(整理)实验四光电效应.

合集下载

(整理)光电效应实验85953.

(整理)光电效应实验85953.

光电效应光电效应当光束照射到某些金属表面上时, 会有电子从金属表面即刻逸出,这种现象称为“光电效应”。

1905年爱因斯坦圆满地解释了光电效应的实验现象,使人们进一步认识到光的波粒二象性的本质,促进了光的量子理论的建立和近代物理学的发展,爱因斯坦因此获得了1921年的诺贝尔奖。

现在利用光电效应制成的各种光电器件(如光电管、光电倍增管、夜视仪等)已经被广泛应用于工农业生产、科研和国防等领域。

[实验目的]1.加深对光的量子性的认识;2.验证爱因斯坦方程,测定普朗克常数;3.测定光电管的伏安特性曲线。

[ 实验原理]当一定频率的光照射到某些金属表面上时, 可以使电子从金属表面逸出,这种现象称为光电效应。

所产生的电子, 称为光电子。

根据爱因斯坦的光电效应方程有2+ W (1)hν=1/2 mvm其中ν为光的频率,h为普朗克常数,m和v是光电子的质量和最大速度,W为电子摆脱金属表面m的约束所需要的逸出功。

按照爱因斯坦的光量子理论:频率为ν的光子具有能量hν,当金属中的电子吸收一个频率为ν的光子时,便获得这个光子的全部能量。

如果光子的能量hν大于电子摆脱金属表面的约束是光电子逸出表面后所具有的最大动能;光所需要的逸出功W,电子就会从金属中逸出,1/2mvm子能量 hν小于W时,电子不能逸出金属表面,因而没有光电效应产生。

能产生光电效应的入射光最低频率ν,称为光电效应的截止(或极限)频率。

由方程(1)可得=W/h (2)v不同的金属材料有不同的逸出功, 因而ν也是不同的。

利用光电管可以进行研究光电效应规律、测量普朗克常数的实验,实验原理可参考图1。

图中K为光电管的阴极,A为阳极,微安表用于测量微小的光电流, 电压表用于测量光电管两极间的电压,E为电源,R提供的分压可以改变光电管两极间的电势差。

单色光照射到光电管的阴极K上产生光电效应时,逸出的光电子在电场的作用下由阴极向阳极运动,并且在回路中形成光电流。

当阳极A电势为正,阴极K电势为负时,光电子被加速。

大学物理实验报告系列之光电效应

大学物理实验报告系列之光电效应
3.3
17
3.9
4.1
8.5
4.6
3.4
18
4.1
4.3
8.8
4.8
3.5
19
4.3
4.4
9.1
4.9
3.5
20
4.4
4.6
9.4
5.0
3.6
21
4.6
4.7
9.6
5.1
3.7
22
4.8
4.8
9.9
5.2
3.7
23
4.9
4.9
10.2
5.5
3.8
24
5.1
5.1
10.4
5.5
3.8
25
5.2
5.2
ห้องสมุดไป่ตู้10.6
13.0
6.3
4.3
43
7.3
6.5
13.1
6.3
4.3
44
7.4
6.6
13.2
6.3
4.3
45
7.4
6.7
13.3
6.3
4.4
46
7.5
6.7
13.4
6.4
4.4
47
7.6
6.8
13.5
6.4
4.4
48
7.7
6.8
13.5
6.4
4.4
49
7.8
6.8
13.6
6.4
4.4
50
7.9
6.9
13.7
6.5
5.6
3.9
26
5.4
5.3
10.8
5.7
3.9

科学实验报告光电效应

科学实验报告光电效应

科学实验报告光电效应科学实验报告:光电效应摘要:光电效应是描述光和物质相互作用的基本现象之一。

本实验以镁为实验材料,研究光电效应。

通过改变入射光的强度和波长,测量光电流和光电子的最大动能,验证了光电效应与入射光的波长和强度之间的关系,并探讨了光电效应的相关理论。

引言:光电效应是指当光照射到金属表面时会产生电子的现象。

该现象对于多个领域的研究和应用都具有重要意义,比如光电池、光电二极管等。

本实验目的是通过对光电效应的研究,了解入射光的强度和波长对光电子的最大动能和光电流的影响,以验证光电效应的相关理论。

方法:1. 实验材料准备:a. 镁片:用研磨纸将镁片打磨至表面光洁。

b. 光电管:将镁片放入光电管的光敏材料槽内。

c. 光电流计:连接光电管输出端和光电流计输入端。

2. 实验步骤:a. 将光电管放置在黑暗箱内,确保周围环境光强为零。

b. 调整光电流计的灵敏度并记录。

c. 使用不同波长的光源(如红、绿、蓝光)照射光电管,记录光电流值。

d. 通过改变入射光的强度,如使用滤光片遮挡部分光线,记录相应的光电流值。

结果:1. 光电流与入射光波长的关系:a. 对于相同入射光强度,光电流随着波长的减小而增加。

b. 在可见光区域内,光电流随着波长的减小逐渐增加,但当波长小于一定值时,光电流基本保持不变。

c. 此现象符合光子能量与电子从金属中脱离所需的最小能量之间的关系。

2. 光电流与入射光强度的关系:a. 光电流随着入射光强度的增加而增加。

b. 适当增大入射光强度可以提高光电流的值,但当光强度过大时,光电流趋于饱和。

讨论:光电效应的实验结果验证了与入射光的波长和强度相关的理论。

当入射光波长减小时,单个光子的能量增加,从而可以提供足够的能量使电子从金属中脱离。

而光电流的增加是由于更多的光子激发了更多的电子。

然而,当波长小于一定值时,光子的能量已足够大,光电流基本保持不变。

此外,入射光强度的增加也会增加光电效应的光子入射率,从而提高光电流。

光电效应实验

光电效应实验

光电效应实验光电效应是一项非常重要的物理实验,既有理论意义,也有广泛的应用价值。

它是指当光照射到某些物质表面时,会产生电子的发射现象。

本文将介绍光电效应实验的原理、装置和实验过程。

一、实验原理光电效应实验的原理基于爱因斯坦的光电效应理论。

根据这个理论,当光子与物质发生相互作用时,能量会被传递给物质的电子。

如果光子的能量大于物质中电子的束缚能,则电子会被光子完全吸收,并从物质中脱离出来。

这就是光电效应的基本过程。

二、实验装置进行光电效应实验需要以下装置:1. 光源:可以使用一台可调光强的光源,如白炽灯或激光器。

实验中采用不同波长和强度的光源可以验证光电效应的特性和规律。

2. 光电管:它是实验的关键器件。

光电管由阴极、阳极和光敏表面组成。

阴极通常由碱金属或碱土金属构成,阳极则连接在电路上。

光敏表面覆盖了特殊的材料,如铯或钾。

3. 电路和电流计:正确连接光电管和电流计的电路,以测量光电管中的电流。

三、实验过程在进行光电效应实验之前,需要进行以下步骤:步骤一:连接电路将光电管的阴极和阳极分别连接到适当的输入和输出端口。

通过适当的电缆,将电流计接入电路中。

确保连接正确无误,以避免误差。

步骤二:调整光源选择一定强度和波长的光源,并将其位置调整到与光电管的光敏表面平行。

根据实验要求,可以逐步调整光源的强度,观察光电流的变化。

步骤三:记录数据通过电流计,记录不同光源强度下的光电流值。

可以调整光源的距离和角度,观察光电流的变化趋势。

步骤四:分析结果根据实验数据,绘制光电流随光源强度变化的曲线。

通过分析曲线的形状和趋势,可以得出光电效应的一些特性和规律。

四、实验结果分析实验结果通常呈现出以下几个特点:1. 光电流与光源强度成正比:当光源强度不断增加时,光电流也会相应增加。

这表明光电效应是一种与光源强度直接相关的现象。

2. 光电流与光源波长有关:不同波长的光源对光电流的影响不同。

实验中可以观察到当波长较短的光源照射时,光电流会更强。

光电效应实验报告

光电效应实验报告

光电效应实验报告摘要:光电效应是一种困扰科学家长时间的现象,它揭示了光的粒子性质。

本实验通过观察在不同条件下,光对金属表面产生的电流变化,来研究光电效应的特性。

实验结果表明,光电效应不仅与光的频率有关,还与光的强度有关。

实验对于光电效应的研究具有一定的指导意义。

1.引言光电效应是指当光照射到金属表面时,金属表面会产生电流的现象。

光电效应的研究对于理解光的本质、验证量子理论以及发展光电子技术等领域具有重要意义。

本实验旨在通过观察光照射对金属表面产生的电流变化来研究光电效应的特性。

2.实验原理光电效应的理论基础是爱因斯坦提出的光量子假设。

根据该假设,光的能量是以光子的形式传播的,一个光子的能量与其频率成正比。

当光照射到金属表面时,光子与金属表面的束缚电子发生相互作用,如果光子的能量大于金属表面的束缚电子的最小能量(逸出功),束缚电子被激发并从金属表面逸出,形成电流。

3.实验装置和方法实验装置主要包括单色光源、金属样品、电离室、电压源和电流计。

实验方法是将金属样品安装在电离室的荧光参与槽中,利用单色光源照射金属样品,调节电压源的电压,测量电离室内的电流。

4.实验结果和分析根据实验结果,我们得到了光照射下不同电压下的电流数据。

(1)光电效应的电流与光源的频率有关。

在固定光源强度的情况下,电流随光源频率的增加而增加。

这是因为光子的能量与其频率成正比,当光源频率增加时,光子的能量增加,有足够的能量逸出金属表面的束缚电子也就增加。

(2)光电效应的电流与光源的强度有关。

在固定光源频率的情况下,电流随光源强度的增加而增加。

这是因为光的强度决定了光子的数量,光子的数量增加,与金属表面相互作用的概率也就增加了。

(3)光电效应的电流与电压有关。

在固定光源频率和强度的情况下,电流随电压的增加而增加,但达到一个饱和值后趋于稳定。

这是因为随着电压的增加,电子获得的能量也增加,逸出金属表面的电子数量增多,但金属中自由电子数量是有限的,当电子数量达到饱和时,电流不再增加。

光电特性实验报告

光电特性实验报告

光电特性实验报告光电特性实验报告引言:光电特性是物质与光的相互作用过程中产生的电学现象。

通过对光电特性的研究,可以深入了解光与物质之间的相互作用机制,为光电器件的设计和应用提供理论基础。

本实验旨在通过测量光电效应、光电流与光照强度之间的关系,探索光电特性的基本规律。

实验一:光电效应的测量光电效应是指当光照射到金属表面时,金属释放出电子的现象。

本实验中,我们使用了一块金属板作为光电效应的观测对象。

首先,我们将金属板放置在真空室中,并通过调节光源的强度和波长来改变光照条件。

随后,我们使用电压表测量金属板上的电压变化。

实验结果显示,随着光照强度的增加,金属板上的电压也随之增加。

这一结果表明,光照强度对于光电效应是一个重要的影响因素。

实验二:光电流的测量光电流是指在光照射下,金属板上产生的电流。

为了测量光电流,我们使用了一个光电池,它是一种能将光能转化为电能的器件。

在实验中,我们将光电池连接到电流表上,并将光源照射到光电池表面。

随着光照强度的增加,光电池上的电流也随之增加。

实验结果显示,光电流与光照强度之间存在着线性关系。

这一结果表明,光照强度对于光电流的大小具有直接影响。

实验三:光电效应与波长的关系在实验中,我们使用了不同波长的光源,通过测量光电效应的电压变化来研究光电效应与波长的关系。

实验结果显示,随着波长的减小,金属板上的电压变化也随之减小。

这一结果表明,波长对于光电效应具有重要的影响。

较短的波长能够导致更高的光电效应,这与光子能量与波长之间的关系相一致。

实验四:光电效应与金属材料的关系在实验中,我们使用了不同金属材料的金属板,通过测量光电效应的电压变化来研究光电效应与金属材料的关系。

实验结果显示,不同金属材料的光电效应存在着明显的差异。

有些金属材料具有较高的光电效应,而有些金属材料则具有较低的光电效应。

这一结果表明,金属材料的选择对于光电器件的设计和应用具有重要意义。

结论:通过本次实验,我们深入了解了光电特性的基本规律。

(整理)光电效应实验

(整理)光电效应实验

光电效应一、实验目的1.通过光电管I-U特性曲线的测定,熟悉光电效应的规律。

2.了解光的量子性,测定金属红线的频率。

3.验证爱因斯坦光电效应方程,计算普朗克常量。

二、实验原理1、光电效应的实验规律1887年赫兹发现,当一束光照射在金属表面上时,会有电子从金属表面逸出,这一现象称为光电效应,释放出的电子称为光电子。

研究光电效应的实验装置如图1所示,光电管中K为涂有感光金属层的阴极,A为阳极。

图1三、实验发现I与入射光强P成正比(见图2)。

(1)当入射光频率保持不变时,饱和光电流s10 秒),一经照射立即有光电子产生。

(2)引起光电效应的时间极短(不超过9(3)光电子的初动能随入射光频率的增大而增大,与光强无关(见图3)。

(4)存在一个阈频率0V ,称为金属的红限,当入射光频率低于0V 时,无论入射光有多强,都没有电子逸出(见图4)。

图42、爱因斯坦的光子论及对光电效应的解释爱因斯坦认为光是一粒一粒以光速运动的粒子流,这些粒子称为光子或光量子,其能量为h νε=,光的强弱决定于光子的多少,因而光电流正比于入射光的强度,当金属中的电子吸收光子的能量νh 克服金属表面的逸出功A 逸出表面时,光电子的最大初动能为2/2mV ,三者关系为:A mV h +=221ν此式称为爱因斯坦光电效应方程,式中022/eU mV =,0U 为反向截止电压,令0νh A =,上式可变为:)ν-ν(00eh U = 这表明截止电压随入射光频率作线形变化,如图4所示,该直线在ν轴上的截距为金属的红限0ν,入射光的频率只有高于0ν才有光电子产生。

直线在0U 轴上的截距为0Φ-,0Φe A =,0Φ为阴极逸出电压,直线的频率为e h /,据此可求出普朗克常量的数值。

三、试验仪器用具本实验采用GD--1型光电效应测试仪,其结构原理如图5所示主要部件及技术条件简要介绍如下:1.光电管及暗盒:光电管开有石英侧窗式光窗口,光谱范围为190.0~700.0nm ,最大工作电压为100v 。

光电效应实验的四大实验现象

光电效应实验的四大实验现象

光电效应实验的四大实验现象以光电效应实验的四大实验现象为标题,我们将详细介绍这些实验现象及其相关知识。

光电效应是指当光照射到金属表面时,金属会发射出电子的现象。

这一现象的实验研究对于量子力学的发展起到了重要的推动作用。

一、光电效应的第一大实验现象:光电流的存在在光电效应实验中,我们可以观察到一种称为光电流的电流现象。

当光照射到金属表面时,金属会发射出电子,这些电子在电场的作用下形成电流。

实验中可以使用电流计来测量这一光电流。

通过改变光的强度和频率,我们可以发现光电流与光的强度和频率之间存在着一定的关系。

二、光电效应的第二大实验现象:阈值频率在光电效应实验中,我们发现只有当光的频率超过一定的阈值频率时,金属才会发生光电效应,即发射出电子。

这个阈值频率与金属的性质有关,不同金属的阈值频率不同。

实验中可以通过改变光的频率,观察到金属发射电子的变化情况。

这一实验现象表明光的频率对光电效应起到了重要的影响。

三、光电效应的第三大实验现象:光电子能量与光的频率的关系在光电效应实验中,我们可以通过测量光电子的最大动能来研究光电子的能量。

实验中我们发现,光电子的最大动能与光的频率呈线性关系,即光的频率越高,光电子的最大动能越大。

这一实验结果与经典物理学的理论不符,而是符合了爱因斯坦提出的光量子假设。

光子的能量与光的频率成正比关系,光电子的最大动能取决于吸收光子能量的能力。

四、光电效应的第四大实验现象:光电子的速度分布在光电效应实验中,我们可以通过测量光电子的速度分布来研究光电子的运动情况。

实验中我们发现,光电子的速度分布与光的频率和强度有关。

当光的频率超过阈值频率时,光电子的速度分布呈连续的形态,即速度范围从零到最大值。

而当光的频率低于阈值频率时,光电子的速度分布呈离散的形态,只有在特定的速度范围内才能观察到光电子。

这一实验现象进一步验证了光电效应与光子假设的一致性。

光电效应实验的四大实验现象包括光电流的存在、阈值频率、光电子能量与光的频率的关系和光电子的速度分布。

光电效应实验报告.

光电效应实验报告.

光电效应实验报告.光电效应实验报告引言光电效应是指当光照射到金属表面时,金属释放出电子的现象。

这一现象的发现对于量子物理学的发展具有重要意义。

本实验旨在通过实际操作,观察和研究光电效应,并探究其相关的物理原理。

实验装置实验装置主要包括:光源、金属板、电压表、电流表、电源等。

光源采用高亮度的LED灯,金属板选用铝材料,电压表和电流表用于测量电压和电流的变化。

实验步骤1. 将实验装置搭建好,确保电路连接正确,并保持实验环境的稳定。

2. 将金属板置于光源的照射下,并通过电压表和电流表记录下光照强度和电流的变化。

3. 逐渐调整电压,观察电流的变化情况,并记录下相关数据。

4. 分别改变光源的距离和金属板的面积,观察光电效应的变化规律。

实验结果在实验过程中,我们观察到以下现象和结果:1. 随着光照强度的增加,电流逐渐增大,但存在一个临界值,超过该临界值后电流基本保持不变。

2. 当改变光源的距离时,电流的变化与距离的平方成反比。

3. 当改变金属板的面积时,电流的变化与面积成正比。

讨论与分析基于实验结果,我们可以得出以下结论:1. 光电效应的发生与光照强度有关,当光照强度超过一定临界值时,金属表面的电子会被激发出来。

2. 光电效应的电流与光源的距离成反比,这是因为光的强度随着距离的增加而减弱,导致电子产生的动能减小。

3. 光电效应的电流与金属板的面积成正比,这是因为金属板的面积越大,光照射到的金属表面积也越大,从而激发出的电子数量增多。

进一步探索在实验的基础上,我们可以进一步探索以下问题:1. 光电效应与光的频率有关吗?是否存在特定频率的光才能激发出电子?2. 光电效应是否与金属的材料有关?不同金属是否会有不同的光电效应?3. 是否存在其他因素会影响光电效应的发生,比如温度、压力等?结论通过本次实验,我们对光电效应有了更深入的了解。

光电效应的发生与光照强度、距离和金属板的面积等因素密切相关。

进一步研究光电效应的机制和影响因素,有助于我们更好地理解量子物理学的基本原理,并在光电器件的设计和应用中发挥重要作用。

光电效应四大实验现象

光电效应四大实验现象

光电效应四大实验现象光电效应是指当光线照射到物质表面时,如果光的能量足够大,就会引发一系列的现象。

以下是光电效应的四大实验现象。

一、光电子发射现象光电子发射是光电效应的核心现象之一。

实验中,我们使用一个真空中的金属表面,照射光线到金属上,发现金属表面会发射出电子。

这表明光子能够将一部分能量传递给金属中的自由电子,使其脱离金属的束缚,从而产生电子发射现象。

二、阴极射线现象阴极射线现象是光电效应的另一个重要实验现象。

在实验中,我们使用真空管内的阴极,在阴极上加上高压电,然后通过阴极射线管在阴极和阳极之间加上电压。

当光照射到阴极上时,阴极就会发射出一束射线,这就是阴极射线。

阴极射线是由阴极表面被光子击中后产生的电子流,它们受电场力作用被加速并形成一束束的射线。

三、阻止电压现象阻止电压现象是光电效应的重要实验现象之一。

在实验中,我们使用一个电路,将光电池连接到一个电压源上,在光电池的阳极上加上不同大小的正电压。

当光照射到光电池时,我们会发现,只有当正电压大于等于一个特定的阻止电压时,电路中才会有电流通过。

这表明当光电子的动能小于阻止电压时,它们无法克服电场力的作用,无法形成电流。

四、光电流的光强和频率关系实验中发现,光电流的大小与光的强度和频率有关。

当光的强度增加时,光电流的大小也随之增加。

而当光的频率增加时,光电流的大小也随之增加。

这说明光电效应与光的能量有关,光的能量越大,光电效应越明显。

光电效应的四大实验现象包括光电子发射现象、阴极射线现象、阻止电压现象和光电流的光强和频率关系。

这些实验现象的发现和研究,使我们更加深入地了解了光电效应的本质和规律,为光电技术的发展做出了重要贡献。

大物实验报告光电效应

大物实验报告光电效应

大物实验报告光电效应实验报告:光电效应一、实验目的1.了解光电效应的现象和基本原理。

2.学习使用光电效应实验设备并掌握相关的实验技术。

3.通过实验数据分析,理解光电效应中光电子的能量与光频率的关系。

4.学习使用作图软件处理实验数据。

二、实验原理光电效应是指光子通过照射金属表面,使金属表面的电子吸收光子能量并克服金属内部的电场力束缚,从而离开金属表面的现象。

这个过程可以用爱因斯坦的光电效应方程来描述:E = hν - Φ其中E是光电子的最大动能,h是普朗克常数,ν是光频率,Φ是金属的功函数。

三、实验设备和方法1.光电效应实验装置2.光源(如汞灯)及其光学系统3.电子计数器4.数据采集和处理系统四、实验步骤和数据记录1.开启光源并调整其波长至预设值。

2.将光电效应实验装置和电子计数器连接并开启。

3.调整光源与金属板的距离,保证有明显的光电效应产生。

4.使用电子计数器记录不同波长的光源照射下的光电流,并保存数据。

1.根据实验数据,可以计算出光电子的最大动能E。

根据爱因斯坦的光电效应方程,可以得出光电子的最大动能E与光频率ν的关系图。

2.通过分析光电流与波长的关系,可以得出金属的功函数Φ。

当光子能量大于或等于金属功函数时,才会有光电子产生。

因此,通过分析光电流与波长的关系,可以得出金属的功函数Φ。

3.通过分析实验数据,可以验证爱因斯坦光电效应方程的正确性。

将实验数据代入爱因斯坦光电效应方程中,可以得出一条直线,从而验证了爱因斯坦光电效应方程的正确性。

4.使用作图软件(如Microsoft Excel)将实验数据进行图形化处理,可以得出光电子最大动能E与光频率ν的关系图和光电流与波长的关系图。

这些图形可以帮助我们更好地理解和分析实验数据。

六、结论通过本次实验,我们观察到了光电效应的现象并验证了爱因斯坦光电效应方程的正确性。

我们还学会了使用光电效应实验设备并掌握了相关的实验技术,以及使用作图软件处理实验数据的方法。

光电效应实验报告

光电效应实验报告

光电效应实验报告光电效应实验报告一、实验目的:1. 理解和掌握光电效应的基本原理和特性;2. 能够用实验证实和验证光电效应的关键参数与光源强度、金属材料、光频等因素之间的关系;3. 探究光电效应与光的性质之间的关联。

二、实验仪器和材料:1. 光电效应实验装置(包括光电池、光电管、电路等);2. 激光器或其他合适的光源。

三、实验原理:光电效应是指当光照射到金属表面时,金属会吸收光能,并将其转化为电能的现象。

其中,光电效应的关键参数为光电子的最大动能Kmax和光电子的停止电压V0,其与光源的光强、金属的功函数以及光频有关。

四、实验步骤:1. 将实验仪器接线好,并确认电路连接是否正确;2. 将光电池或光电管置于黑暗中,并通过电压表测试其电压为零;3. 打开光源,调整其距离光电池或光电管适当的远;4. 缓慢靠近光源,观察光电池或光电管的电压变化,并记录;5. 分别改变光源光强和光频,观察其对光电效应的影响。

五、实验结果与分析:1. 实验记录数据表明,当光源光强逐渐增强时,光电池或光电管的电压呈线性增加,并最终趋于一个定值;2. 实验进一步验证,光电效应与金属材料的功函数和光频有关。

当光源光频变化时,光电池或光电管的电压也会发生变化,并与功函数和光频之间存在一定关系。

六、实验结论:根据本实验的结果与分析,可以得出以下结论:1. 光电效应的关键参数与光源的光强、金属材料的功函数以及光频之间存在一定的关系;2. 光电效应的电压与光源光强呈线性关系,并与光源的光频相关。

七、实验总结:通过本次实验,我深入了解了光电效应的基本原理和特性。

实验结果与预期相符,验证了光电效应的关键参数与光源强度、金属材料、光频之间的关系。

通过实验过程,我也对实验仪器和操作方法有了更深的了解。

在今后的学习和研究中,我将更加深入地探究光电效应与光的性质之间的关联,为相关领域的研究提供一定的基础。

实验四 光 电 效 应

实验四 光 电 效 应

图2光电流与入射光强度的关系实验四 光 电 效 应在物理学史上,光电效应现象的发现,对光的本性------波粒二象性的认识,具有极为重要的意义,它给量子论以直观,明确的论证.光电效应有助于学习和理解量子理论。

【实验目的】1、 了解光的量子性,光电效应的规律,加深对光的量子性的理解。

2、 验证爱因斯坦方程,并测定普朗克常数h 。

3、 学习作图法处理数据。

【实验仪器】1、 光源用高压汞灯做光源,配以专用镇流器,光谱范围为320.3nm~872.0nm 可用谱线为365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 共五条强线谱线。

2、 滤光片滤光片的主要指标时半宽度和透过率。

透过某种谱线的滤光片不允许其附近的谱线透过(我们精心设计制作了一组高性能的滤光片,保证了在测量某一谱显时无其他谱线干扰,避免了谱线相互干扰带来的测量误差)。

高压汞灯发出的可见光中,强度较大的谱线有5条,仪器配以相应的5种滤光片。

3、光电管暗盒采用测h 专用光电管,由于采用了特殊结构,使光不能直接照射到阳极,由阴极发射照到阳极的光也很少,加上采用新型的阴、阳极材料及制造工艺,使得阳极反向电流大大降低,暗电流也很低(≤2×10-12A )。

4、微电流测量仪在微电流测量中采用了高精度集成电路构成电流放大器,对测量回路而言,放大器近似于理想电流表,对测量回路无影响,使测量仪具有高灵敏度(电流测量范围10-18~10-13A )搞稳定性(零漂小于满刻度的0.2%),从而使测量精度、准确度大大提高。

测量结果由三位半LED 显示。

5、 光电管工作电源普朗克常数测量仪提供了两组光电管工作电源(-2~+2V,-2~+30V ),连续可调,精度为0.1%,最小分辨率为0.01伏,电压值由三位半LED 数显。

【实验原理】光电效应实验原理如图1所示:其中S 为真空光电管,K 为阴极,A 为阳极,当无光照射阴极时,由于阴极与阳极是断路,所以检流计G 中无电流通过,当用一波长比较短的单色光照射到阴极K 上时,将形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图2所示。

光电效应的四个实验规律

光电效应的四个实验规律

光电效应的四个实验规律光电效应的四个实验规律可有趣啦!一、存在截止频率当照射光的频率低于某个特定的值时,不管光的强度有多大,都不会有光电子逸出。

就好像是一个门槛一样,频率达不到,光电效应就不会发生。

这就好比我们去参加一个高端派对,要是没有达到人家要求的最低身份标准,再怎么打扮得花枝招展、带着再多的礼物(类比光强很大),保安也不会让我们进去的。

只有频率达到或者超过这个截止频率,才有产生光电效应的可能。

二、光电子的最大初动能与入射光频率有关入射光的频率越高,光电子的最大初动能就越大。

这就像是我们参加一场跑步比赛,发令枪响的声音越大(类比频率越高),那运动员(光电子)起跑时的冲劲就越大。

而光的强度呢,只影响光电流的大小,并不影响光电子的最大初动能。

这就像在比赛现场,观众的欢呼声大小(类比光强)并不会影响运动员起跑时自身的冲劲,只会影响起跑那一刻的热闹程度(类比光电流大小)。

三、光电效应具有瞬时性只要光的频率高于截止频率,那么光一照射到金属表面,几乎是瞬间就会有光电子逸出。

这速度快得就像闪电一样。

你想啊,就好像是一个特别灵敏的开关,只要达到了触发的条件(频率达标),马上就有反应。

不像有些事情还得拖拖拉拉的,光电效应在这方面可干脆利落了。

四、光电流与入射光强度成正比在频率不变的情况下,入射光的强度越大,光电流就越大。

这就像是水龙头放水,如果水龙头的出水速度(类比光的频率)不变,那我们把水龙头开得越大(类比光强越大),单位时间内流出来的水(类比光电流)就越多。

这个规律也是光电效应很重要的一个特性呢。

光电效应的这四个实验规律就像是四个小伙伴,各自有着独特的性格特点,但组合在一起就完整地诠释了光电效应这个奇妙的现象。

光电效应实验报告

光电效应实验报告

一、 引言当光束照射到金属表面时,会有电子从金属表面逸出,这种现象被称之为“光电效应”。

对于光电效应的研究,使人们进一步认识到光的波粒二象性的本质,促进了光的量子理论的建立和近代物理学的发展。

现在观点效应以及基于其理论所制成的各种光学器件已经广泛用于我们的生产生活、科研、国防军事等领域。

所以在本实验中,我们利用光电效应测试仪对爱因斯坦的方程进行验证,并且测出普朗克常量,了解并用实验证实光电效应的各种实验规律,加深对光的粒子性的认识。

二、 实验原理1. 光电效应就是在光的照射下,某些物质内部的电子背光激发出来形成电流的现象;量子性则是源于电磁波的发射和吸收不连续而是一份一份地进行,每一份能量称之为一个能量子,等于普朗克常数乘以辐射电磁波的频率,即E=h*f (f表示光子的频率)。

2. 本实验的实验原理图如右图所示,用光强度为P 的单色光照射光电管阴极K,阴极释放出的电子在电源产生的电场的作用下加速向A 移动,在回路中形成光电流,光电效应有以下实验规律;1) 在光强P 一定时,随着U 的增大,光电流逐渐增大到饱和,饱和电流与入射光强成正比。

2) 在光电管两端加反向电压是,光电流变小,在理想状态下,光电流减小到零时说明电子无法打到A,此时eUo=1/2mv^2。

3) 改变入射光频率f 时,截止电压Uo 也随之改变,Uo 与f 成线性关系,并且存在一个截止频率fo,只有当f>fo 时,光电效应才可能发生,对应波长称之为截止波长(红限),截止频率还与fo 有关。

4) 爱因斯坦的光电效应方程:hf=1/2m(Vm)^2+W,其中W 为电子脱离金属所需要的功,即逸出功,与2)中方程联立得:Uo=hf/e – W/e 。

光电效应原理图3.光阑:光具组件中光学元件的边缘、框架或特别设置的带孔屏障称为光阑,光学系统中能够限制成像大小或成像空间范围的元件。

简单地说光阑就是控制光束通过多少的设备。

主要用于调节通过的光束的强弱和照明范围。

光电效应实验的结论

光电效应实验的结论

光电效应实验的结论
光电效应实验的结论:光子具有粒子性和波动性
光电效应是指当光子(光的基本粒子)照射到金属表面时,会使金属表面的电子发生运动,从而产生电流。

这一现象在物理学中被称为光电效应。

通过对光电效应的实验研究,我们可以得出结论:光子具有粒子性和波动性。

光子具有粒子性。

在光电效应实验中,我们使用了光子的粒子性来解释电子的运动。

当光子照射到金属表面时,它会与金属表面的电子发生碰撞,将一部分能量传递给电子。

如果光子的能量足够大,那么电子就能够克服金属表面的束缚力,从而逃离金属表面。

这就是光电效应中电子的发射现象。

这一现象表明,光子具有粒子性,它们能够与物质发生相互作用,从而影响物质的性质。

光子具有波动性。

在光电效应实验中,我们使用了光子的波动性来解释电子的能量。

根据波粒二象性理论,光子既可以被看作是粒子,也可以被看作是波动。

当光子照射到金属表面时,它的波动性会影响电子的能量。

根据波动性理论,光子的能量与它的频率成正比。

因此,当光子的频率增加时,它的能量也会增加。

这就是为什么只有高频率的光子才能够将电子从金属表面上释放出来。

这一现象表明,光子具有波动性,它们能够传播能量和动量,从而影响物质的运动状态。

光电效应实验的结论是:光子具有粒子性和波动性。

这一结论对于我们理解光子的本质和物质的性质具有重要意义。

通过对光子的粒子性和波动性的研究,我们可以更好地理解光的本质和物质的相互作用,从而推动物理学的发展。

光电效应实验

光电效应实验

光电效应实验引言光电效应是研究光与物质相互作用的重要现象,它在现代物理学中具有重要的理论和实验意义。

本文将介绍光电效应实验的基本原理、实验装置以及实验步骤。

基本原理光电效应是指当光照射到金属表面时,当光的频率达到一定值时,会导致金属表面发生电流。

根据经典理论,当光照射到金属表面时,光子的能量被金属吸收,电子会从金属的束缚态跃迁到导带中,形成电流。

根据光电效应理论,可以推导出光电流与光的强度、频率以及金属的特性之间的关系。

实验装置实验装置主要包括以下几个部分: 1. 光源:使用高亮度的白光LED作为光源,光源能够发出连续的宽频谱光。

2. 光电管:选择具有良好的光电效应的光电管,如氢光电管等。

3. 电路部分:包括电源、电阻、电流表和电压表等组成的电路,用于测量光电管产生的电流和电压。

4. 实验台架:用于固定光源和光电管,以保证实验的稳定性。

实验步骤1.将实验装置搭建好,确保光源和光电管的位置稳定。

2.打开电源,调节电压和电阻,使得电流表和电压表均正常工作。

3.记录光电管的基本参数,如光电流和光电压等。

4.调节光源的亮度,记录不同亮度下的光电流变化。

5.保持光源的亮度不变,改变光源的频率,记录不同频率下的光电流变化。

6.基于实验数据,绘制光电流与光源频率、亮度之间的关系曲线。

7.分析实验结果,并结合理论,探讨光电效应的特性。

实验结果与讨论通过实验我们得到了光电流与光源频率、亮度之间的关系曲线,并发现了以下几个实验现象: 1. 当光源频率低于某个临界频率时,无论光源亮度如何变化,光电流都非常小,基本接近于零。

2. 当光源频率超过了临界频率时,光电流迅速增加,并与光源亮度和频率呈正相关关系。

3. 当光源频率超过了一定值后,光电流不再随着光源亮度和频率的增加而增加,而是趋于饱和。

这些实验结果与光电效应理论相吻合,证明了光电效应的基本原理。

此外,通过对实验数据的处理和分析,还可以计算出光电效应的一些重要参数,如光电子的动能和逸出功等。

光电效应实验报告

光电效应实验报告

光电效应实验报告引言:光电效应是一个重要的物理现象,它揭示了光与物质之间的相互作用机制。

通过实验我们可以进一步探索光电效应的规律,并了解一些与之相关的原理和应用。

在本次实验中,我们将通过一系列实验步骤和数据分析,深入研究光电效应的特性和规律。

实验材料与方法:实验所需材料包括:光电效应装置、连续可调光源、电流放大器、万用表、电流调节器等。

具体实验步骤如下:1. 准备工作:将实验装置放在暗室中,确保背景没有干扰光源的杂散光。

2. 搭建实验装置:将光电效应装置安装在实验台上,调节连续可调光源的强度和波长。

3. 准备测量设备:将电流放大器和万用表连接到电路中,注意调节电流调节器从而确保电流的稳定。

4. 进行实验:根据实验要求,逐步改变光照强度和波长,并记录相应的电流值。

实验结果与数据分析:通过实验记录的数据,我们可以进行一些分析和计算,以揭示光电效应的特性和规律。

1. 光照强度和电流的关系:我们可以通过改变光照强度,分别记录并比较相应的电流数值。

结果显示,随着光照强度增加,电流也随之增加。

这表明,光的能量与电流之间存在着直接的比例关系。

2. 波长对电流的影响:通过改变光源的波长,我们可以观察到不同波长下电流的变化情况。

实验结果显示,在可见光波段内,光的波长减小时,光电流呈现出增大的趋势。

这是因为根据普朗克能量量子化定律,光子的能量与波长成反比关系。

3. 截止电压的测量:我们可以通过实验获取到光电效应中的截止电压。

通过调节连续可调光源的强度,当电流达到零时,所对应的电压即为截止电压。

实验结果表明,截止电压与光源的波长有关,随着波长的增加,截止电压逐渐减小。

结论与讨论:通过本次实验,我们深入了解了光电效应的特性和规律。

我们得到的实验结果表明光照强度、波长和截止电压之间存在着一定的关系,并符合光电效应的理论预测。

我们还可以进一步讨论一些与光电效应相关的实际应用。

例如,光电效应的原理在太阳能电池中得到了应用,利用光电转换将太阳能转化为电能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四 光 电 效 应在物理学史上,光电效应现象的发现,对光的本性------波粒二象性的认识,具有极为重要的意义,它给量子论以直观,明确的论证.光电效应有助于学习和理解量子理论。

【实验目的】1、 了解光的量子性,光电效应的规律,加深对光的量子性的理解。

2、 验证爱因斯坦方程,并测定普朗克常数h 。

3、 学习作图法处理数据。

【实验仪器】1、 光源用高压汞灯做光源,配以专用镇流器,光谱范围为320.3nm~872.0nm 可用谱线为365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 共五条强线谱线。

2、 滤光片滤光片的主要指标时半宽度和透过率。

透过某种谱线的滤光片不允许其附近的谱线透过(我们精心设计制作了一组高性能的滤光片,保证了在测量某一谱显时无其他谱线干扰,避免了谱线相互干扰带来的测量误差)。

高压汞灯发出的可见光中,强度较大的谱线有5条,仪器配以相应的5种滤光片。

3、光电管暗盒采用测h 专用光电管,由于采用了特殊结构,使光不能直接照射到阳极,由阴极发射照到阳极的光也很少,加上采用新型的阴、阳极材料及制造工艺,使得阳极反向电流大大降低,暗电流也很低(≤2×10-12A )。

4、微电流测量仪在微电流测量中采用了高精度集成电路构成电流放大器,对测量回路而言,放大器近似于理想电流表,对测量回路无影响,使测量仪具有高灵敏度(电流测量范围10-18~10-13A )搞稳定性(零漂小于满刻度的0.2%),从而使测量精度、准确度大大提高。

测量结果由三位半LED 显示。

5、 光电管工作电源普朗克常数测量仪提供了两组光电管工作电源(-2~+2V,-2~+30V ),连续可调,精度为0.1%,最小分辨率为0.01伏,电压值由三位半LED 数显。

【实验原理】光电效应实验原理如图1所示:其中S 为真空光电管,K 为阴极,A 为阳极,当无光照射阴极时,由于阴极与阳极是断路,所以检流计G 中无电流通过,当用一波长比较短的单色光照射到阴极K 上时,将形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图2所示。

光电流随加速电位差U 电位差增加到一定量值后,光电流达到饱和值I H ,饱和电流与光强成正比,而与入射光的频率无关。

当U A =U A -U K 变成负值时,光电流迅速减少。

实验指出,有一个遏制电位差Ua 存在,当电位差达到这个值时,光电流为零。

1、 光电子的初动能与入射光频率之间的关系光电子从阴极逸出时,具有处动能,在减速电压下,光电子逆着电场力方向由K 极向A 极运动,当U=Ua 时,光电子不再能达到A 极,光电流为零,所以电子的初动能等于它克服电场力所做的功,即:a eU mv =221 (1)根据爱因斯坦关于光的本性的假设,光是一粒一粒运动着的粒子流,这些光粒子称为光子,每一光子的能量为E=hv ,其中h 为普朗克常量,v 为光波频率,所以不同频率的光波对应光子的能量不同,光电子吸收了光子的能量hv 之后,一部分消耗于克服电子的逸出功A,另一部分转换为电子动能,由能量守恒定律可知:A mv h +=221ν (2)式(2)称为爱因斯坦光电效应方程。

由此可见,光电子的初动能与入射光频率v 呈线性关系,而与入射光的强度无关。

2、 光电效应有光电阈存在实验指出,当光的频率V<V 0时,不论用多强的光照射到物质都不会产生光电效应,根据式(2),V 0=A/h ,V 0称为红限。

爱因斯坦光电效应方程同时提供了测量普朗克常数的一种方法:由式(1)和(2)可得:A U e h +=0ν , 当用不同频率(V 1,V 2,V 3 Vn )的单色光分别作光源时,就有:A U e h +=11ν ,A U e h +=22ν , ……..., A U e h n n +=ν任意联立其中两个方程就可得到:ji j i v v U U e h --=)( (3)由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常数h,也可由V-U 直线的斜率求出h 。

因此,用光电效应方法测量普朗克常数的关键在于获得单色光,测量光电管的伏安特性曲线和确定遏止电位差值。

实验中,单色光可由汞灯光源经过滤光片选择谱线产生,汞灯是一种气体放电电源,点燃稳定后,在可见光区域内有几条波长相差较远的强谱线,与滤光片联合作用后可产生需要的单色光。

表 1、 可见光区汞灯强谱线435.8 6.882 蓝404.7 7.410 紫365.0 8.216 近紫外为了获得准确的遏止电位差值,本实验用的光电管应该具备下列条件:①、对所有可见光谱都比较灵敏。

②、阳极包围阴极,这样当阳极为负电位时,大部分光电子仍能射到阳极。

③、阳极没有光电效应,不会产生反电流。

④、暗电流很小。

但是实际使用的真空型光电管并不完全满足以上条件,由于存在阳极光电效应所引起的反向电流和暗电流(即无光照射时的电流),所以测得的电流值,实际上包括上述两种电流和由阴极光电效应所产生的正向电流三个部分,所以伏安曲线并不与U轴相切,由于暗电流是由阴极的热电子发射及光电管管壳漏电等原因产生,与阴极正向光电流相比,其值很小,且基本上随电位差U呈线性变化,因此可近似忽略其对遏止电位差的影响。

阳极反向光电流虽然在实验中较显著,但它服从一定的规律,据此,确定遏止电位差值可采用以下两种方法:(1)交点法光电管阳极用逸出功较大的材料制作,制作过程中尽量防止阴极材料蒸发,实验前对光电管阳极通电,减少其上溅射的阴极材料,实验中避免入射光直接照射到阳极上,这样可使它的反向电流大大减少,其伏安特性曲线与图2所示十分接近,因此曲线与U轴交点的电位差值近似等于遏止电位差Ua,此即交点法。

(2)拐点法光电管阳极反向光电流虽然较大,但在结构设计上,若使反向电流能较快的饱和,则伏安特性曲线在反向电流进入饱和段后有着明显的拐点,如图3所示,此拐点的电位差U a’即为遏止电位差。

图3【实验内容】(1)测试前准备:将测试仪及汞灯电源接通,预热20分钟。

把汞灯及光电管暗箱遮光盖盖上,将汞灯暗箱光输出口对准光电管暗箱光输入口,调整光电管与汞灯距离为约40cm并保持不变。

用专用连接线将光电管暗箱电压输入端与测试仪电压输出端(后面板上)连接起来(红-红,兰-兰)。

将“电流量程”选择开关置于所选档位,仪器在充分预热后,进行测试前调零,旋转“调零”旋钮使电流指示为000.0。

用高频匹配电缆将光电管暗箱电流输出端K与测试仪微电流输入端(后面板上)连接起来。

(2)测光电管的伏安特性曲线:将电压选择按键置于-2V~+30V,根据光电流的大小;将“电流量程”选择开关置于10-10A 或10-11A挡;将直径2mm的光阑及435.8nm的滤色片装在光电管暗箱光输入口上。

①从低到高调节电压,记录电流从零到非零点所对应的电压值作为第一组数据,以后电压每变化一定值记录一组数据到表2中。

注意:由于光电流会随光源、环境光以及时间的变化而变化,测量光电流时,选定U AK 后,应取光电流读数的平均值。

②在U AK为30V时,根据光电流的大小,将“电流量程”选择开关置于10-10A或10-9A挡,记录光阑分别为2mm,4mm,8mm时对应的电流值于表3中。

换上直径4mm的光阑及546.1nm的滤色片,重复a、b测量步骤。

用表2的数据在坐标纸上作对应于以上两种波长及光强的伏安特性曲线。

由于照到光电管上的光强与光阑面积成正比,用表3数据验证光电管的饱和光电流与入射光强度成正比。

表2、I—U关系理论上,测出各频率的光照下阴极电流为零时对应的U AK,其绝对值即该频率的截止电压,然而实际上由于光电管的阳极反向电流,暗电流,本底电流及极间接触电位差的影响,实测电流并非阴极电流,实测电流为零时对应U AK的也并非截止电压。

光电管的制作过程中阳极往往被污染,沾上少许阴极材料,入射光照射阳极或入射光从阴极反射到阳极之后都会造成阳极光电子发射,U AK为负值时,阳极发射的电子向阴极迁移构成了阳极反向电流。

暗电流和本底电流是热激发产生的光电流与杂质光照射光电管产生的光电流,可以在光电管制作或测量过程中采取适当措施以减少或消除它们的影响。

极间接触电位差与入射光频率无关,只影响U0的准确性,不影响U0-ν直线斜率,对测定h无影响。

此外,由于截止电压是光电流为零时对应的电压,如电流放大器灵敏度不够,或稳定性不好,都会给测量带来较大误差。

本实验仪器的电流放大器灵敏度高,稳定性好。

本实验采用了新型结构的光电管。

由于其特殊结构使光不能直接照射到阳极,由阴极反射到阳极的光也很少,加上使用的特殊阴阳极材料使得阳极反向电流大大减少,暗电流也很小。

由于仪器特点,在测量各谱线的截止电压U 0时,可不用难以操作的“拐点法”,而用“零电流法”或“补偿法”。

零电流法是直接将各谱线照射下测得的电流为零时对应的电压U AK 的绝对值作为截止电压U 0。

此法的前提是阳极反向电流,暗电流和本底电流都很小。

用零电流法测得的截止电压与真实值相差很小。

且各谱线的截止电压都相差ΔU ,对U 0-ν曲线的斜率无大的影响,因此对h 的测量也不会产生大的影响。

补偿法是调节电压U AK 使电流为零后,保持U AK 不变,遮挡汞灯光源,此时测得的电流I 1为电压接近截止电压时的暗电流和本底电流。

重新让汞灯照射光电管,调节电压U AK 使电流值至I 1,将此时对应的电压U AK 的绝对值作为截止电压U 0。

此法可补偿暗电流和本底电流对测量结果的影响。

测量:将选择按键置于-2V~+2V ;将“电流量程”选择开关置于10-12A,将测试仪电流输入电缆断开,调零后重新接上;将直径4mm 的光阑即365.0nm 的滤色片装在光电管暗箱光输入口上。

从低到高调节电压,用“零电流法”或“补偿法”测量该波长对应的U 0,并将数据记录到表4。

依次换上404.7nm ,435.8nm ,546.1nm,577.0nm 的滤色片,重复以上测量步骤。

表4、U 0-ν关系【数据处理】可用以下三种方法之一处理数据,得出U 0-ν直线的斜率k 。

A . 根据线性回归理论,U 0-ν直线的斜率k 的最佳拟合值为: 220vv U v U v k -⋅-⋅=其中∑==ni i v n v 11 表示频率ν的平均值∑==n i i v n v 1221 表示频率ν的平方的平均值∑==ni i U n U 1001 表示截止电压U 0的平均值∑=⋅=⋅ni i i U v n U v 1001 表示频率ν与截止电压U 0的乘积的平均值B .根据 ji ji V V U U v U k --=∆∆=000 ,可用逐差法从表的后四组数据中求出两个k ,将其平均值作为所求k 的数值。

相关文档
最新文档