概率统计(理科)

合集下载

2014高三理科数学专项训练(二)——概率统计

2014高三理科数学专项训练(二)——概率统计

高三理科数学专项训练(二)——概率统计高三( )班 学号 姓名 成绩1.甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92,(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差.2. 甲、乙两人各射击一次,击中目标的概率分别是32和43.假设两人射击是否击中目标,相互 之间没有影响;每人各次射击是否击中目标,相互之间也没有影响⑴求甲射击3次,至少1次未击中...目标的概率; ⑵假设某人连续2次未击中...目标,则停止射击,问:乙恰好射击4次后,被中止射击的概率是多少? ⑶设甲连续射击3次,用ξ表示甲击中目标时射击的次数,求ξ的数学期望E ξ. (结果可以用分数表示)3.为了调查本市某中学高三男学生的身高情况,在该中学高三男学生中随机抽取了40名同学作为样本,测得他们的身高后,画出频率分布直方图如下: (1)估计该校高三男生的平均身高;(2)从身高在170cm (含170cm )以上的样本中随机抽取2人,记身高在170~175cm 之间的人数为X ,求X 的分布列和数学期望。

(部分参考数据:167.5×0.125+172.5×0.35+177.5×0.325=139.00)4. 随机调查某社区80个人,以研究这一社区居民在00:2200:20-时间段的休闲方式与性别的关系,得到下面的数据表:(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X ,求X 的分布列和期望;(2)根据以上数据,能否有99%的把握认为“在00:2200:20-时间段的休闲方式与性别有关系”?参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:课后练习1.某学校三个社团的人员分布如下表(每名同学只参加一个社团)学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取30人,结果合唱社被抽出12人,则a =_______________.2.某中学举行了一次田径运动会,其中有50名 学生参加了一次百米比赛,他们的成绩和频率如图1 所示.若将成绩小于15秒作为奖励的条件,则在这 次百米比赛中获奖的人数共有 人.3.某高校进行自主招生面试时的程序如下:共设3道题, 每道题答对给10分、答错倒扣5分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为23,则该学生在面试时得分的期望值为 分.4.已知函数)3cos(3)3sin()(πωπω+-+=x x x f (0>ω)的最小正周期为π.⑴求)127(πf 的值; ⑵若ABC ∆满足)(2)()(A f A B f C f =-+,证明:ABC ∆是直角三角形.5. 如图,平行四边形ABCD 中,AB BD ⊥,2AB =,BD =BD 将BCD ∆折起,使二面角A BD C--是大小为锐角α的二面角,设C 在平面ABD 上的射影为O .(1)当α为何值时,三棱锥OAD C -的体积最大?最大值为多少?(2)当AD BC ⊥时,求α的大小.A BDCO ABC D6. 已知函数 2x =是()f x 的一个极值点.(1)求函数()f x 的单调区间;(2)若当[1,)x ∈+∞时,22()3f x a ->恒成立,求a 的取值范围.高三理科数学专项训练(二)——概率统计答案1. 解:(1)记甲、乙分别解出此题的事件记为,A B . 设甲独立解出此题的概率为1P ,乙为2P . 则12()0.6,()P A P P B P ===1212122222()1()1(1)(1)0.920.60.60.920.40.320.8(2)(0)()()0.40.20.08(1)()()()()0.60.20.40.80.44(2)()()0.60.80.48:P A B P A B P P P P PP P P P P P P A P B P P A P B P A P B P P A P B ξξξξ+=-⋅=---=+-=∴+-=====⋅=⨯===+=⨯+⨯===⋅=⨯=则即的概率分布为.096.136.2)()(4.01728.00704.01568.048.0)4.12(44.0)4.11(08.0)4.10(4.196.044.048.0244.0108.0022222=-=-==++=⋅-+⋅-+⋅-==+=⨯+⨯+⨯=ξξξξξE E D D E 或利用2.解:(1)记“甲连续射击3次,至少1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1- P (1A )=1-32()3=1927答:甲射击3次,至少1次未击中目标的概率为1927; (2) 记“乙恰好射击4次后,被中止射击”为事件A 2,由于各事件相互独立,,231)(23a x bx x x f ++-=故P (A 2)=41×41×43×41+41×41×43×43 =364, 答:乙恰好射击4次后,被中止射击的概率是364(3)根据题意ξ服从二项分布,2323E ξ=⨯=(3)方法二:03311(0)()327p C ξ==⋅= 123216(1)()()3327p C ξ==⋅⋅=22132112(2)()()3327p C ξ==⋅⋅= 3303218(1)()()3327p C ξ==⋅⋅=161280123227272727E ξ=⨯+⨯+⨯+⨯=3. 解:(1)由频率分布直方图可知,该校高三男学生的平均身高为05.05.1871.05.182325.05.17735.05.172125.05.16705.05.162⨯+⨯+⨯+⨯+⨯+⨯=x =174.750(cm ) (2)由频率分布直方图可知,所抽取的样本中身高在170—175cm 之间的人数有0.070×5×40=14人 所抽取的样本中身高在170cm (包含170cm )以上的人数有 (0.070+0.065+0.020+0.010)×5×40=33人 所以X 的可能取值为0,1,2,,52891)2(528266)1(,528171)0(233214019233114119233014219=========C C C X P C C C X P C C C X P 所以X 的分布列为X 的数学期望为4.解:(1)依题意,随机变量X 的取值为:0,1,2,3,且每个男性在这一时间段以看书为休闲方式的概率为56p =. 方法一:2161)61()0(303===C X P ,725)65()61()1(213===C X P , 7225)65)(61()2(223===C X P ,216125)65()3(333===C X P .X ∴221637227212160=⨯+⨯+⨯+⨯=∴EX .方法二:根据题意可得)65,3(~B X ,k k k C k X P )65()61()(33-==∴,3,2,1,0=k .∴25653=⨯==np EX ..33252815280528=⨯+⨯+⨯=EX(2) 提出假设0H :休闲方式与性别无关系.根据样本提供的22⨯列联表得22()80(10101050)808.889 6.635()()()()602020609n ad bc k a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯.因为当0H 成立时,635.62≥K 的概率约为01.0,所以我们有99%的把握认为“在00:2200:20-时间段性别与休闲方式有关”.课后练习答案1. 302. 11 3.15 4.解:⑴x x f ωsin 2)(=,πωπ==2T ,2=ω,所以167sin 2)127(-==ππf ⑵由)(2)()(A f A B f C f =-+得A ABC 2sin 2)22sin(2sin =-+,A A B B A 2sin 2)22sin()22sin(=-++-,得02sin cos 2=A B ,所以0cos =B 或02sin =A ,因为A <0,π<B , 所以2π=B 或2π=A ,ABC ∆是直角三角形.5.解:(1)由题知OD 为CD 在平面ABD 上的射影,∵BD CD ⊥,CO ⊥平面ABD ,∴BD OD ⊥, ∴ODC α∠=,111332C AOD AOD V S OC OD BD OC -∆=⋅=⋅⋅⋅⋅sin cos 66OD OC CD CD αα=⋅=⋅⋅⋅sin 23α=3≤,当且仅当sin 21α=,即45α=︒时取等号,∴当45α=︒时,三棱锥O ACD -(2)(法一)连接OB ,∵CO ⊥平面ABD ,AD BC ⊥, ∴AD ⊥平面BOC ,∴AD OB ⊥,∴90OBD ADB ∠+∠=︒, 故OBD DAB ∠=∠,∴Rt ABD Rt BDO ∆∆∽,∴OD BD BD AB=, ∴21BD OD AB ===, 在Rt COD ∆中,1cos 2OD CD α==,得60α=︒.(法二) 过O 作OE AB ⊥于E ,则OEBD 为矩形, 以O 为原点,OE ,OD ,OC 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则)0,2cos 2,2(),0,cos 2,0(),0,0,0(-ααA D O )sin 2,0,0(),0,cos 2,2(ααC B ,B D于是)0,2,2(-=,)sin 2,cos 2,2(αα--=, 由AD BC ⊥,得0=⋅BC AD ,∴0sin 20)cos 2(2)2()2(=⨯+-⨯+-⨯-αα, 得21cos =α,又α为锐角,∴60α=︒ . 6.解:(1)∵2'()22f x x bx =-+且2x =是()f x 的一个极值点∴'(2)4420f b =-+=32b ⇒=, ∴2'()32(1)(2)f x x x x x =-+=-- 由'()0f x >得2x >或1x <,∴函数()f x 的单调增区间为(,1)-∞,(2,)+∞; 由'()0f x <得12x <<,∴函数()f x 的单调减区间为(1,2), (2)由(1)知,函数()f x 在(1,2)上单调递减,在(2,)+∞上单调递增 ∴当2x =时,函数()f x 取得最小值,min ()(2)f x f ==23a +, [1,)x ∈+∞时,22()3f x a ->恒成立等价于2min 2(),[1,)3a f x x <-∈+∞ 即2001a a a -<⇒<<。

概率与统计(理科)

概率与统计(理科)

概率与统计(理科)一、高考考试内容离散型随机变量的分布列,离散型随机变量的期望和方差。

抽样方法、总体分布的估计、正态分布、线性回归。

二、考试要求:(1)了解离散型随机变量的意义,会求某些简单的离散型随机变量的分布列。

(2)了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。

(3)会用随机抽样,系统抽样,分层抽样等常用的抽样方法从总体中抽取样本。

(4)会用样本频率分布去估计总体分布。

(5)了解正态分布的意义及主要性质。

(6)了解线性回归的方法和简单应用。

三、应试策略1、正确理解有关概念。

(1)随机试验与随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件;条件每实现一次,叫做一次试验;如果试验结果预先无法确定,这种试验叫做随机试验。

(2)频率与概率:对于一个事件来说概率是一个常数;频率则随着试验次数的变化而变化,试验次数越多,频率就越接近于事件的概率。

(3)互斥事件与对立事件:对立事件一定是互斥事件,但互斥事件不一定是对立事件。

(4)互斥事件与相互独立事件:不可能同时发生的事件叫互斥事件,而相互独立事件则是指两个事件是否发生与否相互之间没有影响。

2、公式的应用(1)常用公式 ①等可能事件的概率:基本事件总数中所含基本事件数A n m A P ==)( ②互斥事件的概率:)()()(B P A P B A P +=+③对立事件的概率:1)()()(____=+=+A P A P A A P④相互独立事件的概率:)()()(B P A P B A P ⋅=⋅⑤n 次独立重复试验中事件A 恰好发生k 次的概率:k n k k n n P P C k P --=)1()((2)注意事项:①每个公式都有成立的条件,若不满足条件,则这些公式将不再成立。

②对于一个概率问题,应首先弄清它的类型,不同的类型采用不同的计算方法,一般题中总有关键语说明其类型,对于复杂问题要善于进行分解,或者运用逆向思考的方法。

高中理科数学各类型 概率统计、分布列解答题

高中理科数学各类型   概率统计、分布列解答题

高中理科数学概率统计、各类分布列解答题类型以随机事件概率为背景离散型随机变量的分布列、均值【背一背重点知识】1.随机变量所取的值分别对应的事件是两两互斥的,各事件概率之和为1.2.求随机事件概率为背景的离散型随机变量的均值与方差公式3.注意事件中所包含关键词,如至少,至多,恰好,都是,不都是,都不是等的含义.【讲一讲提高技能】1、必备技能:分类讨论要保证不重不漏,且相互互斥.灵活运用排列组合相应方法进行计数.等可能性是正确解题的关键,在计数及求概率过程中严格保证事件的等可能性.【练一练提升能力】1.某中学高一年级共8个班,现从高一年级选10名同学组成社区服务小组,其中高一(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(1)求选出的3名同学来自不同班级的概率;(2)设X为选出同学中高一(1)班同学的人数,求随机变量X的分布列和数学期望.2.一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为,求的分布列和数学期望;(2)求恰好得到分的概率.3、某厂有台大型机器,在一个月中,一台机器至多出现次故障,且每台机器是否出现故障是相互独立的,出现故障时需名工人进行维修.每台机器出现故障需要维修的概率为.(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于?(2)已知一名工人每月只有维修台机器的能力,每月需支付给每位工人万元的工资.每台机器不出现故障或出现故障能及时维修,就使该厂产生万元的利润,否则将不产生利润.若该厂现有名工人.求该厂每月获利的均值.以二项分布为背景离散型随机变量的分布列、均值【背一背重点知识】1.若随机变量服从二项分布,则对应的事件是两两独立重复的,概率为事件成功的概率.2.求二项分布为背景的离散型随机变量的均值与方差公式:若,则【讲一讲提高技能】1.必备技能:利用离散型随机变量的均值与方差的定义,也可求出二项分布为背景的离散型随机变量的均值与方差,但计算较繁.因此判断随机变量是否服从二项分布是解决问题的关键.判断方法有两个,一是从字面上理解是否符合独立重复条件,二是通过计算,归纳其概率规律是否满足二项分布.【练一练提升能力】1.为贯彻“激情工作,快乐生活”的理念,某单位在工作之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分,为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题的正确率为23 .(1)求选手甲答题次数不超过4次可进入决赛的概率;(2)设选手甲在初赛中答题的个数ξ,试写出ξ的分布列,并求ξ的数学期望.2.近年来,我国电子商务蓬勃发展.2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次. (Ⅰ) 根据已知条件完成下面的并回答能否有99%的把握认为“网购者对商品满意与对服务满意之间有关系”?(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为随机变量 ,求 的分布列和数学期望 . 附:(其中为样本容量)3.(12分)某网站用“10分制”调查一社区人们的幸福度. 现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度 分数(以小数点前的一位数字为茎,小数点后的一位数字为叶): (1)指出这组数据的众数和中位数;(2)若幸福度不低于9,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.以正态分布为背景离散型随机变量的分布列、均值1、正态分布概念:若连续型随机变量的概率密度函数为,其中为常数,且,则称服从正态分布,简记为~。

概率与统计(选择、填空题)(理科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)

概率与统计(选择、填空题)(理科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)

专题15概率与统计(选择题、填空题)(理科专用)1.【2022年全国乙卷】某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为1,2,3,且3>2>1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大【答案】D【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率;该棋手在第二盘与乙比赛且连胜两盘的概率乙;该棋手在第二盘与丙比赛且连胜两盘甲的概率丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为甲则甲=2(1−2)13+221(1−3)=21(2+3)−4123记该棋手在第二盘与乙比赛,且连胜两盘的概率为乙则乙=2(1−1)23+212(1−3)=22(1+3)−4123记该棋手在第二盘与丙比赛,且连胜两盘的概率为丙则丙=2(1−1)32+213(1−2)=23(1+2)−4123则甲−乙=21(2+3)−4123−22(1+3)−4123=21−23<0乙−丙=22(1+3)−4123−23(1+2)−4123=22−31<0即甲<乙,乙<丙,则该棋手在第二盘与丙比赛,最大.选项D判断正确;选项BC判断错误;与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D2.【2022年新高考1卷】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有C 72=21种不同的取法,若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,故所求概率=21−721=23.故选:D.3.【2021年甲卷理科】已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为()A 72B .132C D 【答案】A 【解析】【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案.【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==,所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即2e =.故选:A 【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立,a c 间的等量关系是求解的关键.4.【2021年甲卷理科】将4个1和2个0随机排成一行,则2个0不相邻的概率为()A .13B .25C .23D .45【答案】C 【解析】【分析】采用插空法,4个1产生5个空,分2个0相邻和2个0不相邻进行求解.【详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻的概率为1025103=+.故选:C.5.【2021年乙卷理科】在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A .79B .2332C .932D .29【答案】B 【解析】【分析】设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,分别求出,A Ω对应的区域面积,根据几何概型的的概率公式即可解出.【详解】如图所示:设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中的阴影部分,其面积为13323124432A S =-⨯⨯=,所以()2332A S P A S Ω==.故选:B.【点睛】本题主要考查利用线性规划解决几何概型中的面积问题,解题关键是准确求出事件,A Ω对应的区域面积,即可顺利解出.6.【2021年新高考1卷】有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立【答案】B 【解析】【分析】根据独立事件概率关系逐一判断【详解】11561()()()()6636366P P P P =====甲,乙,丙丁,1()0()()()()()36P P P P P P =≠==甲丙甲丙,甲丁甲丁,1()()()()0()()36P P P P P P =≠=≠乙丙乙丙,丙丁丁丙,故选:B 【点睛】判断事件,A B 是否独立,先计算对应概率,再判断()()()P A P B P AB =是否成立7.【2021年新高考2卷】某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是()A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等【答案】D 【解析】【分析】由正态分布密度曲线的特征逐项判断即可得解.【详解】对于A ,2σ为数据的方差,所以σ越小,数据在10μ=附近越集中,所以测量结果落在()9.9,10.1内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在()9.9,10.0的概率与落在()10.2,10.3的概率不同,所以一次测量结果落在()9.9,10.2的概率与落在()10,10.3的概率不同,故D 错误.故选:D.8.【2020年新课标1卷理科】某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i = 得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是()A .y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x=+【答案】D 【解析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.9.【2020年新课标2卷理科】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A .10名B .18名C .24名D .32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900+-=,9001850=,故至少需要志愿者18名.故选:B 【点晴】本题主要考查函数模型的简单应用,属于基础题.10.【2020年新课标3卷理科】在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是()A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【答案】B 【解析】【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65As =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85Bs =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05Cs =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45Ds =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组的标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.11.【2020年新高考1卷(山东卷)】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A .62%B .56%C .46%D .42%【答案】C 【解析】【分析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅,然后根据积事件的概率公式()P A B ⋅=()()()P A P B P A B +-+可得结果.【详解】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅,则()0.6P A =,()0.82P B =,()0.96P A B +=,所以()P A B ⋅=()()()P A P B P A B +-+0.60.820.960.46=+-=所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.【点睛】本题考查了积事件的概率公式,属于基础题.12.【2019年新课标1卷理科】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.13.【2019年新课标2卷理科】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差【答案】A 【解析】【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤ .则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤ ,中位数仍为5x ,∴A 正确.②原始平均数1234891()9x x x x x x x =+++++ ,后来平均数234817x x x x x '=+++ ()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦ 由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确.本题旨在考查学生对中位数、平均数、方差、极差本质的理解.14.【2019年新课标3卷理科】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.8【答案】C【解析】根据题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.【点睛】本题考查容斥原理,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.15.【2018年新课标1卷理科】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】【分析】首先设出新农村建设前的经济收入为M ,根据题意,得到新农村建设后的经济收入为2M ,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.【详解】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入我0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确;新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%28%58%50%+=>,所以超过了经济收入的一半,所以D 正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.16.【2018年新课标1卷理科】如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3【答案】A 【解析】【分析】首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p 1,p 2,p 3的关系,从而求得结果.【详解】设,,AC b AB c BC a ===,则有222b c a +=,从而可以求得ABC ∆的面积为112=S bc ,黑色部分的面积为22221()()[()]2222c b a S bc πππ=⋅+⋅-⋅-2221(4442c b a bc π=+-+22211422c b a bc bc π+-=⋅+=,其余部分的面积为22311122282a a S bc bc ππ⎛⎫=⋅-=- ⎪⎝⎭,所以有12S S =,根据面积型几何概型的概率公式,可以得到12p p =,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.17.【2018年新课标2卷理科】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114C .115D .118【答案】C【解析】【详解】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有21045C =种方法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为31=4515,选C.点睛:古典概型中基本事件数的探求方法:(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.18.【2018年新课标3卷理科】某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.3【答案】B【解析】【详解】分析:判断出为二项分布,利用公式()()D X np 1p =-进行计算即可.()()D X np 1p =- p 0.4∴=或p 0.6=()()()()6444661010P X 41P X 61C p p C p p ==-<==-,()221p p ∴-<,可知p 0.5>故答案选B.点睛:本题主要考查二项分布相关知识,属于中档题.19.【2021年新高考1卷】有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则()A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样本数据的样本极差相同【答案】CD【解析】【分析】A 、C 利用两组数据的线性关系有()()E y E x c =+、()()D y D x =,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B 、D 的正误.【详解】A :()()()E y E x c E x c =+=+且0c ≠,故平均数不相同,错误;B :若第一组中位数为i x ,则第二组的中位数为i i y x c =+,显然不相同,错误;C :()()()()D y D x D c D x =+=,故方差相同,正确;D :由极差的定义知:若第一组的极差为max min x x -,则第二组的极差为max min max min max min ()()y y x c x c x x -=+-+=-,故极差相同,正确;故选:CD20.【2021年新高考2卷】下列统计量中,能度量样本12,,,n x x x 的离散程度的是()A .样本12,,,n x x x 的标准差B .样本12,,,n x x x 的中位数C .样本12,,,n x x x 的极差D .样本12,,,n x x x 的平均数【答案】AC【解析】【分析】考查所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.【详解】由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选:AC.21.【2020年新高考1卷(山东卷)】信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑ ,定义X 的信息熵21()log n i i i H X p p ==-∑.()A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n == ,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+= ,则H (X )≤H (Y )【答案】AC【解析】【分析】对于A 选项,求得()H X ,由此判断出A 选项;对于B 选项,利用特殊值法进行排除;对于C 选项,计算出()H X ,利用对数函数的性质可判断出C 选项;对于D 选项,计算出()(),H X H Y ,利用基本不等式和对数函数的性质判断出D 选项.【详解】对于A 选项,若1n =,则11,1i p ==,所以()()21log 10H X =-⨯=,所以A 选项正确.对于B 选项,若2n =,则1,2i =,211p p =-,所以()()()121121X log 1log 1H p p p p =-⋅+-⋅-⎡⎤⎣⎦,当114p =时,()221133log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,当13p 4=时,()223311log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,两者相等,所以B 选项错误.对于C 选项,若()11,2,,i p i n n== ,则()222111log log log H X n n nn n ⎛⎫=-⋅⨯=-= ⎪⎝⎭,则()H X 随着n 的增大而增大,所以C 选项正确.对于D 选项,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且()21j m j P Y j p p +-==+(1,2,,j m = ).()2222111log log m m i i i i i iH X p p p p ===-⋅=⋅∑∑122221222122121111log log log log m m m mp p p p p p p p --=⋅+⋅++⋅+⋅ .()H Y =()()()122221212122211111log log log m m m m m m m m p p p p p p p p p p p p -+-++⋅+⋅+++⋅+++ 12222122212221221121111log log log log m m m m m mp p p p p p p p p p p p ---=⋅+⋅++⋅+⋅++++ 由于()01,2,,2i p i m >= ,所以2111i i m i p p p +->+,所以222111log log i i m i p p p +->+,所以222111log log i i i i m ip p p p p +-⋅>⋅+,所以()()H X H Y >,所以D 选项错误.故选:AC【点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.22.【2020年新高考2卷(海南卷)】我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A .这11天复工指数和复产指数均逐日增加;B .这11天期间,复产指数增量大于复工指数的增量;C.第3天至第11天复工复产指数均超过80%;D.第9天至第11天复产指数增量大于复工指数的增量;【答案】CD【解析】【分析】注意到折线图中有递减部分,可判定A错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD 正确.【详解】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B错误;由图可知,第3天至第11天复工复产指数均超过80%,故C正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D正确;【点睛】本题考查折线图表示的函数的认知与理解,考查理解能力,识图能力,推理能力,难点在于指数增量的理解与观测,属中档题.23.【2022年全国甲卷】从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有=C84=70个结果,这4个点在同一个平面的有= 6+6=12个,故所求概率==1270=635.故答案为:635.24.【2022年新高考2卷】已知随机变量X服从正态分布2,2,且o2<≤2.5)=0.36,则o>2.5)=____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为∼2,2,所以<2=>2=0.5,因此>2.5=>2−2<≤2.5=0.5−0.36=0.14.故答案为:0.14.25.【2019年新课标1卷理科】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.【答案】0.18【解析】【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【详解】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算.26.【2019年新课标2卷理科】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.【答案】0.98.【解析】【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=.【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.。

排列组合概率统计(答案)

排列组合概率统计(答案)

排列组合二项式定理概率统计(理科适用)1.某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为() A.85B.86 C.91 D.90解析:由题意,可分三类考虑:(1)男生甲入选,女生乙不入选:C13C24+C23C14+C33=31;(2)男生甲不入选,女生乙入选:C14C23+C24C13+C34=34;(3)男生甲入选,女生乙入选:C23+C14C13+C24=21,∴共有入选方法种数为31+34+21=86.答案:B2.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种解析:将标号为1,2的卡片放入1个信封,有C13=3种方法,将剩下的4张卡片放入剩下的2个信封中,有C22·C24=6种方法,共有C13C24·C22=3×6=18种.答案:B3.从5张100元,3张200元,2张300元的运动会门票中任选3张,则选取的3张中至少有2张价格相同的不同的选法共有()A.70种B.80种C.90种D.100种解析:基本事件的总数是C310,在三种价格的门票中各自选取1张的方法数是C15C13C12,故其对立事件“选取的3张中至少有2张价格相同”的不同的选法共有C310-C15C13C12=90种.答案:C4.2012年春节放假安排:农历除夕至正月初六放假,共7天.某单位安排7位员工值班,每人值班1天,每天安排1人.若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有()A.1 440种B.1 360种C.1 282种D.1 128种解析:采取对丙和甲进行捆绑的方法:如果不考虑“乙不在正月初一值班”,则安排方案有:A66·A22=1 440种,如果“乙在正月初一值班”,则安排方案有:C11·A14·A22·A44=192种,若“甲在除夕值班”,则“丙在初一值班”,则安排方案有:A55=120种.则不同的安排方案共有1 440-192-120=1 128(种).答案:D5.霓虹灯的一个部位由7个小灯泡并排组成,每个灯泡均可以亮出红色或黄色,现设计每次变换只闪亮其中的三个灯泡,且相邻的两个灯泡不同时亮,则一共可以呈现出不同的变换形式的种数为()A.20 B.30 C.50 D.80解析:按照三个灯泡同色、三个灯泡两红一黄、三个灯泡一红两黄将问题分为三类:第一类:三个灯泡同色时,可以呈现出不同的变换形式的种数为C35×2=20种;第二类:三个灯泡两红一黄时,可以呈现出不同的变换形式的种数为C35×C23=30种;第三类:三个灯泡一红两黄时,可以呈现出不同的变换形式的种数为C35×C23=30种.故呈现出满足条件的不同的变换形式的种数为20+30+30=80.答案:D二、填空题6.(2012·本溪模拟)5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有________种.(以数字作答)解析:①只有1名老队员的排法有C12·C23·A33=36种.②有2名老队员的排法有C22·C13·C12·A22=12种;所以共48种.答案:487.(2012·北京模拟)三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法种数为________.解析:法一:根据题意,两端的座位要空着中间六个座位坐三个人,再空三个座位,这三个座位之间产生四个空,可以认为是坐后产生的空,故共有A34=24种.法二:让人占座位之间的空,因有五个座位,它们之间四个空,人去插空,共有A34=24种.答案:24三、解答题8.将4个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有1个空盒且其他盒子中球的颜色齐全的不同放法共有多少种?解:先选1空盒:C14,将4白、5黑、6红分别放入其余三个盒中,每盒1个,剩1个白球有3种放法,剩2个黑球有3+C23=6种放法,剩3个红球有3+1+A23=10种放法,由分步乘法原理,得C14×6×3×10=720种.9.某中学高三年级共有12个班级,在即将进行的月考中,拟安排12个班主任老师监考数学,每班1人,要求有且只有8个班级是自己的班主任老师监考,则不同的监考安排方案共有多少种?解:先从12个班主任中任意选出8个到自己的班级监考,有C812种安排方案,设余下的班主任为A、B、C、D,自己的班级分别为1、2、3、4,安排班主任A有三种方法,假定安排在2班监考,再安排班主任B有三种方法,假定安排在3班监考,再安排班主任C、D有一种方法,因此安排余下的4个班主任共有9种方法,所以安排方案共有C812·9=4 455种.10.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中:(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙二人至少有一人参加,有多少种选法?(4)医疗队中至少有一名内科医生和一名外科医生,有几种选法?解:(1)只需从其他18人中选3人即可,共有C318=816种;(2)只需从其他18人中选5人即可,共有C518=8 568种;(3)分两类:甲、乙中有一人参加;甲、乙都参加.共有C12C418+C318=6 936种;(4)法一:(直接法):至少一名内科一名外科的选法可分四类:一内四外;二内三外;三内二外;四内一外,所以共有C112C48+C212C38+C312C28+C412C18=14 656种.法二:(间接法):由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C520-(C58+C512)=14 656种.1.甲:A1、A2是互斥事件;乙:A1、A2是对立事件.那么()A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件 解析:由互斥、对立事件的含义知选B 答案:B2.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175]的概率为0.5,那么该同学的身高超过175 cm 的概率为( )A .0.2B .0.3C .0.7D .0.8解析:因为必然事件发生的概率是1,所以该同学的身高超过175 cm 的概率为1-0.2-0.5=0.3.答案:B3.(2012·皖南八校联考)某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( )A.115B.35C.815D.1415解析: 记4听合格的饮料分别为A 1、A 2、A 3、A 4,2听不合格的饮料分别为B 1、B 2,则从中随机抽取2听有(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,A 4),(A 2,B 1),(A 2,B 2),(A 3,A 4),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共15种不同取法,而至少有一听不合格饮料有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共9种,故所求概率为P =915=35.答案:B4.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为( )A.16B.15C.13D.25解析:由题意可知,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为55+4+3+2+1=13.答案:C5.(2012·合肥模拟)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,A =30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a 、b ,则满足条件的三角形有两个解的概率是( )A.16B.13C.12D.34解析:要使△ABC 有两个解,需满足的条件是⎩⎪⎨⎪⎧a >b sin A ,b >a 因为A =30°,所以⎩⎪⎨⎪⎧b <2a ,b >a满足此条件的a ,b 的值有b =3,a =2;b =4,a =3;b =5,a =3;b =5,a =4;b =6,a =4;b =6,a =5,共6种情况,所以满足条件的三角形有两个解的概率是636=16.答案:A 二、填空题6.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为________.答案:357.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.解析:P =1-0.2×0.25=0.95. 答案:0.95 三、解答题8.已知7件产品中有2件次品,现逐一不放回地进行检验,直到2件次品都能被确认为止.(1)求检验次数为3的概率; (2)求检验次数为5的概率.解:(1)设“在3次检验中,前2次检验中有1次检到次品,第3次检验到次品”为事件A ,则检验次数为3的概率为P (A )=C 12C 15C 27·1C 15=221.(2)记“在5次检验中,前4次检验中有1次检到次品,第5次检验到次品”为事件B ,记“在5次检验中,没有检到次品”为事件C ,则检验次数为5的概率为P =P (B )+P (C )=C 12C 35C 47·1C 13+C 55C 57=521.9.已知向量a =(x 、y ),b =(1,-2),从6张大小相同、分别标有号码1、2、3、4、5、6的卡片中,有放回地抽取两张,x 、y 分别表示第一次、第二次抽取的卡片上的号码.(1)求满足a·b =-1的概率; (2)求满足a·b >0的概率.解:(1)设(x ,y )表示一个基本事件,则两次抽取卡片的所有基本事件有(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,1)、(2,2)、…、(6,5)、(6,6),共36个.用A 表示事件“a·b =-1”,即x -2y =-1,则A 包含的基本事件有(1,1)、(3,2)、(5,3),共3个,P (A )=336=112.(2)a·b >0,即x -2y >0,在(1)中的36个基本事件中,满足x -2y >0的事件有(3,1)、(4,1)、(5,1)、(6,1)、(5,2)、(6,2),共6个,所以所求概率P =636=16.10.某次会议有6名代表参加,A 、B 两名代表来自甲单位,C 、D 两名代表来自乙单位,E 、F 两名代表来自丙单位,现随机选出两名代表发言,问:(1)代表A 被选中的概率是多少?(2)选出的两名代表“恰有1名来自乙单位或2名都来自丙单位”的概率是多少? 解:(1)从这6名代表中随机选出2名,共有15种不同的选法,分别为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ).其中代表A 被选中的选法有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),共5种,则代表A 被选中的概率为515=13.(2)法一:随机选出的2名代表“恰有1名来自乙单位或2名都来自丙单位”的结果有9种,分别是 (A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ).则“恰有1名来自乙单位或2名都来自丙单位”这一事件的概率为915=35.法二:随机选出的2名代表“恰有1名来自乙单位”的结果有8种,概率为815;随机选出的2名代表“都来自丙单位”的结果有1种,概率为115.则“恰有1名来自乙单位或2名都来自丙单位”这一事件的概率为815+115=35.1.下列4个表格中,可以作为离散型随机变量分布列的一个是( ) A.B.C.D.解析:利用离散型随机变量的分布列的性质检验即可. 答案:C2.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是( )A .ξ=4B .ξ=5C .ξ=6D .ξ≤5解析:由条件知“放回5个红球”事件对应的ξ为6. 答案:C3.离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为( )A.23B.34C.45D.56解析:由(11×2+12×3+13×4+14×5)×a =1.知45a =1 ∴a =54. 故P (12<X <52)=P (1)+P (2)=12×54+16×54=56.答案:D4.(2012·福州模拟)一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为( )A.1220B.2755C.27220D.2125解析:由题意取出的3个球必为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.答案:C5.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是( ) A .P (ξ=3) B .P (ξ≥2) C .P (ξ≤3)D .P (ξ=2)解析:由超几何分布知P (ξ=2)=(n -m )A 2mA 3n 答案:D 二、填空题6.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=______. 解析:∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.答案:237.设随机变量X 只能取5、6、7、…、16这12个值,且取每个值的概率相同,则P (X >8)=________,P (6<X ≤14)=________.解析:P (X >8)=23,P (6<X ≤14)=23.答案:23 23三、解答题8.(2012·扬州模拟)口袋中有n (n ∈N *)个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .若P (X =2)=730,求:(1)n 的值; (2)X 的分布列.解:(1)由P (X =2)=730知C 13C 1n +3×C 1nC 1n +2=730, ∴90n =7(n +2)(n +3).∴n =7.(2)X =1,2,3,4 且P (X =1)=710,P (X =2)=730,P (X =3)=7120,P (X =4)=1120.∴X 的分布列为9.一项试验有两套方案,每套方案试验成功的概率都是23,试验不成功的概率都是13.甲随机地从两套方案中选取一套进行这项试验,共试验了3次,且每次试验相互独立.(1)求3次试验都选择了同一套方案且都试验成功的概率;(2)记3次试验中,都选择了第一套方案并试验成功的次数为X ,求X 的分布列. 解:(1)记事件“一次试验中,选择第i 套方案并试验成功”为A i ,i =1,2,则P (A i )=1C 12×23=13. 3次试验选择了同一套方案且都试验成功的概率 P =P (A 1·A 1·A 1+A 2·A 2·A 2)=⎝⎛⎭⎫133+⎝⎛⎭⎫133=227.(2)由题意知X 的可能取值为0,1,2,3,则X ~B (3,23), P (X =k )=C k 3⎝⎛⎭⎫133-k ⎝⎛⎭⎫23k,k =0,1,2,3. X 的分布列为10.在某射击比赛中,比赛规则如下:每位选手最多射击3次,射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i (i =1,2,3)次射击时击中目标得4-i 分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.(1)求甲恰好射击两次的概率;(2)设选手甲停止射击时的得分总数为ξ,求随机变量ξ的分布列.解:(1)记“选手甲第i 次击中目标的事件”为A i (i =1,2,3),则P (A i )=0.8,P (A i )=0.2, 依题意可知:A i 与A j (i ,j =1,2,3,i ≠j )相互独立, 所求的概率为P (A 1A 2)=P (A 1)P (A 2)=0.8×0.2=0.16. (2)ξ的可能取值为0,3,5,6.P (ξ=0)=0.2,P (ξ=3)=0.8×0.2=0.16, P (ξ=5)=0.82×0.2=0.128,P (ξ=6)=0.83=0.512. 所以ξ的分布列为:1.若随机变量X 的分布列如下表,则E (X )等于( )A.118B.19C.209D.920解析:由分布列的性质可得2x +3x +7x +2x +3x +x =1,∴x =118.∴E (X )=0×2x +1×3x+2×7x +3×2x +4×3x +5x =40x =209.答案:C2.(2012·潍坊模拟)设X 为随机变量,X ~B ⎝⎛⎭⎫n ,13,若随机变量X 的数学期望E (X )=2,则P (X =2)等于( )A.1316B.4243C.13243D.80243解析:∵X ~B ⎝⎛⎭⎫n ,13,∴E (X )=n3=2.∴n =6. ∴P (X =2)=C 26⎝⎛⎭⎫132⎝⎛⎭⎫234=80243. 答案:D3.已知随机变量X ~B (6,22),则P (-2≤X ≤5.5)=( )A.78B.18C.6364D.3132解析:依题意,P (-2≤X ≤5.5)=P (X =0,1,2,3,4,5)=1-P (X =6)=1-C 66×(22)6=78. 答案:A4.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧.其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,若随机变量X =|a -b |的取值,则X 的数学期望E (X )=( )A.89B.35C.25D.13解析:对称轴在y 轴的左侧(a 与b 同号)的抛物线有2C 13C 13C 17=126条,X 的可能取值有0,1,2.P (X =0)=6×7126=13,P (X =1)=8×7126=49,P (X =2)=4×7126=29,E (X )=89.答案:A5.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,a 、b 、c ∈(0,1),且无其他得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为( )A.148B.124C.112D.16解析:依题意得3a +2b +0×c =1,∵a >0,b >0,∴3a +2b ≥26ab ,即26ab ≤1,∴ab ≤124.当且仅当3a =2b 即a =25,b =35时等式成立.答案:B 二、填空题6.某射手射击所得环数ξ的分布列如下:已知ξ的期望E (ξ)=8.9,则y 的值为________.解析:依题意得⎩⎪⎨⎪⎧x +0.1+0.3+y =1,7x +0.8+2.7+10y =8.9,即⎩⎪⎨⎪⎧x +y =0.6,7x +10y =5.4,由此解得y =0.4. 答案:0.47.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量X 表示选出的志愿者中女生的人数,则数学期望E (X )=________(结果用最简分数表示).解析:首先X ∈{0,1,2}.∵P (X =0)=C 25C 27=1021,P (X =1)=C 12C 15C 27=1021,P (X =2)=C 22C 27=121.∴E (X )=0×1021+1×1021+2×121=1221=47.答案:47三、解答题8.某品牌汽车的4S 店,对最近100位采用分期付款的购车者进行了统计,统计结果如下表所示:已知分3期付款的频率为0.2,且4S 店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元.用η表示经销一辆汽车的利润.(1)若以频率作为概率,求事件A :“购买该品牌汽车的3位顾客中,至多有1位采用分3期付款”的概率P (A );(2)求η的分布列及其数学期望E (η).解:(1)由题意可知“购买该品牌汽车的3位顾客中有1位采用分3期付款”的概率为0.2,所以P (A )=0.83+C 13×0.2×(1-0.2)2=0.896.(2)由a100=0.2得a =20, ∵40+20+a +10+b =100,∴b =10. 记分期付款的期数为ξ,依题意得: P (ξ=1)=40100=0.4,P (ξ=2)=20100=0.2,P (ξ=3)=20100=0.2,P (ξ=4)=10100=0.1,P (ξ=5)=10100=0.1.由题意知η的可能取值为:1,1.5,2(单位:万元). P (η=1)=P (ξ=1)=0.4,P (η=1.5)=P (ξ=2)+P (ξ=3)=0.4; P (η=2)=P (ξ=4)+P (ξ=5)=0.1+0.1=0.2. ∴η的分布列为:∴η的数学期望E (η)=1×0.4+1.5×0.4+2×0.2=1.4(万元).9.(2012·广州调研)某商店储存的50个灯泡中,甲厂生产的灯泡占60%,乙厂生产的灯泡占40%,甲厂生产的灯泡的一等品率是90%,乙厂生产的灯泡的一等品率是80%.(1)若从这50个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?(2)若从这50个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等),这两个灯泡中是甲厂生产的一等品的个数记为ξ,求E (ξ)的值.解:(1)法一:设事件A 表示“甲厂生产的灯泡”,事件B 表示“灯泡为一等品”,依题意有P (A )=0.6,P (B |A )=0.9,根据条件概率计算公式得P (AB )=P (A )·P (B |A )=0.6×0.9=0.54.法二:该商店储存的50个灯泡中,甲厂生产的灯泡有50×60%=30个,乙厂生产的灯泡有50×40%=20个,其中是甲厂生产的一等品有30×90%=27个,故从这50个灯泡中随机抽取出一个灯泡,它是甲厂生产的一等品的概率为2750=0.54.(2)依题意,ξ的取值为0,1,2,P (ξ=0)=C 223C 250=2531 225,P (ξ=1)=C 127C 123C 250=6211 225,P (ξ=2)=C 227C 250=3511 225,∴ξ的分布列为∴E (ξ)=0×2531 225+1×6211 225+2×3511 225=1.08.10.(2012·冀州模拟)今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人们可以由此计算出自己每天的碳排放量.例如:家居用电的碳排放量(千克)=耗电度数×0.785,汽车的碳排放量(千克)=油耗公升数×0.785等.某班同学利用寒假在两个小区逐户进行了一次生活习惯是否符合低碳观念的调查.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.这二族人数占各自小区总人数的比例P 数据如下:(1)如果甲、乙来自A 小区,丙、丁来自B 小区,求这4人中恰有2人是低碳族的概率; (2)A 小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A 小区中任选25人,记ξ表示25个人中低碳族人数,求E (ξ).解:(1)记这4人中恰好有2人是低碳族为事件A , P (A )=12×12×15×15+4×12×12×45×15+12×12×45×45=33100.(2)设A 小区有a 人,2周后非低碳族的概率P =a ×12×(1-15)2a =825,2周后低碳族的概率P =1-825=1725, 依题意ξ~B (25,1725),所以E (ξ)=25×1725=17.1.二项式6)12(xx -的展开式中的常数项是( ) A .20 B .-20 C .160D .-160解析:二项式(2x -1x )6的展开式的通项是T r +1=C r 6·(2x )6-r ·⎝⎛⎭⎫-1x r =C r 6·26-r ·(-1)r ·x 6-2r .令6-2r =0,得r =3,因此二项式(2x -1x)6的展开式中的常数项是C 36·26-3·(-1)3=-160. 答案:D 2.若二项式nxx )2(2+的展开式中所有项的系数之和为243,则展开式中x -4的系数是( )A .80B .40C .20D .10解析:令x =1,则3n =243,解得n =5.二项展开式的通项公式是T r +1=C r 5x5-r ·2r ·x -2r=2r ·C r 5·x 5-3r ,由5-3r =-4,得r =3.故展开式中x -4的系数是23C 35=80.答案:A3.(1-x )8展开式中不含x 4项的系数的和为( ) A .-1 B .0 C .1D .2解析:二项式(1-x )8各项系数和为(1-1)8=0,二项式(1-x )8展开式的通项公式为(-1)r ·C r 8·2rx ,当r =8时,可得x 4项的系数为(-1)8·C 88=1,由此可得二项式(1-x )8展开式中不含x 4项的系数的和为0-1=-1.答案:A4.若nxx )2(+的展开式中的第5项为常数,则n =( ) A .8 B .10 C .12D .15解析:∵T 4+1=C 4n (x )n -4⎝⎛⎭⎫2x 4=C 4n 24122n x -为常数,∴n -122=0,n =12. 答案:C5.若(x +y )9按x 的降幂排列的展开式中,第二项不大于第三项,且x +y =1,xy <0,则x 的取值范围是( )A .(-∞,15)B .[45,+∞)C .(-∞,-45]D .(1,+∞)解析:二项式(x +y )9的展开式的通项是T r +1=C r 9·x 9-r ·y r 依题意有 ⎩⎪⎨⎪⎧C 19·x 9-1·y ≤C 29·x 9-2·y 2,x +y =1,xy <0.由此得⎩⎪⎨⎪⎧x 8·(1-x )-4x 7·(1-x )2≤0x (1-x )<0,由此解得x >1,即x 的取值范围是(1,+∞). 答案:D 二、填空题6.设二项式6)(xa x -(a >0)的展开式中x 3的系数为A ,常数项为B .若B =4A ,则a 的值是________.解析:对于T r +1=C r 6x 6-r 12ra x ⎛⎫- ⎪ ⎪⎝⎭=C r 6(-a )r 362rx -,B =C 46(-a )4,A =C 26(-a )2.∵B =4A ,a >0,∴a =2. 答案:27.(1+x )3(1+1x )3的展开式中1x的系数是________.解析:利用二项式定理得(1+x )3⎝⎛⎭⎫1+1x 3的展开式的各项为C r 3x r ·C n 3x -n =C r 3C n 3x r -n,令r -n =-1,故可得展开式中含1x 项的是C 03·C 13x +C 13·C 23x +C 23·C 33x =15x,即(1+x )3⎝⎛⎭⎫1+1x 3的展开式中1x 的系数是15. 答案:15。

高中数学概率与统计常考题型归纳

高中数学概率与统计常考题型归纳

高中数学概率与统计(理科)常考题型归纳题型一:常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列. 解 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率 P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥,∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19.(3)依题设,ξ的所有可能取值为0,2,4. 且A 1与A 3互斥,A 0与A 4互斥. 则P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1+A 3)=P (A 1)+P (A 3) =C 14⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081,P (ξ=4)=P (A 0+A 4)=P (A 0)+P (A 4) =C 04⎝ ⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781.所以ξ的分布列是【类题通法】(1)本题44人中恰有i 人参加甲游戏的概率P =C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i,这是本题求解的关键.(2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和.【变式训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解 (1)ξ=2,则甲队有两人答对,一人答错,故P (ξ=2)=34×23×⎝⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124;(2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B .设乙队得分为η,则η~B ⎝⎛⎭⎪⎫3,23.P (ξ=1)=34×⎝⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×12=14, P (ξ=3)=34×23×12=14,P (η=1)=C 13·23·⎝ ⎛⎭⎪⎫132=29,P (η=2)=C 23·⎝ ⎛⎭⎪⎫232·13=49,P (η=3)=C 33⎝ ⎛⎭⎪⎫233=827,∴P (A )=P (ξ=1)P (η=3)+P (ξ=2)P (η=2)+P (ξ=3)·P (η=1) =14×827+1124×49+14×29=13, P (AB )=P (ξ=3)·P (η=1)=14×29=118,∴所求概率为P (B|A )=P (AB )P (A )=11813=16.题型二:离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681.(2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=2 9,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B3)P(B4)=10 81,P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=8 81 .故X的分布列为E(X)=2×59+3×29+4×1081+5×81=81.【类题通法】求离散型随机变量的均值和方差问题的一般步骤第一步:确定随机变量的所有可能值;第二步:求每一个可能值所对应的概率;第三步:列出离散型随机变量的分布列;第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【变式训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2 .②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为所以顾客所获的奖励额的数学期望为E(X)=20×2+60×2=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X 1的数学期望为E(X1)=20×16+60×3+100×6=60(元),X 1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X 2的数学期望为E(X2)=40×16+60×3+80×6=60(元),X 2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.题型三:概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组75,80),第2组80,85),第3组85,90),第4组90,95),第5组95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.解(1)由频率分布直方图知:第3组的人数为5××40=12.第4组的人数为5××40=8.第5组的人数为5××40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人.①设“甲或乙进入第二轮面试”为事件A,则P(A)=1-C310C312=511,所以甲或乙进入第二轮面试的概率为5 11 .②X的所有可能取值为0,1,2,P(X=0)=C24C26=25,P(X=1)=C12C14C26=815,P(X=2)=C22C26=115.所以X的分布列为E(X)=0×25+1×815+2×115=1015=3.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X服从超几何分布.【变式训练】某公司为了解用户对某产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A 1表示事件:“A 地区用户的满意度等级为满意或非常满意”;C A 2表示事件:“A 地区用户的满意度等级为非常满意”; C B 1表示事件:“B 地区用户的满意度等级为不满意”; C B 2表示事件:“B 地区用户的满意度等级为满意”, 则C A 1与C B 1独立,C A 2与C B 2独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2. P (C )=P (C B 1C A 1∪C B 2C A 2) =P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=.题型四:统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值. 解 (1)由题意知n =10,x =1n∑ni =1x i =8010=8, y =1n∑ni =1y i =2010=2, 又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24,由此得b^=lxylxx=2480=,a^=y-b^x=2-×8=-,故所求线性回归方程为y^=-.(2)由于变量y的值随x值的增加而增加(b^=>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y^=×7-=(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r来确定,r的绝对值越接近于1,表明两个变量的线性相关性越强,r的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b^,a^的公式进行准确的计算.【变式训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X的分布列、期望E(X)和方差D(X).解(1)完成2×2列联表如下:K2=10060×40×55×45≈>,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i(i =0,1,2,3).X 的分布列为均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝ ⎛⎭⎪⎫1-25=1825.。

高考概率题知识点理科

高考概率题知识点理科

高考概率题知识点理科概率是数学中一个非常重要的概念,它在高考数学理科中占据着很大一部分。

了解和熟悉概率题的知识点,对于高考数学的备考有着至关重要的意义。

下面将介绍一些常见的高考概率题的知识点。

一、基本概率问题基本概率问题是概率题中最常见的问题类型,它包括了计算事件的概率、计算多个事件的交集和并集等。

在解决这类问题时,我们首先需要明确事件的定义,然后利用概率的定义进行计算。

例如,某班级有50名学生,其中20人喜欢运动。

如果从中随机选择一名学生,那么他喜欢运动的概率是多少?这个问题中,喜欢运动的学生构成了一个事件,而从中随机选择一名学生则是该事件的样本空间。

根据概率的定义,我们可以计算出喜欢运动的概率为20/50=0.4。

二、独立事件与非独立事件独立事件和非独立事件是高考概率题中另一个重要的知识点。

独立事件是指事件之间的发生没有关系,即一个事件的发生不会影响另一个事件的发生。

而非独立事件则相反。

在解决独立事件的问题时,我们可以使用乘法原理进行计算。

例如,某班级有10名男生和15名女生,如果从中随机选择两名学生,那么他们都是女生的概率是多少?因为选择第一名学生是女生的概率为15/25,选择第二名学生时,因为前一名学生已经确定为女生,所以第二名学生也是女生的概率为14/24。

根据乘法原理,我们可以计算出两名学生都是女生的概率为(15/25) * (14/24)。

对于非独立事件的问题,我们需要使用条件概率进行计算。

条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。

例如,某班级有10名男生和15名女生,如果从中随机选择两名学生,第一名学生是女生的条件下,第二名学生也是女生的概率是多少?因为第一名学生已经确定为女生,所以第二名学生也是女生的概率为14/24。

根据条件概率的定义,我们可以计算出第二名学生是女生的概率为14/24。

三、排列与组合排列与组合是高考概率题中另一个常见的问题类型。

排列是指从一组元素中取出若干个元素进行有序排列,而组合则是指从一组元素中取出若干个元素进行无序排列。

高三理科数学复习题《概率统计》

高三理科数学复习题《概率统计》

CDBAE概率与统计专项训练一、选择题:1、4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .342、调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表: 你认为婴儿的性别与出生时间有关系的把握为( ) A.80% B.90% C.95% D.99%3、在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( )(A )511 (B )681 (C )3061 (D )40814、某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是( ) A.256625B.192625C.96625D.166255、已知样本7,8,9,,x y 的平均数是8,标准差是2,则xy 的值为( )A、8 B、32 C、60 D、806、把一根匀均匀木棒随机地按任意点拆成两段,则“其中一段的长度大于另一段长度的2倍”的概率为( )(A)23 (B)25 (C)35 (D)137、如图,四边形ABCD 为矩形,3=AB ,1=BC ,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是( ). (A)31 (B)23 (C)25 (D)358.某学生通过计算初级水平测试的概率为21,他连续测试两次, 则恰有1次获得通过的概率为 ( )43.41.21.31.D C B A 9.下面事件①若a 、b ∈R ,则a·b=b·a ;②某人买彩票中奖;③6+3>10;④抛一枚硬币出现正面向上,其中必然事件有 ( ) A .① B .② C .③④ D .①②10.在4次独立重复实验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率的范围是 ( )A .[O .4,1]B .(O ,0.4]C .(O ,0.6]D .[0.6,1)11.设袋中有8个球,其中3个白球,3个红球,2个黑球,除了颜色不同外,其余均相同.若取得1个白球得1分,取得1个红球扣1分,取得一个黑球既不得分,也不扣分,则任摸3个球后的所得总分为正分的概率为( )5623.289.74.5619.D C B A 12.从1、2、3、4、5中随机抽取3个数字(允许重复)组成一个三位数,则和等于9的概率为 ( )12513.12416.12518.12519.D C B A 13.甲、乙两人独立地对同一目标各射击一次,其命中率一分别为0.6和0.5,现已知目标被击中,则它恰是甲射中的概率为 ( )A .0.45B .0.6C .0.65D .0.75 14. 教某气象站天气预报的准确率为80%.则5次预报中至少有4次准确的概率为 ( ) A ,0.2 B .0.41 C .0.74 D .0.6715.有一道试题,A 解决的概率为21,B 解决的概率为31,C 解决的概率为41,则A 、B 、C三人独立解答此题,只有1人解出的概率为 ()31.2417.2411.241.D C B A则两人射击成绩的稳定程度是__________________。

高考理科数学二轮复习:专题透析(5)概率与统计名师讲义(含答案)

高考理科数学二轮复习:专题透析(5)概率与统计名师讲义(含答案)

5概率与一、数原理1.分加法数原理和分步乘法数原理的区是什么?分加法数原理“分” ,此中各样方法互相独立 ,用此中任何一种方法都能够做完件事 ;分步乘法数原理“分步” ,各个步互相依存 ,只有各个步都达成了才算达成件事 .2.摆列数、合数的公式及性是什么?(1)=n(n-1)(n-2) ⋯(n-m+1)=公(2)= =式=(n,m∈N+ ,且 m≤n)特地 , =1性(1)0!= 1; =n!(2) =;=+3.二式系数的性是什么?性性描绘称与首末两头“等距离”的两个二式系数相等 ,即 =性增减二式系当 k<(n∈N+ ) ,二式系数是增的性数(n∈N+ ) ,二式系数是减的当 k>二式当 n 偶数 ,中的一获得最大系数的最大当 n 奇数 ,中的两与获得最大而且相等4.各二式系数的和是什么?(1)(a+b )n睁开式的各二式系数的和+ + + ⋯+= 2n.(2)偶数的二式系数的和等于奇数的二式系数的和,即+ + + ⋯= + ++ ⋯= 2n- 1.二、概率1.互斥事件与立事件有什么区与系?互斥与立都是两个事件的关系,互斥事件是不行能同生的两个事件,而立事件除要求两个事件不一样生外 ,要求两者之一必有一个生 .所以 ,立事件是互斥事件的特别状况 ,而互斥事件不必定是立事件 .2.基本领件的三个特色是什么?(1)每一个基本领件生的可能性都是相等的;(2)任何两个基本领件都是互斥的;(3)任何事件 (除不行能事件 )都能够表示成基本领件的和.3.古典概型、几何概型的概率公式分是什么?古典概型的概率公式 :P(A)=.几何概型的概率公式 :P(A)=.三、统计初步与统计事例1.分层抽样的合用范围是什么?当整体是由差别明显的几个部分构成时,常常采纳分层抽样的方法.2.怎样作频次分布直方图?(1)求极差 (即一组数据中最大值与最小值的差).(2)决定组距与组数 .(3)将数据分组 .(4)列频次分布表 .(5)画频次分布直方图 .3.频次分布直方图的特色是什么?(1)频次分布直方图中相邻两横坐标之差表示组距,纵坐标表示,频率=组距×.(2)在频次分布直方图中 ,各小长方形的面积总和等于 1.由于在频次分布直方图中组距是一个固定值 ,所以各小长方形高的比也就是频次比 .(3)频次分布表和频次分布直方图是一组数据频次分布的两种形式,前者正确 ,后者直观 .4.怎样进行回归剖析 ?(1)定义 :对拥有有关关系的两个变量进行统计剖析的一种常用方法.(2)本点的中心于一拥有性有关关系的数据 (x1,y1),(x2,y2), ⋯ ,(x n,y n),此中 ( , )称本点的中心 .(3)有关系数当r> 0 ,表示两个量正有关; 当r< 0 ,表示两个量有关 .r 的越靠近于 1,表示两个量的性有关性越 .r 的越靠近于 0,表示两个量之的性有关性越弱 .往常当 |r|大于 0.75 ,两个量有很的性有关性.5.独立性的一般步是什么?解决独立性的用,必定要依照独立性的步得出.独立性的一般步 :(1)依据本数据制成2×2 列表 ;(2)依据公式 K2=算K2的k;(3)比 k 与界的大小关系 ,做出推测 .四、随机量及其用1.失散型随机量的分布列及性是什么?(1)失散型随机量的分布列:若失散型随机量X 全部可能的取x1,x2, ⋯,x i⋯,x n,X 取每一个 x i(i= 1,2, ⋯,n)的概率 p1,p2, ⋯,p n,表X x1x2⋯x i⋯x nP p1p2⋯p i⋯p n称失散型随机量X 的概率分布列或称失散型随机量X 的分布列.(2)失散型随机量的分布列的性:①0≤p≤1(i= 1,2,3,⋯,i n);②p1+p2+ ⋯+p n= 1;③P(x i≤X≤x j)=p i+p i+ 1+ ⋯+p j .2.事件的互相独立性的观点及公式是什么?(1)互相独立的定 :事件 A 能否生事件 B 能否生的概率没有影响,即 P(B|A)=P (B). ,称事件 A 与事件 B 互相独立 ,并把两个事件叫作互相独立事件 .(2)概率公式条件事件 A,B 互相独立事件 A⋯,1,A2, A n互相独立公式P(A∩B)=P (A) ·P(B) P(A1∩A2∩⋯∩A n) =P (A1) ·P(A2) ·⋯·P(A n)3.独立重复与二分布的观点和公式是什么?(1)独立重复①定 :在同样条件下 ,重复地做n 次 ,各次互相独立 ,那么一般就称它 n 次独立重复 .②概率公式 :在一次中事件 A 生的概率p, n 次独立重复中,事件 A 恰巧生 k 次的概率 P k n-k⋯,n(k)=p (1-p)(k=0,1,2,n).(2)二分布 :在 n 次独立重复中 ,事件 A 生的次数 X,事件 A 不生的概率 q= 1-p, n 次独立重复中事件 A 恰巧生 k 次的概率是P(X=k)= p k q n-k,此中 k=0,1,2,⋯,n于是 X 的分布列 :X 0 1 ⋯k ⋯np0pq p k q n p n qP⋯⋯q n n-1-k0此称失散型随机量X 听从参数 n,p 的二分布 ,作 X~B(n,p).4.正分布的观点及性是什么?(1)正曲 :正量的概率密度函数的象叫作正曲,其函数表达式 f(x)=·,x∈R,此中μ,σ 参数 ,且σ>0,-∞<μ<+∞.(2)正曲的性①曲位于 x 上方 ,与 x 不订交 ,与 x 之的面1;②曲是峰的 ,它对于直 x=μ 称 ;③曲在 x=μ 达到峰;④当μ必定 ,曲的形状由σ确立 ,σ越小 ,曲越“瘦高”,表示体的分布越集中 ;σ越大 ,曲越“矮胖”,表示体的分布越分别 .(3)正体在三个特别区内取的概率①P(μ-σ<X≤μ+σ)= 0.6826;②P(μ-2σ<X≤μ+2σ)= 0.9544;③P(μ-3σ<X≤μ+3σ)= 0.9974.5.失散型随机量的数学希望(或均 )与方差的观点是什么 ?一个失散型随机量X 全部可能取的是x1,x2, ⋯,x n些的概率分是 p1,p2, ⋯,p n.(1)数学希望 :称 E(X)=x 1p1+x2p2+ ⋯+x n p n失散型随机量 X 的均或数学希望 (称希望 ),它刻画了个失散型随机量取的均匀水平 .(2)方差 :称 D(X)= (x1-E(X))2p1+ (x2-E(X))2p2+ ⋯+ (x n-E(X))2p n失散型随机量 X 的方差 ,它反应了失散型随机量取相于希望的均匀波大小(或失散程度 ),D(X)的算平方根叫作失散型随机量X 的准差 .6.均与方差的性有哪些?(1)E(aX+b)=aE (X)+b(a,b 常数 ).(2)D(aX+b )=a2D(X)(a,b 常数 ).(3)两点分布与二分布的均、方差的公式①若 X 听从两点分布 ,E(X)=p ,D(X)=p (1-p).②若 X~B(n,p), E(X)=np,D(X)=np(1-p).几何概型、古典概型、互相独立事件与互斥事件的概率、条件概率是高考的点 ,几何概型主要以客形式考,求解的关在于找准度(度或面 );互相独立事件、互斥事件常作解答的一部分考,也是一步求分布列、希望与方差的基础,求解该类问题要正确理解题意,正确判断概率模型,恰当选择概率公式 .近几年的高考数学试题对统计事例的考察一般不独自命题 ,而是与概率、随机变量的数学希望交汇命题 ,高考对此类题目的要求是能依据给出的或经过统计图表给出的有关数据求线性回归方程,认识独立性查验的思想方法 ,会判断两个分类变量能否有关.从近几年高考情况来看,该类专题在高考取占的比率大概为15%,以简单题、中档题为主,考察题型分选择题、填空题和解答题 .一、选择题、填空题的命题特色(一)考察摆列、组合的应用 ,以考察两个计数原理和摆列、组合的应用为主,难度中等 ,常常以选择题、填空题的形式出现.1.(2018 ·全国Ⅰ卷·理 T15 改编 )从 2 名女生 ,4 名男生中选 3 人参加科技竞赛 ,恰有 1 名女生当选 ,则不一样的选法共有种.(用数字填写答案)分析 ?由题意可得有1名女生,2名男生,则有 C = 12 种不一样的选法 .答案?122.(2018 ·浙江卷·T16 改编 )从 1,3,5,7,9 中任取 2 个数字 ,从 2,4,6 中任取 2 个数字,一共能够构成个没有重复数字的四位数.(用数字作答 )分析 ?一共能够构成 A = 720 个没有重复数字的四位数.答案 ?7203.(2017 ·全国Ⅱ卷·理 T6 改编 )安排 5 名志愿者达成 4 项工作 ,每项工作只需由1 人达成 ,则不一样的安排方式共有 ().A.120 种B.180 种C.240 种D.360 种分析 ?由题意可得 ,5 人中选出 4 人达成工作 ,剩下 1 人没有工作 ,故不同的安排方式有 A = 120(种).答案 ?A(二)考察二项式定理的应用,以考察运用二项式定理求特定项、求项数和二项式定理性质的应用为主,难度中等 ,常常以选择题、填空题的形式出现.4.(2018 ·全国Ⅲ卷·理 T5 改编 )的睁开式中x的系数为().A.10B.20C.40D.80分析 ?由题可得 Tr+ 1C25-rC·r ·10-3r, (x ) 2 x令 10-3r= 1,得 r= 3.所以·2r=·32 =80.答案 ?D5.(2017 ·全国Ⅰ卷·理 T6 改编 )(1+x )6的睁开式中 x4的系数为 ().A.15B.16C.30D.35分析 ?由于 (1+x)6睁开式的通项为 T r 所以(1+x)6的展r+ 1C x ,开式中含 x4的项为 1C x4和C x6.由于+= 16,所以(1+x)6的睁开式中x4的系数为16.答案 ?B(三)考察随机事件的概率 ,以考察随机事件、互斥事件与对峙事件的概率为主 ,难度中等 ,常与事件的频次交汇考察.本节内容在高考取三种题型都有可能出现 ,随机事件的频次与概率题目常常以解答题的形式出现,互斥事件、对峙事件的观点及概率题目常常以选择、填空题的形式出现.6.(2018 ·全国Ⅲ卷·文 T5 改编 )若某集体中的成员只用现金支付的概率为0.25,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为().分析 ? 设事件 A 为“不用现金支付”,事件 B 为“既用现金支付也用非现金支付”,事件 C 为“只用现金支付”,则 P(A)= 1-P(B)-P(C)= 1-0.15-0.25= 0.6,故选 C.答案?C(四)考察古典概型 ,全国卷对古典概型每年都会考察 ,难度中等 ,主要考察实质背景的可能事件 ,往常与互斥事件、对峙事件一同考察 .在高考取独自命题时 ,往常以选择题、填空题形式出现 ,属于中低档题 .7.(2018 ·全国Ⅱ卷·理 T8 改编 )我国数学家陈景润在哥德巴赫猜想的研究中获得了世界当先的成就 .哥德巴赫猜想是“每个大于 2 的偶数能够表示为两个素数的和”,如30= 7+ 23.在不超出 30 的素数中 ,随机选用 2 个不一样的数 ,其和等于26 的概率是 ().A. B. C. D.分析 ?不超出30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选用 2 个不一样的数 ,共有 C= 45 种取法 .由于 3+ 23= 7+ 19= 26,所以随机选用2 个不一样的数 ,其和等于 26 的有 2 种取法 ,故所求概率为.答案?D8.(2018 ·江苏卷·T6 改编 )某兴趣小组有 2 名男生和 3 名女生 ,现从中任选 2 名学生去参加活动 ,则恰巧选中 1 名男生和 1 名女生的概率为.分析 ?从5名学生中任选2 名学生 ,共有 C = 10 种选法 ,此中恰巧选中1 名男生和 1 名女生的选法有 C C= 6 种,所以所求概率为= .答案 ?(五)考察几何概型 ,难度较大 ,以理解几何概型的观点、概率公式为主,会求一些简单的几何概型的概率 ,常与平面几何、线性规划、不等式的解集等知识交汇考察 ,在高考取多以选择题、填空题的形式考察 ,难度中等 .9.(2018 ·全国Ⅰ卷·理 T10 改编 )折纸艺术是我国古代留下来可贵的民间艺术,拥有很高的审美价值和应用价值.以下图的是一个折纸图案,由一个正方形内切一个圆形 ,而后在四个极点处罚别嵌入半径为正方形边长一半的扇形 .向图中随机投入一个质点 ,则质点落在暗影部分的概率 P1与质点落在正方形内圆形地区外面的概率P2的大小关系是 ().A.P1>P 2B.P1<P 2C.P1=P 2D.不可以确立分析 ?将正方形内圆形地区外面的四个角进行沿直角边重合组合,恰好获得的图形就是暗影部分图形,所以暗影部分地区的面积等于正方形内圆形地区外面的面积 ,故 P1=P 2.答案?C10.(2016 ·全国Ⅱ卷·文 T8 改编 )某路口人行横道的信号灯为红灯和绿灯交替出现 ,红灯连续时间为40 秒.若一名行人到达该路口碰到红灯,则起码需要等待 10 秒才出现绿灯的概率为().A. B. C. D.分析 ?起码需要等候10秒才出现绿灯的概率为= ,应选 A .答案?A(六)考察随机抽样 ,在抽样方法的考察中,系统抽样、分层抽样是考察的要点 ,题型主要以选择题和填空题为主,属于中低档题 .11.(2017 ·江苏卷·T3 改编 )某工厂生产甲、乙、丙、丁四种不一样型号的产品,产量分别为 200、400、300、100 件,为查验产品的质量 ,现用分层抽样的方法从以上全部的产品中抽取60 件进行查验 ,则应从甲种型号的产品中抽取件.分析 ?∵==,∴应从甲种型号的产品中抽取×200= 12(件 ).答案?12(七)用样本预计整体 ,主要考察均匀数、方差等的计算以及茎叶图、频次分布直方图的简单应用 .题型以选择题和填空题为主 ,出现解答题时常常与概率相联合 ,属于中档题 .12.(2018 ·全国Ⅰ卷·理 T3 改编 )某地域经过一年的新乡村建设,乡村的经济收入增添了一倍 ,实现翻番 .为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入构成比率,获得以下饼图 :则以下选项中不正确的选项是().A.新乡村建设后 ,栽种收入增添B.新乡村建设后 ,其余收入增添了一倍以上C.新乡村建设后 ,养殖收入没有增添D.新乡村建设后 ,养殖收入与第三家产收入的总和超出了经济收入的一半分析 ? 由题干可知 ,乡村的经济收入增添了一倍 ,实现翻番 .为方即可设建设前后的经济收入分别为 100,200(单位省去 ).A 中,栽种收入前后分别为60,74,收入增添了 ,A 正确 ;B 中,其余收入前后分别为 4,10,增添了一倍以上 ,B 正确 ;C 中,养殖收入前后分别为 30,60,收入增添了一倍 ,C 错误 ;D 中,建设后 ,养殖收入与第三家产收入的总和为(30+ 28)×2= 116> 100,D 正确 .应选 C.答案?C13.(2017 ·全国Ⅲ卷·理 T3)某城市为认识旅客人数的变化规律 ,提升旅行服务质量 ,采集并整理了 2014 年 1 月至 2016 年 12 月时期月招待旅客量 (单位 :万人)的数据 ,绘制了下边的折线图 .依据该折线图 ,以下结论错误的选项是 ().A.月招待旅客量逐月增添B.年招待旅客量逐年增添C.各年的月招待旅客量顶峰期大概在7,8 月D.各年 1 月至 6 月的月招待旅客量相对于7 月至 12 月,颠簸性更小 ,变化比较安稳分析 ? 对于选项 A, 由图易知 ,月招待旅客量每年 7,8 月份明显高于 12 月份 ,故 A 错误 ;对于选项 B,察看折线图的变化趋向可知 ,年招待旅客量逐年增添 ,故 B 正确 ;对于选项 C,D,由图可知明显正确 .答案?A(八)考察失散型随机变量分布列、超几何分布、条件概率、正态分布、数学希望与方差 ,求失散型随机变量的数学希望是全国卷高考要点考察的内容,在选择题、填空题中有时会出现.主要考察失散型随机变量的分布列、数学希望、正态分布等 .14.(2018 ·全国Ⅲ卷·理 T8 改编 )某集体中的每位成员使用挪动支付的概率都为 p,各成员的支付方式互相独立,设 X 为该集体的 10 位成员中使用挪动支付的人数 ,D(X)= 2.1,P(X= 4)<P (X= 6),则 p= ().分析 ? 由于 X~B(n,p),所以 D(X)=np(1-p)= 2.1,所以 p= 0.3 或 p=0.7.由于 P(X= 4)=p4(1-p)6<P (X= 6)=p6(1-p)4,所以 (1-p)2 2可得p> 0.5.故p=0.7.<p ,答案?A15.(2017 ·全国Ⅱ卷·理 T13 改编 )一批产品的二等品率为 0.08,从这批产品中每次随机取一件,有放回地抽取 100 次,X 表示抽到的二等品件数,则D(X)=.分析 ?有放回地抽取,是一个二项分布模型, 此中p=0.08,n=100,则D(X)=np(1-p)= 100×0.08×0.92= 7.36.答案 ?7.36二、解答题的命题特色概率与统计综合试题的题干阅读量大,简单造成考生在数学模型转变过程中失误,得分率不高 .这些试题主要考察古典概型,用样本预计整体,利用回归方程进行展望 ,独立性查验的应用 ,失散型随机变量的分布列和数学希望 ,正分布等 .概率、随机量的数学希望交命,高考此目的要求是能依据出的或通表出的有关数据求性回方程.1.(2018 ·全国Ⅱ卷·理 T18)下是某地域 2000 年至 2016 年境基施投y(位 :元)的折.了地域 2018 年的境基施投 ,成立了 y 与量 t 的两个性回模型 .依据2000 年至 2016 年的数据 (量 t 的挨次1,2, ⋯ ,17)成立模型①: =- 30.4+ 13.5t;依据 2010年至 2016 年的数据 (量t 的挨次 1,2, ⋯,7)成立模型②: = 99+ 17.5t.(1)分利用两个模型 ,求地域 2018 年的境基施投的.(2)你用哪个模型获得的更靠谱?并明原因 .分析 ? (1)利用模型①,从 2000 年开始算起 ,2018 年即 t= 19,所以地域2018 年的境基施投的=- 30.4+ 13.5×19= 226.1(元).利用模型②,从 2010 年开始算起 ,2018 年即 t= 9,所以地域 2018 年的境基施投的= 99+ 17.5×9= 256.5(元).(2)利用模型②获得的更靠谱 .原因以下 :(i) 从折能够看出 ,2000年至 2016 年的数据的点没有随机分布在直线 y=- 30.4+ 13.5t 上下 ,这说明利用 2000 年至 2016 年的数据成立的线性模型①不可以很好地描绘环境基础设备投资额的变化趋向.2010 年相对 2009 年的环境基础设备投资额有明显增添,2010 年至 2016 年的数据对应的点位于一条直线的邻近 ,这说明从 2010 年开始环境基础设备投资额的变化规律呈线性增添趋向,利用2010年至2016年的数据成立的线性模型= 99+ 17.5t能够,所以利用模型②较好地描绘2010年此后的环境基础设备投资额的变化趋向获得的展望值更靠谱.(ii)从计算结果看 ,相对于 2016 年的环境基础设备投资额 220 亿元 ,由模型①获得的展望值 226.1 亿元的增幅明显偏低 ,而利用模型②获得的展望值的增幅比较合理 ,说明利用模型②获得的展望值更靠谱 .2.(2018 ·全国Ⅰ卷,理 T20)某工厂的某种产品成箱包装 ,每箱 200 件,每一箱产品在交托用户以前要对产品作查验,如查验出不合格品,则改换为合格品 .查验时 ,先从这箱产品中任取 20 件作查验 ,再依据查验结果断定能否对余下的全部产品作查验 .设每件产品为不合格品的概率都为p(0<p< 1),且各件产品能否为不合格品互相独立.(1)记 20 件产品中恰有 2 件不合格品的概率为f(p),求 f(p)的最大值点 p0.(2)现对一箱产品查验了20 件,结果恰有 2 件不合格品 ,以(1)中确立的 p0作为p 的值 .已知每件产品的查验花费为 2 元,如有不合格品进入用户手中,则工厂要对每件不合格品支付25 元的补偿花费 .(i)若不对该箱余下的产品作查验 ,这一箱产品的查验花费与补偿花费的和记为 X,求 E(X).(ii)以查验花费与补偿花费和的希望值为决议依照 ,能否该对这箱余下的全部产品作查验 ?分析 ? (1)由题意可知 ,独立重复试验切合二项分布 ,20 件产品中恰有 2 件不合格品的概率为f(p)C p2(1-p)18= 190p2(1-p)18,对上式求导得 f'(p)= [190p2(1-p)18]'=190[2p(1-p)18-18p2(1-p)17]=190p(1-p)17[2(1-p)-18p]=380p(1-p)17(1-10p).当 f'(p)= 0 时,有 p(1-p)17由适当∈时(1-10p)= 0,0<p< 1,p,f'(p)> 0,f(p)单一递加 ;当 p∈时,f'(p)< 0,f(p)单一递减.故 f(p)max=f (p0)=f,即 p0= .(2)(i) 由题意 ,节余未作查验的产品有180件,此中 Y表示不合格品的件数 ,其听从二项分布Y~B.故 E(Y)= 180× = 18.又 X= 40+ 25Y,故 E(X)=E (40+ 25Y)= 40+ 25×18= 490(元).(ii)若对这箱余下的全部产品作查验 ,则需要的查验费为 200×2= 400(元).由于 E(X)= 490> 400,所以需要对这箱余下的全部产品作查验.3.(2018 ·全国Ⅲ卷·理 T18)某工厂为提升生产效率 ,睁开技术创新活动 ,提出了达成某项生产任务的两种新的生产方式 .为比较两种生产方式的效率,选用40 名工人 ,将他们随机分红两组 ,每组 20 人,第一组工人用第一种生产方式 , 第二组工人用第二种生产方式 .依据工人达成生产任务的工作时间 (单位 :min) 绘制了以下茎叶图 :(1)依据茎叶图判断哪一种生产方式的效率更高?并说明原因 .(2)求 40 名工人达成生产任务所需时间的中位数 m,并将达成生产任务所需时间超出 m 和不超出 m 的工人数填入下边的列联表 :不超出超出 mm第一种生产方式第二种生产方式(3)依据 (2)中的列联表 ,可否有 99%的掌握以为两种生产方式的效率有差别?附:K2=,P(K2≥k0)0.0500.0100.001k0 3.841 6.63510.828分析 ? (1)第二种生产方式的效率更高.原因以下 :(i)由茎叶图可知 ,用第一种生产方式的工人中 ,有 75%的工人达成生产任务所需时间起码 80 分钟 ,用第二种生产方式的工人中 ,有 75%的工人达成生产任务所需时间至多 79 分钟 ,所以第二种生产方式的效率更高 .(ii)由茎叶图可知,用第一种生产方式的工人达成生产任务所需时间的中位数为 85.5 分钟 ,用第二种生产方式的工人达成生产任务所需时间的中位数为 73.5 分钟 ,所以第二种生产方式的效率更高 .(iii)由茎叶图可知,用第一种生产方式的工人达成生产任务均匀所需时间高于 80 分钟 ,用第二种生产方式的工人达成生产任务均匀所需时间低于80 分钟 ,所以第二种生产方式的效率更高.(iv)由茎叶图可知 ,用第一种生产方式的工人达成生产任务所需时间分布在茎 8 上的最多 ,对于茎 8 大概呈对称分布 ;用第二种生产方式的工人达成生产任务所需时间分布在茎 7 上的最多 ,对于茎 7 大概呈对称分布 .又用两种生产方式的工人达成生产任务所需时间分布的区间同样 ,故能够以为用第二种生产方式达成生产任务所需的时间比用第一种生产方式达成生产任务所需的时间更少 ,所以第二种生产方式的效率更高 .(2)由茎叶图知 m== 80.列联表以下 :超出 m不超出第一种生产方m 155式第二种生产方515式(3)因 K2的 k== 10> 6.635,所以有 99%的掌握两种生方式的效率有差别.4.(2017 ·全国Ⅰ卷·理 T19)了控某种部件的一条生的生程,每日从生上随机抽取16 个部件 ,并量其尺寸 (位 :cm).依据期生 ,能够条生正常状下生的部件的尺寸听从正分布2N(μ,σ).(1) 假生状正常,X 表示一天内抽取的16 个部件中其尺寸在(μ-3σ,μ+3σ)以外的部件数,求P(X≥1)及X 的数学希望.(2)一天内抽部件中 ,假如出了尺寸在 (μ-3σ,μ+3σ)以外的部件 ,就条生在一天的生程可能出了异样状况 ,需当日的生程行 .(i)明上述控生程方法的合理性 .(ii)下边是在一天内抽取的 16 个部件的尺寸 :9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95算得 =xi= 9.97,s==≈0 .212,此中 x i抽取的第 i 个部件的尺寸 ,i= 1,2,⋯,16.用本均匀数作μ的估 ,用本准差 s 作σ的估 ,利用估判断能否需当日的生程行?剔除 ( -3, + 3 )以外的数据 ,用剩下的数据估μ和σ(精准到 0.01).2附:若随机量Z服从正分布N(μ,σ),P(μ-3σ<Z<μ+3σ)= 0.9974,0.997416≈0.9592,≈0.09.分析 ? (1)由题可知抽取的一个部件的尺寸落在(μ-3σ,μ+3σ)以内的概率为 0.9974,进而部件的尺寸落在 (μ-3σ,μ+3σ)以外的概率为0.0026,故 X~B(16,0.0026).所以 P(X≥1)= 1-P(X= 0)= 1-0.997416≈1-0.9592=0.0408, X 的数学希望 E(X)= 16×0.0026= 0.0416.(2)(i) 假如生产状态正常 ,一个部件尺寸在 (μ-3σ,μ+3σ)以外的概率只有0.0026,一天内抽取的16 个部件中,出现尺寸在(μ-3σ,μ+3σ)以外的部件的概率只有0.0408,发生的概率很小,所以一旦发生这种状况,就有原因以为这条生产线在这天的生产过程可能出现了异样状况,需对当日的生产过程进行检查,可见上述监控生产过程的方法是合理的 .(ii) 由 = 9.97,s≈0.212,得μ的预计值为 = 9.97,σ的预计值为 = 0.212,由样本数据能够看出有一个部件的尺寸在 ( -3 , + 3 )以外 ,所以需对当日的生产过程进行检查 .剔除( -3 , +3 )以外的数据9.22,剩下数据的均匀数为×(16×9.97-9.22)= 10.02,所以μ的预计值为 10.02.= 16×0.2122+ 16×9.972≈ 1591.134,剔除( -3 , +3 )以外的数据9.22,剩下数据的样本方差为×2-15×10.022) ≈0.008,所以σ的预计值为≈0.09.1.样本数据(1)众数、中位数及均匀数都是描绘一组数据集中趋向的量 ,均匀数是最重要的量 ,与每个样本数占有关 ,这是中位数、众数所不拥有的性质 .(2)标准差、方差描绘了一组数据环绕均匀数颠簸的大小.标准差、方差越大 ,数据的失散程度就越大.(3)茎叶图、频次分布表和频次分布直方图都是用图表直观描绘样本数据的分布规律的 .2.频次分布直方图(1)用样本预计整体是统计的基本思想,而利用频次分布表和频次分布直方图来预计整体则是用样本的频次分布去预计整体分布的两种主要方法 .频次分布表在数目表示上比较正确 ,频次分布直方图比较直观 .(2)频次分布表中的频数之和等于样本容量,各组中的频次之和等于1;在频次分布直方图中,各小长方形的面积表示相应各组的频次,所以全部小长方形的面积的和等于 1;均匀数是频次分布直方图各个小矩形的面积×底边中点的横坐标之和 .3.摆列与组合(1)①解决“在”与“不在”的有限制条件的摆列问题 ,既能够从元素下手 ,也能够从地点下手 ,原则是谁“特别”谁优先 .不论是从元素考虑仍是从地点考虑 , 都要贯彻究竟 ,不可以既考虑元素又考虑地点 .②解决相邻问题的方法是“捆绑法”,即把相邻元素看作一个整体和其余元素一同摆列,同时要注意捆绑元素的内部摆列 .③解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的摆列,再将不相邻的元素插在前方元素摆列的空中间.④对于定序问题,可先不考虑次序限制,摆列后 ,再除以定序元素的全摆列.⑤若某些问题从正面考虑比较复杂 ,可从其反面下手 ,即采纳“间接法”.(2)组合问题的限制条件主要表此刻拿出元素中“含”或“不含”某些元素,或许“起码”或“最多”含有几个元素 :①“含有”或“不含有”某些元素的组合题型.“含”,则先将这些元素拿出 ,再由此外元素补足 ; “不含”,则先将这些元素剔除,再从剩下的元素中去选用 .②“起码”或“最多”含有几个元素的题型 .考虑逆向思想 ,用间接法办理 .(3)分组分派问题是摆列、组合问题的综合运用,解决这种问题的一个基本指导思想就是先分组后分派 .对于分组问题,有整体均分、部分均分和不平分三种 ,不论分红几组 ,都应注意只需有一些组中元素的个数相等 ,就存在均分现象 .4.随机变量的均值与方差一般计算步骤 :(1)理解 X 的意义 ,写出 X 的全部可能取的值 .(2)求 X 取各个值的概率 ,写出分布列 .(3)依据分布列,由均值的定义求出均值 E(X),进一步由公式D(X)=(x i -E(X))2p i=E(X2)-(E(X))2求出 D(X).(4)以特别分布 (两点分布、二项分布、超几何分布 )为背景的均值与方差。

概率统计课程标准

概率统计课程标准

《概率统计》(理工等,本)课程标准一、课程概述《概率统计》是理工科学生的一门基础理论课。

概率统计是研究随机现象客观规律性的一门学科,随着科学技术的发展以及人们对随机现象规律性认识的需要,概率随机现象规律性认识的需要,概率统计的思想方法正日益渗透到自然科学和社会科学的众多领域中。

通过本课程的学习,使学生掌握概率统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计分析和解决实际问题的能力。

本课程类型是必修课,基础理论课。

总学时是36学时,适用于理工类本科,先修课程为微积分和线性代数。

二、课程目标1、知道《概率统计》这门学科的性质、地位和作用,知道这门学科所研究的对象、研究方法和学科发展。

2、理解和掌握这门学科的主要概念、基本思想和基本方法。

3、要求学生理解并掌握随机事件与概率的计算,理解并掌握随机变量及概率分布的性质,掌握随机变量的数字特征,了解大数定律,会用中心极限定理求近似概率,了解树立统计的基本概念,掌握参数估计及假设检验的基本理论和方法,并会用这些方法解决一些实际问题。

4、知道如何把“数理统计”与“概率论”联系起来。

5、养成对发生在自己日常学习、生活和工作的事进行思考的习惯,看能否用概率论与数理统计的思想和方法来考虑问题。

三、课程内容与教学要求这门学科的知识与技能要求分为知道、理解、掌握、学会四个层次。

这四个层次的一般含义表述如下:知道----是指对这门学科和随机现象的认知。

理解----是指对这门学科涉及到的概念、思想、方法的说明和解释,能提示随机现象的特征。

掌握----是指运用已理解的概念、思想和方法类推同类问题。

学会----是指能模仿或在老师指导下独立完成有关的计算、推导和证明,或识别一般错误。

教学内容和要求表中的“√”号表示教学知识和技能的教学要求层次。

本标准中打“﹡”号的内容可作为自学,教师可根据实际情况确定要求或不布置要求。

(一)随机事件及其概率(二)随机变量及其分布(三)随机变量的数字特征(四)正态分布(五)数理统计的基本知识(六)参数估计(七)假设检验四、课程实施(一)课时安排与教学建议每周安排2课时,共36课时。

高考理科概率统计知识点

高考理科概率统计知识点

高考理科概率统计知识点在高考理科考试中,概率统计是一个非常重要的考点。

它涵盖了概率、统计和相关的数学概念。

理解和熟练掌握这些知识点是取得好成绩的关键。

本文将探讨高考理科概率统计知识点,并带您深入了解。

一、概率基础概率是指某个事件在可能的所有结果中发生的可能性。

在概率基础这一部分中,我们需要了解一些基本概念,比如事件、样本空间、随机事件等。

样本空间是指所有可能结果的集合。

例如,掷一枚硬币的结果可能是正面或反面,因此样本空间为{正面,反面}。

随机事件是在试验中可能发生或不发生的事件。

例如,抛一枚硬币的结果正面朝上,可以称为一个随机事件。

二、概率的计算方法1. 古典概率古典概率是根据已经知道的概率和样本空间中的元素个数来计算概率。

例如,掷一枚均匀的骰子,每个面的概率为1/6。

2. 频率概率频率概率是根据大量重复试验中某个事件发生的频率来估计概率。

例如,抛硬币,正面朝上的频率在长期大量的试验中会趋近于1/2。

3. 条件概率条件概率是指在已知其他事件发生的前提下,某个事件发生的概率。

例如,在已知某人患有某种疾病的前提下,他的检测结果呈阳性的概率。

三、统计学基础统计学是描述和解释现实世界中数据的科学。

在考试中,我们需要熟悉统计学的基本概念和方法。

1. 数据的描述性统计描述性统计是用统计数字和图形图表来总结和分析数据的方法。

例如,我们可以使用均值、中值和众数等数值来描述数据的集中趋势,使用标准差和方差来描述数据的离散程度。

2. 抽样调查抽样调查是指从总体中选择一部分样本进行调查的方法。

在抽样调查中,我们需要了解一些常见的抽样方法,比如简单随机抽样、系统抽样和分层抽样等。

3. 参数估计参数估计是指根据样本数据来估计总体参数值的方法。

在参数估计中,我们需要了解一些常见的参数估计方法,比如点估计和区间估计。

四、概率与统计的关系概率和统计密切相关,两者相互补充。

概率理论提供了统计学中推断和预测的基础,而统计学则通过实际观测数据来验证和应用概率理论。

高中数学概率统计

高中数学概率统计

高中数学概率统计
概率统计是数学中的一个重要分支,它研究随机现象和事件发
生的可能性。

在高中阶段,学生需要通过研究概率统计来理解和应
用概率的基本概念和计算方法。

概率是指某个事件发生的可能性大小。

在数学中,概率可以通
过计算来得出。

常见的计算方法包括频率概率和几何概率。

学生需
要学会根据给定的条件计算概率,包括单个事件和多个事件的概率
计算。

在概率统计中,还有一些重要的概念需要学生掌握。

例如,样
本空间是指随机事件所有可能结果的集合;事件是样本空间的子集,表示满足特定条件的结果集合;试验是指对随机现象进行观察和记
录的过程。

高中数学概率统计还涉及到一些常见的概率分布,如二项分布、均匀分布和正态分布。

学生需要理解这些分布的特点和应用场景,
以及如何计算和图示化概率分布。

通过研究高中数学概率统计,学生可以提高他们的数据分析和问题解决能力。

他们能够在实际生活中应用概率统计的知识,例如在投资、保险和赌博等方面做出理性的决策。

总之,高中数学概率统计是一门重要的数学课程,它帮助学生理解和应用概率的基本概念和计算方法,提高他们的数学思维和问题解决能力。

【(2020-2022)三年真题分项汇编】第28讲 概率与统计(解答题)(理科专用)(学生版)

【(2020-2022)三年真题分项汇编】第28讲 概率与统计(解答题)(理科专用)(学生版)

三年专题15 概率与统计(解答题)(理科专用)1.【2022年全国甲卷】甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.2.【2022年新高考1卷】一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.P(B|A)P(B ̅|A)与P(B|A )P(B ̅|A )的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R . (ⅰ)证明:R =P(A|B)P(A |B)⋅P(A |B̅)P(A|B ̅);(ⅱ)利用该调查数据,给出P(A|B),P(A|B ̅)的估计值,并利用(ⅰ)的结果给出R 的估计值.附K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),3.【2022年新高考2卷】在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).4.【2021年新高考1卷】某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,已知小明能正确回答A类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.5.【2021年新高考2卷】一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <;(3)根据你的理解说明(2)问结论的实际含义.6.【2020年新课标1卷理科】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮,空.设每场比赛双方获胜的概率都为12(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.7.【2020年新课标2卷理科】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi ,yi )(i =1,2,…,20),其中xi 和yi 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800ii ix y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(xi ,yi )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.8.【2020年新课标3卷理科】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:2()()()()()n ad bc K a b c d a c b d -=++++,9.【2020年新高考1卷(山东卷)】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,。

高二理数《概率统计1》

高二理数《概率统计1》

高二理科数学《概率》练习11.已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.(1)求甲射击一次,命中不足8环的概率;(2)求甲射击一次,至少命中7环的概率.2.已知射手甲射击一次,击中目标的概率是23.(1)求甲射击5次,恰有3次击中目标的概率;(2)假设甲连续2次未击中...目标,则中止其射击,求甲恰好射击5次后,被中止射击的概率.3.某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是31,每次测试时间间隔恰当,每次测试通过与否互相独立. (1)求该学生考上大学的概率.(2)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为ξ,求ξ的分布列4.某射手进行射击训练,假设每次射击击中目标的概率为34,且各次射击的结果互不影响. (1)求射手在3次射击中,3次都击中目标的概率(用数字作答); (2)求射手在3次射击中,恰有两次连续击中目标的概率(用数字作答); (3)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答).5.一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:23123456f(x)=x,f(x)=x,f(x)=x,f(x)=sinx,f(x)=cosx,f(x)=2.(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列6.甲、乙、丙三人分别独立的进行某项技能测试,已知甲能通过测试的概率是25,甲、乙、丙三人都能通过测试的概率是320,甲、乙、丙三人都不能通过测试的概率是340,且乙通过测试的概率比丙大.(Ⅰ)求乙、丙两人各自通过测试的概率分别是多少;(Ⅱ)求测试结束后通过的人数ξ的数学期望Eξ.0.01频率组距7.某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[)50,40,[)60,50…[]100,90后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求第四小组的频率,并补全这个频率分布直方图; (Ⅱ)估计这次考试的及格率(60分及以上为及格)和 平均分;(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人, 求他们在同一分数段的概率.8.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在 下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12.(Ⅰ)求小球落入A 袋中的概率()P A ;(Ⅱ)在容器入口处依次放入4个小球,记ξ为落入A 袋中的小球个数,试求3ξ=的概率和ξ的数学期望E ξ.高二理科数学《概率》练习1答案1.解:记“甲射击一次,命中7环以下”为事件A ,“甲射击一次,命中7环”为事件B ,由于在一次射击中,A 与B 不可能同时发生,故A 与B 是互斥事件, (1)“甲射击一次,命中不足8环”的事件为A B +,由互斥事件的概率加法公式,()()()0.120.10.22P A B P A P B +=+=+=. 答:甲射击一次,命中不足8环的概率是0.22.…………………………………6分 (2)方法1:记“甲射击一次,命中8环”为事件C ,“甲射击一次,命中9环(含9环)以上”为事件D ,则“甲射击一次,至少命中7环”的事件为A C D ++, ∴()()()()0.120.220.560.9P A C D P A P C P D ++=++=++=.答:甲射击一次,至少命中7环的概率为0.9.…………………………………12分 2.解:(1)设“甲射击5次,恰有3次击中目标”为事件A ,则()32352180C 33243P A ⎛⎫⎛⎫=⋅= ⎪⎪⎝⎭⎝⎭.答:甲射击5次,恰有3次击中目标的概率为24380.………………………………6分 (2)方法1:设“甲恰好射击5次后,被中止射击”为事件C ,由于甲恰好射击5次后被中止射击,所以必然是最后两次未击中目标,第三次击中目标,第一次与第二次至少有一次击中目标,则()2221222212116C C 33333243P C ⎡⎤⎛⎫⎛⎫=+⋅⋅⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.答:甲恰好射击5次后,被中止射击的概率为16243.……………………………12分 方法2:设“甲恰好射击5次后,被中止射击”为事件C ,由于甲恰好射击5次后被中止射击,所以必然是最后两次未击中目标,第三次击中目标,第一次与第二次至少有一次击中目标,则()2222121161C 333243P C ⎡⎤⎛⎫⎛⎫=-⋅⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦. 答:甲恰好射击5次后,被中止射击的概率为16243.……………………………12分 3.(1)记“该生考上大学”的事件为事件A ,其对立事件为A ,则5415)32()32)(31()(+=C A P2分 243131])32()32)(31([1)(5415=+⋅-=∴C A P 4分 答:该生考上大学的概率为2431315分 (2)参加测试次数ξ的可能取值为2,3,4,5,6分,91)31()2(2===ξP274313231)3(12=⋅⋅⋅==C P ξ 27431)32(31)4(213=⋅⋅⋅==C P ξ 8148)32()32(31)5(4314=+⋅⋅==C P ξ 10分故ξ的分布列为:4.解: (1)记事件“射手在3次射击中,3次都击中目标”为事件A , 3327()()464P A ==;………………………………………4分 (2)记事件“射手在3次射击中,恰有两次连续击中目标”为事件B , 2319()2()4432P B =⋅⋅=;………………………………………8分 (3)记事件“射手第3次击中目标时,恰好射击了4次”为事件C , 31381()3()44256P C =⋅⋅=………………………………………12分 5. 解:(1)记事件A 为“任取两张卡片,将卡片上的函数相加得到的函数是奇函数”,由题意知.51)(2623==C C A P ………………………………………………………………4分(2)ξ可取1,2,3,4.103)2(,21)1(151316131613=⋅=====C C C C P C C P ξξ,201)4(,203)3(1313141115121613141315121613=⋅⋅⋅===⋅⋅==C C C C C C C C P C C C C C C P ξξ; …………8分 故ξ的分布列为6.解(Ⅰ)设乙、丙两人各自通过测试的概率分别是x 、y 依题意得:23,52033(1)(1),540xy x y ⎧=⎪⎪⎨⎪--=⎪⎩ 即3,41.2x y ⎧=⎪⎪⎨⎪=⎪⎩ 或 1,23.4x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)┅┅┅┅┅┅┅4分 所以乙、丙两人各自通过测试的概率分别是34、12. ┅┅┅┅┅┅┅6分 (Ⅱ)因为3(0)40P ξ== 3(3)20P ξ==2312312317(1)(1)(1)(1)(1)(1)(1)54254254220P ξ==--+--+--=7.(Ⅰ)因为各组的频率和等于1,故第四组的频率:41(0.0250.01520.010.005)100.03f =-+*++*=……2分直方图如右所示……………………………….4分(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组, 频率和为 (0.0150.030.0250.005)100.75+++*=所以,抽样学生成绩的合格率是75%......................................6分 利用组中值估算抽样学生的平均分123456455565758595f f f f f f ⋅+⋅+⋅+⋅+⋅+⋅………………….8分=450.1550.15650.15750.3850.25950.05⨯+⨯+⨯+⨯+⨯+⨯ =71估计这次考试的平均分是71分………………………………………….9分(Ⅲ)[70,80),[80,90) ,[90,100]”的人数是18,15,3。

概率统计高考题2017-2019

概率统计高考题2017-2019

高二理科数学概率统计(2017)2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.13.(5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX=.3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).K2=.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?高二理科数学概率统计(2018)8.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p38.(5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()A.0.7B.0.6C.0.4D.0.318.(12分)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=﹣30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K2=,高二理科数学概率统计(2019)6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.15.(5分)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是.13.(5分)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).18.(12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.21.(12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得﹣1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得﹣1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i﹣1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=﹣1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1﹣p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.。

理工科概率统计

理工科概率统计

理工科概率统计概率统计是一门重要的理工科学科,它通过数学方法研究随机现象规律及其数学模型,具有广泛的应用。

在现实生活中,我们经常遇到各种不确定性,例如天气预测、股票价格波动、疾病发生率等,这些都需要概率统计来进行分析和预测。

概率统计的基础是概率论,它研究的是随机事件发生的可能性。

在概率统计中,我们常用概率来描述一个事件发生的可能性大小,概率的取值范围是0到1之间,其中0表示不可能发生,1表示必然发生。

概率统计通过概率计算,能够准确描述事件的发生率,并基于此进行预测和决策。

概率统计的核心概念包括随机变量、概率分布和统计推断。

随机变量是指在随机试验过程中可能发生变化的量,可以是离散的(如掷骰子的点数)或连续的(如温度的变化)。

概率分布则是描述随机变量取值的概率情况,常见的概率分布包括均匀分布、正态分布等。

统计推断是指通过样本数据对总体情况进行估计和研究,其中包括参数估计和假设检验等方法。

概率统计在各个领域都有广泛的应用,特别是在工程、经济、金融等领域中。

在工程领域,概率统计可以应用于可靠性分析和质量控制,帮助提高产品的质量和可靠性。

在经济和金融领域,概率统计可以进行风险评估和投资决策,帮助投资者降低风险并获得更好的收益。

概率统计的方法和技术也在不断地发展和创新。

随着计算机技术的发展,我们可以利用计算机模拟和蒙特卡洛方法来进行复杂的概率统计计算,大大提高了分析的准确性和效率。

同时,概率统计与机器学习和人工智能的结合也为解决实际问题提供了新的思路和方法。

在学习概率统计时,我们不仅需要掌握概率统计的基本概念和方法,还需要培养良好的数学思维和分析问题的能力。

同时,我们还需要了解真实世界中的数据特点和背景知识,以便更好地应用概率统计进行问题求解。

总而言之,概率统计是一门重要的理工科学科,它在各个领域都有广泛的应用。

通过学习概率统计,我们可以深入了解和预测随机现象,并在实际问题中进行合理的决策和分析。

因此,掌握概率统计的知识和方法对我们的学习和工作具有重要的指导意义。

概率与统计(1)--二项分布与超几何分布

概率与统计(1)--二项分布与超几何分布

知识篇科学备考新指向高考数学2021年$月穂率与统计----------二项分布与超几何分布■甘肃省嘉峪关市第一中学牛淑琴二项分布与超几何分布是高考理科数学考查概率与统计部分的常见问题,解决问题的难点和关键是通过复杂的问题背景剖析出问题的本质,辨别清楚随机变量是否服从二项分布与超几何分布,进而求出相应的概率值、概率分布列、数学期望和方差。

题型一$利用超几何分布求解不放回型抽样问题!!某省从2021年开始将全面推行新高考制度,新高考“$+1+2%中的“2”要求考生从政治、化学、生物、地理四门科目中选两门,按照等级赋分计入高考成绩,等级赋分规则如下:从2021年夏季高考开始,高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为A%五个等级,确定各等级人数所占比例分别为15%,$5%,$5%,1$%,2%,等级考试科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法分别转换到'6,100(,[71,85],'6,70(,[41,55(,[$0,40(五个分数区间内,得到考生的等级分,等级转换分满分为100分。

具体转换分数区间如表1:表2考生科目考试成绩成绩等级原始分区间等级分区间化学75分B等级'9,84('1,85(设该同学转换后的等级成绩为',根据oa_7斤q r__t公式得75“一亍右,所以'-76.6#77 75——6.丄——71(四舍五入取整),即该同学最终的化学成绩为77分。

已知某年级学生有100人选了化学,以期中考试成绩为原始成绩转换本年级的化学等级成绩,其中化学成绩获得A等级的学生原始成绩统计如表$:表$成绩959$9190888785人数12$2$22(1)从化学成绩获得A等级的学生中任取2名,求恰好有1名学生的等级成绩不小于96分的概率;(2)从化学成绩获得A等级的学生中任取5名,设5名学生中等级成绩不小于96分的人数为e,求e的分布列和期望。

高考理科统计概率知识点

高考理科统计概率知识点

高考理科统计概率知识点在高中数学课程中,统计概率是一个重要的知识点。

它涉及到我们日常生活中各种事件和现象的概率计算。

掌握统计概率知识不仅对于高考和考试有帮助,更重要的是它能够让我们在生活中做出更合理的决策,并更好地理解和分析数据。

本文将介绍高考理科统计概率的相关知识点。

1. 随机事件与样本空间统计概率的基础是随机事件和样本空间的概念。

随机事件是指在一次试验中可能发生的一个结果,而样本空间则是这个试验中所有可能结果的集合。

例如,掷一枚硬币的随机事件为正面和反面,样本空间为{正,反}。

另外,补事件、事件的并、交、差、互斥等概念也是理解统计概率的基础。

2. 古典概型在某些试验中,样本空间中各个结果的概率相等,这种情况下可以采用古典概型进行概率计算。

例如,掷一枚均匀骰子的概率计算,每个点数出现的概率为1/6。

这种情况下,样本空间中的每个结果出现的概率相等。

3. 条件概率条件概率是指在一个已知事件发生的条件下,另一个事件发生的概率。

例如,在一副扑克牌中,从中任意抽出一张牌,求其为红心的条件概率。

条件概率的计算需要用到样本空间中的事件和已知信息。

4. 独立事件独立事件是指两个事件之间互不影响的情况。

例如,从一堆扑克牌中抽一张,再把它放回,重新抽一张,两次抽到红心的概率不会相互影响。

对于独立事件,可以用乘法原理进行概率计算。

5. 全概率公式和贝叶斯公式全概率公式和贝叶斯公式是概率论中的重要定理,它们在实际问题中的应用非常广泛。

全概率公式用于计算一个事件的概率,利用该事件与可能发生的几个互斥事件的概率之间的关系。

贝叶斯公式则用于根据已知的条件概率来计算另一个事件的概率,应用于研究事件之间的因果关系。

6. 期望与方差期望和方差是统计概率中常用的指标,用于描述随机事件的平均情况和变异程度。

期望是指随机事件在多次试验中的平均结果,方差是指随机事件结果与其均值之间的差异程度。

在概率分布和数据分析中,期望和方差是对数据进行分析和比较的重要依据。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体) 1.抽样(每个个体被抽到的概率相等) (1)简单随机抽样 :抽签法与随机数表法 (2)系统抽样(等距抽样) (3)分层抽样 2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差 (2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小) 1.基本概念(1)随机事件A 的概率()()1,0∈A P(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)有一个发生、独立事件同时发生 2.概率模型(1)古典概型(有限等可能) (2)几何概型(无限等可能) 三、随机变量及其概率分布列 1.离散型随机变量X 的概率分布列性质:(1)n i P i ,,2,1,0 =>;(2)11=∑=ni i P数学期望(均值)()n n i i p x p x p x p x X E ++++=2211 方差()()()∑=-=ni iiP X E x X D 12,称()X D 为标准差.2.常见随机变量分布列 (1)两点分布 (2)超几何分布(3)二项分布:()P n B X ,~ (4)正态分布:()2,~σμN X 四、二项式定理 五、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____. 5.若1,2,3,4,m 这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ) A.56 B.60 C.120 D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),… ,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a 的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (Ⅲ)(文)估计居民月均用水量的中位数. (理)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.9.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可); B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=2211.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M 、I 、N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_________ .20.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分组并得到的频率分布直方图如图所示.下表是年龄的频数分布表.(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.21.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4322.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 23.在区间[-2,3]上随机选取一个数x ,则1 x 的概率为_____ .24.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .25.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .26.已知随机变量ξ服从正态分布()2,1σN ,若()15.02=>ξP ,则()=≤≤10ξP ______ . 27.已知随机变量X 服从正态分布()2,2σN ,()84.04=≤X P ,则()=≤0X P ________ .28.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y29.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元 30.通过随机询问110名性别不同的大学生是否爱好某项活动,得到如下的22⨯列联表:由()()()()()d b c a d c b a bc ad n K ++++-=22算得,()8.7506050602020304011022≈⨯⨯⨯⨯-⨯⨯=K 附表:参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”31.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情 况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn t yt n y t b ni i ni ii ˆˆ,ˆ1221-=--=∑∑==.32.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:33.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .34.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;(2)在抽出的100名市民中,按分层抽样抽法抽取20人参加宣传活动,在这20人中选取2名市民担任主要发言人,设这2名市民中“年龄低于30岁”的人数为X ,求X 的分布列及数学期望.35.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件之内(含35件)的部分每件4元,超出35件的部分每件7元 .(1)根据题中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(2)为了解乙公司员工B 每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X 的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.36.(2016新课标Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)求续保人本年度的平均保费与基本保费的比值.37.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为____________ .38.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率. 39.某市BA,两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(Ⅰ)求A中学至少有1名学生入选代表队的概率;(Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛.设X表示参赛的男生人数,求X的分布列和数学期望.40.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率.(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).41.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为___________ . 42.某公司为了解用户对其产品的满意度,从B A ,两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分三个等级:记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.43.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘,已知甲胜A 、乙胜B 、丙胜C 的胜率分别为0.6、0.5、0.5,假设各盘比赛结果相互独立. (Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望ξE .44.如图所示的茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值;(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当2=a 时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和数学期望.二项式定理练习题:1.6312⎪⎪⎭⎫⎝⎛-x 的展开式中的第四项是__________ .2.412⎪⎭⎫ ⎝⎛-x x 的展开式中的常数项是___________ .3.在5212⎪⎭⎫ ⎝⎛-x x 的二项展开式中,x 的系数是( )A.10B.10-C.40D.40-4.()n x 31+(其中N n ∈且6≥n )的展开式中,5x 与6x 的系数相等,则n =( ) A.6 B.7 C.8 D.95.5⎪⎭⎫ ⎝⎛+x a x 的展开式中,3x 的系数为10,则实数a 等于_________ .6.若nx x ⎪⎭⎫ ⎝⎛-12展开式中的所有二项式系数之和为512,则该展开式中的常数项为( )A.84-B.84C.36-D.36 7.nx x ⎪⎭⎫ ⎝⎛+1的展开式中第3项与第7项的二项式系数相等,则该展开式中21x 的系数为______ .8.若nx x ⎪⎭⎫ ⎝⎛-21的展开式中第3项的二项式系数是15,则展开式中所有项的系数之和为____ .9.821⎪⎪⎭⎫⎝⎛+x x 的展开式中常数项为( ) A.1635 B.835C.435D.10510.()()533121x x -+的展开式中x 的系数为( )A.4-B.2-C.2D.411.()6211⎪⎭⎫ ⎝⎛-++x x x x 的展开式中常数项为________ .12.()522112⎪⎭⎫⎝⎛-+x x 的展开式中常数项为_________ .13.已知()()511x ax ++的展开式中2x 的系数为5,则a =( ) A.4- B.3- C.2- D.1- 14.61⎪⎪⎭⎫ ⎝⎛-x x 的二项展开式中的常数项为_________ . 15.二项式()5y x +的展开式中,含32y x 的项的系数是________ .(用数字作答) 16.521⎪⎪⎭⎫⎝⎛+x ax 的展开式中各项系数之和为243,则该展开式中常数项为_________ .17.()52y x x ++的展开式中,25y x 的系数是( )A.10B.20C.30D.6018.5212⎪⎭⎫⎝⎛++x x 展开式中整理后的常数项为________(用数字作答).19.32221⎪⎭⎫⎝⎛-+x x 展开式中的常数项为_____________ .20.若⎰=πsin xdx a ,则二项式61⎪⎪⎭⎫⎝⎛-x x a 的展开式中常数项是_________ .。

相关文档
最新文档