开关电源技术的十大关注点
开关电源技术的十大关注点
电源一直是电子行业里非常热门的技术,而它的发展趋势又是大家必须时刻关注的问题,不然一不留神就会跟不上技术发展的步伐。
电子元件技术做了项开关电源技术发展关注焦点调查,得出来以下十个热门关注点。
关注点一:功率半导体器件性能1998年,Infineon公司推出冷mos管,它采用“超级结”(Super-Junction)结构,故又称超结功率MOSFET。
工作电压600V~800V,通态电阻几乎降低了一个数量级,仍保持开关速度快的特点,是一种有发展前途的高频功率半导体电子器件。
IGBT刚出现时,电压、电流额定值只有600V、25A。
很长一段时间内,耐压水平限于1200V~1700V,经过长时间的探索研究和改进,现在IGBT的电压、电流额定值已分别达到3300V/1200A和4500V/1800A,高压IGBT单片耐压已达到6500V,一般IGBT的工作频率上限为20kHz~40kHz,基于穿通(PT)型结构应用新技术制造的IGBT,可工作于150kHz(硬开关)和300kHz(软开关)。
IGBT的技术进展实际上是通态压降,快速开关和高耐压能力三者的折中。
随着工艺和结构形式的不同,IGBT在20年历史发展进程中,有以下几种类型:穿通(PT)型、非穿通(NPT)型、软穿通(SPT)型、沟漕型和电场截止(FS)型。
碳化硅SiC是功率半导体器件晶片的理想材料,其优点是:禁带宽、工作温度高(可达600℃)、热稳定性好、通态电阻小、导热性能好、漏电流极小、PN结耐压高等,有利于制造出耐高温的高频大功率半导体电子元器件。
可以预见,碳化硅将是21世纪最可能成功应用的新型功率半导体器件材料。
关注点二:开关电源功率密度提高开关电源的功率密度,使之小型化、轻量化,是人们不断努力追求的目标。
电源的高频化是国际电力电子界研究的热点之一。
电源的小型化、减轻重量对便携式电子设备(如移动电话,数字相机等)尤为重要。
使开关电源小型化的具体办法有:一是高频化。
开关电源功放技术的优势
开关电源功放技术的优势1.高效能:相比普通的线性功放技术,开关电源功放技术的效率更高。
普通线性功放的效率通常在30%至50%之间,而开关电源功放的效率可以达到70%至95%。
这意味着开关电源功放技术能够更有效地利用电能,减少能源浪费。
2.小体积:开关电源功放器件采用了高频开关器件,可以实现更小尺寸和轻量化的设计。
相比传统功放器件,开关电源功放器件可以在相同功率输出的情况下,体积更小,更便于安装和携带。
3.低噪音:开关电源功放器件的工作频率高,可以避免低频噪音的产生。
这使得开关电源功放器件在音频和音响设备中具有更低的噪音水平,提供更清晰、更真实的音频输出。
4.更大的带宽:开关电源功放技术可以实现更大的频率响应范围和带宽。
这意味着开关电源功放器件可以更好地保留音频信号的细节和动态范围,使音频输出更加精确和真实。
5.可靠性高:开关电源功放器件具有较高的可靠性和稳定性。
开关电源功放器件的工作温度相对较低,可以减少故障的风险。
此外,开关电源功放器件也更容易进行故障诊断和维修。
6.功率输出高:开关电源功放技术可以实现高功率输出。
这使得开关电源功放器件在需要较高功率的应用中表现出色,比如音响设备、汽车音响系统等。
7.高可控性:开关电源功放器件具有更高的可控性。
通过调整开关频率和占空比,可以精确地控制功放输出的幅度和频率特性。
这使得开关电源功放器件适用于各种应用场景,可以满足不同的需求。
综上所述,开关电源功放技术具有高效能、小体积、低噪音、更大的带宽、可靠性高、功率输出高和高可控性等诸多优势。
这些特点使得开关电源功放技术在音频、音响和其他功放应用中得到广泛应用,并且在未来的发展中有着更大的潜力。
开关电源测试要点
开关电源测试要点学习开关电源测试这么久,今天来说说关键要点。
首先呢,输入特性的测试是很重要的一部分。
像电压范围这一块,我理解就是要看看这个开关电源能在多宽的输入电压下正常工作。
比如说我们家里的电器,有些充电器,它可能标的是100 - 240V的输入电压范围,这就是通过这个测试得出来的。
测试的时候呢,要注意慢慢地调整输入电压,从最小到最大,看看电源啥时候开始不正常。
哦,对了还有个要点,那就是在调整电压的时候一定要小心,千万别一下子调得太多,不然可能会损坏电源,我之前就因为这个弄坏过一个小的电源样品,可心疼了。
再就是输出特性的测试。
输出电压的精度是必须要关注的。
我总结就是这个实际输出电压和理论输出电压不能相差太多。
比如说一个5V的电源,输出要是到之间可能还算正常,要是偏差太大,可能就会影响后面接的设备正常工作。
就像手机充电器,如果输出电压不准,可能就会发现手机充电很慢或者干脆充不进去电。
还有输出纹波的测试也不能忽视,这纹波就像水面上的小波纹似的,就是电压波动的那种细微变化。
如果纹波过大,我理解是会对负载产生干扰的。
效率的测试也很关键啊。
这个计算方法就是输出功率除以输入功率。
我觉得就像我们用水桶打水一样,输入功率就是你挑水走了多远用了多少力气,输出功率就是实际打到桶里有多少水。
要是效率低,就像你费了好大的劲,但是打到桶里的水却没多少,电源也是这样,效率低就会有很多能量浪费掉,变成热量啥的,还会影响电源的稳定性呢。
保护功能的测试可别忘了。
像过压保护,假设输入电压突然变得很大,如果沒有过压保护功能,那电源内部的元件可能就会被过高的电压打坏了。
就好比洪水来了,如果没有堤坝来防止洪水泛滥,那村子就会被淹了一样。
还有过流保护,当负载电流太大的时候,得能自动切断电源,否则电源可能就会超负荷工作然后坏掉。
不过我也知道我理解的可能还不够全面,这开关电源测试还有很多小细节需要注意。
我还在不断学习,有时候遇到新的电源类型或者特殊要求,也会把握不准测试要点。
开关电源个人总结
开关电源个人总结
开关电源是一种常用的电源转换装置,其主要功能是将交流电转化为直流电供电给电
子设备。
相较于传统的线性电源,开关电源具有效率高、体积小、重量轻、工作温度
范围广等特点,在现代电子产品中得到了广泛应用。
个人总结如下:
1. 高效率:开关电源的工作原理是通过高频开关器件的开关操作,将输入交流电转化
为高频脉冲信号,经过整流和滤波后得到稳定的直流输出。
相较于线性电源,开关电
源的转换效率更高,能够达到90%以上,减少能量损耗。
2. 体积小、重量轻:开关电源采用高频转换技术,可以实现较小的体积和重量,适用
于各种空间有限的场合。
这对于便携式电子设备尤为重要,如手机、笔记本电脑等。
3. 工作温度范围广:开关电源采用数字化控制和先进的保护电路,能够在较宽的温度
范围内工作,具有较高的可靠性和稳定性。
这使得开关电源适用于各种环境条件下的
电子设备。
4. 输出稳定:开关电源通过高精度的反馈回路和控制电路,可以实现输出电压和电流
的稳定性,保证电子设备的正常工作。
而且开关电源通常具有多种保护机制,如过载
保护、过热保护等,能够有效保护设备和用户的安全。
5. 噪音较小:开关电源采用高频开关操作,输出的电流和电压波形较平滑,噪音较小,不会对其他电子设备产生干扰。
这在一些对电磁兼容性要求较高的应用中非常重要。
总之,开关电源具有高效、小巧、稳定等优点,广泛应用于各种电子设备中。
但同时
也存在一些问题,如较高的成本和较复杂的设计和控制。
因此,在选择和应用开关电
源时,需要充分考虑具体需求和成本效益。
开关电源设计重难点问题剖析
开关电源设计重难点问题剖析很多未使用过开关电源设计的工程师会对它产生一定的畏惧心理,比如担心开关电源的EMI问题、PCB layout问题、元器件的参数和类型选择问题等。
其实只要了解了,使用开关电源设计还是非常方便的。
一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。
开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出电压的采样电路以及反馈环的控制电路。
因此这部分的设计在于保证精确的采样电路,还有来控制反馈深度,因为如果反馈环响应过慢的话,对瞬态响应能力是会有很大影响。
输出部分设计包含了输出电容,输出电感以及MOSFET等等,这些器件的选择基本上就是要满足性能和成本的平衡,比如高的开关频率就可以使用小的电感值(意味着小的封装和便宜的成本),但是高的开关频率会增加干扰和对MOSFET的开关损耗,从而效率降低。
低的开关频率带来的结果则是相反的。
对于输出电容的ESR和MOSFET的Rds_on参数选择也是非常关键的,小的ESR可以减小输出纹波,但是电容成本会增加,好的电容会贵嘛。
开关电源控制器驱动能力也要注意,过多的MOSFET是不能被良好驱动的。
一般来说,开关电源控制器的供应商会提供具体的计算公式和使用方案供工程师借鉴的。
如何调试开关电源电路?(1)电源电路的输出通过低阻值大功率电阻接到板内,这样在不焊电阻的情况下可以先做到电源电路的先调试,避开后面电路的影响。
(2)一般来说开关控制器是闭环系统,如果输出恶化的情况超过了闭环可以控制的范围,开关电源就会工作不正常,所以这种情况就需要认真检查反馈和采样电路。
特别是如果采用了大ESR值的输出电容,会产生很多的电源纹波,这也会影响开关电源的工作的。
为什么要接地?接地技术的引入最初是为了防止电力或电子等设备遭雷击而采取的保护性措施,目的是把雷电产生的雷击电流通过避雷针引入到大地,从而起到保护建筑物的作用。
开关电源培训资料
03
开关电源电路分析和常见故障排 查
开关电源电路分析
电路组成
开关电源电路通常由输入滤波电路、整流电路、功率因数校正电路、逆变电路、输出整流 滤波电路等部分组成。对于不同的应用需求和设计目标,电路的组成可能会有所变化。
工作原理
开关电源通过高频开关管的开关动作,将直流电压变换为高频脉冲电压,再经过变压器、 整流滤波等元件实现电压的变换和输出。其工作效率高、体积小、重量轻等特点使其在电 子设备中得到广泛应用。
控制策略
开关电源的控制策略常见的有PWM(脉冲宽度调制)和PFM(脉冲频率调制)等。控制 策略的选择会影响到电源的效率、稳定性、响应速度等性能。
常见故障排查
无输出或输出电压低:可能 的原因包括输入电压过低、 开关管故障、变压器故障、 整流滤波电路故障等。排查 方法包括检查输入电压、测 量开关管驱动波形、检查变 压器及整流滤波元件等。
• 家用电器
开关电源也广泛应用于各种家用 电器中,如电视机、音响等。
02
开关电源主要技术和设计要点
开关电源主要技术
脉宽调制技术
脉宽调制技术是开关电源中最常 用的技术,通过调节开关管的导 通时间来控制输出电压。具有响
应速度快、输出稳定等特点。
谐振变换技术
谐振变换技术利用谐振元件的特 性进行能量转换,具有高效率和 高功率密度的优势。在开关电源 中常用于高压、大功率应用场合
防水防潮
保持开关电源工作环境干 燥,避免长时间暴露在潮 湿环境中。潮湿可能导致 电气短路、绝缘性能下降 等问题。
THANKS
感谢观看
能和寿命。
维护方法
清洁散热系统
定期清理开关电源散热系 统中的灰尘和杂物,保持 散热良好。可以使用吸尘 器、压缩空气或软刷等工 具进行清洁。
开关电源中的几个难点问题
开关电源中的几个难点问题张兴柱 博士(2008年10月完成)世纪电源网1问题清单01:开关电源的带宽是不是越高越好?02:为什么PFC的带宽要控制在10~20Hz?03:用UC3842~45控制的开关电源,其限流点为什么会随输入电压变化? 04:开关电源的带容性负载能力是不是越大越好?05:在峰值电流控制中,当占空比大于0.5时,为什么要加斜波补偿电路? 06:两个完全稳定的开关电源,组成系统时,为什么会产生振荡?07:MOSFET并联时为什么经常出现炸机现象?08:开关电源中的拍频现象是怎么产生的?如何克服?09:为什么开关电源中的干扰会对电源会产生致命的影响?10:为什么开关电源中的电性能,热性能和EMI性能是互相关联的?11:为什么高频功率变压器对电源的性能有非常大的影响?12:MOSFET的最大占空比应如何设计,才能获得最佳的电源性能? 13:如何才能保证大占空比下的隔离驱动电路绝对可靠?14:大占空比下电流取样电路的去磁如何实现?15:同步整流驱动对开关电源的效率是怎么影响的? 16:……………………………………..2因报告时间所限,本次只给大家介绍清单中的前面六个问题它们可归结为开关电源动态方面的难点问题3问题一:开关电源的带宽是不是越高越好?43):开关电源带宽的高低对开关电源的影响(1):从开关电源的稳定性看,带宽越低,电源越容易稳定: --- 对PCB布板要求降低; --- 补偿电路的抗高频干扰能力增强;--- 相位裕量增加;(2):从开关电源的动态指标看,带宽越高,电源的动态性能越好;--- 可提高对输入低频纹波的抑制能力;--- 可提高对输出负载电流变化的抑制能力;(3):在满足同样动态指标时,带宽高的开关电源,会有更高的功率密度和更低的成本: --- 带宽越高,其低频处的闭环音频隔离度就越小,输出端的低频率纹波就越小,在输出纹波一样时,输入端的滤波电容就越小;同样的道理在负载跳变所引起的输出电压变化一样时,输出端的滤波电容就越小;(4):提升开关电源的带宽,对开关电源的性价比非常有利,但受许多因素牵制:--- 开发人员的水平;--- 合理的总体方案; --- PCB布板要求的提高等等.114):开关电源的带宽是不是越高越好?答案:是因为只有不断提高开关电源的带宽,才能保证你的开关电源产品更有竞争力,才能更好地满足客户的要求.12问题二:为什么PFC的带宽要控制在10~20Hz?13问题三:用UC3842~45控制的开关电源,其限流点为什么会随输入电压变化?204):可见用UC3842~45控制的开关电源,其限流点会随输入电压变化,在有外部斜波补偿时,用同样的分析,也有同样的结果。
开关电源个人总结
开关电源个人总结
开关电源是一种采用开关器件进行控制的电源,具有高效率、小体积、轻重量等优点,广泛应用于电子设备中。
个人总结如下:
1. 高效率:开关电源的工作原理是通过开关器件的开启和关闭来调节电压和电流,能
够实现高效能的转换,电能的损失相对较小。
2. 小体积:相比于传统的线性电源,开关电源采用了高频开关技术,在同样功率输出
的情况下,开关电源的体积要小很多,适合应用于小型设备中。
3. 轻重量:由于开关电源采用了高频开关技术和高效能的转换方式,导致电源的重量
相对较轻,便于携带和安装。
4. 稳定性好:开关电源采用反馈控制的方式来调节电压和电流,能够实现稳定的输出,对输入电压的波动有一定的抗干扰能力。
5. 脉冲干扰:由于开关电源的开关频率较高,其输出信号中会含有一定的脉冲干扰,
需要通过滤波电路来进行抑制。
总的来说,开关电源是一种高效率、小体积、轻重量的电源,适用于各种电子设备和
工业应用,但在设计和应用过程中需要注意脉冲干扰的问题。
关于开关电源的一些必须掌握的小知识
关于开关电源的一些必须掌握的小知识
随着电器设备的普及,开关电源在我们日常生活中的应用十分广泛,是一种不可缺少的电源方式,那幺接下来小编就给大家介绍下开关电源及其应用领域吧。
随着电力电子技术的飞速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。
开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。
开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。
线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。
随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。
开关电源就是利用电子开关器件如晶体管、场效应管、可控硅闸流管等,通过控制电路,使电子开关器件不停地接通和关断,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电。
开关电源总结
开关电源总结开关电源是一种广泛应用于电子设备中的高效能源转换装置。
它通过将输入电信号转换为高频信号并进行调制,然后进行变换、整流和滤波,最终输出所需的电压或电流。
开关电源因其高效、稳定、可靠的特点,在电子行业中得到了广泛应用。
本文将对开关电源的工作原理、优势和注意事项进行探讨。
一、工作原理开关电源的工作原理主要包括:输入滤波、整流、变压、调制、输出滤波与稳定等步骤。
首先,将市电通过输入滤波电路进行滤波处理,消除电网中的噪声和干扰。
然后,进行整流工作,将交流信号转化为直流信号。
接下来,通过变压器将直流电压变换为所需的电压级别,以满足不同设备对电力要求的不同。
在变压之后,利用调制技术将电信号转换为高频信号,并将其输出至开关管。
最后,在输出端进行滤波和稳定处理,以提供高质量的直流电源。
二、优势1. 高效性:开关电源采用高频调制技术,能够提高能源转换效率。
相比传统的线性电源,开关电源具有更低的功耗和能耗,从而能够更好地满足节能环保的要求。
2. 稳定性:开关电源通过反馈控制的方式,能够实时监测输出电压或电流,并根据需求进行调整,以保证输出能够稳定在预定范围内。
这种稳定性可以有效地避免电压和电流的波动对设备的损坏和工作质量的影响。
3. 尺寸小:开关电源采用了先进的电子元器件和高密度的电路设计,因此其体积相对较小。
这一点在电子设备越来越小型化的今天尤为重要。
尺寸小的开关电源可以更好地适应各种空间应用的需求。
4. 可靠性:开关电源由于采用了先进的技术和材料,具有较高的可靠性。
其在各种环境条件下均能正常工作,而且寿命长。
这使得开关电源在工业自动化、通讯设备、医疗器械等领域得到了广泛应用。
三、注意事项1. 散热:开关电源因为高效能,所以产生的热量较多。
因此,必须做好散热工作,确保开关电源的温度在正常范围内。
可以通过散热片、风扇等方式进行散热。
2. 电磁兼容:开关电源中会产生较强的电磁干扰,因此需要做好电磁兼容工作,以避免对其他设备产生干扰。
开关电源知识点总结
开关电源知识点总结开关电源是一种将交流电转换为直流电的电源设备。
它由输入端、输出端和控制电路组成。
开关电源具有体积小、效率高、稳定性好等优点,在现代电子设备中得到广泛应用。
本文将从开关电源的工作原理、分类、特点以及应用等方面进行总结。
一、开关电源的工作原理开关电源的工作原理是利用开关管的导通和截止来实现电流的开关控制。
其基本电路由输入整流滤波电路、功率变换电路和输出稳压电路组成。
当输入交流电经过整流滤波电路后转换为直流电,然后经过功率变换电路进行直流电压的变换和调整,最后经过输出稳压电路得到稳定的直流电输出。
二、开关电源的分类根据输入电源的不同,开关电源可以分为交流输入型和直流输入型。
交流输入型开关电源主要用于家用电器等领域,直流输入型开关电源主要用于电子设备和通信设备等领域。
根据输出电压的性质,开关电源可以分为恒压型和恒流型。
恒压型开关电源输出电压恒定,适用于大多数电子设备;恒流型开关电源输出电流恒定,适用于LED照明等需求电流稳定的设备。
三、开关电源的特点1.效率高:开关电源的效率通常在80%以上,远高于传统的线性电源。
2.体积小:由于开关电源使用高频开关元件,可以大大减小变压器的体积,使整个电源的体积更加紧凑。
3.稳定性好:开关电源采用反馈控制,能够实现输出电压的稳定性和负载调整性能较好。
4.可靠性高:开关电源具有过载、过压、过流、短路保护等功能,能够有效保护电源和负载设备的安全。
5.工作频率高:开关电源采用高频开关元件,工作频率通常在20kHz以上,避免了传统电源的60Hz低频干扰。
四、开关电源的应用开关电源在各个领域都有广泛的应用。
在电子设备中,开关电源广泛应用于计算机、手机、平板电脑、电视等消费电子产品;在通信设备中,开关电源用于无线基站、通信交换机等设备;在工业控制领域,开关电源被广泛应用于PLC、变频器、伺服系统等设备;在LED照明领域,开关电源用于LED灯带、LED灯泡等。
总结:开关电源是一种将交流电转换为直流电的电源设备,具有体积小、效率高、稳定性好等优点。
开关电源的基础知识
开关电源的基础知识一、电源的重要性随着高科技的电脑及相关产品逐渐进入平常百姓家,人们对电脑及相关产品的认识不断深入。
对于电脑来讲,最重要的硬件主要有两个:一个是CPU,其作用相当于人的大脑,是电脑的核心;二是电源,其作用相当于人的心脏。
如果没有高品质的电源,再好的CPU及其它电脑部件都无法充分稳定的发挥作用,甚至可能对电脑主机造成伤害。
然而在DIY市场,长期以来人们强调的是CPU、主板、显卡等硬件,对电源不太重视,忽略了开关电源的质量对电脑的可靠性、稳定性以及对使用者健康的影响。
其实,国际知名品牌电脑厂商对电源非常重视,如IBM等世界名牌电脑的电源采购价高达每台18-25美元,正是源于他们对电源品质的高标准要求。
根据统计,电脑故障的40%~60%是由于电源引起,而一台电源只占电脑整机价值的2%--3%,电源选用不当,不但可能烧毁CPU、主板、硬盘,还可能给使用者健康和生命财产安全造成损失,因而有必要重新认识电源的重要性。
二、电源的工作原理市电进入电源,首先要经过扼流圈和电容,滤除高频杂波和同相干扰信号。
然后再经过电感线圈和电容,进一步滤除高频杂波。
接下来再经过由4个二极管组成的全桥电路整流,和大容量的滤波电容滤波后,电流才由高压交流电转换为高压直流电。
经过了交直转换后,电流就进入了整个电源最核心的部分--开关电路。
开关电路主要由两个开关管组成,通过它们的轮流导通和截止,便将直流电转换为高频率的脉动直流电。
接下来,再送到高频开关变压器上进行降压。
经过高频开关变压器降压后的脉动电压,同样要使用二极管和滤波电容进行整流和滤波,此外还会有1、2个电感线圈与滤波电容一起滤除高频交流成分。
经过上面一系列工序后,输出的的电流,才算真正完成电脑所需要的较为纯净的低压直流电。
三、有关性能参数说明1、 PG ( POWER GOOD ) 信号从电源开通那一瞬间起,到电源输出稳定电压需要一定的时间,+5V的爬升时间通常为2ms~20ms。
开关电源电路设计要点与调试
开关电源电路设计要点与调试开关电源是一种用于电子设备的电源供应,其具有高效率、稳定性和可调性等优点。
设计和调试开关电源时,需要注意一些重要要点。
一、开关电源设计要点:1.选择适当的拓扑结构:开关电源的拓扑结构有多种,如降压型、升压型、升降压型等。
要根据设备的功率需求和使用环境来选择合适的拓扑结构。
2.选择合适的功率器件:开关电源的功率器件主要包括开关管、二极管和变压器等。
需要选择具备合适功率和工作频率范围的器件,并且要考虑其可靠性和成本。
3.控制和保护电路设计:开关电源需要有稳定的控制和保护功能,如输出电压、电流的监测和调节,过载、过压、短路等故障的保护。
需要设计相应的反馈和控制电路,保证开关电源的可靠工作。
4.选择合适的滤波电路:开关电源在工作过程中会产生较大的开关干扰,需要采取合适的滤波措施,减小开关干扰对其他电子设备的影响。
5.选择合适的输出电容:开关电源的输出端需要连接电容进行滤波,以减小输出纹波。
应选择适当容量和质量的电容,保证输出电压稳定。
6.保证开关电源的安全性:开关电源设计时需要考虑一些安全因素,如避免触电危险、瞬态过电压保护等,保证电源的安全可靠性。
7.合理布局和散热设计:开关电源的布局设计要合理,器件的热量要及时散热,避免温度过高对电源稳定性的影响。
二、开关电源调试要点:1.确认电源输入输出参数:在开关电源调试之前,首先要明确电源的输入和输出参数,如输入电压范围、输出电压和电流等,以便调试和验证工作的正确性。
2.建立逐步调试的过程:开关电源调试时可以采用逐步调试的方法,即先调试一部分功能,然后逐渐增加其他功能的调试。
这样可以避免在调试过程中出现一些难以排查的问题。
3.注意开关电源的保护功能:在调试的过程中,要注意开关电源的保护功能是否正常,如过载、过压、短路等故障保护功能是否有效。
可以通过人工模拟故障情况进行测试。
4.确保开关电源的稳定性:开关电源在调试过程中需要保证输出电压和电流的稳定性。
开关电源知识点总结
开关电源知识点总结开关电源是一种将交流电转换为直流电供应给电子设备使用的电源装置。
在现代电子设备中广泛应用,如计算机、手机、电视等。
本文将从开关电源的原理、分类、工作方式和应用等方面进行总结。
一、开关电源的原理开关电源的核心是开关电源变换器。
它通过开关管的开关动作,将交流电转换为直流电。
其工作原理主要包括两个过程:变压和整流。
变压过程是通过变压器将输入电压变换为适合开关管工作的电压,然后经过整流电路将交流电转换为直流电。
二、开关电源的分类开关电源可以根据输出电压的稳定性、输入电压范围、功率和用途等特点进行分类。
1. 从输出电压的稳定性来看,开关电源可以分为线性稳压电源和开关稳压电源。
线性稳压电源通过线性调整器来稳定输出电压,但效率较低。
而开关稳压电源则通过开关管的开关动作来调整输出电压,效率较高。
2. 从输入电压范围来看,开关电源可以分为宽输入电压范围和窄输入电压范围的电源。
宽输入电压范围的电源适用于输入电压波动较大的场合,而窄输入电压范围的电源则适用于输入电压稳定的场合。
3. 从功率来看,开关电源可以分为小功率开关电源和大功率开关电源。
小功率开关电源适用于低功率设备,大功率开关电源适用于高功率设备。
4. 从用途来看,开关电源可以分为通用开关电源和专用开关电源。
通用开关电源适用于多种电子设备,而专用开关电源则针对特定设备进行设计。
三、开关电源的工作方式开关电源有两种主要的工作方式:连续导通模式和断续导通模式。
1. 连续导通模式是指开关管在每个工作周期内都处于导通状态。
这种工作方式的优点是输出电流波形较为平滑,适用于大功率输出。
但是由于开关管一直导通,会产生较大功率损耗。
2. 断续导通模式是指开关管在每个工作周期内都处于导通和截止两种状态之间切换。
这种工作方式的优点是开关管的功率损耗较小,适用于小功率输出。
但是由于开关管的开关频率较高,可能会产生较大的干扰。
四、开关电源的应用开关电源由于其高效率、小体积和稳定性好的特点,在各个领域得到了广泛应用。
如何选择适合的开关电源
如何选择适合的开关电源开关电源是一种将电能转换为稳定直流电能供应给电子设备的电源。
在现代电子设备中,开关电源被广泛应用,因其高效、稳定和可靠的特点备受青睐。
然而,市面上各种类型的开关电源琳琅满目,让人难以选择。
本文将介绍如何选择适合的开关电源的几个关键因素。
一、功率需求首先要确定所需的功率范围。
开关电源的功率通常以瓦特(W)为单位来表示。
你需要知道你的设备的最大功率需求,以确保所选的开关电源能够满足设备的正常运行。
如果功率需求过高,开关电源可能无法提供足够的电能,从而导致设备工作不正常甚至损坏。
因此,在选择开关电源时,要注意仔细阅读产品规格和技术参数,确保所选的开关电源的额定功率能够满足你的设备需求。
二、输入电压范围开关电源工作的电压范围是一个重要的因素。
不同的地区和国家的电网电压标准是不同的,一般分为110V和220V两种。
在选择开关电源时,要确保其输入电压范围与你所在地区的电网标准相匹配。
如果选择了不适配的输入电压范围的开关电源,不仅无法正常工作,还可能对设备造成损害。
因此,在购买开关电源之前,了解电网电压标准是非常重要的。
三、输出电压和电流开关电源的输出电压和电流也是重要的选择因素。
不同的设备对电压和电流的要求是不同的,要确保选择的开关电源能够提供所需的输出电压和电流。
如果电压过低或电流过弱,设备可能无法正常工作。
同时,要注意开关电源的稳定性,稳定的输出电压和电流对于设备的安全运行非常重要。
四、可靠性和保护功能在选择开关电源时,可靠性和保护功能也是需要考虑的重要因素。
一款好的开关电源应具备过压保护、过流保护、短路保护和过温保护等功能,以保护设备免受故障和损坏。
此外,还要注意开关电源的散热性能,可靠的散热设计可以延长开关电源的使用寿命。
五、效率和能耗开关电源的效率和能耗也是需要考虑的因素。
高效的开关电源可以将输入电能高效转换为输出电能,减少能耗和热量产生。
在选择开关电源时,要查看产品的效率参数,选择高效率的产品可以节约能源并减少环境负荷。
开关电源的工作原理及技术趋势
开关电源的工作原理及技术趋势开关电源是一种将交流电转换成直流电的电力转换装置。
它通过开关元件(如晶体管或MOS管等)的开通与断开,控制输入电流的通断,从而实现电能的转换。
开关电源的基本工作原理是将交流电输入后,通过整流电路将交流电转换成直流电。
然后,通过控制开关元件的开通与断开,将直流电转换成一系列的短脉冲信号。
接着,通过滤波电路将短脉冲信号转换成平稳的直流电。
通过稳压电路对输出电压进行调整和稳定。
开关电源的技术趋势主要体现在以下几个方面:1.高频化:为了提高能量转换效率和减小电路体积,开关电源逐渐向高频方向发展。
高频化可以缩小电感和电容的尺寸,降低开关元件的开关损耗,并减小输出滤波器的体积。
2.数字化:随着数字电源控制技术的发展,开关电源逐渐向数字化方向靠拢。
数字控制可以实现精确的开关控制比例,并具有较高的稳定性和可编程性。
数字化还可实现远程控制和监测。
3.集成化:为了减小电路体积和提高工作效率,开关电源逐渐向集成化方向发展。
集成化可以将多个电路组件集成到一个芯片或模块中,从而减少电路元件的数量和连接线路的长度,提高电路的可靠性和稳定性。
4.节能环保:随着全球环保意识的增强,开关电源逐渐向节能环保的方向发展。
新型开关电源采用先进的能量管理技术和低功耗元件,以提高能量转换效率,并减少对环境的影响。
5.可靠性增强:开关电源在工业控制、通信、计算机等领域的应用越来越广泛。
提高开关电源的可靠性成为一个重要的技术趋势。
通过使用高可靠性的元件、设计合理的散热系统和增强的故障保护措施,可以提高开关电源的可靠性和稳定性。
开关电源的工作原理是通过开关元件的开通与断开,实现交流电到直流电的转换。
未来开关电源的技术趋势主要包括高频化、数字化、集成化、节能环保和可靠性增强。
这些趋势将为开关电源的应用提供更高效、可靠和环保的解决方案。
开关电源模块的十大技巧
开关电源模块的十大技巧
1. 确保输入电压的稳定性:开关电源的输入电压变化范围应在规定范围内,以确保输出电压的稳定性。
2. 选用恰当的输出电容:输出电容可以平滑输出电压的波动,并提供短时间的电源备份,选用合适的电容容值可以改善电源性能。
3. 降低输出电压噪声:噪声滤波电容和电感可以帮助减少输出电压的噪声,并改善电源的稳定性。
4. 设计合适的保护措施:开关电源应考虑过压、过流、过温等保护功能,以确保设备的安全运行。
5. 选择合适的开关频率:高开关频率可以减小开关器件尺寸,但可能会增加功耗和噪声;低开关频率则可能导致较大的尺寸和重量。
6. 优化散热设计:开关电源通常会产生一定的热量,在设计时要考虑散热问题,以避免过热引发故障。
7. 考虑EMC问题:开关电源可能会产生电磁干扰,要在设计时注意防止干扰其他设备或被其他设备干扰。
8. 选择适当的转换拓扑结构:有多种不同的开关电源拓扑结构,如Buck、Boost、Buck-Boost等,根据实际应用需求选择合适的拓扑结构。
9. 优化功率因数:开关电源的功率因数应尽可能接近1,以减小对电网的污染,并提高能源利用效率。
10. 严格测试和品质控制:开关电源的稳定性和可靠性至关重要,应进行严格测试,并建立有效的品质控制体系,确保产品质量。
开关电源施工技术规范与验收要点
开关电源施工技术规范与验收要点引言开关电源是现代电力系统中不可或缺的一部分,其稳定性和安全性对整个系统的运行至关重要。
正确的施工技术和严格的验收程序是确保开关电源高效运行的关键。
本文将从施工技术规范和验收要点两个方面,对开关电源的相关内容展开论述。
一、施工技术规范1.安装位置选择开关电源应位于通风良好、温度适宜、无尘且无腐蚀性气体的环境中。
选址时应尽量避免阳光直射、高温和潮湿环境。
同时,应确保离电源负载近距离布置,减少电缆长度和功率损耗。
2.电源线路设计合理的线路设计能够减少电功率损失,提高整体效率。
在设计过程中,要注意线路容量、线径和长度的合理搭配。
避免线路过长,以免影响电压稳定性。
此外,线路的绝缘要进行严格检测,确保安全可靠。
3.接地系统规划良好的接地系统能够保证电源的正常运行,并起到保护设备和人身安全的作用。
在施工过程中,必须按照规范进行接地设计和施工,确保接地电阻达到要求,并保证接地电阻的可靠性和稳定性。
同时,还应注意接地系统的防雷保护措施。
4.设备安装设备的安装应符合相关规范,遵循操作手册中的要求。
特别要注意设备的固定和插拔端子的正确连接。
工程师在进行设备安装时,应保持动作轻柔,避免对设备产生过大的冲击。
二、验收要点1.外观质量检查验收过程中,应仔细检查设备表面是否有明显损伤、划痕或变形等问题。
若发现异常情况,应及时与供应商沟通,并做好记录。
2.电气性能测试验收过程中要对开关电源进行电气性能测试,包括输出电压稳定性、输出电流波形、负荷能力等。
测试结果应与产品说明书要求相符合,且在正常范围内。
3.运行环境检测开关电源的运行环境应符合产品说明书的要求,如温度、湿度、振动等。
在验收过程中,要进行现场监测,确保运行环境满足规范要求。
4.安全性检查验收过程中要注意开关电源的接地是否符合要求,并进行接地电阻的测量。
此外,还要对设备的绝缘性能进行检测,确保安全可靠。
5.操作功能验证验收时应对设备的操作功能进行验证,包括输入电压范围、输出电流调整、过载保护等。
怎样选择合适的开关电源
怎样选择合适的开关电源选择合适的开关电源对于电子设备的正常运行至关重要。
在市场上,有各种不同类型和规格的开关电源可供选择。
那么,在选择合适的开关电源时,我们应该考虑哪些因素呢?首先,我们需要考虑所需的功率输出。
开关电源的功率输出应该能够满足我们设备的需求,同时还要有一定的余量,以应对设备在高负荷运行时的能源需求。
为了选择合适的功率输出,我们需要先确定设备的功率需求,然后在市场上选择功率略高于这个需求的开关电源。
其次,我们需要考虑开关电源的稳定性和可靠性。
稳定性是指开关电源在输入电压范围内,输出电压的稳定性。
可靠性则是指开关电源在长时间使用时的可靠性,包括抗干扰能力、工作温度范围和寿命等。
为了选择稳定可靠的开关电源,我们可以参考厂家提供的技术指标和用户评价。
另外,我们还需要考虑开关电源的效率。
高效的开关电源能够将输入电能有效地转换为输出电能,减少能量的浪费和发热问题。
通过选择高效的开关电源,可以为设备提供更可靠的电能,并提高整体能源利用效率。
此外,开关电源的保护功能也是我们需要考虑的因素之一。
常见的保护功能包括过载保护、过压保护、过流保护和短路保护等。
这些保护功能能够确保开关电源在异常情况下能够及时切断输出电流,以保护设备的安全运行。
最后,我们还应该考虑开关电源的尺寸和重量,特别是在有空间和重量限制的应用场景中。
较小体积和轻量化的开关电源更适合携带和安装,而较大尺寸和重量的开关电源则通常在工业领域使用。
综上所述,为了选择合适的开关电源,我们需要综合考虑功率输出、稳定性、可靠性、效率、保护功能以及尺寸和重量等因素。
通过仔细比较和评估不同的产品,我们能够选择到最适合我们设备需求的开关电源,以确保设备的正常运行和安全使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源技术的十大关注点
电源一直是电子行业里非常热门的技术,而它的发展趋势又是大家必须时刻关注的问题,不然一不留神就会跟不上技术发展的步伐。
电子元件技术做了项开关电源技术发展关注焦点调查,得出来以下十个热门关注点。
关注点一:功率半导体器件性能
1998年,Infineon公司推出冷mos管,它采用“超级结”(Super-Junction)结构,故又称超结功率MOSFET。
工作电压600V~800V,通态电阻几乎降低了一个数量级,仍保持开关速度快的特点,是一种有发展前途的高频功率半导体电子器件。
IGBT刚出现时,电压、电流额定值只有600V、25A。
很长一段时间内,耐压水平限于1200V~1700V,经过长时间的探索研究和改进,现在IGBT的电压、电流额定值已分别达到3300V/1200A和4500V/1800A,高压IGBT单片耐压已达到6500V,一般IGBT的工作频率上限为20kHz~40kHz,基于穿通(PT)型结构应用新技术制造的IGBT,可工作于
150kHz(硬开关)和300kHz(软开关)。
IGBT的技术进展实际上是通态压降,快速开关和高耐压能力三者的折中。
随着工艺和结构形式的不同,IGBT在20年历史发展进程中,有以下几种类型:穿通(PT)型、非穿通(NPT)型、软穿通(SPT)型、沟漕型和电场截止(FS)型。
碳化硅SiC是功率半导体器件晶片的理想材料,其优点是:禁带宽、工作温度高(可达600℃)、热稳定性好、通态电阻小、导热性能好、漏电流极小、PN结耐压高等,有利于制造出耐高温的高频大功率半导体电子元器件。
可以预见,碳化硅将是21世纪最可能成功应用的新型功率半导体器件材料。
关注点二:开关电源功率密度
提高开关电源的功率密度,使之小型化、轻量化,是人们不断努力追求的目标。
电源的高频化是国际电力电子界研究的热点之一。
电源的小型化、减轻重量对便携式电子设备(如移动电话,数字相机等)尤为重要。
使开关电源小型化的具体办法有:
一是高频化。
为了实现电源高功率密度,必须提高PWM变换器的工作频率、从而减小电路中储能元件的体积重量。
二是应用压电变压器。
应用压电变压器可使高频功率变换器实现轻、小、薄和高功率密度。
压电变压器利用压电陶瓷材料特有的“电压-振动”变换和“振动-电压”变换的性质传送能量,其等效电路如同一个串并联谐振电路,是功率变换领域的研究热点之一。
三是采用新型电容器。
为了减小电力电子设备的体积和重量,必须设法改进电容器的性能,提高能量密度,并研究开发适合于电力电子及电源系统用的新型电容器,要求电容量大、等效串联电阻ESR小、体积小等。
关注点三:高频磁与同步整流技术
电源系统中应用大量磁元件,高频磁元件的材料、结构和性能都不同于工频磁元件,有许多问题需要研究。
对高频磁元件所用磁性材料有如下要求:损耗小,散热性能好,磁性能优越。
适用于兆赫级频率的磁性材料为人们所关注,纳米结晶软磁材料也已开发应用。
高频化以后,为了提高开关电源的效率,必须开发和应用软开关技术。
它是过去几十年国际电源界的一个研究热点。
对于低电压、大电流输出的软开关变换器,进一步提高其效率的措施是设法降低开关的通态损耗。
例如同步整流SR技术,即以功率MOS管反接作为整流用开关二极管,代替萧特基二极管(SBD),可降低管压降,从而提高电路效率。
关注点四:分布电源结构
分布电源系统适合于用作超高速集成电路组成的大型工作站(如图像处理站)、大型数字电子交换系统等的电源,其优点是:可实现DC/DC变换器组件模块化;容易实现N+1功率冗余,易于扩增负载容量;可降低48V母线上的电流和电压降;容易做到热分布均匀、便于散热设计;瞬态响应好;可在线更换失效模块等。
现在分布电源系统有两种结构类型,一是两级结构,另一种是三级结构。
关注点五:PFC变换器
由于AC/DC变换电路的输入端有整流元件和滤波电容,在正弦电压输入时,单相整流电源供电的电子设备,电网侧(交流输入端)功率因数仅为0.6~0.65。
采用PFC(功率因数校正)变换器,网侧功率因数可提高到0.95~0.99,输入电流THD小于10%。
既治理了电网的谐波污染,又提高了电源的整体效率。
这一技术称为有源功率因数校正APFC单相APFC 国内外开发较早,技术已较成熟;三相APFC的拓扑类型和控制策略虽然已经有很多种,但还有待继续研究发展。
一般高功率因数AC/DC开关电源,由两级拓扑组成,对于小功率AC/DC开关电源来说,采用两级拓扑结构总体效率低、成本高。
如果对输入端功率因数要求不特别高时,将PFC变换器和后级DC/DC变换器组合成一个拓扑,构成单级高功率因数AC/DC开关电源,只用一个主开关管,可使功率因数校正到0.8以上,并使输出直流电压可调,这种拓扑结构称为单管单级即S4PFC变换器。
关注点六:电压调节器模块VRM
电压调节器模块是一类低电压、大电流输出DC-DC变换器模块,向微处理器提供电源。
现在数据处理系统的速度和效率日益提高,为降低微处理器IC的电场强度和功耗,必须降低逻辑电压,新一代微处理器的逻辑电压已降低至1V,而电流则高达50A~100A,所以对VRM的要求是:输出电压很低、输出电流大、电流变化率高、快速响应等。
关注点七:全数字化控制
电源的控制已经由模拟控制,模数混合控制,进入到全数字控制阶段。
全数字控制是一个新的发展趋势,已经在许多功率变换设备中得到应用。
但是过去数字控制在DC/DC变换器中用得较少。
近两年来,电源的高性能全数字控制芯片已经开发,费用也已降到比较合理的水平,欧美已有多家公司开发并制造出开关变换器的数字控制芯片及软件。
全数字控制的优点是:数字信号与混合模数信号相比可以标定更小的量,芯片价格也更低廉;对电流检测误差可以进行精确的数字校正,电压检测也更精确;可以实现快速,灵活的控制设计。
关注点八:电磁兼容性
高频开关电源的电磁兼容EMC问题有其特殊性。
功率半导体开关管在开关过程中产生的di/dt和dv/dt,引起强大的传导电磁干扰和谐波干扰。
有些情况还会引起强电磁场(通常是近场)辐射。
不但严重污染周围电磁环境,对附近的电气设备造成电磁干扰,还可能危及附近操作人员的安全。
同时,电力电子电路(如开关变换器)内部的控制电路也必须能承受开关动作产生的EMI及应用现场电磁噪声的干扰。
上述特殊性,再加上EMI测量上的具体困难,在电力电子的电磁兼容领域里,存在着许多交*科学的前沿课题有待人们研究。
国内外许多大学均开展了电力电子电路的电磁干扰和电磁兼容性问题的研究,并取得了不少可喜成果。
近几年研究成果表明,开关变换器中的电磁噪音源,主要来自主开关器件的开关作用所产生的电压、电流变化。
变化速度越快,电磁噪音越大。
关注点九:设计和测试技术
建模、仿真和CAD是一种新的设计工具。
为仿真电源系统,首先要建立仿真模型,包括电力电子器件、变换器电路、数字和模拟控制电路以及磁元件和磁场分布模型等,还要考虑开关管的热模型、可*性模型和EMC模型。
各种模型差别很大,建模的发展方向是:数字-模拟混合建模、混合层次建模以及将各种模型组成一个统一的多层次模型等。
电源系统的CAD,包括主电路和控制电路设计、器件选择、参数最优化、磁设计、热设计、EMI设计和印制电路板设计、可*性预估、计算机辅助综合和优化设计等。
用基于仿真的专家系统进行电源系统的CAD,可使所设计的系统性能最优,减少设计制造费用,并能做可制造性分析,是21世纪仿真和CAD技术的发展方向之一。
此外,电源系统的热测试、EMI测试、可*性测试等技术的开发、研究与应用也是应大力发展的。
关注点十:系统集成技术
电源设备的制造特点是:非标准件多、劳动强度大、设计周期长、成本高、可*性低等,而用户要求制造厂生产的电源产品更加实用、可*性更高、更轻小、成本更低。
这些情况使电源制造厂家承受巨大压力,迫切需要开展集成电源模块的研究开发,使电源产品的标准化、模块化、可制造性、规模生产、降低成本等目标得以实现。
实际上,在电源集成技术的发展进程中,已经经历了电力半导体器件模块化,功率与控制电路的集成化,集成无源元件(包括磁集成技术)等发展阶段。
近年来的发展方向是将小功率电源系统集成在一个芯片上,可以使电源产品更为紧凑,体积更小,也减小了引线长度,从而减小了寄生参数。
在此基础上,可以实现一体化,所有元器件连同控制保护集成在一个模块中。