2019年全国卷Ⅰ文科数学高考试题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年普通高等学校招生全国统一考试(Ⅰ卷)

文科数学试题

一、选择题:

1.设3i

12i

z -=

+,则z = A .2

B 3

C 2

D .1

2.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则

A .{}1,6

B .{}1,7

C .{}6,7

D .{}1,6,7

3.已知0.20.3

2log 0.2,2,0.2a b c ===,则

A .

B .

C .

D .

451-51

-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度51

-105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是

A .165 cm

B .175 cm

C .185 cm

D .190 cm

5.函数f (x )=

2

sin cos x x

x x

++在[-π,π]的图像大致为 A . B .

a b c <

C.D.

6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是

A.8号学生B.200号学生C.616号学生D.815号学生

7.tan255°=

A.3B.3C.3D.3

8.已知非零向量a,b满足a=2b,且(a-b)⊥b,则a与b的夹角为

A.π

6

B.

π

3

C.

3

D.

6

9.如图是求

1

1

2

1

2

2

+

+

的程序框图,图中空白框中应填入

A.A=

1

2A

+

B.A=

1

2

A

+

C.A=

1

12A

+

D.A=

1

1

2A

+

10.双曲线C:

22

22

1(0,0)

x y

a b

a b

-=>>的一条渐近线的倾斜角为130°,则C的离心率为

A.2sin40°B.2cos40°C.

1

sin50︒

D.

1

cos50︒

11.△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-1

4

,则

b

c

=

A.6 B.5 C.4 D.3

12.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,

则C 的方程为

A .2212x y +=

B .22132x y +=

C .22

143x y +=

D .22

154

x y +=

二、填空题:

13.曲线2)3(e x y x x =+在点(0,0)处的切线方程为___________.

14.记S n 为等比数列{a n }的前n 项和.若133

1

4

a S ==,,则S 4=___________. 15.函数3π

()sin(2)3cos 2

f x x x =+

-的最小值为___________.

16.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC P 到平面ABC

的距离为___________.

三、解答题:

17.(12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:

女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;

(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?

附:

2

2

()

()()()()

n ad bc

K

a b c d a c b d

-

=

++++

P(K2≥k)0.0500.0100.001

k 3.841 6.63510.828

18.(12分)记S n为等差数列{a n}的前n项和,已知S9=-a5.

(1)若a3=4,求{a n}的通项公式;

(2)若a1>0,求使得S n≥a n的n的取值范围.

19.(12分)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.

(1)证明:MN∥平面C1DE;

(2)求点C到平面C1DE的距离.

相关文档
最新文档