2019年高考真题理科数学分类汇编专题10 概率与统计和计数原理(解析版)
2019年高考数学“概率与统计”专题复习(真题+答案)
2019年高考数学“概率与统计”专题复习(名师精选重点试题+实战真题演练+答案,建议下载保存) (总计65页,涵盖所有知识点,价值很高,可以达到事半功倍的复习效果,值得下载打印练习)1 随机事件的概率基础自测1.下列说法正确的是( )A.某事件发生的频率为P(A)=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件D.某事件发生的概率是随着试验次数的变化而变化的 答案 B2.在n 次重复进行的试验中,事件A 发生的频率为n m ,当n 很大时,P(A)与n m的关系是 ( )n mB. P(A)<nm>n mD. P(A)=nm答案3.给出下列三个命题,其中正确命题有 ( )①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. 个B.1个C.2个D.3个答案4.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1 小时内断头不超过两次的概率和断头超过两次的概率分别为 , . 答案 0.97 0.035.甲、乙两人下棋,两人和棋的概率是21,乙获胜的概率是31,则乙不输的概率是 . 答案656.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=21,P (B ) =61,则出现奇数点或2点的概率之和为答案32例1 盒中仅有4只白球5只黑球,从中任意取出一只球. (1)“取出的球是黄球”是什么事件?它的概率是多少? (2)“取出的球是白球”是什么事件?它的概率是多少? (3)“取出的球是白球或黑球”是什么事件?它的概率是多少?解 (1)“取出的球是黄球”在题设条件下根本不可能发生,因此它是不可能事件,其概率为0. (2)“取出的球是白球”是随机事件,它的概率是94. (3)“取出的球是白球或黑球”在题设条件下必然要发生,因此它是必然事件,它的概率是1. 例2 某射击运动员在同一条件下进行练习,结果如下表所示:(1)计算表中击中10环的各个频率;(2)这位射击运动员射击一次,击中10环的概率为多少?解 (1)击中10环的频率依次为0.8,0.95,0.88,0.93,0.89,0.906. (2)这位射击运动员射击一次,击中10环的概率约是0.9.例3 (12分)国家射击队的某队员射击一次,命中7~10环的概率如下表所示:求该射击队员射击一次(1)射中9环或10环的概率; (2)至少命中8环的概率; (3)命中不足8环的概率.解 记事件“射击一次,命中k 环”为A k (k ∈N ,k≤10),则事件A k 彼此互斥.2分(1)记“射击一次,射中9环或10环”为事件A ,那么当A 9,A 10之一发生时,事件A 发生,由互斥事件的加法公式得P (A )=P (A 9)+P (A 10)=0.32+0.28=0.60.5分(2)设“射击一次,至少命中8环”的事件为B ,那么当A 8,A 9,A 10之一发生时,事件B 发生.由互斥事件概率的加法公式得P (B )=P (A 8)+P (A 9)+P (A 10) =0.18+0.28+0.32=0.78.9分(3)由于事件“射击一次,命中不足8环”是事件B :“射击一次,至少命中8环”的对立事件:即B 表示事件“射击一次,命中不足8环”,根据对立事件的概率公式得 P ()=1-P (B )=1-0.78=0.22.12分1.在12件瓷器中,有10件一级品,2件二级品,从中任取3件. (1)“3件都是二级品”是什么事件? (2)“3件都是一级品”是什么事件? (3)“至少有一件是一级品”是什么事件?解 (1)因为12件瓷器中,只有2件二级品,取出3件都是二级品是不可能发生的,故是不可能事件. (2)“3件都是一级品”在题设条件下是可能发生也可能不发生的,故是随机事件.(3)“至少有一件是一级品”是必然事件,因为12件瓷器中只有2件二级品,取三件必有一级品. 2.某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检查结果如下表所示:(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位) 解 (1)依据公式p=nm,可以计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值虽然不同,但随着抽取球数的增多,却都在常数0.950的附近摆动,所以抽取一个乒乓球检测时,质量检查为优等品的概率为0.950. 3.玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿,从中取1球. 求:(1)红或黑的概率; (2)红或黑或白的概率.解 方法一 记事件A 1:从12只球中任取1球得红球; A 2:从12只球中任取1球得黑球; A 3:从12只球中任取1球得白球; A 4:从12只球中任取1球得绿球,则 P (A 1)=125,P (A 2)=124,P (A 3)=122,P (A 4)=121. 根据题意,A 1、A 2、A 3、A 4彼此互斥, 由互斥事件概率加法公式得 (1)取出红球或黑球的概率为 P (A 1+A 2)=P (A 1)+P (A 2)=125+124=43. (2)取出红或黑或白球的概率为P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3) =125+124+122=1211. 方法二 (1)取出红球或黑球的对立事件为取出白球或绿球,即A 1+A 2的对立事件为A 3+A 4, ∴取出红球或黑球的概率为P (A 1+A 2)=1-P (A 3+A 4)=1-P (A 3)-P (A 4) =1-122-121=129=43.(2)A 1+A 2+A 3的对立事件为A 4. P (A 1+A 2+A 3)=1-P (A 4)=1-121=1211.一、选择题1.已知某厂的产品合格率为90%,抽出10件产品检查,则下列说法正确的是( )合格产品少于9件 合格产品多于9件 合格产品正好是9件D.合格产品可能是9件答案2.某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是( )至多有1次中靶 B.2次都中靶 次都不中靶D.只有1次中靶答案3.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( ).甲是乙的充分条件但不是必要条件甲是乙的必要条件但不是充分条件甲是乙的充要条件甲既不是乙的充分条件,也不是乙的必要条件答案4.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 ( )A.2165 B.21625C.21631D.21691答案 D5.一个口袋内装有一些大小和形状都相同的白球、黑球和红球,从中摸出一个球,摸出红球的概率是0.3,摸出白球的概率是0.5,则摸出黑球的概率是( )D.0.答案6.在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为( )B.0.60答案 二、填空题7.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为73,乙夺得冠军的概率为41,那么中国队夺得女子乒乓球单打冠军的概率为 . 答案2819 8.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙二人下成和棋的概率为 . 答案 50% 三、解答题9.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或9环的概率; (2)不够7环的概率.解 (1)设“射中10环”为事件A ,“射中9环”为事件B ,由于A ,B 互斥,则 P (A+B )=P (A )+P (B )=0.21+0.23=0.44. (2)设“少于7环”为事件C ,则P (C )=1-P (C )=1-(0.21+0.23+0.25+0.28)=0.03.10.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:求:(1)派出医生至多2人的概率; (2)派出医生至少2人的概率. 解 记事件A :“不派出医生”, 事件B :“派出1名医生”, 事件C :“派出2名医生”, 事件D :“派出3名医生”, 事件E :“派出4名医生”, 事件F :“派出不少于5名医生”. ∵事件A ,B ,C ,D ,E ,F 彼此互斥, 且P (A )=0.1,P (B )=0.16,P (C )=0.3, P (D )=0.2,P (E )=0.2,P (F )=0.04. (1)“派出医生至多2人”的概率为P (A+B+C )=P (A )+P (B )+P (C ) =0.1+0.16+0.3=0.56.(2)“派出医生至少2人”的概率为P (C+D+E+F )=P (C )+P (D )+P (E )+P (F ) =0.3+0.2+0.2+0.04=0.74. 或1-P (A+B )=1-0.1-0.16=0.74.11.抛掷一个均匀的正方体玩具(各面分别标有数字1、2、3、4、5、6),事件A 表示“朝上一面的数是奇数”,事件B 表示“朝上一面的数不超过3”,求P (A+B ).解 方法一 因为A+B 的意义是事件A 发生或事件B 发生,所以一次试验中只要出现1、2、3、5四个可能结果之一时,A+B 就发生,而一次试验的所有可能结果为6个,所以P (A+B )=64=32. 方法二 记事件C 为“朝上一面的数为2”,则A+B=A+C ,且A 与C 互斥. 又因为P (C )=61,P (A )=21,所以P (A+B )=P (A+C )=P (A )+P (C )=21+61=32. 方法三 记事件D 为“朝上一面的数为4或6”,则事件D 发生时,事件A 和事件B 都不发生,即事件A+B 不发生.又事件A+B 发生即事件A 发生或事件B 发生时,事件D 不发生,所以事件A+B 与事件D 为对立事件.因为P (D )=62=31, 所以P (A+B )=1-P (D )=1-31=32. 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为41,得到黑球或黄球的概率是125,得到黄球或绿球的概率是21,试求得到黑球、黄球、绿球的概率各是多少? 解 分别记得到红球、黑球、黄球、绿球为事件A 、B 、C 、D.由于A 、B 、C 、D 为互斥事件,根据已知得到⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+++21)()(125)()(1)()()(41D P C P C P B P D P C P B P 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===31)(61)(41)(D P C P B P . ∴得到黑球、黄球、绿球的概率各是41,61,31. §2 古典概型1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为( )A.21 B.31 C.32答案 C2.掷一枚骰子,观察掷出的点数,则掷出奇数点的概率为( )A.31 B.41 C.21D.32答案 C3.袋中有2个白球,2个黑球,从中任意摸出2个,则至少摸出1个黑球的概率是( )A.43 B.65 C.61 D.31答案 B4.一袋中装有大小相同,编号为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号之和不小于15的概率为 ( )A.321 B.641 C.323D.643答案 D5.掷一枚均匀的硬币两次,事件M :“一次正面朝上,一次反面朝上” ;事件N :“至少一次正面朝上” .则下列结果正确的是( )A.P(M)=31,P(N)=21B.P(M)=21,P(N)=21C.P(M)=31,P(N)=43D.P(M)=21,P(N)=43答案例1 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x ,y )表示结果,其中x 表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出:基础自测(1)试验的基本事件;(2)事件“出现点数之和大于3”; (3)事件“出现点数相等”.解 (1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4).(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4). (3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4).例2 甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙 两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少? (2)甲、乙两人中至少有一人抽到选择题的概率是多少?解 甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法是10×9=90种,即基本事件总数是90.(1)记“甲抽到选择题,乙抽到判断题”为事件A ,下面求事件A 包含的基本事件数: 甲抽选择题有6种抽法,乙抽判断题有4种抽法,所以事件A 的基本事件数为6×4=24. ∴P (A )=n m =9024=154. (2)先考虑问题的对立面:“甲、乙两人中至少有一人抽到选择题”的对立事件是“甲、乙两人都未抽到选择题”,即都抽到判断题.记“甲、乙两人都抽到判断题”为事件B ,“至少一人抽到选择题”为事件C ,则B 含基本事件数为4×3= ∴由古典概型概率公式,得P (B )=9012=152, 由对立事件的性质可得 P (C )=1-P (B )=1-152=1513. 例3 (12分)同时抛掷两枚骰子.(1)求“点数之和为6”的概率; (2)求“至少有一个5点或6点”的概率. 解 同时抛掷两枚骰子,可能的结果如下表:共有36个不同的结果.6分 (1)点数之和为6的共有5个结果,所以点数之和为6的概率p=365.9分(2)方法一 从表中可以得其中至少有一个5点或6点的结果有20个,所以至少有一个5点或6点的概率p=3620=95. 12分方法二 至少有一个5点或6点的对立事件是既没有5点又没有6点,如上表既没有5点又没有6点的结果共有16个,则既没有5点又没有6点的概率p=3616=94, 所以至少有一个5点或6点的概率为1-94=95. 12分1.某口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球. (1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?解 (1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示): (1,2),(1,3),(1,4),(1,5), (2,3),(2,4),(2,5),(3,4), (3,5),(4,5).因此,共有10个基本事件.(2)如下图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到2只白球(记为事件A ), 即(1,2),(1,3),(2,3),故P (A )=103.故共有10个基本事件,摸出2只球都是白球的概率为103. 2.(2008·山东文,18)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求A 1被选中的概率; (2)求B 1和C 1不全被选中的概率.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2, B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等 可能的.用M 表示“A 1恰被选中”这一事件,则M={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而P (M )=186=31. (2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 有3个基本事件组成,所以P (N )=183=61,由对立事件的概率公式得 P (N )=1-P (N )=1-61=65. 3.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率: (1)A:取出的两球都是白球;(2)B :取出的两球1个是白球,另1个是红球.解 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取两个的方法为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.(1)从袋中的6个球中任取两个,所取的两球全是白球的总数,即是从4个白球中任取两个的方法总数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴取出的两个球全是白球的概率为P (A )=156=52. (2)从袋中的6个球中任取两个,其中1个为红球,而另1个为白球,其取法包括(1,5),(1,6), (2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8个. ∴取出的两个球1个是白球,另1个是红球的概率 P (B )=158.一、选择题1.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球.设第1个人摸出的1个球是黑球的概率为P 1,第10个人摸出黑球的概率是P 10,则( )10=101P 1B.P 10=91P 1 10=010=P 1答案2.采用简单随机抽样从含有n 个个体的总体中抽取一个容量为3的样本,若个体a 前2次未被抽到,第3次被抽到的概率等于个体a 未被抽到的概率的31倍,则个体a 被抽到的概率为 ( )A.21B.31C.41D.61 答案3.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依此类推,则从第十组中随机抽取一个数恰为3的倍数的概率为( )A.101B.103 C.51 D.53 答案4.从数字1,2,3中任取两个不同数字组成两位数,该数大于23的概率为( )A.31B.61 C.81D.41 答案5.设集合A={1,2},B={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a,b )落在直线x+y=n 上”为事件C n (2≤n≤5,n ∈N ),若事件C n 的概率最大,则n 的所 有可能值为 ( )C.2和D.3和答案6.(2008·温州模拟)若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x+y=5下方的概率是( )A.31B.41C.61D.121 答案二、填空题7.(2008·江苏,2)一个骰子连续投2次,点数和为4的概率为 . 答案121 8.(2008·上海文,8)在平面直角坐标系中,从五个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、 E (2,2)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 答案54三、解答题9.5张奖券中有2张是中奖的,首先由甲然后由乙各抽一张,求: (1)甲中奖的概率P (A ); (2)甲、乙都中奖的概率; (3)只有乙中奖的概率; (4)乙中奖的概率.解 (1)甲有5种抽法,即基本事件总数为5.中奖的抽法只有2种,即事件“甲中奖”包含的基本事件数为2,故甲中奖的概率为P 1=52. (2)甲、乙各抽一张的事件中,甲有五种抽法,则乙有4种抽法,故所有可能的抽法共5×4=20种,甲、乙都中奖的事件中包含的基本事件只有2种,故P 2=202=101. (3)由(2)知,甲、乙各抽一张奖券,共有20种抽法,只有乙中奖的事件包含“甲未中”和“乙中”两种情况,故共有3×2=6种基本事件,∴P 3=206=103. (4)由(1)可知,总的基本事件数为5,中奖的基本事件数为2,故P 4=52. 10.箱中有a 个正品,b 个次品,从箱中随机连续抽取3次,在以下两种抽样方式下:(1)每次抽样后不放回;(2)每次抽样后放回.求取出的3个全是正品的概率解 (1)若不放回抽样3次看作有顺序,则从a+b 个产品中不放回抽样3次共有A 3b a +种方法,从a 个正品中不放回抽样3次共有A 3a种方法,可以抽出3个正品的概率p=33A A ba a +.若不放回抽样3次看作无顺序,则从a+b 个产品中不放回抽样3次共有C 3b a +种方法,从a 个正品中不放回抽样3次共有C 3a 种方法,可以取出3个正品的概率p=33C C ba a +.两种方法结果一致(2)从a+b 个产品中有放回的抽取3次,每次都有a+b 种方法,所以共有(a+b)3种不同的方法,而3个全是正品的抽法共有a 3种,所以3个全是正品的概率p=333)(⎪⎭⎫ ⎝⎛+=+b a a b a a . 11.袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为71.现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有1人取到白球时即终止.每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数; (2)求取球2次终止的概率; (3)求甲取到白球的概率.解 (1)设袋中有n 个白球,从袋中任取2个球是白球的结果数是2)1(-n n . 从袋中任取2个球的所有可能的结果数为276⨯=21. 由题意知71=212)1(-n n =42)1(-n n , ∴n (n-1)=6,解得n=3(舍去n=-2). 故袋中原有3个白球.(2)记“取球2次终止”为事件A ,则P (A )=6734⨯⨯=72. (3)记“甲取到白球”的事件为B , “第i 次取到白球”为A i ,i=1,2,3,4,5,因为甲先取,所以甲只有可能在第1次,第3次和第5次取球. 所以P (B )=P (A 1+A 3+A 5). 因此A 1,A 3,A 5两两互斥,∴P (B )=P (A 1)+P (A 3)+P (A 5)=73+567334⨯⨯⨯⨯+3456731234⨯⨯⨯⨯⨯⨯⨯⨯ =73+356+351=3522. (2008·海南、宁夏文,19)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下: 5,6,7,8,9,10.把这6名学生的得分看成一个总体. (1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解 (1)总体平均数为61(5+6+7+8+9+10)=7.5. (2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本结果.事件A 包括的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果.所以所求的概率为P (A )=157. §3 几何概型基础自测1.质点在数轴上的区间[0,2]上运动,假定质点出现在该区间各点处的概率相等,那么质点落在区间 [0,1]上的概率为( )4131C.21D.以上都不对答案2.某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为 ( )A.π2 B.π1C.32D.31答案3.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是 ( )A.53B.54 C.52 D.51答案4.设D 是半径为R 的圆周上的一定点,在圆周上随机取一点C ,连接CD 得一弦,若A 表示“所得弦的长大于圆内接等边三角形的边长”,则P (A )= . 答案315.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA , 则射线OA 落在∠yOT 内的概率为 . 答案 61例1 有一段长为10米的木棍,现要截成两段,每段不小于3米的概率有多大?解 记“剪得两段都不小于3米”为事件A ,从木棍的两端各度量出3米,这样中间就有10-3-3=4(米).在中间的4米长的木棍处剪都能满足条件, 所以P (A )=103310--=104=0.4. 例2 街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小 圆板,规则如下:每掷一次交5角钱,若小圆板压在正方形的边,可重掷一次;若掷在正方形内,须再交5角钱可玩一次;若掷在或压在塑料板的顶点上,可获1元钱.试问: (1)小圆板压在塑料板的边上的概率是多少? (2)小圆板压在塑料板顶点上的概率是多少?解 (1)考虑圆心位置在中心相同且边长分别为7 cm 和9 cm 的正方形围成的区域内,所以概率为22979-=8132. (2)考虑小圆板的圆心在以塑料板顶点为圆心的41圆内,因正方形有四个顶点,所以概率为819ππ=. 例3 (12分)在1升高产小麦种子中混入一粒带麦锈病的种子,从中随机取出10毫升,含有麦锈病 种子的概率是多少?从中随机取出30毫升,含有麦锈病种子的概率是多少? 解 1升=1 000毫升,2分记事件A :“取出10毫升种子含有这粒带麦锈病的种子”. 4分 则P (A )=000110=0.01,即取出10毫升种子含有这粒带麦锈病的种子的概率为0.01. 7分记事件B :“取30毫升种子含有带麦锈病的种子”.9分 则P (B )=000130=0.03,即取30毫升种子含有带麦锈病的种子的概率为0.03.12分 例4 在Rt △ABC 中,∠A=30°,过直角顶点C 作射线CM 交线段AB 于M ,求使|AM|>|AC|的概率. 解 设事件D“作射线CM ,使|AM|>|AC|”.在AB 上取点C′使|AC′|=|AC|,因为△ACC′是等腰三角形, 所以∠ACC′=230180-=75°, A μ=90-75=15,Ωμ=90,所以,P (D )=9015=61. 例5 甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离 去.求两人能会面的概率.解 以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x-y|≤15.在如图所示平面直角坐标系下,(x,y )的所有可能结果是边长为60的正方形区域,而事件A“两人能够会面”的可能结果由图中的阴影部分表示.由几何概型的概率公式得:P (A )=S S A =222604560-=600302526003-=167.所以,两人能会面的概率是167.1.如图所示,A 、B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C 、D ,问A 与C ,B 与D 之间的距离都不小于10米的概率是多少?解 记E :“A 与C ,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30×31=10(米),∴P (E )=3010=31. 2.(2008·江苏,6)在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为 .答案16π 3.如图所示,有一杯2升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升水,求小杯水中含有这个细菌的概率.解 记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵A μ=0.1升,Ωμ=2升, ∴由几何概型求概率的公式, 得P (A )=ΩA μμ=21.0=201=0.05. 4.在圆心角为90°的扇形AOB 中,以圆心O 为起点作射线OC ,求使得∠AOC 和∠BOC 都不小于30°的概率.解 如图所示,把圆弧 三等分,则∠AOF=∠BOE=30°,记A 为“在扇形AOB 内作一射线OC ,使∠AOC 和∠BOC 都不小于30°”,要使∠AOC 和∠BOC 都不小于30°,则OC 就落在∠EOF 内, ∴P (A )=9030=31. 5.将长为l 的棒随机折成3段,求3段构成三角形的概率.解 设A=“3段构成三角形”,x,y 分别表示其中两段的长度,则第3段的长度为l-x-y. 则试验的全部结果可构成集合Ω={(x ,y )|0<x <l,0<y <l,0<x+y <l},要使3段构成三角形,当且仅当任意两段之和大于第3段,即x+y>l-x-y ⇒x+y >2l,x+l-x-y >y⇒y <2l ,y+l-x-y >x ⇒x <2l . 故所求结果构成集合A=⎭⎬⎫⎩⎨⎧<<>+2,2,2|),(l x l y l y x y x . 由图可知,所求概率为P (A )=的面积的面积ΩA =22212l l ⎪⎭⎫ ⎝⎛∙=41.一、选择题1.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a <20的概率是( )A.31 B.21 C.103 D.107答案2.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( )A.259 B.2516C.103D.51答案3.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( ) A.121B.83C.161D.65答案4.如图为一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为()A.π2B.π1 C.21 D.1-π2答案5.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S的概率是 ( ) A.41 B.21 C.43 D.32答案6.已知正方体ABCD —A 1B 1C 1D 1内有一个内切球O,则在正方体ABCD —A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是( )A.4πB.8πC.6πD.12π答案二、填空题7.已知下图所示的矩形,其长为12,宽为5.在矩形内随机地撒1 000颗黄豆,数得落在阴影部分的黄豆数为550颗,则可以估计出阴影部分的面积约为 .答案 338.在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为 . 答案2517 三、解答题9.射箭比赛的箭靶涂有5个彩色的分环,从外向内白色、黑色、蓝色、红色,靶心为金色, 金色靶心叫“黄心”,奥运会的比赛靶面直径是122 cm ,靶心直径2 cm,运动员在70米 外射箭,假设都能中靶,且射中靶面内任一点是等可能的,求射中“黄心”的概率. 解 记“射中黄心”为事件A ,由于中靶点随机的落在面积为π41×1222 cm 2的大圆 内,而当中靶点在面积为π41×22 cm 2的黄心时,事件A 发生,于是事件A 发生 的概率P (A )=2212242.1241⨯⨯ππ=0.01,所以射中“黄心”的概率为0.01.10.假设你家订了一份报纸,送报人可能在早上6∶30至7∶30之间把报纸送到你家,你父亲离开家去工作的时间在早上7∶00至8∶00之间,问你父亲在离开家前能得到报纸(称为事件A )的概率是多少?解 设事件A“父亲离开家前能得到报纸”.在平面直角坐标系内,以x 和y 分别表示报纸送到和父亲离开家的时间,则父亲能得到报纸的充要条件是x≤y,而(x,y)的所有可能结果是边长为1的正方形,而能得到报纸的所有可能结果由图中阴影部分表示,这是一个几何概型问题,A μ=12-21×21×21=87,Ωμ =1, 所以P (A )=ΩμμA =87. 11.已知等腰Rt △ABC 中,∠C=90°.(1)在线段BC 上任取一点M ,求使∠CAM <30°的概率; (2)在∠CAB 内任作射线AM ,求使∠CAM <30°的概率. 解 (1)设CM=x ,则0<x <a.(不妨设BC=a ). 若∠CAM <30°,则0<x <33a , 故∠CAM <30°的概率为P (A )=的长度区间的长度区间),0(33,0a a ⎪⎪⎭⎫ ⎝⎛=33. (2)设∠CAM=θ,则0°<θ<45°. 若∠CAM <30°,则0°<θ<30°, 故∠CAM <30°的概率为 P (B )=的长度的长度)45,0()30,0( =32.设关于x 的一元二次方程x 2+2ax+b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.解 设事件A 为“方程x 2+2ax+b 2=0有实根”.当a≥0,b≥0时,方程x 2+2ax+b 2=0有实根的充要条件为a≥b. (1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1), (3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.。
2019年全国统一高考数学试卷(理科)真题解析(解析版)
状元考前提醒拿到试卷:熟悉试卷刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。
答题策略答题策略一共有三点:1. 先易后难、先熟后生。
先做简单的、熟悉的题,再做综合题、难题。
2. 先小后大。
先做容易拿分的小题,再做耗时又复杂的大题。
3. 先局部后整体。
把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。
立足中下题目,力争高水平考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中要立足中下题目。
中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。
确保运算正确,立足一次性成功在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。
不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。
试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,格式是否规范。
要学会“挤”分考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把要点写清晰,作文尤其要注意开头和结尾。
考试时,每一道题都认真思考,能做几步就做几步,对于考生来说就是能做几分是几分,这是考试中最好的策略。
检查后的涂改方式要讲究发现错误后要划掉重新写,忌原地用涂黑的方式改,这会使阅卷老师看不清。
如果对现有的题解不满意想重新写,要先写出正确的,再划去错误的。
有的同学先把原来写的题解涂抹了,写新题解的时间又不够,本来可能得的分数被自己涂掉了。
考试期间遇到这些事,莫慌乱!绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
2019年高考数学(文)真题与模拟题分类训练 专题10 概率与统计(教师版含解析)
专题10 概率与统计1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70, 则其与该校学生人数之比为70÷100=0.7.故选C . 【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生D .815号学生【答案】C【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,解得15n =,不合题意;若200610n =+,解得19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23 B .35 C .25D .15【答案】B【分析】首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式即可求解.【解析】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B b c A ,{,,},{,,},{,,}b c B b A B c A B ,共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,,},{,,}b c A b c B ,共6种, 所以恰有2只做过测试的概率为63105=,故选B . 【名师点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.6.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.【答案】(1)男、女顾客对该商场服务满意的概率的估计值分别为0.8,0.6;(2)有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.8 50=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.6 50=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.7.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.【答案】(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为30%,17%. 【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i ii s n y y ==-∑ 222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.8.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)0.35a =,0.10b =;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b=---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.9.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i)见解析,(ii)11 15.【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i)从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C{, },{, },{, },{, {,}},,B D B E B F C D C E {,},C F {,},{,},{,}D E D F E F ,共15种.(ii )由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B C E B F E C F D F E F ,共11种.所以,事件M 发生的概率11()15P M =. 10.【2019年高考北京卷文数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(2)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率; (3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2 000元的人数有变化?说明理由.【答案】(1)该校学生中上个月A ,B 两种支付方式都使用的人数约为400;(2)0.04;(3)见解析. 【解析】(1)由题知,样本中仅使用A 的学生有27+3=30人, 仅使用B 的学生有24+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100–30–25–5=40人. 估计该校学生中上个月A ,B 两种支付方式都使用的人数为401000400100⨯=. (2)记事件C 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”, 则1()0.0425P C ==. (3)记事件E 为“从样本仅使用B 的学生中随机抽查1人,该学生本月的支付金额大于2 000元”. 假设样本仅使用B 的学生中,本月支付金额大于2 000元的人数没有变化, 则由(2)知,4(0)0.P E =.答案示例1:可以认为有变化.理由如下:()P E 比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化, 所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E 是随机事件,()P E 比较小,一般不容易发生,但还是有可能发生的, 所以无法确定有没有变化.11.【安徽省江淮十校2019届高三年级5月考前最后一卷】《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面、一枚反面的概率为A .18 B .14 C .38D .12【答案】C【解析】抛掷三枚古钱币出现的基本事件有:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反,共8种,其中出现两正一反的共有3种,故所求概率为38.故选C . 12.【山东省济宁市2019届高三第一次模拟考试】某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为 A .32 B .33 C .41D .42【答案】A【解析】因为相邻的两个组的编号分别为14,23,所以样本间隔为23149-=, 所以第一组的编号为1495-=,所以第四组的编号为53932+⨯=,故选A .【名师点睛】本题考查了系统抽样的相关概念,主要考查系统抽样中组距的确定,考查了推理能力,提高了学生对于系统抽样的掌握与理解,是简单题.13.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A .100,10B .100,20C .200,10D .200,20【答案】D【解析】由题得样本容量为(350020004500)2%100002%200++⨯=⨯=, 抽取的高中生人数为20002%40⨯=人,则近视人数为400.520⨯=人,故选D .14.【西藏拉萨中学2019届高三第六次月考】某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小队积分的方差为 A .0.5 B .0.75 C .1D .1.25【答案】C【解析】四个小队积分分别为11.5,13.5,13.5,11.5,平均数为11.513.513.511.512.54+++=,故四个小队积分的方差为221[(11.512.5)2(13.512.5)2]14⨯-⨯+-⨯=,故选C . 15.【陕西省2019届高三第三次联考】口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.38,摸出白球的概率是0.32,那么摸出黑球的概率是 A .0.42 B .0.28 C .0.3D .0.7【答案】C【分析】在口袋中摸球,摸到红球、摸到黑球、摸到白球这三个事件是互斥的,摸出黑球是摸出红球或摸出白球的对立事件,根据对立事件的概率和等于1即可得到结果.【解析】在口袋中摸球,摸到红球、摸到黑球、摸到白球这三个事件是互斥的,因为摸出红球的概率是0.38,摸出白球的概率是0.32,且摸出黑球是摸出红球或摸出白球的对立事件,所以摸出黑球的概率是10.380.320.3--=.故选C .16.【河南省郑州市2019届高三第三次质量检测】某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是A .12B .14C .16D .18【答案】A【解析】因为中位数为12,所以4x y +=,数据的平均数为1(223420191910x y ⨯+++++++++2021)11.4+=,要使该总体的标准差最小,即方差最小,所以22(1011.4)(1011.4)x y +-++-=2222.8( 1.4)( 1.4)2()0.722x y x y +--+-≥=,当且仅当 1.4 1.4x y -=-,即2x y ==时取等号,此时总体标准差最小,4212x y +=,故选A .17.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为 A .35,33,30 B .36,32,30 C .36,33,29D .35,32,31【答案】B【分析】先将各年级人数凑整,从而可确定抽样比;再根据抽样比计算得到各年级抽取人数. 【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为1849,1649,1549, 因此,各年级抽取人数分别为18983649⨯=,16983249⨯=,15983049⨯=,故选B . 18.【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分【答案】D【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为40000.251000⨯=,故B 正确;由频率分布直方图可得:平均分等于450.1550.15650.2750.3850.15⨯+⨯+⨯+⨯+⨯+950.170.5⨯=,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误.故选D . 19.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则 A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s ><【答案】A【分析】分别根据数据的平均数和方差的计算公式,求得2,x s 的值,即可得到答案.【解析】由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-22212481[(70)(70)(70)500]50x x x =-+-++-+,22222212481[(70)(70)(70)(8070)(7070)]50s x x x =-+-++-+-+- 22212481[(70)(70)(70)100]7550x x x =-+-++-+<,所以275s <.故选A .【名师点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,是基础题.20.【北京市清华大学附属中学2019届高三第三次模拟考试】手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性、300名男性)进行调查,对手机进行评分,评分的频数分布表如下:(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(2)把评分不低于70分的用户称为“评分良好用户”,能否有90%的把握认为“是否是评分良好用户”与性别有关?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)直方图见解析,女性用户的波动小,男性用户的波动大;(2)有90%的把握认为“是否是评分良好用户”与性别有关.【分析】(1)利用频数分布表中所给数据求出各组的频率,利用频率除以组距得到纵坐标,从而可得频率分布直方图,由频率分布直方图观察女性用户和男性用户评分的集中与分散情况即可比较波动的大小;(2)利用公式求出2K 的观测值,与临界值比较,即可得出结论. 【解析】(1)女性用户和男性用户的频率分布直方图分别如下图所示:女性用户 男性用户由图可得女性用户的波动小,男性用户的波动大. (2)由题可得22⨯列联表如下:则22500(14012018060)125 5.208 2.70620030032018024K ⨯⨯-⨯=≈>⨯⨯⨯=,所以有90%的把握认为“是否是评分良好用户”与性别有关.【名师点睛】本题考查频率分布直方图的作法及应用,考查独立性检验的应用,是中档题.高考试题对独立性检验的思想进行考查时,一般给出2K 的计算公式,不要求记忆,近几年高考中较少单独考查独立性检验,多与统计知识、概率知识综合考查,频率分布表与独立性检验融合在一起是一种常见的考查形式,一般需要根据条件列出22⨯列联表,计算2K 的观测值,与临界值比较,从而解决问题. 21.【2019年甘肃省兰州市高考数学一诊】“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;(2)根据上表的数据,填写下列22⨯列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【答案】(1)4000;(2)列联表见解析,能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关.【解析】(1)以200人中“热烈参与者”的频率作为概率,可得该市“热烈参与者”的人数约为40 200004000200⨯=.(2)由题可得22⨯列联表如下:则22200(35551055)1757.292 6.635401601406024K ⨯⨯-⨯==≈>⨯⨯⨯,所以能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关.22.【四川省成都七中2019届高三5月高考模拟测试】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长T (单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.(1)求图中m 的值;(2)估计该校担任班主任的教师月平均通话时长的中位数;(3)在[450,500),[500,550]这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率. 【答案】(1)0.0020;(2)390分钟;(3)715. 【分析】(1)根据频率分布直方图中所有矩形的面积和为1,列出方程,即可求解;(2)设该校担任班主任的教师月平均通话时长的中位数为t ,根据频率分布直方图的中位数的计算方法,即可求解.(3)根据分层抽样,可得在[450,500)内抽取4人,分别记为a b c d ,,,,在[50,50]内抽取2人,记为,e f ,利用古典概型及其概率的计算公式,即可求解.【解析】(1)依题意,根据频率分布直方图的性质,可得:50(0.00400.00500.00660.00160.0008)1m ⨯+++++=,解得0.0020m =.(2)设该校担任班主任的教师月平均通话时长的中位数为t . 因为前2组的频率之和为(0.00200.0040)500.30.5+⨯=<, 前3组的频率之和为(0.00200.00400.0050)500.550.5++⨯=>, 所以350400t <<,由0.30.0050(350)0.5t +⨯-=,得390t =. 所以该校担任班主任的教师月平均通话时长的中位数为390分钟. (3)由题意,可得在[450,500)内抽取0.0016640.00160.0008⨯=+人,分别记为a b c d ,,,,在[500,550]内抽取2人,记为,e f ,则6人中抽取2人的取法有:{,}a b ,{,}a c ,{,}a d ,{,}a e ,{,}a f ,{,}b c ,{,}b d ,{,}b e ,{,}b f ,{,}c d ,{,}c e ,{,}c f ,{,}d e ,{,}d f ,{,}e f ,共15种等可能的取法.其中抽取的2人恰在同一组的有{,}a b ,{,}a c ,{,}a d ,{,}b c ,{,}b d ,{,}c d ,{,}e f ,共7种取法,所以从这6人中随机抽取的2人恰在同一组的概率715P =. 【名师点睛】本题主要考查了频率分布直方图的应用以及古典概型及其概率的计算,其中解答中熟记频率分布直方图的相关性质,合理利用古典概型及其概率的计算公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.23.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考(六)】某种产品的质量按照其质量指标值M 进行等级划分,具体如下表:现从某企业生产的这种产品中随机抽取了100件作为样本,对其质量指标值M 进行统计分析,得到如图所示的频率分布直方图.(1)记A 表示事件“一件这种产品为二等品或一等品”,试估计事件A 的概率;(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10000件该产品的利润;(3)根据该产品质量指标值M 的频率分布直方图,求质量指标值M 的中位数的估计值(精确到0.01).【答案】(1)0.84;(2)61200元;(3)94.67.【分析】(1)记B 表示事件“一件这种产品为二等品”,C 表示事件“一件这种产品为一等品”,则事件B ,C 互斥,且由频率分布直方图估计(),()P B P C ,用公式()()P A P B C =+估计出事件A 的概率;(2)由(1)可以求出任取一件产品是一等品、二等品的概率估计值,任取一件产品是三等品的概率估计值,这样可以求出10000件产品估计有一等品、二等品、三等品的数量,最后估计出利润;(3)求出质量指标值90M <的频率和质量指标值100M <的频率,这样可以求出质量指标值M 的中位数估计值.【解析】(1)记B 表示事件“一件这种产品为二等品”,C 表示事件“一件这种产品为一等品”, 则事件B ,C 互斥,且由频率分布直方图估计()0.20.30.150.65P B =++=,()0.10.090.19P C =+=, 又()()()()0.84P A P B C P B P C =+=+=, 所以事件A 的概率估计为0.84.(2)由(1)知,任取一件产品是一等品、二等品的概率估计值分别为0.19,0.65, 故任取一件产品是三等品的概率估计值为0.16,从而10000件产品估计有一等品、二等品、三等品分别为1900,6500,1600件, 故利润估计为190010650061600261200⨯+⨯+⨯=元. (3)因为在产品质量指标值M 的频率分布直方图中, 质量指标值90M <的频率为0.060.10.20.360.5++=<, 质量指标值100M <的频率为0.060.1020.30.660.5+++=>, 故质量指标值M 的中位数估计值为0.50.369094.670.03-+≈.。
2019届理科数学高考中的概率与统计问题
2019届理科数学高考中的概率与统计问题2019届理科数学高考中的概率与统计问题一、选择题(每小题5分,共15分)1.某市园林绿化局在名贵树木培埴基地种了一批红豆杉树苗,为了解这批红豆杉树苗的生长状况,随机抽取了15株进行检测,这15株红豆杉树苗的高度(单位:cm)的茎叶图如图6-1所示,利用样本估计总体的思想,求培埴基地种植的这批红豆杉树苗的高度在(140,145)内的概率为()图6-1A.0.3B.0.4C.0.2D.0.12.如图6-2,正方形BCDE和正方形ABFG的边长分别为2a和a,连接CE和CG,现将一把芝麻随机地撒在该图形中,则芝麻落在阴影部分的概率是()图6-2A.310B.35C.320D.383.日常生活中,常听到一些谚语、俗语,比如“三个臭皮匠,顶个诸葛亮”,这句话有没有道理呢?我们假设三个臭皮匠中的老大、老二、老三能独立解出同一道问题的概率依次是0.6,0.5,0.4,而诸葛亮能独立解出同一道问题的概率是0.9,则三个臭皮匠与诸葛亮解出同一道问题的概率较大的是()A.三个臭皮匠B.诸葛亮C.一样大D.无法确定二、填空题(每小题5分,共10分)4.已知函数f(x)=log2x+2log4x,其中x∈(0,4],若在[14,4]上随机取一个数x0,则f(x0)≤0的概率为.5.第十三届全运会于2017年8月27日在天津举行,在自由体操比赛中,5位评委给甲、乙两位图6-4 x y k∑i=17(x i -x )2 ∑i=17(k i -k )2 ∑i=17(x i -x )(y i -y ) ∑i=17(x i -x )(k i -k ) 17.40 82.30 3.60 140.00 9.702 935.10 35.00 (1)根据散点图判断,y=bx+a 与y=c 1e c 2x (e 为自然对数的底数)哪一个适宜作为该种鸡的时段产蛋量y 关于鸡舍的时段控制温度x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断及表中的数据,建立y 关于x 的回归方程;(3)已知时段投入成本z 与x ,y 的关系为z=e -2.5y-0.1x+10,当鸡舍的时段控制温度为28℃时,鸡的时段产蛋量及时段投入成本的预报值是多少?附:对于一组具有线性相关关系的数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v=βu+α的斜率和截距的最小二乘估计分别为β^=∑i=1n(u i -u )(v i -v )∑i=1n(u i -u )2,α^=v-β^u . 参考数据:e -2.5 e -0.75 e e 3 e 70.08 0.47 2.72 20.09 1096.637.(12分)继微信支付对提现收费后,支付宝也开始对提现收费,目前,随着这两大用户使用粘度最高的第三方支付开始收费,业内人士分析,部分对价格敏感的用户或将回流至传统银行体系.某调查机构对此进行调查,并从参与调查的数万名支付宝用户中随机选取200人,把这200人分为3类:认为使用支付宝方便,仍使用支付宝提现的用户称为“A类用户”;根据提现的多少确定是否使用支付宝的用户称为“B类用户”;提前将支付宝账户内的资金全部提现,以后转账全部通过银行的用户称为“C类用户”,各类用户的人数如图6-5所示,同时把这200人按年龄分为青年人组与中老年人组,制成如下所示的2×2列联表.图6-5A类用户非A类用户合计青年20中老年40合计200(1)完成2×2列联表,并判断是否有99.9%的把握认为“A 类用户与年龄有关”;(2)从这200人中按A 类用户、B 类用户、C 类用户进行分层抽样,从中抽取10人,再从这10人中随机抽取4人,求在这4人中A 类用户、B 类用户、C 类用户均存在的概率;(3)把频率作为概率,从支付宝所有用户(人数很多)中随机抽取3人,用X 表示所选3人中A 类用户的人数,求X 的分布列与数学期望.附:P (K 2≥k 0) 0.01 0.05 0.025 0.010 0.005 0.001k 0 2.706 3.841 5.024 6.635 7.87910.828 参考公式:K 2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d ),其中n=a+b+c+d.8.(12分)某婴幼儿游泳馆为了吸引顾客,推出优惠活动,即对首次消费的顾客按60元收费,并注册成为会员,对会员消费的不同次数给予相应的优惠,标准如下:消费次第1次第2次第3次不少于4次数收费比1 0.95 0.90 0.85例该游泳馆从注册的会员中,随机抽取了100位会员统计他们的消费次数,得到数据如下:消费次1次2次3次不少于4次数频数60 25 10 5假设每位顾客游泳1次,游泳馆的成本为30元.根据所给数据,回答下列问题:(1)估计该游泳馆1位会员至少消费2次的概率;(2)某会员消费4次,求这4次消费中,游泳馆获得的平均利润;(3)假设每个会员每星期最多消费4次,以事件发生的频率作为相应事件发生的概率,从该游泳馆的会员中随机抽取2位,记游泳馆从这2位会员的消费中获得的平均利润之差的绝对值为X,求X的分布列和数学期望E(X).答案1.C 由茎叶图知,红豆杉树苗的高度在(140,145)内的有141,143,144,所以所求概率为315=0.2,故选C .2.A 设图中阴影部分的面积是S ,则S=S 正方形ABFG +S △BCE -S △AGC ,∵S 正方形ABFG=a 2,S △BCE = 12×2a×2a=2a2,S △AGC =12(a+2a )×a=32a 2,∴S=32a 2,又整体区域的面积为5a 2,∴芝麻落在阴影部分的概率是32a 25a 2=310,故选A .3.B 解法一 因为三个臭皮匠(至少有一个)解出这道问题,包含的情况有:恰好有一个能解出问题、恰好有两个能解出问题、三个都能解出问题,所以所求概率为0.6×(1-0.5)×(1-0.4)+(1-0.6)×0.5×(1-0.4)+(1-0.6)×(1-0.5)×0.4+0.6×0.5×(1-0.4)+0.6×(1-0.5)×0.4+(1-0.6)×0.5×0.4+0.6×0.5×0.4=0.88<0.9,故选B . 解法二 三个臭皮匠(至少有一个)解出这道问题的概率为1-(1-0.6)×(1-0.5)×(1-0.4)=0.88<0.9.故选B .4.15由对数的换底公式得f (x )=2log 2x ,在[14,4]上,由f (x 0)≤0,得x 0∈[14,1],故f (x 0)≤0的概率为1-144-1=15.5.乙 解法一 由题中茎叶图中的数据可知,甲体操运动员得分的平均值为x 1=15×(18+19+22+28+28)=23,方差s 12=15×[(18-23)2+(19-23)2+(22-23)2+(28-23)2+(28-23)2]=925.乙体操运动员得分的平均值为x 2=15×(16+18+23+26+27)=22,方差s 22=15×[(16-22)2+(18-22)2+(23-22)2+(26-22)2+(27-22)2]=945.所以甲、乙两位体操运动员中,得分的方差较大的是乙.解法二 由数据方差的性质可知,将原数据同时减去同一常数,所得新数据的方差与原数据的方差相同,所以将原数据同时减去20得, 甲的新数据为-2,-1,2,8,8,其平均数为15×[-2+(-1)+2+8+8]=3,方差为15×[(-2-3)2+(-1-3)2+(2-3)2+(8-3)2+(8-3)2]=925.乙的新数据为-4,-2,3,6,7,其平均数为15×[-4+(-2)+3+6+7]=2,方差为15×[(-4-2)2+(-2-2)2+(3-2)2+(6-2)2+(7-2)2]=945.所以甲、乙两位体操运动员中,得分的方差较大的是乙.6.(1)由题中散点图可以判断,y=c 1e c 2x 适宜作为该种鸡的时段产蛋量y 关于鸡舍的时段控制温度x 的回归方程类型.(2分)(2)令k=ln y ,建立k 关于x 的线性回归方程k=dx+c (d=c 2,c=ln c 1).由题意,得^d=∑i=17(x i -x )(k i -k )∑i=17(x i -x )2=35.00140.00=0.25,c ^=k -^d x =3.60-0.25×17.40=-0.75,(6分)所以k 关于x 的线性回归方程为^k=0.25x-0.75,c 2=0.25,c 1=e -0.75=0.47, 故y 关于x 的回归方程为y ^=0.47e 0.25x .(9分)(3)由(2)知,当x=28时,鸡的时段产蛋量y 的预报值y ^=0.47e 0.25×28=0.47e 7=0.47×1 096.63≈515.42(t), 时段投入成本z 的预报值z ^=e -2.5×515.42-0.1×28+10=0.08×515.42-2.8+10≈48.43(万元).(12分)7.(1)补全的2×2列联表如下:A 类用户 非A 类用户合计 青年 80 20 100 中老年 40 60 100 合计12080200 (2分)因为K 2的观测值k=200×(80×60-40×20)2100×100×120×80=1003≈33.333>10.828.所以有99.9%的把握认为“A 类用户与年龄有关”.(4分)(2)从这200人中按A 类用户、B 类用户、C 类用户进行分层抽样,从中抽取10人,则A 类用户6人、B 类用户3人、C 类用户1人.(5分)设A 类用户、B 类用户、C 类用户均存在的事件为事件D ,则P (D )=C 62C 31C 11+C 61C 32C 11C 104=45+18210=310,所以在这4人中A 类用户、B 类用户、C 类用户均存在的概率为310.(7分)(3)把频率作为概率,从支付宝所有用户(人数很多)中抽取3人,可近似看作3次独立重复试验,所以X 的所有可能取值为0,1,2,3,且X~B (3,35).P (X=0)=C 30×(1-35)3=8125,P (X=1)=C 31×35×(1-35)2=36125,P (X=2)=C 32×(35)2×(1-35)=54125,P (X=3)=C 33×(35)3=27125.(10分)所以X 的分布列为X 0 1 2 3P 8125 36125 5412527125 数学期望E (X )=0×8125+1×36125+2×54125+3×27125=95,即X 的数学期望为95. (12分)8.(1)25+10+5=40,即随机抽取的100位会员中,至少消费2次的会员有40位,(2分)所以估计该游泳馆1位会员至少消费2次的概率P=40100=25.(3分)(2)第1次消费时,60-30=30(元),所以游泳馆获得的利润为30元,第2次消费时,60×0.95-30=27(元),所以游泳馆获得的利润为27元,第3次消费时,60×0.90-30=24(元),所以游泳馆获得的利润为24元,第4次消费时,60×0.85-30=21(元),所以游泳馆获得的利润为21元,因为30+27+24+214=25.5(元),所以这4次消费中,游泳馆获得的平均利润为25.5元.(6分)(3)若会员消费1次,P1=60100=3 5 ,则平均利润为30元,其概率为35;若会员消费2次,30+272=572(元),P2=25100=14,则平均利润为572元,其概率为14;若会员消费3次,30+27+243=27(元),P 3=10100=110,则平均利润为27元,其概率为110; 若会员消费4次,30+27+24+214=512(元),P 4=5100=120,则平均利润为512元,其概率为120.(8分)由题意知,X 的所有可能取值为0,32,3,92, 且P (X=0)=35×35+14×14+110×110+120×120=87200,P (X=32)=2×(35×14+14×110+110×120)=925,P (X=3)=2×(35×110+14×120)=29200,P (X=92)=2×35×120=350,所以X 的分布列为X 0 3 3 9P879293(10分)数学期望E(X)=0×87200+32×925+3×29200+92×350=249200,即X的数学期望E(X)为249200元.。
2019年全国统一高考数学试卷(理科)真题解析(解析版)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】A 【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设z =-3+2i ,则在复平面内z 对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C 【解析】 【分析】本题考查复数的共轭复数和复数在复平面内的对应点位置,渗透了直观想象和数学运算素养.采取定义法,利用数形结合思想解题.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .【点睛】本题考点为共轭复数,为基础题目,难度偏易.忽视共轭复数的定义致错,复数与共轭复数间的关系为实部同而虚部异,它的实部和虚部分别对应复平面上点的横纵坐标.3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A. -3 B. -2 C. 2 D. 3【答案】C 【解析】 【分析】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.【详解】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为A.B.C.D.【答案】D 【解析】 【分析】本题在正确理解题意的基础上,将有关式子代入给定公式,建立α的方程,解方程、近似计算.题目所处位置应是“解答题”,但由于题干较长,易使考生“望而生畏”,注重了阅读理解、数学式子的变形及运算求解能力的考查. 【详解】由rRα=,得r R α= 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得3α=所以3.r R α==【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形出错.5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A. 中位数B. 平均数C. 方差D. 极差【答案】A 【解析】 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x <<<,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数234817x x x x x '=<<<()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()22221119q S x x x x x x ⎡⎤=-+-++-⎢⎥⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 显然极差变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.6.若a >b ,则 A. ln(a −b )>0B. 3a <3bC. a 3−b 3>0D. │a │>│b │【答案】C 【解析】 【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3xy =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.7.设α,β为两个平面,则α∥β的充要条件是 A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. α,β平行于同一条直线 D. α,β垂直于同一平面 【答案】B 【解析】 【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B .【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A. 2B. 3C. 4D. 8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D .【详解】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.9.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A. f (x )=│cos 2x │ B. f (x )=│sin 2x │ C. f (x )=cos│x │ D. f (x )= sin│x │【答案】A 【解析】 【分析】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.【详解】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos2y x =图象,由图象知,其周期为2π,在区间单调递增,A 正确;作出sin 2y x =的图象,由图象知,其周期为2π,在区间单调递减,排除B ,故选A .【点睛】利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数;10.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A.15B.5C. D.【答案】B 【解析】 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin α∴=B .【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.11.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A.B. C. 2 D.【答案】A 【解析】 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A. 9,4⎛⎤-∞ ⎥⎝⎦B. 7,3⎛⎤-∞ ⎥⎝⎦ C. 5,2⎛⎤-∞ ⎥⎝⎦ D. 8,3⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.14.已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________.【答案】-3【解析】 【分析】本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案. 【详解】因为()f x 是奇函数,且当0x <时,()ax f x e -=-.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e --=-,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3π. 【点睛】本题主要考查函数奇偶性,对数的计算.15.V ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则V ABC 的面积为__________.【答案】【解析】 【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 【详解】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 222ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】 (1). 共26个面. (2). 1. 【解析】 【分析】第一问可按题目数出来,第二问需在正方体中简单还原出物体位置,利用对称性,平面几何解决. 【详解】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则A B B E x ==,延长BC 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE ∆为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==.【点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.三、解答题:共70分。
2019高考试题汇编理科数学---概率统计
(Ⅲ)由题意结合概率的定义给出结论即可.
【详解】(Ⅰ)由题意可知,两种支付方式都是用的人数为: 人,则:
该学生上个月A,B两种支付方式都使用的概率 .
(Ⅱ)由题意可知,
仅使用A支付方法的学生中,金额不大于1000的人数占 ,金额大于1000的人数占 ,
【详解】方法1:由分布列得 ,则
,则当 在 内增大时, 先减小后增大.
方法2:则
故选D.
【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
【答案】(Ⅰ) ;
(Ⅱ)见解析;
(Ⅲ)见解析.
【解析】
【分析】
(Ⅰ)由题意利用古典概型计算公式可得满足题意的概率值;
.
(2019全国1理)21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.实验方案如下:每一轮选取两只白鼠对药效进行对比实验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮实验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止实验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮实验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得 分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为 和 ,一轮实验中甲药的得分记为 .
2019年高考试题分类汇编(统计与概率)
2019年高考试题分类汇编(统计与概率)考点1 统计考法1 简单随机抽样1.(2019·全国卷Ⅰ·文科)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生 B.200号学生 C.616号学生 D.815号学生2.(2019·天津卷·文科)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A B C D E F.享受情况如右表,其中“”表示享受,“⨯”表示不享受.现从,,,,,(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.考法2数字特征1.(2019·全国卷Ⅱ·理科)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数 C.方差 D.极差2.(2019·全国卷Ⅱ·文理科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经该站高铁列车所有车次的平均正点率的估计值为 .3.(2019·江苏卷)已知一组数据6,7,8,8,9,10,则该组数据的方差是 .4.(2019·全国卷Ⅰ·文理科)古希腊时期,人们认为最美人体的头顶至肚脐的0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165cmB .175cmC .185cmD .195cm9.(2019·全国卷Ⅱ·文科)某行业主管部门为了解本行业中小型企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表:(Ⅰ)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(Ⅱ)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈考点2 概率考法1古典概型1.(2019·全国卷Ⅱ·文科)生物实验室有5只兔子,其中3只测量过某项指标,若从这5只兔子随机取出3只,则恰有2只测量过该项指标概率为A .23B .35C .25D .152.(2019·江苏卷)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .3.(2019·全国卷Ⅲ·文理科)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.84.(2019·全国卷Ⅰ·理科)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“—”和阴爻“--”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.1116考法2相互独立事件的概率1.(2019·全国卷Ⅰ·理科)甲、乙两队进行篮球决赛,采取七场四胜制(当一对赢得四场胜利时,该队获胜,决赛决赛).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果互相独立,则甲队以4:1获胜的概率为 .2.(2019·全国卷Ⅱ·理科)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(Ⅰ)求(2)P X=;(Ⅱ)事件“4X=且甲获胜”的概率.3.(2019·天津卷·理科)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.考法3 频率分布直方图1.(2019·全国卷Ⅲ·文理科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A 、B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70.(Ⅰ)求乙离子残留百分比直方图中a ,b 的值;(Ⅱ)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).2.(2019·北京卷·文科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本仅使用A 和仅使用B 的学生的支付金额分布(Ⅰ)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(Ⅱ)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中,随机抽查1人,发现他本月的支付金额大于2000元,结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.甲离子残留百分比直方图 乙离子残留百分比直方图考点3 分布列1.(2019·北京卷·理科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本仅使用A 和仅使用B 的学生的支付金额分布(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两个支付方式都使用的概率; (Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化,现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.则当a 在(0,1)内增大时, A .()D X 增大 B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大3.(2019·全国卷Ⅰ·理科)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮的试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别为α和β,一轮试验中甲药的得分记为X . (Ⅰ)求X 的的分布列;(Ⅱ)若甲药、乙药在试验开始时都赋予4分,i p (0,1,,8i =)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,1i i p ap -= 1i i bp cp +++(1,2,,7i =),其中(1)a p X ==-,(0)b p X ==,(1)c p X ==.假设0.5α=,0.8β=.①证明:1{}i i p p +-(1,2,,7i =)为等比数列;②求4p ,并根据4p 的值解释这种试验方案的合理性. 考点4 独立性检验1.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对(Ⅰ)分别估计男、女顾客对该商场服务满意的概率; (Ⅱ)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.。
2019年高考数学理科数学概率与统计分类汇编
2019年高考数学理科数学概率与统计1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差 【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<,中位数仍为5x ,A 正确; ②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数23481()7x x x x x '=<<<,平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-,22222381[()()()]7s x x x x x x '=-'+-'++-',由②易知,C 不正确;④原极差91x x =-,后来极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是Xa 1P131313则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 6.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【答案】0.18【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=7.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)a =0.35,b =0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.70=a +0.20+0.15,故a =0.35. b =1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为 2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.8.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.【答案】(1)0.5;(2)0.1.【解析】(1)X =2就是10∶10平后,两人又打了2个球该局比赛结束, 则这2个球均由甲得分,或者均由乙得分. 因此P (X =2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束, 且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.9.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【答案】(1)分布列见解析,()2E X =;(2)20243. 【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333kkkP X k k -===.所以,随机变量X 的分布列为X0 1 2 3P127 29 49 827随机变量X 的数学期望()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y , 则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y =====. 由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知()({3,1}{2,0})P M P X Y X Y =====(3,1)(2,0)P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 10.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:支付金额(元)支付方式(0,1000](1000,2000]大于2000仅使用A 18人 9人 3人 仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD == ()()()()P C P D P C P D =+ 0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为X 0 1 2 P0.240.520.24故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”. 假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==. 答案示例1:可以认为有变化. 理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化. 答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.11.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案】(1)分布列见解析;(2)(i)证明见解析,(ii) 45 127p =,解释见解析. 【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--,(1)(1)P X αβ==-,所以X 的分布列为X1- 0 1P(1)αβ-(1)(1)αβαβ+-- (1)αβ-(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-, 即114()i i i i p p p p +--=-. 又因为1010p p p -=≠, 所以1{}(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+877610()()()p p p p p p =-+-++-81413p -=.由于8=1p ,故18341p =-,所以44433221101 (411()327 )(5())p p p p p p p p p p-=-+-+-+=-=.4p表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039 257p=≈,此时得出错误结论的概率非常小,说明这种试验方案合理.。
2019年高考数学试题分类汇编概率附答案详解
2019年高考数学试题分类汇编概率一、选择题.1、(2019年高考全国I 卷文科6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生答案:C解析:组距为10,所以选出号码为等差数列,公差为10,故选C2、(2019年高考全国I 卷理科6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116答案:A解析:一共有6426=种可能,其中满足恰有3个阳爻的有2036=C 种,概率为1656420=故选A 3、(2019年高考全国II 卷文科4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35 C .25D .15答案:B解析:设5只兔子为A,B,C,D,E,其中A,B,C 为测量过指标的取出3只所有情况:ABC 、ABD 、ABE 、ACD 、ACE 、ADE 、BCD 、BCE 、BDE 、CDE 共10种满足条件的有6种:ABD 、ABE 、ACD 、ACE 、BCD 、BCE 故概率为53=p 故答案选B 4、(2019年高考全国II 卷理科5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差 答案:A解析:9个数的中位数与去掉两个数后的7个数的中位数相同.故答案选A5、(2019年高考全国III 卷文科3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12答案:D解析:两位男生和两位女生排成一列,共有44A 种站法,其中两位女生相邻的站法共有3322A A 种,所以两位女生相邻的概率是21123412312443322=⨯⨯⨯⨯⨯⨯⨯=A A A 。
2019数学(理科)高考题分类(高考真题+模拟题) 计数原理
J 单元 计数原理J1 基本计数原理6.J1,J2,K2[2019·全国卷Ⅰ] 我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“- -”,图1-3就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是 ( )图1-3A .516B .1132C .2132D .1116 6.A [解析] 每一重卦由6个爻组成,每个爻可以是阳爻也可以是阴爻,所以共有26=64(种)重卦,恰有3个阳爻的情况有C 63=20(种),所以对应的概率为2064=516.J2 排列、组合6.J1,J2,K2[2019·全国卷Ⅰ] 我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“- -”,图1-3就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是 ( )图1-3A .516B .1132C .2132D .1116 6.A [解析] 每一重卦由6个爻组成,每个爻可以是阳爻也可以是阴爻,所以共有26=64(种)重卦,恰有3个阳爻的情况有C 63=20(种),所以对应的概率为2064=516.J3 二项式定理4.J3[2019·全国卷Ⅲ] (1+2x 2)(1+x )4的展开式中x 3的系数为 ( )A .12B .16C .20D .244.A [解析] 因为(1+2x 2)(1+x )4=(1+x )4+2x 2(1+x )4,所以展开式中x 3的系数为C 43+2C 41=12.10.J3[2019·天津卷] (2x -18x 3)8的展开式中的常数项为 .10.28 [解析] (2x -18x 3)8的展开式的通项为T r+1=C 8r (2x )8-r (-18x 3)r =(-1)r C 8r 28-4r x 8-4r ,r=0,1,2,…,8, 令8-4r=0,得r=2,所以常数项为T 3=(-1)2×C 82×20=28.13.J3[2019·浙江卷] 在二项式(√2+x )9的展开式中,常数项是 ,系数为有理数的项的个数是 .13.16√2 5 [解析] (√2+x )9=a 0+a 1x+...+a 9x 9,其中a r =C 9r ×(√2)9-r ,r=0,1,2, (9)常数项为a 0=C 90×(√2)9=16√2,系数为有理数即r 为奇数,所以r=1,3,5,7,9,共5项.J4 单元综合22.J4[2019·江苏卷] 设(1+x )n =a 0+a 1x+a 2x 2+…+a n x n ,n ≥4,n ∈N *.已知a 32=2a 2a 4.(1)求n 的值;(2)设(1+√3)n =a+b √3,其中a ,b ∈N *,求a 2-3b 2的值.22.解:(1)因为(1+x )n =C n 0+C n 1x+C n 2x 2+…+C n n x n ,n ≥4,所以a 2=C n 2=n(n -1)2,a 3=C n 3=n(n -1)(n -2)6, a 4=C n 4=n(n -1)(n -2)(n -3)24. 因为a 32=2a 2a 4,所以[n(n -1)(n -2)6]2=2×n(n -1)2×n(n -1)(n -2)(n -3)24. 解得n=5.(2)由(1)知,n=5.(1+√3)n =(1+√3)5=C 50+C 51√3+C 52(√3)2+C 53(√3)3+C 54(√3)4+C 55(√3)5=a+b √3.解法一:因为a,b∈N*,所以a=C50+3C52+9C54=76,b=C51+3C53+9C55=44,从而a2-3b2=762-3×442=-32.解法二:(1-√3)5=C50+C51(-√3)+C52(-√3)2+C53(-√3)3+C54(-√3)4+C55(-√3)5=C50-C51√3+C52(√3)2-C53(√3)3+C54(√3)4-C55 (√3)5.因为a,b∈N*,所以(1-√3)5=a-b√3.因此a2-3b2=(a+b√3)(a-b√3)=(1+√3)5×(1-√3)5=(-2)5=-32.5.[2019·辽宁东北育才中学一模]某次文艺汇演时要将A,B,C,D,E,F这六个不同的节目编排成节目单,如下表:序号123456节目如果A,B两个节目要相邻,且都不排在3号位置,那么节目单上不同的排序方式共有()A.192种B.144种C.96种D.72种5.B[解析]由题意知A,B两个节目可以排在1,2两个位置,也可以排在4,5两个位置,还可以排在5,6两个位置,∴A,B两个节目共有C31A22种排法,其他四个节目要在剩下的四个位置全排列,∴节目单上不同的排序方式共有C31A22A44=144(种),故选B.5.[2019·浙江台州模拟](x3-2x+1x)4的展开式中的常数项为()A.28B.-28C.-56D.565.A[解析]因为x3-2x+1x =x4-2x2+1x=(x2-1)2x,故(x3-2x+1x)4=(x2-1)8x4,又(x2-1)8的展开式中x4的系数为C86×(-1)6=28,所以所求常数项为28,故选A.11.[2019·浙江嘉兴模拟]某省现行的高考招生制度规定:除语文、数学、英语之外,考生必须从政治、历史、地理、物理、化学、生物、技术这7门科目中选择3门作为高考选考科目,成绩计入高考总成绩.已知报考某高校A,B两个专业各需要1门选考科目满足要求即可,且A 专业要求选考物理、化学、技术;B专业要求选考历史、地理、技术.考生小李今年打算报考该高校这两个专业,则小李的选考方式有种.(用数字作答)11.27[解析]根据题意,当考生选技术时,两个专业均可报考,再从剩下的6门科目中选2门即可,方法有C62=15(种).当考生不选技术时,可先从物理、化学中选1门,再从历史、地理中选1门,最后从政治、生物中选1门,有2×2×2=8(种)方法;当考生同时选物理、化学时,还需要从历史、地理中选1门,有2种方法;当考生同时选历史、地理时,还需要从物理、化学中选1门,有2种方法.综上,考生小李共有15+8+2+2=27(种)选考方式.17.[2019·山东德州一模]设(x+2)x9=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a1+a2+…+a10=.17.1[解析]令x=0,则a0+a1+a2+…+a10=0,令x=-1,则a0=-1,∴a1+a2+…+a10=0-(-1)=1.。
2019年高考数学试题分项版—统计概率(解析版)
2019年高考数学试题分项版——统计概率(解析版)一、选择题1.(2019·全国Ⅰ文,6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生答案 C解析根据题意,系统抽样是等距抽样,所以抽样间隔为=10.因为46除以10余6,所以抽到的号码都是除以10余6的数,结合选项知,616号学生被抽到.2.(2019·全国Ⅱ文,4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.答案 B解析设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为=.3.(2019·全国Ⅱ文,5)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.4.(2019·全国Ⅲ文,3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.答案 D解析设两位男同学分别为A,B,两位女同学分别为a,b,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为=.5.(2019·全国Ⅲ文,4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.8答案 C解析根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7. 6.(2019·浙江,7)设0<a<1.随机变量X的分布列是()则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大答案 D解析由题意可知,E(X)=(a+1),所以D(X)=++==,所以当a在(0,1)内增大时,D(X)先减小后增大.7.(2019·全国Ⅰ理,6)我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“——”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.答案 A解析由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为==20.根据古典概型的概率计算公式得,所求概率P==.故选A. 8.(2019·全国Ⅱ理,5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差答案 A解析记9个原始评分分别为a,b,c,d,e,f,g,h,i(按从小到大的顺序排列),易知e 为7个有效评分与9个原始评分的中位数,故不变的数字特征是中位数,故选A. 9.(2019·全国Ⅲ理,3)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.8答案 C解析根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7. 10.(2019·全国Ⅲ理,4)(1+2x2)(1+x)4的展开式中x3的系数为()A.12 B.16 C.20 D.24答案 A解析展开式中含x3的项可以由“1与x3”和“2x2与x”的乘积组成,则x3的系数为+2=4+8=12.二、填空题1.(2019·全国Ⅱ文,14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98. 2.(2019·浙江,13)在二项式(+x)9的展开式中,常数项是________,系数为有理数的项的个数是________.答案16 5解析该二项展开式的第k+1项为T k+1=()9-k x k,当k=0时,第1项为常数项,所以常数项为()9=16;当k=1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.3.(2019·江苏,5)已知一组数据6,7,8,8,9,10,则该组数据的方差是_____________.答案解析数据6,7,8,8,9,10的平均数是=8,则方差是=. 4.(2019·江苏,6)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.答案解析记3名男同学为A,B,C,2名女同学为a,b,则从中任选2名同学的情况有(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b),共10种,其中至少有1名女同学的情况有(A,a),(A,b),(B,a),(B,b),(C,a),(C,b),(a,b),共7种,故所求概率为.5.(2019·全国Ⅰ理,15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.答案0.18解析记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.6.(2019·全国Ⅱ理,13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98. 7.(2019·天津理,10)8的展开式中的常数项为________.答案28解析二项展开式的通项T r+1=(2x)8-r r=r·28-r x8-4r,令8-4r=0可得r=2,故常数项为2×26×=28.三、解答题1.(2019·全国Ⅰ文,17)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=.解(1)由调查数据,男顾客中对该商场服务满意的频率为=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的频率为=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)K2的观测值k=≈4.762.由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.2.(2019·全国Ⅱ文,19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为=0.21.产值负增长的企业频率为=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)=×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=i(y i-)2=×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6,s==0.02×≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.3.(2019·全国Ⅲ文,17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.4.(2019·北京文,17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生中上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生支付金额分布情况如下:(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.解(1)由题意知,样本中仅使用A的学生有27+3=30(人),仅使用B的学生有24+1=25(人),A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A,B两种支付方式都使用的人数为×1 000=400.(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C)==0.04.(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.5.(2019·天津文,15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以,事件M发生的概率P(M)=.6.(2019·江苏,22)(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2-3b2的值.解(1)因为(1+x)n=+x+x2+…+x n,n≥4,所以a2==,a3==,a4==.因为=2a2a4,所以2=2××.解得n=5.(2)由(1)知,n=5.(1+)n=(1+)5=++()2+()3+()4+()5=a+b.方法一因为a,b∈N*,所以a=+3+9=76,b=+3+9=44,从而a2-3b2=762-3×442=-32.方法二(1-)5=+(-)+(-)2+(-)3+(-)4+(-)5=-+()2-()3+()4-()5.因为a,b∈N*,所以(1-)5=a-b.因此a2-3b2=(a+b)(a-b)=(1+)5×(1-)5=(-2)5=-32.7.(2019·江苏,23)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},C n={(0,2),(1,2),(2,2),…,(n,2)},n∈N*.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).解(1)当n=1时,A1={(0,0),(1,0)},B1={(0,1),(1,1)},C1={(0,2),(1,2)},所以M1={(0,0),(1,0),(0,1),(1,1),(0,2),(1,2)}.所以X的所有可能取值是1,,2,.X的概率分布为P(X=1)==,P(X=)==,P(X=2)==,P(X=)==.(2)设A(a,b)和B(c,d)是从M n中取出的两个点.因为P(X≤n)=1-P(X>n),所以仅需考虑X>n的情况.①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB=≤,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法;③若b=0,d=2,则AB=≤,因为当n≥3时,≤n,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法;④若b=1,d=2,则AB=≤,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法.综上,当X>n时,X的所有可能取值是和,且P(X=)=,P(X=)=.因此,P(X≤n)=1-P(X=)-P(X=)=1-.8.(2019·全国Ⅰ理,21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.(1)解X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为(2)(ⅰ)证明由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ⅱ)解由(ⅰ)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)=p1.由于p8=1,故p1=,所以p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=p1=.p4表示题干中的实验方案最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理.9.(2019·全国Ⅱ理,18)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.解(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为P=[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.10.(2019·全国Ⅲ理,17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.11.(2019·北京理,17)(13分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【思路分析】(Ⅰ)从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,从而A,B两种支付方式都使用的人数有40人,由此能求出从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率.(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,则X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望()E X.(Ⅲ)从样本仅使用A的学生有30人,其中27人月支付金额不大于2000元,有3人月支付金额大于2000元,随机抽查3人,发现他们本月的支付金额都大于2000元的概率为3 3 3 301 4060CpC==,不能认为认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化.【解析】:(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,A∴,B两种支付方式都使用的人数有:1005302540---=,∴从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率400.4100p==.(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,则X的可能取值为0,1,2,样本仅使用A的学生有30人,其中支付金额在(0,1000]的有18人,超过1000元的有12人,样本仅使用B的学生有25人,其中支付金额在(0,1000]的有10人,超过1000元的有15人,18101806(0)302575025P X==⨯==,1815121039013(1)3025302575025P X==⨯+⨯==,12151806(2)302575025P X ==⨯==, X ∴的分布列为:数学期望()0121252525E X =⨯+⨯+⨯=. (Ⅲ)不能认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化, 理由如下:从样本仅使用A 的学生有30人,其中27人月支付金额不大于2000元,有3人月支付金额大于2000元,随机抽查3人,发现他们本月的支付金额都大于2000元的概率为3333014060C p C ==,虽然概率较小,但发生的可能性为14060. 故不能认为认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化. 【归纳与总结】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查古典概型、相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.12.(2019·天津理,16)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为,假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.解 (1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为 ,故X ~B ,从而P (X =k )= k3-k ,k =0,1,2,3. 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=3×=2. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y ~B,且M ={X =3,Y =1}∪{X =2,Y =0}.由题意知事件{X =3,Y =1}与{X =2,Y =0}互斥,且事件{X =3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P({X=3,Y=1})+P({X=2,Y=0})=P({X=3})P({Y=1})+P({X=2})P({Y=0})=×+×=.。
2019年高考真题和模拟题分项汇编数学(理) 专题10 概率与统计 含答案解析
专题10 概率与统计1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差 【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<,中位数仍为5x ,A 正确;②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数23481()7x x x x x '=<<<,平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-,22222381[()()()]7s x x x x x x '=-'+-'++-',由②易知,C不正确;④原极差91x x =-,后来极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是333则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值. 6.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算.7.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)a =0.35,b =0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.70=a +0.20+0.15,故a =0.35. b =1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为 2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.8.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜”的概率. 【答案】(1)0.5;(2)0.1.【解析】(1)X =2就是10∶10平后,两人又打了2个球该局比赛结束, 则这2个球均由甲得分,或者均由乙得分. 因此P (X =2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束, 且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1. 9.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【答案】(1)分布列见解析,()2E X =;(2)20243. 【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333kkkP X k k -===.所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y , 则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y =====. 由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知()({3,1}{2,0})P M P X Y X Y =====(3,1)(2,0)P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 10.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”.由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD == ()()()()P C P D P C P D =+ 0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为X 0 1 2 P0.240.520.24故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”. 假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==. 答案示例1:可以认为有变化. 理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化. 答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.11.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案】(1)分布列见解析;(2)(i)证明见解析,(ii) 45 127p =,解释见解析. 【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--, (1)(1)P X αβ==-,所以X 的分布列为(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-, 即114()i i i i p p p p +--=-. 又因为1010p p p -=≠, 所以1{}(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+877610()()()p p p p p p =-+-++-81413p -=.由于8=1p ,故18341p =-,所以44433221101( 411()327)(5())p p p p p p p p p p -=-+-+-+=-=. 4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时, 认为甲药更有效的概率为410.0039257p =≈, 此时得出错误结论的概率非常小,说明这种试验方案合理.12.【广西桂林市、崇左市2019届高三下学期二模联考】在某项测试中,测量结果ξ服从正态分布2(1,)(0)N σσ>,若(01)0.4P ξ<<=,则(02)P ξ<<= A .0.4 B .0.8 C .0.6D .0.2【答案】B【解析】由正态分布的图象和性质得(02)2(01)20.40.8P P ξξ<<=<<=⨯=.故选B .【名师点睛】本题主要考查正态分布的图象和性质,考查正态分布指定区间的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A .100,10B .100,20C .200,10D .200,20【答案】D【解析】由题得样本容量为(350020004500)2%100002%200++⨯=⨯=, 抽取的高中生人数为20002%40⨯=人,则近视人数为400.520⨯=人,故选D .14.【陕西省2019届高三年级第三次联考】同时抛掷2枚质地均匀的硬币4次,设2枚硬币均正面向上的次数为X ,则X 的数学期望是 A .1B .2C .32D .52【答案】A【分析】先计算依次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率,进而利用二项分布求数学期望即可.【解析】∵一次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率为111224⨯=, ∴1~(4,)4X B ,∴1()414E X =⨯=.故选A . 【名师点睛】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从二项分布~(,)B n p ,也可以直接利用公式()E np ξ=求数学期望.15.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为 A .35,33,30 B .36,32,30 C .36,33,29D .35,32,31【答案】B【分析】先将各年级人数凑整,从而可确定抽样比;再根据抽样比计算得到各年级抽取人数. 【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为1849,1649,1549, 因此,各年级抽取人数分别为18983649⨯=,16983249⨯=,15983049⨯=,故选B . 16.【浙江省三校2019年5月第二次联考】已知甲口袋中有3个红球和2个白球,乙口袋中有2个红球和3个白球,现从甲、乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为ξ,则()E ξ=A .145 B .135 C .73D .83【答案】A【分析】先求出ξ的可能取值及取各个可能取值时的概率,再利用1122()i i E p p p ξξξξ=++++可求得数学期望.【解析】ξ的可能取值为2,3,4,2ξ=表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故339(2)5525P ξ==⨯=;3ξ=表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白球,故322312(3)555525P ξ==⨯+⨯=;4ξ=表示从甲口袋中取出一个白球,从乙口袋中取出一个红球,故224(4)5525P ξ==⨯=,所以912414()2342525255E ξ=⨯+⨯+⨯=.故选A .17.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则 A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s ><【答案】A【分析】分别根据数据的平均数和方差的计算公式,求得2,x s 的值,即可得到答案.【解析】由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-22212481[(70)(70)(70)500]50x x x =-+-++-+, 22222212481[(70)(70)(70)(8070)(7070)]50s x x x =-+-++-+-+-22212481[(70)(70)(70)100]7550x x x =-+-++-+<, 所以275s <.故选A .【名师点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,是基础题.18.【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分【答案】D【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为40000.251000⨯=,故B 正确;由频率分布直方图可得:平均分等于450.1550.15650.2750.3850.15⨯+⨯+⨯+⨯+⨯+950.170.5⨯=,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误.故选D .19.【天津市南开中学2019届高三模拟试题】《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化基因,品生活之美”为宗旨的大型文化类竞赛节目,邀请全国各个年龄段、各个领域的诗词爱好者共同参与诗词知识比拼.“百人团”由一百多位来自全国各地的选手组成,成员上至古稀老人,下至垂髫小儿,人数按照年龄分组统计如下表:(1)用分层抽样的方法从“百人团”中抽取6人参加挑战,求从这三个不同年龄组中分别抽取的挑战者的人数; (2)在(1)中抽出的6人中,任选2人参加一对一的对抗比赛,求这2人来自同一年龄组的概率. 【答案】(1)1,3,2;(2)415. 【分析】(1)先求出样本容量与总体个数的比,由此利用分层抽样的方法能求出从这三个不同年龄组中分别抽取的挑战者的人数;(2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数26C 15n ==,这2人来自同一年龄组包含的基本事件个数为2232C C 4m =+=,由此能求出这2人来自同一年龄组的概率.【解析】(1)∵样本容量与总体个数的比是6110818=, ∴样本中包含3个年龄段落的个体数分别是:年龄在[7,20)的人数为6108⨯18=1, 年龄在[20,40)的人数为6108⨯54=3, 年龄在[40,80)的人数为6108⨯36=2, ∴从这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2. (2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数为26C 15n ==, 这2人来自同一年龄组包含的基本事件个数为2232C C 4m =+=,∴这2人来自同一年龄组的概率415m P n ==. 20.【2019北京市通州区三模】为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值. (1)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于0.2的概率;(2)从该公司本月卖出的销售单价为20万元的机器中随机选取2台,求这两台机器的利润率不同的概率; (3)假设每类机器利润率不变,销售一台第一类机器获利1x 万元,销售一台第二类机器获利2x 万元,…,销售一台第五类机器获利5x ,依据上表统计数据,随机销售一台机器获利的期望为()E x ,设123455x x x x x x ++++=,试判断()E x 与x 的大小.(结论不要求证明) 【答案】(1)13;(2)1021;(3)()E x x <. 【分析】(1)先由题意确定,本月卖出机器的总数,再确定利润率高于0.2的机器总数,即可得出结果;(2)先由题意确定,销售单价为20万元的机器分别:是第一类有5台,第三类有10台,共有15台,记两台机器的利润率不同为事件B ,由11510215C C ()C P B =即可结果;(3)先由题意确定,x 可能取的值,求出对应概率,进而可得出()E x ,再由123455x x x x x x ++++=求出均值,比较大小,即可得出结果.【解析】(1)由题意知,本月共卖出30台机器, 利润率高于0.2的是第一类和第四类,共有10台. 设“这台机器利润率高于0.2”为事件A ,则101()303P A ==. (2)用销售总额除以销售量得到机器的销售单价,可知第一类与第三类的机器销售单价为20万,第一类有5台,第三类有10台,共有15台,随机选取2台有215C 种不同方法, 两台机器的利润率不同则每类各取一台有11510C C 种不同方法,设两台机器的利润率不同为事件B ,则11510215C C 10()C 21P B ==. (3)由题意可得,x 可能取的值为8,5,3,1051(8)306P x ===,21(5)3015P x ===, 1083(3)305P x +===,51(10)306P x ===,因此113177853*******(55)E x =⨯+⨯+⨯+⨯=;又8531032955x ++++==,所以()E x x <.21.【江西省新八校2019届高三第二次联考】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:(1)若将频率是为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用样本估计总体,果园老板提出两种购销方案给采购商参考, 方案1:不分类卖出,单价为20元/kg . 方案2:分类卖出,分类后的水果售价如下:从采购单的角度考虑,应该采用哪种方案?(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X 表示抽取的是精品果的数量,求X 的分布列及数学期望()E X . 【答案】(1)96625;(2)第一种方案;(3)分布列见解析,6()5E X =. 【分析】(1)计算出从100个水果中随机抽取一个,抽到礼品果的概率;则可利用二项分布的概率公式求得所求概率;(2)计算出方案2单价的数学期望,与方案1的单价进行比较,选择单价较低的方案;(3)根据分层抽样原则确定抽取的10个水果中,精品果4个,非精品果6个;则X 服从超几何分布,利用超几何分布的概率计算公式可得到每个X 取值对应的概率,从而可得分布列;再利用数学期望的计算公式求得结果. 【解析】(1)设从100个水果中随机抽取一个,抽到礼品果的事件为A ,则201()1005P A ==, 现有放回地随机抽取4个,设抽到礼品果的个数为X ,则1~(4,)5X B , 所以恰好抽到2个礼品果的概率为22244196(2)C ()()55625P X ===, (2)设方案2的单价为ξ,则单价的期望值为134216548848()1618222420.61010101010E ξ+++=⨯+⨯+⨯+⨯==, 因为()20E ξ>,所以从采购商的角度考虑,应该采用第一种方案. (3)用分层抽样的方法从100个水果中抽取10个,则其中精品果4个,非精品果6个, 现从中抽取3个,则精品果的数量X 服从超几何分布,所有可能的取值为0,1,2,3,则36310C 1(0)C 6P X ===;2164310C C 1(1)C 2P X ===; 1264310C C 3(2)C 10P X ===;34310C 1(3)C 30P X ===,所以X 的分布列如下:所以()01236210305E X =⨯+⨯+⨯+⨯= 【名师点睛】本题考查二项分布求解概率、数学期望的实际应用、超几何分布的分布列与数学期望的求解问题,关键是能够根据抽取方式确定随机变量所服从的分布类型,从而可利用对应的概率公式求解出概率.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题10 概率与统计1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差 【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<,中位数仍为5x ,A 正确; ②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数23481()7x x x x x '=<<<,平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-,22222381[()()()]7s x x x x x x '=-'+-'++-',由②易知,C 不正确;④原极差91x x =-,后来极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.6.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算. 7.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)a =0.35,b =0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.70=a +0.20+0.15,故a =0.35. b =1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为 2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.8.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率. 【答案】(1)0.5;(2)0.1.【解析】(1)X =2就是10∶10平后,两人又打了2个球该局比赛结束, 则这2个球均由甲得分,或者均由乙得分. 因此P (X =2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束, 且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1. 9.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【答案】(1)分布列见解析,()2E X ;(2)20243.【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333kkkP X k k -===.所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y , 则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y =====. 由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知()({3,1}{2,0})P M P X Y X Y =====(3,1)(2,0)P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 10.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD == ()()()()P C P D P C P D =+ 0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”. 假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==.答案示例1:可以认为有变化. 理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化. 答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.11.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案】(1)分布列见解析;(2)(i)证明见解析,(ii) 45 127p =,解释见解析. 【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--, (1)(1)P X αβ==-,所以X 的分布列为(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-, 即114()i i i i p p p p +--=-. 又因为1010p p p -=≠, 所以1{}(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+877610()()()p p p p p p =-+-++-81413p -=.由于8=1p ,故18341p =-, 所以44433221101( 411()327)(5())p p p p p p p p p p -=-+-+-+=-=. 4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时, 认为甲药更有效的概率为410.0039257p =≈, 此时得出错误结论的概率非常小,说明这种试验方案合理.专题 计数原理1.【2019年高考全国Ⅲ卷理数】(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A【解析】由题意得x 3的系数为3144C 2C 4812+=+=,故选A .【名师点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.2.【2019年高考浙江卷理数】在二项式9)x 的展开式中,常数项是__________;系数为有理数的项的个数是__________.【答案】 5【解析】由题意,9)x 的通项为919C (0,1,29)rr r r T x r -+==,当0r =时,可得常数项为0919C T ==;若展开式的系数为有理数,则1,3,5,7,9r =,有246810T , T , T , T , T 共5个项.故答案为:5.【名师点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数”不能记混,其次,计算要细心,确保结果正确.3.【2019年高考江苏卷理数】设2*012(1),4,n n n x a a x a x a x n n +=++++≥∈N .已知23242a a a =.(1)求n 的值;(2)设(1na +=+*,ab ∈N ,求223a b -的值.【答案】(1)5n =;(2)32-.【解析】(1)因为0122(1)C C C C 4n n n n n n n x x x x n +=++++≥,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-.因为*,a b ∈N ,所以5(1a -=-.因此225553((1(1(2)32a b a a -=+-=⨯-=-=-.【名师点睛】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力.。