所⽰,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表⽰数﹣1,1,2,3,则表⽰2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上⼆、填空题(每⼩题3分,共24分)1.按键顺序是“,,则计算器上显⽰的数是.2.⼀个数的平⽅根和它的⽴⽅根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平⽅根为a+3和2a-15,则这个数是.5.⽐较⼤⼩:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下⾯给出关于这种运算的⼏种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和⼩数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王⽼师给同学们布置了这样⼀道习题:⼀个数的算术平⽅根为2m-6,它的平⽅根为±(m-2),求这个数.⼩张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的⼀个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王⽼师看后说,⼩张的解法是错误的.你知道⼩张错在哪⾥吗?为什么?请予以改正.6.(8分)设的整数部分和⼩数部分分别是x,y,试求x,y的值与x﹣1的算术平⽅根.参考答案与解析⼀、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A⼆、填空题11.4 12.0 13.1 14. 49 15.<>16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36.2⼈教版数学七下第六章实数能⼒⽔平检测卷⼀.选择题(共10⼩题)1.下列选项中的数,⼩于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-12 3.若实数a,b是同⼀个数的两个不同的平⽅根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.⽤计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x2=2,有x=±当x3=3时,有x想⼀想,从下列各式中,能得出x=±的是()A.2x=±20 B.20x=2 C.±20x=20 D.3x=±20 6.下列选项中正确的是()A.27的⽴⽅根是±3B的平⽅根是±4C.9的算术平⽅根是3D.⽴⽅根等于平⽅根的数是17.在四个实数、3、-1.4中,⼤⼩在-1和2之间的数是()A .B .3CD .-1.481-的相反数是()A .1-B 1-C .1-D 1+9a ,⼩数部分为b ,则a-b 的值为()A .- 13B .6-C .8-D 6- 10.下列说法:①-1是1的平⽅根;②如果两条直线都垂直于同⼀直线,那么这两条直线平⾏;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以⽤数轴上的点表⽰,反过来,数轴上的所有点都表⽰有理数;⑤⽆理数就是开放开不尽的数;正确的个数为()A .1个B .2个C .3个D .4个⼆.填空题(共6⼩题)11.已知a 的平⽅根是±8,则它的⽴⽅根是;36的算术平⽅根是.122(3)b ++=0= .13A 的算术平⽅根为B ,则A+B= .14.若45,<<则满⾜条件的整数a 有个.15.如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有⼀点是原点,并且MN=NP=PR=1,数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是(M 、N 、P 、R 中选).16.=5,付⽼师⼜⽤计算器求得:=55=555, =5555,个3,2016个4)= .三.解答题(共7⼩题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围⼀个⾯积为50m2的长⽅形场地,⼀边靠旧墙(墙长为10m),另外三边⽤篱笆围成,并且它的长与宽之⽐为5:2.讨论⽅案时,⼩马说:“我们不可能围成满⾜要求的长⽅形场地”⼩⽜说:“⾯积和长宽⽐例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的⽴⽅根是3,3a+b-1的算术平⽅根是4,c(1)求a,b,c的值;(2)求3a-b+c的平⽅根.21.如果⼀个正数的两个平⽅根是a+1和2a-22,求出这个正数的⽴⽅根.22-的⼩数部分,此1事实上,⼩明的表⽰⽅法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,⼈教版七年级数学下册章末质量评估第六章实数⼈教版七年级数学下册第六章实数单元检测卷⼀、选择题1.若⼀个数的算术平⽅根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±12.下列各式成⽴的是( C )A. =-1B. =±1C. =-1D. =±13.与最接近的整数是( B )A.0 B.2 C.4 D.54..若x-3是4的平⽅根,则x的值为( C )A.2 B.±2 C.1或5 D.165.下列说法中,正确的个数有( A )①两个⽆理数的和是⽆理数;②两个⽆理数的积是有理数;③⽆理数与有理数的和是⽆理数;④有理数除以⽆理数的商是⽆理数.A.1个 B.2个 C.3个 D.4个6. 下列选项中正确的是( C )A.27的⽴⽅根是±3B.的平⽅根是±4A.6.69 B.6.7 C.6.70 D.±6.708.⼀个底⾯是正⽅形的⽔池,容积是11.52m3,池深2m,则⽔池底边长是( C ) A.9.25m B.13.52m C.2.4m D.4.2m9. ⽐较2, , 的⼤⼩,正确的是(C )A. 2< <B. 2< <C. <2<10.如果⼀个实数的算术平⽅根等于它的⽴⽅根,那么满⾜条件的实数有(C)A.0个B.1个om]C.2个D.3个⼆、填空题11.3的算术平⽅根是____3____.12.(1)⼀个正⽅体的体积是216cm3,则这个正⽅体的棱长是____6________cm;(2) 表⽰_______9_____的⽴⽅根;13.已知a,b为两个连续整数,且a<1514.已知⼀个有理数的平⽅根和⽴⽅根相同,则这个数是______0______.15.实数1-216.写出39到23之间的所有整数:____3,4 15.0________.三、解答题17.求下列各数的平⽅根和算术平⽅根:(1)1.44;解:1.44的平⽅根是± 1.44=±1.2,算术平⽅根是 1.44=1.2.(2)169289;解:169289的平⽅根是±169289=±1317,算术平⽅根是169289=1317.(3)(-911)2. 解:(-911)2的平⽅根是±(-911)2=±911,算术平⽅根是(-911)2=911.[] 18.已知⼀个正数x 的两个平⽅根分别是3-5m 和m -7,求这个正数x 的⽴⽅根.由已知得(3-5m)+(m -7)=0,-4m -4=0,解得:m=-1.所以3-5m=8,m -7=-8.所以x=(±8)2=64.所以x 的⽴⽅根是4.19.计算:(1)2+3 2-5 2;(2)2(7-1)+7;4121÷318;(4)|3-2|+|3-2|-|2-1|;(5)1-0.64-3-8+425-|7-3|.解:(1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7=2 7-2+7=3 7-2.(3)原式=0.6×211÷12。

最新人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案)

最新人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案)

人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是()A.33B.-33 C. 3 D.132.下列实数中无理数是()A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±206.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是17.下列四个数中的负数是()A.﹣22 B.2)1( C.(﹣2)2 D.|﹣2|8无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.4.已知,a23<b,且a、b是两个连续的整数,则|a+b|= .5.若的值在两个整数a与a+1之间,则a=.6.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.7.请写出一个大于8而小于10的无理数:.8.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.三、解答题(38分)1.(6分)已知实数a,b满足a-14+|2b+1|=0,求b a的值.2.(6分)已知,求的算术平方根.3.(6分)计算:(1)9×(﹣32)+4+|﹣3|(2) .4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{ …}; 无理数集合:{ …}; 正实数集合:{ …}; 整数集合:{ …}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参考答案:人教版七年级数学下册第六章实数能力检测卷一.选择题(共10小题)1.16的平方根是()A.4 B.-4 C.16或-16 D.4或-42.下列各等式中计算正确的是()A±4 B C=-3 D= 3 23.若方程2(4)x-=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a-4是19的算术平方根D.b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平)A.0个B.1个C.2个D.3个5.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10 B.10,11 C.11,12 D.12,138)A.线段AB上B.线段BC上C.线段CD上D.线段DE上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y 0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算|1|++-19.已知|a|=5,b 2=4,c 3=-8. (1)若a<b,求a+b 的值; (2)若abc>0,求a-3b-2c 的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c 的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a 与b 就叫做“差商等数对”,记为(a,b).例如: 4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版七年级数学下册能力提升卷:第六课实数一.选择题(共10小题) 1.下列计算错误的是( ) A .-3+2=-1B .(-0.5)×3×(-2)=3C .232⎛⎫- ⎪⎝⎭=-3D -1.12 ) A .8B .-8C .2D .-23.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a4.-125 ) A .-2B .4C .-8D .-2或-85.小明在作业本上做了4=-5;②=4=-6,他做对的题有( ) A .1道B .2道C .3道D .4道6.数轴上A 、B 两点表示的数分别是-3和3.则表示的点位于A 、B 两点之间的是( )A .πB .-4CD .1037.实数a ,b 在数轴上的位量如图所示,则下列结论正确的是( ) A .|a+b|=a-bB .|a-b|=a-bC .|a+b|=-a-bD .|a-b|=b-a8.在数3,(---中,大小在-1和2之间的数是( )A .-3B .-(-2)C .0D 9.下列各数中:是无理数的有( )A .1个B .2个C .3个D .4个10.已知a,b为两个连续整数,且,<<则a+b的值为()a bA.9 B.8 C.7 D.6二.填空题(共6小题)11.64的平方根是,立方根是,算术平方根是.12.若30.3670=30.7160, 3.670=1.542,则3367== .13.若m的立方根,则m+3=14.|4|-=15.写出一个比4大且比5小的无理数:.161的值在两个整数a与a+1之间,则a= .三.解答题(共8小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.(1+.(2|119.已知一个正数的两个平方根分别为a和3a-8 (1)求a的值,并求这个正数;(2)求217a-的立方根.20.把下列各数的序号填在相应的大括号内:①-17;②π;③8||;5--④31;-⑤1;36⑥-0.92;⑦23;-+⑧-;⑨1.2020020002;正实数{ }负有理数{ }无理数{ }从以上9个数中选取2个有理数,2个无理数,用“+、-、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算.22.已知2a-1的平方根是±3,已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,求a+b+c的平方根.23.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S . (1)当S 恰好等于。

人教版初中七年级数学下册第六单元《实数》测试题(含答案解析)

人教版初中七年级数学下册第六单元《实数》测试题(含答案解析)

一、选择题1.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个D解析:D【分析】 直接根据无理数的定义直接判断得出即可.【详解】解:无理数有8,π,2.32232223共3个. 故选D .【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.2.64的算术平方根是( )A .8B .±8C .22D .22± C解析:C【分析】先化简64,再求算术平方根即可.【详解】64=8, 8的算术平方根是22,即64的算术平方根是22.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.3.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ B解析:B【分析】根据是数的运算,A 点表示的数加两个圆周,可得B 点,根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:A 点表示的数加两个圆周,可得B 点,所以,21π-,故选:B .【点睛】本题考查了实数与数轴,直径为1个单位长度的圆从A 点沿数轴向右滚动,A 点表示的数加两个圆周.4.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .10C 解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n 的值.【详解】解:∵<5<6,∴8<<9,∴n =9.故选:C .【点睛】5.下列选项中,属于无理数的是( )A .πB .227-CD .0A 解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数; B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.6.若53a=-,则a在()A.3-和2-之间B.2-和1-之间C.1-和0之间D.0和1之间C解析:C【分析】依据被开方数越大对应的算术平方根越大可求得5的大致范围,然后可得到问题的答案.【详解】解:∵4<5<9,∴2<5<3.∴-1<5-3<0.故选:C.【点睛】本题考查了估算无理数的大小,求得5的大致范围是解题的关键.7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第(n﹣2)个数是()(用含n的代数式表示)A21n-D24n- Bn-C23n-B22解析:B【分析】观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣222n-.故选:B.【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.8.已知:m、n为两个连续的整数,且5<<,以下判断正确的是()m nA 4B .3m =C 0.236D .9m n += A解析:A【分析】根据无理数的估算、实数的运算即可得.【详解】 459<<,<<23<<,22,则选项C 错误;∴)224-=A 正确;又m 、n 为两个连续的整数,且m n <<,2,3m n ==∴,则选项B 错误;235m n ∴+=+=,则选项D 错误;故选:A .【点睛】本题考查了无理数的估算、实数的运算,熟练掌握无理数的估算方法是解题关键.9. )A .5和6B .6和7C .7和8D .8和9A 解析:A【分析】【详解】解:∵∴56,∴在两个相邻整数5和6之间.故选:A .【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.(1)a=-8;(2)1或9【分析】(1)根据平方运算可得(1-a )的值求解可得答案;(2)根据题意可知相等或互为相反数列式求解可得a 的值根据平方运算可得答案【详解】解:(1)∵x 的算术平方根是3∴解析:(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a )的值,求解可得答案;(2)根据题意可知x y ,相等或互为相反数,列式求解可得a 的值,根据平方运算,可得答案.【详解】解:(1)∵x 的算术平方根是3,∴1-a=9,∴a=-8;(2)x ,y 都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a )=(1-2)2=1,当a=4时,(1-a )=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解. 12.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.(1)3;(2)【分析】(1)由新定义的运算法则进行计算即可得到答案;(2)由新定义列出方程解方程即可得到答案【详解】解:∵∴;(2)由题意则∵∴解得:【点睛】本题考查了一元一次方程新定义的运算法则解析:(1)3;(2)1x =.【分析】(1)由新定义的运算法则进行计算,即可得到答案;(2)由新定义列出方程,解方程即可得到答案.【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=;(2)由题意,则∵(2)*36x -=,∴(2)*333(2)6x x -=--=,解得:1x =.【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题. 13.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=(1)或;(2)【分析】(1)整理后利用平方根的定义得到然后解两个一元一次方程即可;(2)整理后利用立方根的定义得到然后解一元一次方程即可【详解】(1)移项得:∴∴或;(2)整理得:∴∴【点睛】本题解析:(1)1x =-或5x =-;(2)32x =-. 【分析】(1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可.【详解】(1)2(3)40x +-=, 移项得:2(3)4x +=,∴32x +=±,∴1x =-或5x =-;(2)33(21)240x ++=, 整理得:3(21)8x +=-,∴212x +=-, ∴32x =-. 【点睛】 本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.14.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.【分析】将转化为2ax=x 来解答【详解】解:∵可转化为:2ax=x 即∵不论x 取何值都成立∴解得:故答案为:【点睛】本题考查实数的运算正确理解题目中的新运算是解题的关键 解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=, 解得:12a =, 故答案为:12. 【点睛】本题考查实数的运算,正确理解题目中的新运算是解题的关键.15.把下列各数填在相应的集合里:4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …}负有理数集合{ …}非负整数集合{ …}无理数集合{ …}.510;;402016;﹣2030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案【详解】解析:5,10%;52,43--;4,0,2016;3π,﹣2.030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案.【详解】16.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b时,a*b=a ,则当时,()()1*-3*=x x x ______【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时a*b=当a <b 时a*b=a ∴当x=时1*=13*=2∴(1*)-(3*)=故答案为:【点睛】本题是新定义的问题解决此类问题的关键是按2【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时,a*b=2b ,当a <b 时,a*b=a∴ 当=1,=2,∴)2,2.【点睛】本题是新定义的问题,解决此类问题的关键是按题中的规定去运算即可;17.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.18.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-,∴+a b 的立方根-1. 故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.19_____;16的平方根为_____;()34-的立方根是_____.【分析】分别根据算术平方根相反数平方根和立方根的概念直接计算即可求解【详解】解:=所以的相反数是;16的平方根为;的立方根是故答案为:;±4;-4【点睛】本题考查了算术平方根平方根和立方根的概念进行解析:- 4± 4-【分析】分别根据算术平方根、相反数、平方根和立方根的概念直接计算即可求解.【详解】-;16的平方根为4±;()34-的立方根是4-.故答案为:—±4;-4【点睛】本题考查了算术平方根、平方根和立方根的概念进行求解即可.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.20.已知3y =,则y x 的平方根是____.±3【分析】根据二次根式的非负性和平方根的定义即可求出【详解】∵二次根式的被开方数是非负数∴且∴∴y=3∴yx=32=9∴yx 的平方根是±3故答案是:±3【点睛】本题主要考查了二次根式非负性和平方根解析:±3【分析】根据二次根式的非负性和平方根的定义即可求出.【详解】∵二次根式的被开方数是非负数∴20x -≥且20x -≥∴=2x∴y=3∴y x =32=9∴y x 的平方根是±3故答案是:±3.【点睛】本题主要考查了二次根式非负性和平方根知识点,准确理解记住它们的基本性质是解题关键.三、解答题21.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.解析:(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解; (2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解 .【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.22.(1)求x 的值:2490x -=;(2)计算:()2325227+-- 解析:(1)32x =或32x =-;(2)4 【分析】 (1)利用开方要根的概念求出x 的值即可;(2)根据实数混合运算的法则进行计算即可.【详解】解:(1)294x = 32x =或3-2x = (2)原式=5+2﹣3=4.【点睛】 本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.23.计算:()23143282--⨯-⨯-() 解析:【分析】 利用实数的混合运算法则计算得出答案.【详解】解:原式=4+9⨯12-(2)2⎡⎤⨯-⎢⎥⎣⎦=4+9⨯[]2+1=4+9⨯3=4+27=31.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.24.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.解析:2a-c【分析】根据数轴得到a<b<0<c ,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c ,∴a-c<0,a+b<0,∴|-|a c =-b-(c-a )+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式. 25.计算题.(1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯- (4)13248243⎛⎫-⨯-+- ⎪⎝⎭ 解析:(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算.(2)先进行平方和开方,在进行乘法和减法的运算.(3)先进行开方和平方,在由左至右进行除法和乘法的运算.(4)首先去括号内的绝对值,在进行括号内的分式加减,最后相乘.【详解】(1)12(7)6(22)-+----=127622---+=3-(2)2122⨯ 1=432⨯- =1-(33(2)(4)-⨯-=4(8)(4)÷-⨯-1=(-)(4)2⨯- =2 (4)13248()243-⨯-+-4354812=-⨯ 20=-【点睛】考察有理数的混合运算,掌握运算法则的顺序是解答本题的关键.26.计算:(12(2)22(2)8x -=解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算; (2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.27.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 解析:10102021【分析】利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭22021 ⎪⎝⎭1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 28.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______解析:(1)2020,02)1.4,32-,0.31;(3),π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可.【详解】,(1)整数:2020,0(2)分数:1.4,32-,0.31(3)无理数:π-,1.3030030003…(每相邻两个3之间0的个数依次加1)故答案为:2020,0 1.4,32-,0.31;π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【点睛】本题考查了实数的分类,掌握实数的分类是解题的关键.。

人教版初中七年级数学下册第六单元《实数》经典练习卷(含答案解析)

人教版初中七年级数学下册第六单元《实数》经典练习卷(含答案解析)

一、选择题1.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .4C 解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;②2=;③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C .【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.2.27(7)0y z ++-=,则x y z -+的平方根为( )A .±2B .4C .2D .±4D 解析:D【分析】根据绝对值,平方,二次根式的非负性求出x ,y ,z ,算出代数式的值计算即可;【详解】∵27(7)0y z ++-=,∴207070x y z -=⎧⎪+=⎨⎪-=⎩,解得277x y z =⎧⎪=-⎨⎪=⎩,∴()27716x y z -+=--+=,∴4=±;故选:D .【点睛】本题主要考查了平方根的求解,结合绝对值、二次根式的非负性计算是解题的关键.3.有下列说法:①在1和2②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②D解析:D【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得.【详解】①在1和2之间的无理数有无限个,此说法错误;②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②,故选:D .【点睛】 本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键. 4.下列实数中,是无理数的为( )A .3.14B .13CD 解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.13是分数,属于有理数;3,是整数,属于有理数.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.下列说法正确的是( )A .2B .(﹣4)2的算术平方根是4C .近似数35万精确到个位D 5B解析:B【分析】根据平方根的定义,算术平方根的定义,近似数的定义及无理数的估算方法分别计算可判定求解.【详解】解:A.2的平方根是,故错误;B .(﹣4)2的算术平方根是4,故正确;C .近似数35万精确到万位,故错误;D .∵4<5,∴4,故错误.故选:B .【点睛】本题考查了平方根,算术平方根,近似数,无理数,掌握相关概念及性质是解题的关键. 6.81的平方根是( )A .9B .-9C .9和9-D .81C 解析:C【分析】根据平方根的定义即可求出答案.【详解】解:2(9)81±=, 81的平方根是9±.故选:C【点睛】本题考查平方根的定义,解题的关键是正确理解平方根的定义,本题属于基础题型. 7.下列选项中,属于无理数的是( )A .πB .227-CD .0A 解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数; B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.8.若1a>,则a,a-,1a的大小关系正确的是()A.1a aa>->B.1a aa>->C.1a aa>>-D.1a aa->> C解析:C 【分析】可以用取特殊值的方法,因为a>1,所以可设a=2,然后分别计算|a|,-a,1a,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a=,∵2>12>-2,∴|a|>1a>-a;故选:C.【点睛】此类问题运用取特殊值的方法做比较简单.9.一个正方体的体积为16,那么它的棱长在()之间A.1和2 B.2和3 C.3和4 D.4和5B 解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x,由题意可知316x=,解得x=,∵332163<<,∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.10.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π;C ,π;D .0.1010101……101,π解析:C【分析】根据无理数的定义,依次判断即可.【详解】解:A. 0.07,23是有理数,故该选项错误; B .0.7 是有理数,故该选项错误;C ,π都是无理数,故该选项正确;D .0.1010101……101是有理数,故该选项错误.故选:C .【点睛】本题主要考查了无理数的定义.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题11.计算.(1)()113122⎛⎫⎛⎫---++ ⎪ ⎪⎝⎭⎝⎭;(2)()328--(1)4;(2)【分析】(1)变减号为加号同时省略括号和加号先两个分数相加再和最后一个数相加;(2)先算乘方和开方再算乘除最后算加减【详解】(1)原式;(2)原式【点睛】此题考查有理数混合运算其关键解析:(1)4;(2)6-.【分析】(1)变减号为加号同时省略括号和加号,先两个分数相加,再和最后一个数相加; (2)先算乘方和开方,再算乘除,最后算加减.【详解】(1)原式111322=-++ 13=+4=;(2)原式()()8288=-+-÷-⨯82=-+6=-.【点睛】此题考查有理数混合运算,其关键是熟练掌握每种运算和按运算顺序运算,注意用运算律改变运算顺序以使运算简便.12.比较大小:21(填“>”、“=”或“<”).【分析】先估算出无理数的大小再进行比较即可【详解】解:∵1<2<4∴1<<2∴0<<1故答案为:<【点睛】此题考查实数的大小比较关键是估算出无理数的大小 解析:<【分析】的大小,再进行比较即可.【详解】解:∵1<2<4,∴1<2,∴0<21,故答案为:<【点睛】的大小.13.对于实数x ,规定[x ]表示不大于x 的最大整数,如[4]=4,]=1,如[﹣2.5]=﹣3,现对82进行如下操作:82−−−→第一次=9−−−→第二次=3−−−→第三次=1,这样对82只需进行3次操作后变为1,类似地,按照以上操作,只需进行3次操作后变为2的所有正整数中,最大的正整数是__.6560【分析】由结果反向求出第三次参与运算的最大数再求出第二次参与运算的最大数最后求出第一次参与运算的最大数即可【详解】∵最后的结果为2∴第3次参与运算的最大数为(2+1)2﹣1=8即=2∴第2次解析:6560【分析】由结果反向求出第三次参与运算的最大数,再求出第二次参与运算的最大数,最后求出第一次参与运算的最大数即可.【详解】∵最后的结果为2,∴第3次参与运算的最大数为(2+1)2﹣1=8,即=2,∴第2次的结果为8,∴第2次参与运算的最大数为(8+1)2﹣1=80,即=8,∴第1次的结果为80,∴第1次参与运算的最大数为(80+1)2﹣1=6560,即=80,也就是,6560−−−→第一次]=80−−−→第二次=8−−−→第三次]=2,故答案为:6560.【点睛】本题考查无理数大小的估算,理解新定义[x ]的意义是解答本题的关键.14.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π 正数集合:{_____________…};整数集合:{_____________…};负分数集合:{_____________…};无理数集合:{_____________…}.|﹣5|﹣(﹣25)3π﹣3|﹣5|0+()﹣314﹣||﹣12121121112…3π【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号再根据正数整数负分数无理数的定义求解即可【解析:|﹣5|,﹣(﹣2.5),34,3π ﹣3,|﹣5|,0 +(13-),﹣3.14,﹣|45-| ﹣1.2121121112 (3)【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号,再根据正数、整数、负分数、无理数的定义求解即可.【详解】解:|﹣5|=5,+(13-)13=-,﹣(﹣2.5)=2.5,﹣|45-|45=-, 15.计算:(1)⎛- ⎝;(2|1--(1);(2)【分析】(1)先去括号再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质二次根式的性质分别化简后再相加减即可;【详解】(1)==;(2)==【点睛】考查了实数解析:(1;(2)12-【分析】(1)先去括号,再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质、二次根式的性质分别化简后再相加减即可;【详解】(1)⎛- ⎝=;(2|1--=914++-=12-【点睛】考查了实数的运算,解题关键是掌握运算法则和运算顺序.16.计算:(1)(1)|2|3-⨯-+ (2)2111(3)2⎛⎫-+--- ⎪⎝⎭(1)1;(2)【分析】(1)先计算绝对值再计算乘法最后计算加法;(2)先同时计算乘方减法化简算术平方根再计算乘法最后计算加减法【详解】(1)==-2+3=1;(2)===【点睛】此题考查有理数的混解析:(1)1;(2)1112.【分析】(1)先计算绝对值,再计算乘法,最后计算加法;(2)先同时计算乘方、减法、化简算术平方根,再计算乘法,最后计算加减法.【详解】(1)(1)|2|3-⨯-+=(1)23-⨯+=-2+3=1;(2)2111(3)2⎛⎫-+--- ⎪⎝⎭=11(3)42-+--⨯ =1122-+ =1112.【点睛】此题考查有理数的混合运算,掌握绝对值的化简,乘方法则,求数的算术平方根,有理数的加减法计算法则,乘除法计算法则是解题的关键.17.定义运算“@”的运算法则为:,则2@6 =____.4【分析】把x=2y=6代入x@y=中计算即可【详解】解:∵x@y=∴2@6==4故答案为4【点睛】本题考查了有理数的运算能力注意能由代数式转化成有理数计算的式子解析:4【分析】把x=2,y=6代入中计算即可.【详解】解:∵,∴=,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.18.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.19.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).515【分析】由已知条件可得:①中各数都符合2n的形式②中各数比①中对应数字大3按此规律即可求得①②中第8个数的值再求和即可【详解】根据题意可知①中第8个数为28=256;②第8个数为28+3=25解析:515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.20的平方根是 _______ ;38a的立方根是 __________.2a【分析】根据平方根的定义及立方根的定义解答【详解】的平方根是的立方根是2a故答案为:2a 【点睛】此题考查平方根及立方根的定义利用定义求一个数的平方根及立方根解析:【分析】根据平方根的定义及立方根的定义解答.【详解】38a的立方根是2a,故答案为:,2a.【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立方根.三、解答题21.一个四位正整数的千位、百位、十位、个位上的数字分别为a,b,c,d,如果a b c d≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为<<<,所以2347叫做进步数.2347(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.解析:(1)8888;(2)1134 .(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解; (2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解 .【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.22.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键. 23.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ (2)1110623⎛⎫÷-⨯⎪⎝⎭ (3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(4+解析:(1)-2;(2)360;(3)4;(4)143. 【分析】(1)先去括号和绝对值,再进行混合运算即可.(2)先将括号内通分运算,再将除法改为乘法,最后计算即可.(3)先去括号,再将除法改为乘法,最后计算即可.(4)分别计算出根式的值,在进行加法运算即可.【详解】(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ 121242424234=-⨯+⨯-⨯ 12166=-+-2=-(2)1110623⎛⎫÷-⨯ ⎪⎝⎭ 61061=÷⨯ 1066=⨯⨯360=(3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭11(3)=-⨯-13=+4=(4+=153=- 143= 【点睛】本题考查实数的混合运算.掌握其运算法则是解答本题的关键.24.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.解析:(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a+b=12c , ∴212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∴b=0,c=2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键. 25.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.) 解析:3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3),即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程. 26.计算:(1)132322⎛⎫⨯-⨯-⎪⎝⎭ (2)2291|11232⎛⎫-+-⨯- ⎪⎝⎭解析:(1)32;(2). 【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方,再计算乘法运算,进而算加减运算即可求出值.【详解】(1)原式=6-3×32=6-92=32;(2)原式=-1-23×152. 【点睛】本题主要考查了有理数和实数的混合运算,正确掌握运算法则是解题关键.27. 1.414≈,于是我们说:的整数部分为1,小数部分则可记为1”.则:(11的整数部分是__________,小数部分可以表示为__________;(22的小数部分是a ,7-b ,那么a b +=__________;(3x 的小数部分为y ,求1(x y --的平方根.解析:(1)21;(2)1;(3)3±.【分析】(11的整数部分和小数部分;(22和7-a 与b 的值,最后代入代数式计算即可;(3的取值范围,再确定x 、y 的值,最后代入代数式计算即可.【详解】解:(1)∵1<2<4∴1<2 ∴1,∴1的整数部分为212+-1故答案为21;(2)∵1<3<4∴12∴1,∴2的整数部分为3,小数部分为21-;7-的整数部分为5,小数部分为b=75--=2∴1+2=1故答案为1;(3)∵9<11<16∴3<4 ∴x=3,小数部分为-3∴()3211(3==3=9x y --- ∵3±.故答案为3±.【点睛】本题主要考查了估算无理数的大小,掌握运用逼近法比较无理数的大小成为解答本题的关键.28.已知21a -的平方根是31a b +-的算术平方根是6,求4a b +的平方根. 解析:7±【分析】根据算术平方根和平方根的定义列式求出a 、b 的值,然后代入代数式求出4a b +的值,再根据平方根的定义解答即可.【详解】解:根据题意,得2117a -=,2316a b +-=,解得9a =,10b =,所以,4941094049a b +=+⨯=+=,∵()2749±=, ∴4a b +的平方根是7±.【点睛】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a 、b 的值是解题的关键.。

新人教版初中数学七年级下册第六章《实数》检测试题(含答案)

新人教版初中数学七年级下册第六章《实数》检测试题(含答案)

人教版七年级数学下册章末质量评估第六章实数人教版七年级数学下册第六章实数单元检测卷一、选择题1.若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±12.下列各式成立的是( C )A. =-1B. =±1C. =-1D. =±13.与最接近的整数是( B )A.0 B.2 C.4 D.54..若x-3是4的平方根,则x的值为( C )A.2 B.±2 C.1或5 D.165.下列说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个 B.2个 C.3个 D.4个B.的平方根是±4A.6.69 B.6.7 C.6.70 D.±6.708.一个底面是正方形的水池,容积是11.52m3,池深2m,则水池底边长是( C )A.9.25m B.13.52m C.2.4m D.4.2m9. 比较2, , 的大小,正确的是(C )A. 2<<B. 2<<C.<2<D.<<210.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有(C) A .0个 B .1个om] C .2个D .3个二、填空题11.3的算术平方根是____3____.12.(1)一个正方体的体积是216cm 3,则这个正方体的棱长是____6________cm ;(2) 表示_______9_____的立方根;13.已知a ,b 为两个连续整数,且a<15<b ,则a +b 的值为 7 . 14.已知一个有理数的平方根和立方根相同,则这个数是______0______.15.实数1-216.写出39到23之间的所有整数:____3,4 15.0________. 三、解答题17.求下列各数的平方根和算术平方根:(1)1.44;解:1.44的平方根是± 1.44=±1.2,算术平方根是 1.44=1.2. (2)169289; 解:169289的平方根是±169289=±1317,算术平方根是169289=1317.(3)(-911)2.解:(-911)2的平方根是±(-911)2=±911,算术平方根是(-911)2=911.[]18.已知一个正数x的两个平方根分别是3-5m和m-7,求这个正数x的立方根.由已知得(3-5m)+(m-7)=0,-4m-4=0,解得:m=-1.所以3-5m=8,m-7=-8.所以x=(±8)2=64.所以x的立方根是4.19.计算:(1)2+3 2-5 2;(2)2(7-1)+7;(3)0.36×4121÷318;(4)|3-2|+|3-2|-|2-1|;(5)1-0.64-3-8+425-|7-3|.解:(1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7=2 7-2+7=3 7-2.(3)原式=0.6×211÷12人教版初中数学七年级下册第六章《实数》检测卷一、选择题(每题3分,共30分)1. 下列各数中,没有平方根的是( )A. |-4|B. -(-4)C. (-4)2D. -422. 1的值应在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间3. 下列说法中,错误的是( )A. ±2B. 是无理数C.是有理数 D. 4. 下列说法中,错误的是 ( )A. -4是16的一个平方根B. 17是(-17)2的算术平方根C.164的算术平方根是18D. 0.9的算术平方根是0.03 5. 下列语句写成式子正确的是 ( )A. 4是16的算术平方根,即±4B. 4是(-4)2 4C. ±4是16的平方根,即 4D. ±4是16±46. 如图,数轴上点 N 表示的数可能是 ( )A. 10B. 5C. 3D. 27. 在实数0,π,227( ) A. 1个 B. 2个 C. 3个 D. 4个 8. a ,b ,c 在数轴上的对应点如图所示,则|a -b |+|b +c |-|a +c |的值为 ( )A. 2b +2cB. b +cC. 0D. a +b +c 9. 下列四个结论中,正确的是 ( )A.32<52 B. 54<32C.32<2<2 D. 1<2<5410. 一个自然数的算术平方根是a ,则下一个自然数的平方根是 ( ) A. a 2+1 B. ±(a 2+1) C. a 2+1 D. ±a 2+1二、填空题(每题3分,共24分)11.的算术平方根为 ,(-3)2的平方根是 .12. -338的立方根是 ,的立方根是 . 13. 在-5,- 3,0,π,6中,最大的一个数是 .14. =9,则x = ;若x 2=9,则x = .15. 若a <b 且a ,b 为连续正整数,则a 2+b 2的平方根为 .16. 5.70618.044= .17. =3,|b |=5,且ab <0,则a +b 的算术平方根为 .18. 请你辨别:下图依次是面积为1,2,3,4,5,6,7,8,9的正方形,其中边长是有理数的正方形有 个,边长是无理数的正方形有 个.三、解答题(共66分)19. (8分)计算下列各题.(1) |3-|2;(2)20. (8分)求下列各式中的x的值.(1)(x+2)3+27=0;(2)2(2x+1)2-12=0.21. (9分)已知3既是x-1的算术平方根,又是x-2y+1的立方根,求x2-y2人教版七年级数学下册第六章实数复习检测试题一、选择题(每小题3分,共30分)1.下列各数中最大的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平方根B.只有正数有算术平方根C.0和正数都有算术平方根D.负数有算术平方根3.下列语句中,正确的是( )A.无理数都是无限小数B.无限小数都是无理数C.带根号的数都是无理数D.不带根号的数都是无理数4.的立方根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多一个2),3.14这些数中,无理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点一一对应;②不含根号的数一定是有理数;③负数没有平方根;④是17的平方根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所示,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表示数﹣1,1,2,3,则表示2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上二、填空题(每小题3分,共24分)1.按键顺序是“,,则计算器上显示的数是.2.一个数的平方根和它的立方根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平方根为a+3和2a-15,则这个数是.5.比较大小:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和小数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.6.(8分)设的整数部分和小数部分分别是x,y,试求x,y的值与x﹣1的算术平方根.参考答案与解析一、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A二、填空题11.4 12.0 13.1 14. 49 15.<>16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36.2。

2022年人教版初中数学七年级下册 第六章实数专题测评试题(无超纲)

2022年人教版初中数学七年级下册 第六章实数专题测评试题(无超纲)

初中数学七年级下册 第六章实数专题测评(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、平方根和立方根都等于它本身的数是( )A .±1B .1C .0D .﹣12、在01之间0的个数在递增)中,无理数有( )A .1个B .2个C .3个D .4个3、下列各数中是无理数的是( )A .0B .2πC . 3.1415-D .2274、下列说法正确的是( )AB .27的立方根是±3C .9的平方根是3D .9的平方根是±35、实数﹣2的倒数是( )A .2B .﹣2C .12D .﹣12 6、已知2m ﹣1和5﹣m 是a 的平方根,a 是( )A .9B .81C .9或81D .27、下列说法正确的是( )A B.绝对值最小的实数不存在C.两个无理数的和不一定是无理数D.有理数与数轴上的点一一对应8、无理数是()A.带根号的数B.有限小数C.循环小数D.无限不循环小数9、116的算术平方根是()A.14B.14-C.14±D.1810、下列说法正确的是()A B.2是4的平方根C D3-二、填空题(5小题,每小题4分,共计20分)1、如果一个正数的平方根为2a-1和4-a,这个正数为_______.2、若实数a、b、c b﹣c+1)2=0,则2b﹣2c+a=________.3、对于实数a,b,且(a≠b),我们用符号min{a,b}表示a,b两数中较小的数,例如:min(1,﹣2)=﹣2.(1)min 32)=_____;(2)已知min a)=a,min b a和b为两个连续正整数,则a+b=_____.4、若一个正数的两个不同的平方根为2a+1和3a﹣11,则a=___.52=,则x+1的平方根是 _____.三、解答题(5小题,每小题10分,共计50分)1、如果一个四位数m 满足各数位上的数字均不为0,将它的千位数字与百位数字之积记为1m ,十位数字与个位数字之和记为2m ,记F (m )12m m =,若F (m )为整效,则称这个数为“运算数“,例如:∵F (5332)5332⨯==+3,3是整数,∴5332是“运算数”;∵F (1722)177224⨯==+,74不是整数,∴1722不是“运算数”.(1)请判断9981与2314是否是“运算数”,并说明理由.(2)若自然数s 和t 都是“运算数”,其中s =8910+11x (2≤x ≤8,且x 为整数);t 的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,且F (t )=4,规定:k ()2tF s =-,求所有k 的值.2、计算:(1)(1)(8)-+-;(2)1131()()()3443-++---;(3)32(16)4⨯--÷;(4)22122(1)33-÷⨯- (5)111(24)()834-⨯-+; (621+3、已知一个正数的平方根是a +6与2a ﹣9,(1)求a 的值;(2)求关于x 的方程2640ax -=的解.4、求下列各式的值:(1)(2(3(45、小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2的桌面,并且长宽之比为4∶3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.---------参考答案-----------一、单选题1、C【分析】根据平方根和立方根的定义,可以求出平方根和立方根都是本身数是0.【详解】解:平方根是本身的数有0,立方根是本身的数有1,-1,0;∴平方根和立方根都是本身的数是0.故选C.【点睛】本题主要考查了平方根和立方根的定义,熟知定义是解题的关键:如果有两个数a,b(b≥0),满足2=,那么c就叫做d的立方根.a b=,那么a就叫做b的平方根;如果有两个数c、d满足3c d2、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:在0,3π3=-,227,6.1010010001…(相邻两个1之间一次多一个0)中,无理数有3π-1之间一次多一个0)故选C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001……,等有这样规律的数.3、B【分析】根据无理数的意义逐项判断即可求解.【详解】解:A 、0是整数,是有理数,不合题意;B 、2π是无限不循环小数,是无理数,符合题意; C 、 3.1415-是分数,是有理数,不合题意;D 、227是分数,是有理数,不合题意. 故选B .【点睛】本题考查了无理数的定义,熟知无理数的定义“无限不循环小数叫无理数”是解题的关键.4、D【分析】根据平方根、立方根和算术平方根的性质计算即可;2,故A错误;27的立方根是3,故B错误;9的平方根是±3,故C错误;9的平方根是±3,故D正确;故选D.【点睛】本题主要考查了平方根的性质,立方根的性质和算术平方根的性质,准确计算是解题的关键.5、D【分析】根据倒数的定义即可求解.【详解】解:-2的倒数是﹣1.2故选:D【点睛】本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.6、C【分析】分两种情况讨论求解:当2m﹣1与5﹣m是a的两个不同的平方根和当2m﹣1与5﹣m是a的同一个平方根.【详解】解:若2m﹣1与5﹣m互为相反数,则2m ﹣1+5﹣m =0,∴m =﹣4,∴5﹣m =5﹣(﹣4)=9,∴a =92=81,若2m ﹣1=5﹣m ,∴m =2,∴5﹣m =5﹣2=3,∴a =32=9,故选C .【点睛】本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.7、C【分析】利用正无理数,绝对值,以及数轴的性质判断即可.【详解】解:A 、不存在最小的正无理数,不符合题意;B 、绝对值最小的实数是0,不符合题意;C 、两个无理数的和不一定是无理数,例如:()0ππ+-=,符合题意;D 、实数与数轴上的点一一对应,不符合题意.故选:C .【点睛】本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质.8、D【详解】解:无理数是无限不循环小数.故选:D【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键.9、A【分析】根据算术平方根的定义即可完成.【详解】∵211= 416⎛⎫⎪⎝⎭∴116的算术平方根是1414故选:A【点睛】本题考查了算术平方根的计算,掌握算术平方根的定义是关键.10、B【分析】根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.【详解】解:A . A 错误;B .22=4,故2是4的平方根,B 正确;C 是有理数,故C 错误;D .,故D 错误;故选B .【点睛】本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.二、填空题1、49【解析】【分析】根据平方根的定义得到21a -与4a -互为相反数,列出关于a 的方程,求出方程的解得到a 的值,即可确定出这个正数.【详解】根据题意得:2140a a -+-=,解得:3a =-,∴217a -=-,47a -=,则这个正数为49故答案为:49.【点睛】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.2、1【解析】【分析】利用绝对值以及平方数的非负性,求出a 的值、b 和c 的关系式,利用整体代入直接求出代数式的值.【详解】解:+(b ﹣c +1)2=0,30a ∴-=,10b c -+=,故3a =,1b c -=-,222()2(1)31b c a b c a ∴-+=-+=⨯-+=.故答案为:1.【点睛】本题主要是考查了绝对值以及平方数的非负性、整体代入法求解代数式的值,熟练利用非负性,求出对应字母的值,利用整体代入法,求解代数式的值,这是解决本题的关键.3、 13【解析】【分析】(1)直接根据min {a ,b }表示a ,b 32)较小的数即可;(2)根据min {a ,b }表示a ,b 两数中较小的数,得出a b <<,根据a 和b 为两个连续正整数,可得结果.【详解】解:(132>,∴32<-,∴min 32)=故答案为:(2)∵min a )=a ,min b∴a b <,∵a 和b 为两个连续正整数,∴67<,∴6a =,7b =,∴6713a b +=+=,故答案为:13.【点睛】本题考查了实数的大小比较,无理数的估算,熟练掌握实数的大小比较方法以及无理数的估算方法是解本题的关键.4、2【解析】【分析】根据一个正数的两个不同的平方根互为相反数列方程即可.【详解】解:∵一个正数的两个不同的平方根分别是2a +1和3a ﹣11,∴213110a a ++-=,解得2a=.故答案为: 2.【点睛】本题考查了平方根的意义和解一元一次方程,解题关键是明确一个正数的两个不同的平方根互为相反数,根据题意列出方程.5、3±##3和-3##-3和3【解析】【分析】根据平方根的定义求得x的值,进而根据平方根的意义即可求得答案,平方根:如果一个数的平方等于a,那么这个数就叫a的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于a,那么这个数叫做a的立方根.【详解】=2x=∴8∴+=,9的平方根是3±19x故答案为:3±【点睛】本题主要考查了平方根和立方根的定义,解决本题的关键是要熟练根据平方根的意义和平方根的定义进行求解.三、解答题1、(1)9981是“运算数”,2314不是“运算数”;(2)738.5【解析】【分析】(1)根据“运算数”的定义计算即可;(2)根据28x ≤≤找出s ,设100010010(2)t a a b b =++++,其中19,17a b ≤≤≤≤,且,a b 为整数,由()4F t =,找出,a b 的值,代入()2tk F s =-中即可得解.【详解】(1)99(9981)981F ⨯==+,9是整数,∴9981是“运算数”, 236(2314)145F ⨯==+,65不是整数,∴2314不是“运算数”; (2)891011s x =+,28x ≤≤且x 为整数,s ∴可为:8932,8943,8954,8965,8976,8987,8998, s 是“运算数”,8954s ∴=,89()854F s ⨯==+, t 的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,设百位上的数字为a ,个位数上的数字为b ,则千位上的数字为a ,十位上的数字为(2)b +,其中19,17a b ≤≤≤≤且,a b 为整数,100010010(2)t a a b b ∴=++++,()4F t =,2422a b ∴=+,即288a b =+, 当1b =时,4a =,其他情况不满足题意,10004100410314431t ∴=⨯+⨯+⨯+=,()4431738.5282t k F s ∴===--. 【点睛】本题考查新定义下的实数运算,掌握“运算数”的定义是解题的关键.2、(1)-9;(2)13-;(3)10;(4)43-;(5)-1;(6)4.【解析】【分析】(1)(5)根据有理数的混合运算法则计算即可;(6)根据立方根,化简绝对值然后根据实数运算法则计算即可.【详解】解:(1)原式=(18)9-+=-;(2)原式=11313443--+=213-=13-;(3)原式=3246410⨯+=+=;(4)原式=2143()3-⨯⨯=141293-⨯=-;(5)原式=111(24)(24)(24)834-⨯--⨯+-⨯=386-+-=1-;(6)原式=231=4.【点睛】本题考查了有理数的混合运算,立方根,化简绝对值等知识点,熟练掌握运算法则是解本题的关键.3、(1)1a =;(2)8x =±.【解析】【分析】(1)根据一个正数有两个平方根,这两个平方根互为相反数解答即可,(2)根据(1)中求出的a 的值,直接解方程即可.【详解】解:(1)由题意得,6290a a ++-=,解得,1a =;(2)由(1)得,2264640ax x -=-=,∴264x =∴8x =±.【点睛】本题考查的是平方根的概念和应用,掌握一个正数有两个平方根,这两个平方根互为相反数是解题的关键,4、(1)15;(2)15;(3)0.3-;(4)655【解析】【分析】(1)先计算算术平方根,再计算乘法即可得;(2)先计算算术平方根,再计算加法即可得;(3)先计算算术平方根,再计算减法即可得;(4)先计算算术平方根,再计算乘法即可得.【详解】解:(1)原式3515=⨯=;(2)原式9615=+=;(3)原式0.20.50.3=-=-;(4)原式0.6112=⨯35112=⨯ 655=. 【点睛】本题考查了算术平方根、有理数的乘法与加减法运算,熟练掌握各运算法则是解题关键.5、能,桌面长宽分别为28cm 和21cm【解析】【分析】本题可设它的长为4x ,则它的宽为3x ,根据面积公式列出方程解答即可求出x 的值,再代入长宽的表达式,看是否符合条件即可.【详解】能做到,理由如下:设桌面的长和宽分别为4x (cm )和3x (cm ),根据题意得,4x ×3x =588.12x 2=588.249x =0x7x ∴==44728x ∴=⨯=(cm )3x =3×7=21(cm ).∵面积为900cm 2的正方形木板的边长为30cm ,28cm <30cm ,∴能够裁出一个长方形面积为588cm 2并且长宽之比为4∶3的桌面,答:桌面长宽分别为28cm和21cm.【点睛】本题考察了算术平方根及列方程解应用题的知识点,读懂题意,找出等量关系列出方程是本题的关键点.。

最新初中数学七年级下册第六章《实数》检测试卷及答案

最新初中数学七年级下册第六章《实数》检测试卷及答案

人教版七年级下册 第六章 实数 单元同步测试一、选择题1、下列说法正确的是( ) A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.如果一个数有立方根,则它必有平方根D.不为0的任何数的立方根,都与这个数本身的符号同号 2、下列语句中正确的是( )A.-9的平方根是-3B.9的平方根是3C.9的算术平方根是3±D.9的算术平方根是3 3、下列说法中正确的是( )A 、若a 为实数,则0≥aB 、若a 为实数,则a 的倒数为a1 C 、若x,y 为实数,且x=y ,则y x = D 、若a 为实数,则02≥a4、估算728-的值在A. 7和8之间B. 6和7之间C. 3和4之间D. 2和3之间 5、下列各组数中,不能作为一个三角形的三边长的是( )A 、1、1000、1000B 、2、3、5C 、2225,4,3 D 、38,327,3646、下列说法中,正确的个数是( )(1)-64的立方根是-4;(2)49的算术平方根是7±;(3)271的立方根为31;(4)41是161的平方根。

A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( ) A. 1 B. ±1 C. 0 D.—18、如果333.137.23≈,872.27.233≈ ,那么30237.0约等于( ).A. 13.33B. 28.72C. 0.1333D. 0.28729、若1-x +(y+2)2=0,则(x+y )2017=( )A .﹣1B .1C .32017D .﹣3201710、若aa a a 1,,,102则<<的大小关系是( )二、填空题11、0.0036的平方根是 ,81的算术平方根是 .12、若a 的平方根为3±,则a= .13、如果一个数的平方根是a+6和2a-15,则这个数为 。

14、比较大小:15- 1(填“>”、“<”或“=”).15、比较大小:310 ________5 (填“>”或“<”).16、立方等于它本身的数是 。

人教版初中数学七年级下册《实数》测试题(含答案)

人教版初中数学七年级下册《实数》测试题(含答案)

第六章《题一、单选题(每小题只有一个 1.25的平方根是() A .±5B .﹣5C .5D .25 2.下列式子中,正确的是() A .3838B .3.60.6C . (3)3D .36623.要使代数式x 2有意x 的取是()A .x ≠2B .x ≥2C .x>2D .x ≤2 4.下列说法正确的是() A .一个数的平方根有两个,它们互为相反数 B .一个数的立方根不是正数就是负数 C .负数没有立方根 D.如果一个数的立方根是这个,那么这个数一定是-1或0或15.在下列各数322 2,3,8,,,36,0.1010010001 3(两个1之间,依次增 加1个0),其中无理数有() A .6个B .5个C .4个D .3个 6.下列说法正确的是() A .正有理数和负有理数统称为有理数 B .符号不同的两个数互为相反数 C.绝对值等于它的相反数的正数 D .两数相加,和一定大于任何一个加数 7.下列各组数中互为相反数的是() A .-2与(-2)2B .-2与38C .2与(-2) 2D .|-2|与2 8.估计56﹣24的值应在() A .5和6之间B .6和7之间C .7和8之间D .8和9之间 9.如图,若A 是实数a 在数轴上对应的点,则关于a ,a ,1的大小关系表示 正确的是()A .a1aB .aa1C .1aaD .1aa10.一个正数的两个平方根分别是2a 1与a 为() A .-1B .1C .-2D .2 11.比较2,5,37的大小,正确的是() A .3725B .2537 C .2375D .5372 12.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形 ABCD 绕顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;按此规 律继续翻转下去,则数轴上数2020所对应的点是() A .点AB .点BC .点CD .点D二、填空题13.计算:(3)2=________;364 125=________. 14.52的相反数是__________,-36的绝对值是__________. 15.若x +x 有意义,则x +1___________. 16.已知a 、b为两个连续的整数,且a 11b ,则ab__________. 17.已知913与913的小数部分分别是a 和b ,则a b_____________。

人教版七年级数学下册 第六章:实数 测试卷(带答案)

人教版七年级数学下册 第六章:实数 测试卷(带答案)

2020年七年级第二学期数学第六章测试卷(实数)(本卷共有六个大题,23小题,全卷满分120分,考试时间100分钟) 题 号 一 二 三 四 五 六 总分 得 分一、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确选项.1.4的平方根是( ). A .2B .2C .±2D .2±2.估计10的值( ). A . 3~4 B . 4~5C . 5~6D . 6~73. 在-1.732,2,π, 0.14,2+3,3.212212221…,3.14这些数中,无理数的个数为( ).A.5B.2C.3D.4 4.若一个正数的平方根是12-a 和2+-a ,则这个正数是( ).A.-1B.3C.4D.9 5. 下列命题中,正确的是( ).A.两个无理数的和是无理数B.两个无理数的积是实数C.无理数是开方开不尽的数D.两个有理数的商有可能是无理数6. 代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( ).A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)7. 9的算术平方根是__________. 8. 的相反数是_________. 9.比较大小3-______ 14.3-.10. 若36.25≈5.036,6.253≈15.906,则253600≈__________. 11.若实数x 、y 满足方程330x y --=,则x 与y 的关系是 .12.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则AB 之间的距离为________ .三、(本大题共5小题,每小题6分,共30分)13.⑴计算(2) 计算)515(5-14.⑴计算2395--+ (2)15.(1)解方程:42x =25 (2)解方程:()08123=+-x ;16.(1)化简252826-+ (2= .17. 若()032512=++-+-z y x ,求代数式x +y +z 的立方根.四、(本大题共4小题,每小题8分,共32分)18. 已知实数a 、b 在数轴上的位置如图所示,化简:()2a b b a -++.19. 若 313 的整数部分为a ,13小数部分为b,求2a b +.20.已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值.ba 021.若a 、b 、c 是有理数,且满足等式332232+-=++c b a ,试计算)(c a -2016+b2017的值.五、(本大题共10分)22.先观察下列等式,再回答问题.①1+112+122=1+11-11+1=112; ②1+122+132=1+12-12+1=116; ③1+132+142=1+13-13+1=1112. (1)请你根据上面三个等式提供的信息,猜想1+142+152的结果,并进行验证;(2)请按照上面各式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).六、(本大题共12分)23.用“◇”和“☆”分别代表甲种植物和乙种植物,为了美化环境,采用如图所示的方案种植.⑴观察图形,寻找规律,并填写下表:⑵求出第n个图形中甲种植物和乙种植物的株数;⑶是否存在一种种植方案,使得乙种植物的株数是甲种植物的株数的2倍?若存在,请你写出是第几个方案,若不存在,请说明理由.第6章实数参考答案1.C 2.A 3. D 4. D 5.B 6 .A7.3 8.1–2 9.> 10.503.6 11.互为相反数;12.3+5或3–5 13.(1)5; (2)4;14.(1)-1; (2)-6.5; 15.(1)x =2.5或-2.5;(2)x =-0.5 16.(1)92;(2)3+5 ;17.0 18.-2a 19.1 20.0 21.022.解:(1)猜想:1+142+152=1+14-11+4=1120. 验证:∵1+142+152=1+116+125=400+25+16400=441400=2120=1120, ∴猜想正确.(2)1+1n 2+1(n +1)2=1+1n -1n +1=1+1n(n +1). 23. ⑴第一行:16、25、36;第二行:25、36、49;⑵甲种植物的株数:2n ,乙种植物的株数:2(1)n +;⑶不存在方案,使得乙种植物的株数是甲种植物的株数的2倍.由2(1)n +=22n ,两边同时开平方,得1n +=,这个方程的正整数解不存在.。

人教版初中七年级数学下册第六单元《实数》测试卷(含答案解析)

人教版初中七年级数学下册第六单元《实数》测试卷(含答案解析)

一、选择题1.在实数:20192020,π,9,3,2π,38,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52-,49中,无理数的个数为( ) A .4 B .5 C .6 D .7 2.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个 3.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个 4.实数a ,b 在数轴上的位置如图所示,那么化简33a b a b ++-+的结果为( )A .2a -B .22b a -C .0D .2b5.下列说法中,正确的是( )A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .无理数都是无限不循环小数D .无理数加上无理数一定还是无理数6.下列命题中,①81的平方根是9;16±2;③−0.003没有立方根;④−64的立方根为±4;5 )A .1B .2C .3D .47.下列命题是真命题的是( )A .两个无理数的和仍是无理数B .有理数与数轴上的点一一对应C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等8.下列实数3223640.010*******;;; (相邻两个1之依次多一个0);52,其中无理数有( )A .2个B .3个C .4个D .5个 9.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ 10.已知n 是正整数,并且n -1<326+<n ,则n 的值为( )A .7B .8C .9D .1011.下列选项中,属于无理数的是( )A .πB .227-C 4D .012. 5.713457.134,则571.34的平方根约为( ) A .239.03 B .±75.587 C .23.903 D .±23.903 13.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .3±14.下列有关叙述错误的是( )A 2B 2是2的平方根C .122<<D .22是分数 15.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π2;C 26,π;D .0.1010101……101,π3二、填空题16.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|121232⎛⎫-+-⨯- ⎪⎝⎭ 17.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.18.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.19.(223228432--20.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.21.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 22.若|2|30a b -+-=,则a b +=_________. 23.实数2-,2,227,π-,327-中属于无理数的是________. 24.计算: (1)()2325273-+-.(2)()2411893⎡⎤⎛⎫--⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 25.定义运算“@”的运算法则为:x@y=xy 4+,则2@6 =____.26.观察下面一列数:-1,2,-3,4,-5,6,-7……,将这列数排成下图形式.按照此规律排下去,那么第_________行从坐标数第_________个数是-2019.三、解答题27.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:2π、等,而常用的“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如253<<,是因为459<<;根据上述信息,回答下列问题:(1)13的整数部分是___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______; (3)103+也是夹在相邻两个整数之间的,可以表示为103a b <+<则a b +=______;(4)若303x y -=+,其中x 是整数,且01y <<,请求x y -的相反数. 28.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------29.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|11232⎛⎫-+-⨯- ⎪⎝⎭ 30.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯。

新人教版七年级数学下册第六章《实数》测试卷及答案

新人教版七年级数学下册第六章《实数》测试卷及答案

人教版七年级数学第六章《实数》测试卷一、选择题(每小题3分,共30分)1、若x 是9的算术平方根,则x 是( )A 、3B 、-3C 、9D 、81 2.641的立方根是( ) A.21±B.41± C.41 D.213、下列说法不正确的是( ) A 、251的平方根是15± B 、-9是81的一个平方根 C 、0.2的算术平方根是0.04 D 、-27的立方根是-3 4、若a 的算术平方根有意义,则a 的取值范围是( )A 、一切数B 、正数C 、非负数D 、非零数 5、在下列各式中正确的是( )A 、2)2(-=-2 B、=3C 、16=8D 、22=2 6、估计76的值在哪两个整数之间( ) A 、75和77 B 、6和7 C 、7和8 D 、8和9 7、下列各组数中,互为相反数的组是( )A 、-2与2)2(- B 、-2和38-C 、-21与2 D 、︱-2︱和2 8、在-2,4,2,3.14, 327-,5π,这6个数中,无理数共有( )A 、4个B 、3个C 、2个D 、1个 9、下列说法正确的是( )A 、数轴上的点与有理数一一对应B 、数轴上的点与无理数一一对应C 、数轴上的点与整数一一对应D 、数轴上的点与实数一一对应 10、已知04)3(2=-+-b a ,则ba3的值是( ) A 、41 B 、- 41 C 、10 D 、43 二、填空题(每小题3分,共24分)11、81的平方根是___12、一个数的算术平方根等于它本身,则这个数应是 。

13、38-的绝对值是__________。

14、比较大小:27____42。

15.ππ-+-43= _____________。

16、若10的整数部分为a ,小数部分为b ,则a =________,b =_______。

17、12-的相反数是_________。

18.满足53ππx -的所有整数x 的值 三、解答题(共46分)19(6分).计算、(1).327-+2)3(--31- (2).()2)4(31223-++--20(6分).求下列各式中的x (1)、4x 2-16=0(2)、27(x -3)3=-6421(6分)、若5a +1和a -19是数m 的平方根,求m 的值。

新初中数学七年级下册第六章《实数》单元测试题(含答案)(1)

新初中数学七年级下册第六章《实数》单元测试题(含答案)(1)

人教版七年级数学下册第六章实数能力检测卷一.选择题(共10小题)1.16的平方根是()A.4 B.-4 C.16或-16 D.4或-4 2.下列各等式中计算正确的是()A±4 B C=-3 D= 3 23.若方程2(4)x-=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a-4是19的算术平方根D.b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平)A.0个B.1个C.2个D.3个5.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10 B.10,11 C.11,12 D.12,138)A.线段AB上B.线段BC上C.线段CD上D.线段DE上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y+0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算++-|1|19.已知|a|=5,b2=4,c3=-8.(1)若a<b,求a+b的值;(2)若abc>0,求a-3b-2c的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a与b就叫做“差商等数对”,记为(a,b).例如:4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版数学 七年级下册期末复习 第6章《实数》 同步测试卷一.选择题(共10小题,3*10=30) 1.3的相反数是( ) A .- 3 B . 3 C .12D .2 2.81的平方根是( ) A .3 B .-3 C .±3D .±93.下列实数中,无理数是( ) A .-2 B .0 C .πD . 44.下列各式中正确的是( )A .16=±4B .3-27=-9 C .-32=-3 D .214=1125.下列说法中:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的相反数.正确的有( )A .0个B .1个C .2个D .3个6.若一个数的算术平方根和立方根都等于它本身,则这个数一定是( ) A .0或1 B .1或-1 C .0或±1D .07.如图,数轴上点P 表示的数可能是( )A . 2B . 5C .10D .158.一个正方形的面积为2,则它的边长是( ) A .4B .±2C .- 2D . 29.在实数 -13, -2, 0, 3 中,最小的实数是( )A .-2B .0C .-13D . 310.已知35.28=1.738,3a =0.173 8,则a 的值为( ) A .0.528B .0.052 8C .0.005 28D .0.000 528 二.填空题(共6小题,3*6=18) 11.化简:|3—2|=________. 12.比较大小:-6 ________-35.13.在数轴上到原点的距离是5的点表示的数是________.14.一个正数x 的两个平方根分别是a +2和a -4,则a =________. 15.已知a 、b 为两个连续的整数,且a <11<b ,则a +b = ________. 16.已知x -1+|2y -2|=0,则x -y =________. 三.解答题(共9小题,72分)17.(7分)计算:(-3)2+||3-2-2(3-1).18.(7分)解方程:3(x -2)2=27.19.(8分)解方程:2(x -1)3+16=0.20.(8分)20.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r 为多少米(球的体积V =43πr 3,π取3.14,结果精确到0.1米)?21.(8分)实数a ,b ,c 在数轴上的对应点如图所示,化简:3a 3+||a +b -c 2-||b -c .22.(8分)已知实数2a-1的平方根是±3,2b+3人教版数学七下第六章实数能力水平检测卷一.选择题(共10小题)1.下列选项中的数,小于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-123.若实数a,b是同一个数的两个不同的平方根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.用计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x2=2,有x=±当x3=3时,有x想一想,从下列各式中,能得出x=±的是()A.2x=±20 B.20x=20 D.3x=±20x=2 C.±206.下列选项中正确的是()A.27的立方根是±3B的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是17.在四个实数、3、-1.4中,大小在-1和2之间的数是()A.B.3 C D.-1.481-的相反数是()A.1-B1+-D1-C.19a,小数部分为b,则a-b的值为()A.- 13 B.6-C.8-D6-10.下列说法:①-1是1的平方根;②如果两条直线都垂直于同一直线,那么这两条直线平行;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;⑤无理数就是开放开不尽的数;正确的个数为( ) A .1个B .2个C .3个D .4个二.填空题(共6小题)11.已知a 的平方根是±8,则它的立方根是 ;36的算术平方根是 .122(3)b ++=0= .13A 的算术平方根为B ,则A+B= .14.若45,<<则满足条件的整数a 有 个.15.如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是 (M 、N 、P 、R 中选).16.=5,付老师又用计算器求得:=55=555, =5555,个3,2016个4)= . 三.解答题(共7小题) 17.求出下列x 的值 (1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小马说:“我们不可能围成满足要求的长方形场地”小牛说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.21.如果一个正数的两个平方根是a+1和2a-22,求出这个正数的立方根.22-的小数部分,此1事实上,小明的表示方法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,。

【3套精选】人教版初中数学七年级下册第六章《实数》单元综合练习卷(含答案解析)

【3套精选】人教版初中数学七年级下册第六章《实数》单元综合练习卷(含答案解析)

人教版七年级数学下册第六章实数质量评估试卷 一、选择题(每小题3分,共30分)1.-3的绝对值是( )A.33 B.-33C. 3 D.1 32.在实数-227,9,π,38中,是无理数的是( )A.-227 B.9C.π D.3 83.下列四个数中,最大的一个数是( ) A.2 B. 3 C.0 D.-24.某正数的平方根为a5和4a-255,则这个数为( )A.1 B.2C.4 D.95.下面实数比较大小正确的是( )A.3>7 B.3> 2C.0<-2 D.22<36.实数a在数轴上的位置如图1所示,则下列说法不正确的是( )图1A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<07.如图2,在数轴上点A表示的数为3,点B表示的数为6.2,点A,B之间表示整数的点共有( )图2A.3个 B.4个C.5个 D.6个8.|5-6|=( )A.5+ 6 B .5- 6C .-5- 6D .6- 59.若x-1+(y+1)2=0,则x-y的值为( )A.-1 B.1C.2 D.310. 已知3≈1.732,30≈5.477,那么300 000≈( ) A.173.2 B.±173.2C.547.7 D.±547.7二、填空题(每小题4分,共20分)11.比较大小:3-2 > -23(填“>”“<”或“=”).12.计算:9-14+38-|-2|=.13.3-5的相反数为,4-17的绝对值为的绝对值为,绝对值为327的数为 .14.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1,例如8*9=+1=4,那么15*196= .15.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是个数据是.三、解答题(共70分)16.(6分)求下列各式的值.求下列各式的值.(1)252-242×32+42;(2)2014-130.36-15×900;(3)|a -π|+|2-a |(2<a <π).(精确到0.01)17.(8分)求下列各式中x 的值.的值.(1)x 2-5=4; (2)(x -2)3=-0.125.18.(8分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.的值.19.(8分)芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3 dm ,宽为2 dm ,且两块纸板的面积相等.,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保留根号).(2)芳芳能否在长方形纸板上截出两个完整的,且面积分别为2 dm 2和3 dm 2的正方形纸板?判断并说明理由.(提示:2≈1.414,3≈1.732人教版七年级下册 第六章 实数 单元同步测试一、选择题1、下列说法正确的是(、下列说法正确的是( ) A.A.负数没有立方根负数没有立方根负数没有立方根B.B.一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数C.C.如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根D.D.不为不为0的任何数的立方根,都与这个数本身的符号同号的任何数的立方根,都与这个数本身的符号同号 2、下列语句中正确的是(、下列语句中正确的是() A.-9的平方根是的平方根是-3 -3 -3 B.9的平方根是3 3 C.9的算术平方根是3± D.9的算术平方根是3 3、下列说法中正确的是(、下列说法中正确的是( )A 、若a 为实数,则0³aB 、若、若a 为实数,则a 的倒数为a1C 、若x,y 为实数,且x=y x=y,则,则y x = D、若a 为实数,则02³a 4、估算728-的值在的值在A. 7和8之间之间B. 6和7之间之间C. 3和4之间之间D. 2和3之间之间 5、下列各组数中,不能作为一个三角形的三边长的是(、下列各组数中,不能作为一个三角形的三边长的是( )A 、1、10001000、、1000 1000B 、2、3、5C 、2225,4,3 D 、38,327,3646、下列说法中,正确的个数是(、下列说法中,正确的个数是( )(1)-)-6464的立方根是-的立方根是-44;(;(22)49的算术平方根是7±;(;(33)271的立方根为31;(;(44)41是161的平方根。

七年级初一数学下学期第六章 实数单元测试综合卷检测

七年级初一数学下学期第六章 实数单元测试综合卷检测

七年级初一数学下学期第六章 实数单元测试综合卷检测一、选择题1.有一个数阵排列如下:1 2 4 7 11 16 22 3 5 8 12 17 23 6 9 13 18 2410 14 19 2515 20 2621 2728则第20行从左至右第10个数为( ) A .425 B .426C .427D .4282.已知253.6=15.906,25.36=5.036,那么253600的值为( )A .159.06B .50.36C .1590.6D .503.63.计算:122019(1)(1)(1)-+-++-的值是( )A .1-B .1C .2019D .2019-4.25的算术平方根是( ) A .5±B .5C .52±D .55.规定用符号[]n 表示一个实数的小数部分,例如:[]3.50.5,22 1.⎡⎦=⎤-⎣=按照此规定, 101⎡⎤+⎣⎦的值为( )A .101-B .103-C .104-D .101+6.设n 为正整数,且n <65<n+1,则n 的值为( ) A .5B .6C .7D .87.若a 是16的平方根,b 是64的立方根,则a+b 的值是( ) A .4B .4或0C .6或2D .68.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12-B .21-C .22-D .22-9.在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 两点对应的实数分别是2和﹣1,则点C 所对应的实数是( )A .12+B .22+C .221-D .221+ 10.下列各数中,介于6和7之间的数是( )A .43B .50C .58D .339二、填空题11.实数,,a b c 在数轴上的点如图所示,化简()()222a a b c b c ++---=__________.12.如果一个有理数a 的平方等于9,那么a 的立方等于_____. 13.估计512-与0.5的大小关系是:512-_____0.5.(填“>”、“=”、“<”) 14.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___15.请先在草稿纸上计算下列四个式子的值:①31;②3312+;③333123++;④33331234+++,观察你计算的结果,用你发现的规律直接写出下面式子的值333312326++++=__________.16.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.17.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.18.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.19.已知2(21)10a b ++-=,则22004a b +=________. 20.已知正实数x 的平方根是m 和m b +.(1)当8b =时,m 的值为_________;(2)若22()4m x m b x ++=,则x 的值为___________三、解答题21.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 22.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 a ⓝ,读作 “a 的圈 n 次方” (初步探究)(1)直接写出计算结果:2③,(﹣12)③. (深入思考)2④21111112222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩. (3)猜想:有理数 a (a ≠0)的圈n (n ≥3)次方写成幂的形式等于多少. (4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧23.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式 1a b ab -=+成立的一对有理数,a b 为“共生有理数对”,记为(),a b ,如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫⎪⎝⎭,都是“共生有理数对”. (1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”).(2,1)- ,(13,2) .(2)若 5,2a ⎛⎫-⎪⎝⎭是“共生有理数对”,求a 的值; (3)若(),m n 是“共生有理数对”,则(),n m --必是“共生有理数对”.请说明理由; (4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复).24.已知2+a b(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=. 25.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++26.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而121的小数部分.请解答下列问题:(1_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y +-的平方根。

精选初中数学七年级下册第六章《实数》检测试题及答案

精选初中数学七年级下册第六章《实数》检测试题及答案

人教版七年级数学下册 第六章 实数 单元综合能力提升测试卷一、选择题(每小题3分,共30分) 1.下列选项中正确的是( )A .27的立方根是±3B .16 的平方根是±4C .9的算术平方根是3D .立方根等于平方根的数是12.在实数﹣0.8,2015,﹣,四个数中,是无理数的是( )A .﹣0.8B .2015C .﹣D .3.(-)2的平方根是( ) A .B .-C .D .±4.下列四个数中的负数是( )A .﹣22B .C .(﹣2)2D . |﹣2| 5.|的值为( ) A .5 B .5-2 C .1D .2-1 6.在下列各式中正确的是()A .=-2B .=3C .=8D .=27.一个自然数a 的算术平方根为x ,则a+1的立方根是( ) A B C D 8.下列结论中正确的个数为( )(1)零是绝对值最小的实数; (2)数轴上所有的点都表示实数;(3)无理数就是带根号的数; (4)-的立方根为±; A .1个 B .2个 C .3个 D .4个 9=3,则(x+3)2的值是( ) A .81 B .27 C .9 D .310.若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则-︱a -b72233722331512512515152)1(-662)2(-1622127132b︱等于( )A .aB .-aC .2b +aD .2b -a 二、填空题(每小题3分,共30分) 11.在下列各数 中无理数有 个。

,,-,-,,,0,0.5757757775……(相邻两个5之间的7的个数逐次加1).12.一个数的算术平方根等于它本身,则这个数应是__________。

13.如果x-4是16的算术平方根,那么x+ 4的值为________. 14.比较大小: 3;15.若=5.036,=15.906,则=__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章 实数
(时间:90分钟 满分:100分)
一、选择题(共10小题,每小题3分,满分30分) 1.下列各数中最大的数是( )
A .5 B. 3 C .π D .-8 2.4的算术平方根是( )
A .2
B .±2 C. 2 D .± 2
3.下列各数:0,32,(-5)2
,-4,-|-16|,π,其中有平方根的个数是( ) A .3个 B .4个 C .5个 D .6个
4.如图,数轴上的A ,B ,C ,D 四点中,与数-3表示的点最接近的是( )
A .点A
B .点B
C .点C
D .点D 5.下列式子中,正确的是( )
A.3-7=-3
7 B.36=±6 C .- 3.6=-0.6 D.(-8)2
=-8
6.在-3.5,227,0,π2,-2,-3
0.001,0.161161116…(相邻两个6之间依次多
一个1)中,无理数有( )
A .1个
B .2个
C .3个
D .4个 7.下列说法中,正确的是( ) A .不带根号的数不是无理数 B.64的立方根是±2 C .绝对值等于3的实数是 3 D .每个实数都对应数轴上一个点
8.-27的立方根与81的平方根之和是( ) A .0 B .-6 C .0或-6 D .6
9.比较7-1与
7
2
的大小,结果是( ) A .后者大 B .前者大 C .一样大 D .无法确定
10.如果0<x <1,那么在x ,1x
,x ,x 2
中,最大的是( )
A .x B.1
x
C.x D .x 2
二、填空题(共4小题,每小题3分,满分12分)
11.-5的绝对值是________,1
16的算术平方根是________.
12.已知x -1是64的算术平方根,则x 的算术平方根是________. 13.若x ,y 为实数,且|x +2|+y -1=0,则(x +y )
2018
=________.
14.对于“5”,有下列说法:①它是一个无理数;②它是数轴上离原点5个单位长度的点所表示的数;③若a <5<a +1,则整数a 为2;④它表示面积为5的正方形的边长.其中正确的说法是________(填序号).
三、解答题(共8小题,满分58分)
15.(5分)将下列各数的序号填在相应的集合里:
①0,②
3
-827,③3.1415,④π
5
, ⑤-0.3507··
,⑥-2.3131131113…, ⑦-6133
,⑧-8,⑨(-4)2
,⑩0.9.
16.(5分)计算:
(1)|-5|+(-2)2+3-27-(-2)2
-1;
(2)3
0.125-3
1
16
×3×


⎭⎪


1
8
2
.
17.(5分)求下列各式中x的值:(1)25x2=9; (2)(x+3)3=8.
18.(5分)计算:
(1)3π-13
2

7
8
(精确到0.01);
(2)210×5÷6(精确到0.01).
19.(8分)已知2a-1的平方根为±3,3a+b-1的算术平方根为4,求a+2b的平方根.
20.(8分)如图,数轴的正半轴上有A,B,C三点,表示1和2的对应点分别为点A,B,点B到点A的距离与点C到点O的距离相等.设点C所表示的数为x.
(1)请你写出数x的值;
(2)求(x-2)2的立方根.
21.(10分)某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:
t2=d3
900
,其中d(km)是雷雨区域的直径.
(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?
(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(已知3
900≈9.65,
结果精确到0.1km)?
22.(10分)如图是一个数值转换器.
(1)当输入x=25时,求输出的y的值;
(2)是否存在输入x的值后,始终输不出y的值?如果存在,请直接写出所有满足要求的x值;如果不存在,请说明理由;
(3)输入一个两位数x,恰好经过三次取算术平方根才能输出无理数y,则x=________(只填一个即可).
参考答案与解析
1.A 2.C 3.B 4.B 5.A 6.C 7.D 8.C 9.B 10.B 11. 5 1
4
12.3 13.1 14.①③④
15.解:①②③⑤⑦⑨(2分) ⑥⑧(4分) ③④⑨⑩(6分) ①②⑤⑥⑦⑧(8分)
16.解:(1)原式=5+4-3-2-1=3.(4分) (2)原式=0.5-74×3×18=-5
32.(8分)
17.解:(1)x 2
=925
,x =±
925,x =±3
5
.(4分) (2)x +3=3
8,x +3=2,x =-1.(8分)
18.解:(1)原式≈3×3.142-3.606
2+0.875≈8.50.(4分)
(2)原式≈2×3.162×2.236÷2.449≈5.77.(8分)
19.解:由题意得⎩⎪⎨⎪⎧2a -1=(±3)2
=9,3a +b -1=42
=16,解得⎩
⎪⎨⎪⎧a =5,
b =2.(6分)所以a +2b =5+2×2=9,所以a +2b 的平方根是±3.(10分)
20.解:(1)x =2-1.(4分)
(2)(x -2)2
=(2-1-2)2
=1,所以(x -2)2
的立方根是1.(10分) 21.解:(1)当d =9时,则t 2
=9
3
900
,(3分)因此t =
9
3
900
=0.9.(5分) 答:如果雷雨区域的直径为9km ,那么这场雷雨大约能持续0.9h.(6分) (2)当t =1时,则d 3
900=12
,(8分)因此d =3900≈9.65≈9.7.(11分)
答:如果一场雷雨持续了1h ,那么这场雷雨区域的直径大约是9.7km.(12分) 22.解:(1)由输入x =25得25=5.因为5是有理数,不能输出,再取5的算术平方根得 5.因为5是无理数,所以输出y ,所以输入x =25时,输出的y 的值是 5.(4分)
(2)x =0或1时,始终输不出y 的值.(8分) (3)81(答案不唯一)(12分)。

相关文档
最新文档