2013全国高考理科数学分类汇编10:排列、组合和二项式定理
2013届高考理科数学总复习(第1轮)全国版课件:10.2排列、组合应用题(第1课时)
• 4. 从n个不同元素中取出m(m≤n)个元素 ⑤ _________,叫做从n个不同元素中取 并成一组 出m个元素的一个组合. • 5.从n个不同元素中取出m(m≤n)个元素的 ⑥ ______________,叫做从n个不同元 所有组合的个数 素中取出m个元素的组合数,记作⑦ m Cn ____ . m n n 1 n 2 n m 1 A=⑧ ____________________. n • 6. m n n 1 n 2 n m 1 C =⑨ ____________________. • 7. n m m 1 m 2 2 1
14
题型2
• • • • • • • • •
(2)方程要有实根,需Δ=b2-4ac≥0. 当c=0时,a、b可在1、3、5、7 2 中任取2个,有 A 4 个; 当c≠0时,b只能取5、7. 2 b取5时,a、c只能取1、3,有 A 2 个; b取7时,a、c可取1、3或1、5, 2 有2 A 2 个. 故有实数根的一元二次方程共有 2 2 2 A4 A2 2 A2 18 个.
A5 A4
5 4
6
• 2.若2n个学生排成一排的排法数为x,这 2n个学生排成前后两排,每排各n个学生 的排法数为y,则x、y的关系为( ) C • A. x>y B. x<y • C. x=y D. x=2y • 解:第一种排法数为 ,第二种排法数 2n A2 n 为 n n = 2 n ,从而x=y.
25
• 2.元素相邻用“捆绑法”,即将必须相邻的元 素“捆”在一起当作一个元素进行排列. • 3.元素相离用“插空法”,即把可相邻元素每 两个元素留出一个空位,将不能相邻即相离的 元素插入空位中进行排列. • 4.定序元素用“除法”,即n个元素的全排列 中若有m个元素必须按一定顺序排列,这m个 元素相邻或不相邻都可以,
2013届高考数学排列组合.doc
排列组合二项式定理概率统计(附高考预测)一、本章知识结构:二、重点知识回顾 1.排列与组合⑪ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关.⑫ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.⑬ 排列与组合的主要公式 ①排列数公式:)1()1()!(!+-⋅⋅⋅-=-=m n n n m n n A m n (m ≤n) A n n =n! =n(n ―1)(n ―2) ·…·2·1. ②组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=m m m n n n m n m n C m n (m ≤n).③组合数性质:①m n n m n C C -=(m ≤n). ②n n n n n n C C C C 2210=+⋅⋅⋅+++③1314202-=⋅⋅⋅++=⋅⋅⋅++n n n n n n C C C C C2.二项式定理 ⑪ 二项式定理(a +b)n =C 0n a n +C 1n a n -1b+…+C r n a n -r b r +…+C n n b n ,其中各项系数就是组合数C r n ,展开式共有n+1项,第r+1项是T r+1 =C r n a n -r b r .⑫ 二项展开式的通项公式二项展开式的第r+1项T r+1=C r n a n -r b r (r=0,1,…n)叫做二项展开式的通项公式。
⑬ 二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等,即C r n = C rn n - (r=0,1,2,…,n).②若n 是偶数,则中间项(第12+n 项)的二项公式系数最大,其值为C 2n n;若n 是奇数,则中间两项(第21+n 项和第23+n 项)的二项式系数相等,并且最大,其值为C21-n n= C21+n n.③所有二项式系数和等于2n ,即C 0n +C 1n +C 2n +…+C nn =2n .④奇数项的二项式系数和等于偶数项的二项式系数和,即C 0n +C 2n +…=C 1n +C 3n+…=2n ―1. 3.概率(1)事件与基本事件::S S S ⎧⎪⎧⎨⎨⎪⎩⎩随机事件在条件下,可能发生也可能不发生的事件事件不可能事件:在条件下,一定不会发生的事件确定事件必然事件:在条件下,一定会发生的事件基本事件:试验中不能再分的最简单的“单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的;试验中的任意事件都可以用基本事件或其和的形式来表示.(2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件的概率是一个常数,不随具体的实验次数的变化而变化. (3)互斥事件与对立事件:(4)古典概型与几何概型:古典概型:具有“等可能发生的有限个基本事件”的概率模型. 几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.两种概型中每个基本事件出现的可能性都是相等的,但古典概型问题中所有可能出现的基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.(5)古典概型与几何概型的概率计算公式: 古典概型的概率计算公式:()A P A =包含的基本事件的个数基本事件的总数.几何概型的概率计算公式:()A P A =构成事件的区域长度(面积或体积)试验全部结果构成的区域长度(面积或体积).两种概型概率的求法都是“求比例”,但具体公式中的分子、分母不同.(6)概率基本性质与公式①事件A 的概率()P A 的范围为:0()1P A ≤≤.②互斥事件A 与B 的概率加法公式:()()()P A B P A P B =+ . ③对立事件A 与B 的概率加法公式:()()1P A P B +=.(7) 如果事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率是p n (k) = C k np k (1―p)n ―k . 实际上,它就是二项式[(1―p)+p]n 的展开式的第k+1项. (8)独立重复试验与二项分布①.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;②.二项分布的概念:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)(012)k kn k n P X k C p p k n -==-= ,,,,,.此时称随机变量X服从二项分布,记作~()X B n p ,,并称p 为成功概率.4、统计(1)三种抽样方法 ①简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性. ②系统抽样系统抽样适用于总体中的个体数较多的情况.系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样. 系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔k ,当N n(N为总体中的个体数,n 为样本容量)是整数时,N k n=;当N n不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n 整除,这时N k n'=;第三步,在第一段用简单随机抽样确定起始个体编号l ,再按事先确定的规则抽取样本.通常是将l 加上间隔k 得到第2个编号()l k +,将()l k +加上k ,得到第3个编号(2)l k +,这样继续下去,直到获取整个样本. ③分层抽样当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样. 分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本. (2)用样本估计总体样本分布反映了样本在各个范围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.①用样本频率分布估计总体频率分布时,通常要对给定一组数据进行列表、作图处理.作频率分布表与频率分布直方图时要注意方法步骤.画样本频率分布直方图的步骤:求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.②茎叶图刻画数据有两个优点:一是所有的信息都可以从图中得到;二是茎叶图便于记录和表示,但数据位数较多时不够方便.③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程度,其计算公式为s=.有时也用标准差的平方———方差来代替标准差,两者实质上是一样的.(3)两个变量之间的关系变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值,获得对这两个变量之间的整体关系的了解.分析两个变量的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系:如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系,这条直线叫做回归直线,其对应的方程叫做回归直线方程.在本节要经常与数据打交道,计算量大,因此同学们要学会应用科学计算器.(4)求回归直线方程的步骤:第一步:先把数据制成表,从表中计算出211nni i i i i x y x y x ==∑∑,,,;第二步:计算回归系数的a ,b ,公式为1112211()()()n n ni i i i i i i n ni i i i n x y x y b n x x a y bx =====⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑∑∑∑,;第三步:写出回归直线方程 y bx a =+.(4)独立性检验①22⨯列联表:列出的两个分类变量X 和Y ,它们的取值分别为12{,}x x 和12{,}y y 的样本频数表称为22⨯列联表1构造随机变量22()()()())n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)得到2K 的观察值k 常与以下几个临界值加以比较:如果 2.706k >,就有0090的把握因为两分类变量X 和Y 是有关系;如果 3.841k>就有0095的把握因为两分类变量X和Y是有关系;如果 6.635k>就有0099的把握因为两分类变量X和Y是有关系;如果低于 2.706k≤,就认为没有充分的证据说明变量X和Y是有关系.②三维柱形图:如果列联表1的三维柱形图如下图由各小柱形表示的频数可见,对角线上的频数的积的差的绝对值-较大,说明两分类变量X和Y是有关的,否则的话是无关的.||ad bc图重点:一方面考察对角线频数之差,更重要的一方面是提供了构造随机变量进行独立性检验的思路方法。
2013年全国高考理科数学分类汇编(45页)
2013年全国高考理科数学分类汇编一、集合与简易逻辑辽宁2013(2)已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, 辽宁2013(4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p江西2013.1.已知集合M={1,2,zi},i ,为虚数单位,N={3,4},则复数z=A.-2iB.2iC.-4iD.4i全国1.1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( )A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B全国2.1.已知集合{}{}3,2,1,0,1,,4)1(|2-=∈<-=N R x x x M ,则=⋂N M ( ) A {}2,1,0 B {}2,1,0,1- C {}3,2,0,1- D {}3,2,1,0北京2013.1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}四川1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )(A ){2}- (B ){2} (C ){2,2}- (D )∅重庆(1)已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B =ð(A ){1,3,4} (B ){3,4} (C ){3} (D ){4}天津卷(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1]2013安微(1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6山东(2)设集合A={0,1,2},则集合B={x-y|x ∈A, y ∈A }中元素的个数是( )A. 1B. 3C. 5D.9重庆(2)命题“对任意x R ∈,都有20x ≥”的否定为(A )对任意x R ∈,使得20x < (B )不存在x R ∈,使得20x <(C )存在0x R ∈,都有200x ≥ (D )存在0x R ∈,都有200x <2013广东1.设集合M={x ∣x 2+2x=0,x ∈R},N={x ∣x 2-2x=0,x ∈R},则M ∪N=A. {0}B. {0,2}C. {-2,0} D {-2,0,2}北京2013.3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件四川4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( )(A ):,2p x A x B ⌝∃∈∉ (B ):,2p x A x B ⌝∀∉∉(C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∈2013广东8.设整数n ≥4,集合X={1,2,3……,n }。
2013年全国高考理科数学试题分类汇编10:排列、组合及二项式定理
2013年全国高考理科数学试题分类汇编10:排列、组合及二项式定理一、选择题1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a( )A .4-B .3-C .2-D .1-【答案】D2 .(2013年普通高等学校招生统一考试山东数学(理))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279【答案】B3 .(2013年高考新课标1(理))设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5B .6C .7D .8【答案】B4 .(2013年普通高等学校招生统一考试大纲版数学(理))()()8411+x y +的展开式中22x y 的系数是( )A .56B .84C .112D .168【答案】D5 .(2013年普通高等学校招生统一考试福建数学(理))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10【答案】B6 .(2013年上海市春季高考)10(1)x +的二项展开式中的一项是( )A .45xB .290xC .3120xD .4252x【答案】C7 .(2013年普通高等学校招生统一考试辽宁数学(理))使得()3nx n N n+⎛∈ ⎝的展开式中含有常数项的最小的为( )A .4B .5C .6D .7【答案】B8 .(2013年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是( )A .9B .10C .18D .20【答案】C9 .(2013年高考陕西卷(理))设函数61,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x>0时, [()]f f x 表达式的展开式中常数项为( )A .-20B .20C .-15D .15【答案】A10.(2013年高考江西卷(理))(x 2-32x )5展开式中的常数项为 ( )A .80B .-80C .40D .-40【答案】C 二、填空题11.(2013年上海市春季高考)36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为________________________【答案】483612.(2013年高考四川卷(理))二项式5()x y +的展开式中,含23xy 的项的系数是_________.(用数字作答)【答案】1013.(2013年上海市春季高考)从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).【答案】4514.(2013年普通高等学校招生统一考试浙江数学(理))将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)【答案】48015.(2013年普通高等学校招生统一考试重庆数学(理))从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答) 【答案】59016.(2013年普通高等学校招生统一考试天津数学(理))6x ⎛⎝的二项展开式中的常数项为______.【答案】1517.(2013年普通高等学校招生统一考试浙江数学(理))设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 【答案】10-18.(2013年高考上海卷(理))设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =【答案】2a=-19.(2013年高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.【答案】9620.(2013年普通高等学校招生统一考试安徽数学(理))若8x⎛⎝的展开式中4x的系数为7,则实数a=______.【答案】2121.(2013年普通高等学校招生统一考试大纲版数学(理))6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答).【答案】480。
2013高考数学二轮复习精品资料专题10 排列、组合、二项式定理教学案(教师版)
2013高考数学二轮复习精品资料专题10 排列、组合、二项式定理教学案(教师版)【2013考纲解读】1.理解并运用分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2.理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3.能用计数原理证明二项式定理; 会用 二项式定理解决与二项展开式有关的简单问题.【知识网络构建】【重点知识整合】 1.两个基本原理 (1)分类加法计数原理; (2)分类乘法计数原理; 2.排列 (1)定义;(2)排列数公式:A mn =n !n -m !(n ,m ∈N,m ≤n );3.组合(1)定义;(2)组合数公式;(3)组合数的性质:C m n =C n -m n (m ,n ∈N,且m ≤n );C m n +1=C mn +C m -1n (m ,n ∈N,且m ≤n ).4.二项式定理(a +b )n 展开式共有n +1项,其中r +1项T r +1=C r n a n -r b r.5.二项式系数的性质二项式系数是指C 0n ,C 1n ,…,C nn 这n +1个组合数. 二项式系数具有如下几个性质: (1)对称性、等距性、单调性、最值性;(2)C r r+C r r+1+C r r+2+…+C r n=C r+1n+1;C0n+C1n+C2n+…+C r n+…+C n n=2n;C1n+C3n+C5n+…=C0n+C2n+C4n+…=2n-1;C1n+2C2n+3C3n+…+n C n n=n·2n-1等.【高频考点突破】考点一两个计数原理的应用分类加法计数原理和分步乘法计数原理的区别:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.例1、给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:由此推断,当n=6时,黑色正方形互不相邻的着色方案共有________种,至少有两个黑色正方形相邻的着色方案共有________种(结果用数值表示).解析:〈1〉以黑色正方形的个数分类,①若有3个黑色正方形,则有C34=4种;②若有2个黑色正方形,则有C25=10(种);③若有1个黑色正方形,则有C16=6(种);④若无黑色正方形,则有1种.∴共4+10+6+1=21(种).〈2〉法一:至少有2个黑色正方形相邻包括有2个黑色正方形相邻,有3个黑色正方形相邻,有4个黑色正方形相邻,有5个黑色正方形相邻,有6个黑色正方形相邻.①只有2个黑色正方形相邻,有A23+A24+C15=23(种);②只有3个黑色正方形相邻,有C12+A23+C14=12(种);③只有4个黑色正方形相邻,有C12+C13=5(种);④只有5个黑色正方形相邻,有C12=2(种);⑤有6个黑色正方形相邻,有1(种).共23+12+5+2+1=43(种).法二:所求事件的对立事件为“黑色正方形互不相邻”,由〈1〉知共有21种,而给6个相连正方形着黑色、白色的方案共有26种,故所求事件的种数为:26-21=43.答案:21 43【变式探究】正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有 ( ) A.20 B.15C.12 D.10【方法技巧】1.在应用两个原理解决问题时,一般是先分类再分步.每一步当中又可能用到分类计数原理.2.对于较复杂的两个原理综合使用的问题,可恰当地列出示意图或列出表格,使问题形象化、直观化.考点二 排列组合 1.排列数公式: A mn =n (n -1)…(n -m +1)=n !n -m !.2.组合数公式: C m n=A mn A m m=n n -1…n -m +1m !=n !m !n -m !.3.组合数的性质: ①C mn =C n -mn ;②C mn +C m -1n =C mn +1.例2、由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 ( )A .72B .96C .108D .144【变式探究】在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为________.考点三 二项式定理1.二项式定理: (a +b )n=C 0n a n b 0+C 1n an -1b +…+C r n a n -r b r +…+C n n b n.2.通项与二项式系数:T r +1=C r n a n -r b r,其中C r n (r =0,1,2,…,n )叫做二项式系数.3.各二项式系数之和: (1)C 0n +C 1n +C 2n +…+C n n =2n. (2)C 1n +C 3n +…=C 0n +C 2n +…=2n -1.4.二项式系数的性质:(1)二项式系数首末两端“等距离”相等,即C rn =C n -rn . (2)二项式系数最值问题当n 为偶数时,中间一项即第n2+1项的二项式系数2C nn最大;当n 为奇数时,中间两项即第n +12,n +32项的二项式系数12Cn n-,12Cn n+相等且最大. 例3、(x +a x)(2x -1x)5的展开式中各项系数的和为2,则该展开式中常数项为 ( )A.-40 B.-20C.20 D.40【变式探究】设(x-1)21=a0+a1x+a2x2+…+a21x21,则a10+a11=__________.【方法技巧】在应用通项公式时,要注意以下几点(1)它表示二项展开式中的任意项,只要n与r确定,该项就随之确定.(2)T r+1是展开式中的第r+1项而不是第r项.(3)二项式系数与项的系数不同,项的系数除包含二项式系数外,还与a、b中的系数有关.【难点探究】难点一计数原理例1、某人设计一项单人游戏,规则如下:先将一棋子放在如图18-1所示正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有( )A .22种B .24种C .25种D .36种难点二 排列与组合例2、在送医下乡活动中,某医院安排3名男医生和2名女医生到三所乡医院工作,每所医院至少安排一名医生,且女医生不安排在同一乡医院工作,则不同的分配方法总数为( )A .78B .114C .108D .120【分析】 先分组后分配,然后减去两名女医生在一个医院的情况. 【答案】B【解析】 五人分组有(1,1,3),(1,2,2)两种分组方案,方法数是C 15C 14C 33A 22+C 15C 24C 22A 22=25,故分配方案的总数是25A 33=150种.当仅仅两名女医生一组时,分组数是C 13,当两名女医生中还有一名男医生时,分组方法也是C 13,故两名女医生在一个医院的分配方案是6A 33=36.符合要求的分配方法总数是150-36=114.难点三 二项式定理例3、 若⎝⎛⎭⎪⎫3x -1x n的展开式中各项系数之和为64,则展开式的常数项为________.1.【2012高考真题重庆理4】821⎪⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为A.1635 B.835 C.435D.105 2.【2012高考真题浙江理6】若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A.60种B.63种C.65种D.66种 【答案】D【解析】从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数的取法分为三类;第一类是取四个偶数,即545=C 种方法;第一类是取两个奇数,两个偶数,即602425=C C 种方法;第三类是取四个奇数,即144=C 故有5+60+1=66种方法。
(4年真题推荐)2010-2013年全国高考数学 试题分类汇编 排列、组合及二项式定理
2010排列、组合、二项式定理1.(2010·某某高考理科·T4)5()ax x+(x R ∈)展开式中3x 的系数为10,则实数a 等于() (A )-1 (B )12(C) 1 (D) 2 【命题立意】本题考查二项式定理的通项公式的应用及运算能力,属保分题。
【思路点拨】5()ax x+⇒5215r r rr T a C x-+=⇒523r -=⇒11510 2.a C a =⇒= 【规X 解答】选D 552155,(0,1,2,3,4,5)rr r r r r r a T C x a C x r x --+⎛⎫=== ⎪⎝⎭,令523r -=,所以1r =,所以11510 2.a C a =⇒=2.(2010·高考理科·T4)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为() (A )8289A A (B )8289A C (C )8287A A (D )8287A C【命题立意】本题考查排列组合的相关知识。
所用技巧:有序排列无序组合、不相邻问题插空法。
【思路点拨】先排8名学生,再把老师插入到9个空中去。
【规X 解答】选A 。
8名学生共有88A 种排法,把2位老师插入到9个空中有29A 种排法,故共有8289A A 种排法。
【方法技巧】解决排列组合问题常用的方法与技巧:(1)有序排列无序组合;(2)不相邻问题插空法:可以把要求不相邻的元素插入到前面元素间的空中;(3)相邻问题捆绑法。
3.(2010·某某高考理科·T8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( ) (A )36种(B )42种(C)48种(D )54种【命题立意】本题考查排列组合的基础知识,考查分类与分步计数原理,考查了考生的分析问题解决问题的能力和运算求解能力.【思路点拨】根据甲的位置分类讨论.【规X 解答】选B ,分两类:第一类:甲排在第一位,共有44A =24种排法;第二类:甲排在第二位,共有1333A A =18⋅种排法,所以共有编排方案241842+=种,故选B.【方法技巧】排列问题常见的限制条件及对策1、有特殊元素或特殊位置,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置.2、元素必须相邻的排列,将必须相邻的的元素捆绑,作为一个整体,但要注意其内部元素的顺序.3、元素不相邻的排列,先排其他元素,然后“插空”.4、元素有顺序限制的排列.4.(2010·某某高考理科·T10)如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用( )(A )288种 (B )264种 (C )240种(D )168种【命题立意】本题考查分类计数原理,排列组合等基础知识,考查分析问题、解决问题的能力。
排列、组合与二项式定理理
和的性质
对于任意n,有 ∑k=0n(nk)=2nsum_{k=0 }^{n} binom{n}{k} = 2^n∑k=0n(kn)=2n
二项式定理应用举例
求近似值
当b相对于a很小,且n不太大时, 可以使用二项式定理的前几项来
近似计算(a+b)n的值。
概率计算
在概率论中,二项式定理用于计 算二项分布的概率质量函数,表 示在n次独立重复试验中成功k次
01
02
03
捆绑法原理
当要求某些元素必须相邻 时,可以将它们看作一个 整体进行排列,然后再考 虑整体内部元素的排列。
捆绑法应用
适用于解决至少有两个元 素相邻的问题,如座位安 排、字母排列等。
注意事项
在捆绑时,需要考虑整体 与其他元素的排列顺序, 以及整体内部元素的排列 顺序。
不相邻问题插空法
插空法原理
感谢您的观看
THANKS
当要求某些元素不能相邻时,可以先 将其他元素进行排列,然后将这些元 素插入到排列好的元素之间的空隙中。
插空法应用
注意事项
在插空时,需要考虑空隙的数量和位 置,以及插入元素的顺序。
适用于解决至少有两个元素不相邻的 问题,如颜色填充、数字排列等。
定序问题倍缩法
倍缩法原理
当要求某些元素按照一定顺序排 列时,可以先求出这些元素的全 排列数,然后再除以它们的排列
的概率。
组合数学
二项式系数在组合数学中扮演着 重要角色,用于计算组合数、排
列数等问题。
04 排列组合在二项式定理中 应用
排列组合求二项式系数
组合数公式
二项式系数可以通过组 合数公式$C_n^k$求得, 其中$n$表示二项式的 次数,$k$表示某一项 的下标。
2013年高考真题解析分类汇编(理科数学)10:排列、组合及二项式定理2013年高考真题解析分类汇编
2013高考试题解析分类汇编(理数)10:排列、组合及二项式定理一、选择题1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a( )A .4-B .3-C .2-D .1-D已知(1+ax )(1+x )5的展开式中x 2的系数为+a •=5,解得a=﹣1,故选D .2 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为( )A .243 B .252 C .261 D .279B有重复数字的三位数个数为91010900⨯⨯=。
没有重复数字的三位数有1299648C A =,所以有重复数字的三位数的个数为900648=252-,选B.仁为太傅谢安的孙子试卷试题等到平定京邑后化学教案高祖进驻石头城化学教案景仁与百官同去拜见高祖化学教案高祖注视着他3 .(2013年高考新课标1(理))设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5 B .6 C .7 D .8 B因为m 为正整数,由(x+y )2m 展开式的二项式系数的最大值为a ,以及二项式系数的性质可得a=,同理,由(x+y )2m+1展开式的二项式系数的最大值为b ,可得 b=.再由13a=7b ,可得13=7,即 13×=7×,即 13=7×,即 13(m+1)=7(2m+1).解得m=6,故选B .4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))()()8411+x y +的展开式中22x y 的系数是( )A .56B .84C .112D .168D(x+1)3的展开式的通项为T r+1=C 3r x r 令r=2得到展开式中x 2的系数是C 32=3, (1+y )4的展开式的通项为T r+1=C 4r y r 令r=2得到展开式中y 2的系数是C 42=6,(1+x )3(1+y )4的展开式中x 2y 2的系数是:3×6=18,故选D .5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14 B .13C .12D .10B方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得()13nx n N n x x +⎛⎫+∈ ⎪⎝⎭的展开式中含有常数项的最小的为( )A .4 B .5 C .6 D .7B展开式的通项公式为5211(3)()3k n kn kkk n kk nnT C x C xx x---+==。
排列、组合与二项式定理(理)
二项式定理的未来发展方向
理论完善
随着数学的发展,二项式定理的理论体系将不断完善,新的证明方 法和技巧将不断涌现。
应用拓展
随着各学科的发展,二项式定理的应用领域将不断拓展,特别是在 大数据处理、人工智能和量子计算等领域。
排列数的计算
01
二项式定理也可以用来计算排列数,特别是当排列数的上标和
下标较大时,使用二项式定理可以简化计算过程。
排列数的性质
02
通过二项式定理,我们可以推导出排列数的性质,如排列数的
增减性等。
排列数的递推关系
03
利用二项式定理,我们可以得到排列数的递推关系,从而更方
便地计算排列数。
利用二项式定理解决实际问题
互异性
有序性
排列中的元素顺序是确定的,不能随 意调换。
排列中的元素没有重复出现的情况。
组合的定义与性质
组合的定义
从n个不同元素中取出m个元素 (0<m≤n),不考虑顺序,称为 从n个不同元素中取出m个元素的
一个组合。
互异性
组合中的元素没有重复出现的情况。
无序性
组合中的元素顺序不影响其组合结 果。
排列与组合的关系
利用组合数的性质,通过数学推导推导出二项式定理的展开式。
利用多项式乘法推导
将$(a+b)^n$展开成多项式,然后利用多项式乘法的性质推导出二 项式定理的展开式。
利用幂的性质推导
利用幂的性质,将$(a+b)^n$展开成幂的形式,然后通过数学推导 推导出二项式定理的展开式。
04 二项式定理的应用举例
利用二项式定理计算组合数
高考专题十:排列、组合和二项式定理(教)
第 1 页 共 1 页高考专题十:排列、组合和二项式定理1.排列数m n A 中1,n m n m ≥≥∈N 、、组合数mn C 中,1,0,n m n m n m ≥≥≥∈、N . (1)排列数公式!(1)(2)(1)()()!m n n A n n n n m m n n m =---+=≤-;!(1)(2)21nn A n n n n ==--⋅。
(2)组合数公式()(1)(1)!()(1)21!!mmn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01!=,01nC =. (3)排列数、组合数的性质:①m n m n n C C -=;②111m m m n n n C C C ---=+;③11k k n n kC nC --=;④1121++++=++++r n r nr r r r rr C C CCC ;⑤!(1)!!n n n n ⋅=+-;⑥11(1)!!(1)!n n n n =-++. 2.解排列组合问题的依据是:(1) 分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事);(2) 分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合. 3.解排列组合问题的方法有:(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。
(2)间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉))。
(3)相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列)。
(4)不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间)。
##2013年全国高考理科数学试题分类汇编10:排列、组合及二项式定理Word版含答案_4352
2013 年全国高考理科数学试题分类汇编10:摆列、组合及二项式定理一、选择题1.( 2013 年一般高等学校招生一致考试新课标Ⅱ卷数学(理)(纯 WORD 版含答案))已知(1ax)(1 x)5的睁开式中x2的系数为 5, 则a()A.4B.3C.2D.1【答案】 D2.( 2013 年一般高等学校招生一致考试山东数学(理)试题(含答案))用 0,1,,9十个数字 ,能够构成有重复数字的三位数的个数为()A. 243B. 252C. 261D. 279【答案】 B3.( 2013 年高考新课标1(理))设m为正整数,(x y)2 m睁开式的二项式系数的最大值为a ,( x y) 2m 1睁开式的二项式系数的最大值为b ,若 13a7b ,则m()A. 5B. 6C. 7D. 8【答案】 B4.( 2013 年一般高等学校招生一致考试纲领版数学(理)WORD 版含答案(已校正))184()x1+y 的睁开式中x2y2的系数是A.56D B.84C.112D.168【答案】5.( 2013年一般高等学校招生一致考试福建数学(理)试题(纯WORD版))知足a, b1,0,1,2 ,且对于x的方程ax22x b 0 有实数解的有序数对 (a,b) 的个数为()A. 14B. 13C. 12D. 10【答案】 B6.( 2013 年上海市春天高考数学试卷(含答案 ))(1 x)10的二项睁开式中的一项为哪一项()A.45x B.90x2C.120 x3D.252x4【答案】 C7.( 2013年一般高等学校招生一致考试辽宁数学(理)试题(WORD版))使得n1的睁开式中含有常数项的最小的为()3x n N nx xA.4B.5C.6D.7【答案】B从 1,3,5,7,9 这五个数中,每次拿出两个不一样的数分别为a, b , 8 .( 2013 年高考四川卷(理))共可获得 lg a lg b 的不一样值的个数是()A.9B.10C.18D.20【答案】 C16x, x0,9 .( 2013年高考陕西卷(理))设函数 f ( x)x则当 x>0时, f [ f (x)] 表,x ,x0.达式的睁开式中常数项为()A. -20B. 20C. -15D. 15【答案】 A10.( 2013年高考江西卷(理)) (x2-2 ) 5 睁开式中的常数项为()x3A. 80B. -80C. 40D. -40【答案】 C二、填空题11.( 2013年上海市春天高考数学试卷(含答案 ))36的所有正约数之和可按以下方法获得: 因为36=2 232, 所以36的所有正约数之和为(1 3 32)(223 2 32)(2 22232232 )(1222()1 3 32)91参照上述方法, 可求得2000 的所有正约数之和为________________________【答案】483612 .( 2013年高考四川卷(理))二项式(x y)5的展开式中, 含x2y3的项的系数是_________.(用数字作答)【答案】1013.( 2013年上海市春天高考数学试卷(含答案 ) )从4 名男同学和 6 名女同学中随机选用 3 人参加某社团活动, 选出的 3 人中男女同学都有的概率为________(结果用数值表示).【答案】4514(.2013年一般高等学校招生一致考试浙江数学(理)试题(纯WORD版))将A, B,C, D,E,F六个字母排成一排, 且A, B均在C 的同侧, 则不一样的排法共有________种( 用数字作答)【答案】48015.( 2013年一般高等学校招生一致考试重庆数学(理)试题(含答案))从 3名骨科.4 名脑外科和 5 名内科医生中选派 5 人构成一个抗震救灾医疗小组生都起码有 1人的选派方法种数是___________( 用数字作答), 则骨科. 脑外科和内科医【答案】 5901 616.( 2013 年一般高等学校招生一致考试天津数学(理)试题(含答案)) x的二项x睁开式中的常数项为 ______.【答案】 1517.( 2013 年一般高等学校招生一致考试浙江数学(理)试题(纯 WORD版))设二项式( x1)5 的睁开式中常数项为A , 则 A ________.3x【答案】1018.( 2013 年高考上海卷(理) )设常数 aR , 若x2ax5的二项睁开式中x 7 项的系数为10 , 则 a ______【答案】 a219.( 2013 年高考北京卷(理) ) 将序号分别为 1,2,3,4,5的 5 张观光券所有分给 4 人,每人起码 1 张 , 假如分给同一人的 2 张观光券连号 , 那么不一样的分法种数是 _________.【答案】 96820.( 2013 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD 版))若ax3x的睁开式中 x 4 的系数为 7, 则实数 a ______.【答案】1221.( 2013 年一般高等学校招生一致考试纲领版数学(理)WORD 版含答案(已校正) ) 6 个人排成一行 , 此中甲、乙两人不相邻的不一样排法共有____________ 种.( 用数字作答 ).【答案】 480。
【金识源】(3年高考2年模拟1年原创)最新2013版高考数学 专题10 排列组合二项式定理(解析版)
【金识源】(3年高考2年模拟1年原创)最新2013版高考数学专题10 排列组合二项式定理(解析版)【考点定位】2014考纲解读和近几年考点分布2012考纲解读考纲原文(1)分类加法计数原理、分步乘法计数原理①理解分类加法计数原理和分步乘法计数原理;②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.(2)排列与组合①理解排列、组合的概念.②能利用计数原理推导排列数公式、组合数公式.③能解决简单的实际问题.(3)二项式定理①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题.考纲解读(1)标准中只是对理科有要求,对文科不做要求;但大纲版对文理科均作要求。
(2)已删除:组合数的性质。
近几年考点分布近几年考点分布排列、组合、二项式定理是高考数学相对独立的内容,也是密切联系实际的一部分。
在高考中,注重基本概念,基础知识和基本运算的考查。
试题难度不大,多以选择、填空的形式出现。
排列组合的试题会以现实生活中的生产问题、经济问题为背景,不会仅是人或数的排列。
以排列组合应用题为载体,考查学生的抽象概括能力,分析能力,综合解决问题的能力。
将排列组合与概率统计相结合是近几年高考的一大热点,应引起重视。
二项式定理的知识在高考中经常以客观题的形式出现,多为课本例题、习题迁移的改编题,难度不大,重点考查运用二项式定理去解决问题的能力和逻辑划分、化归转化等思想方法。
为此,只要我们把握住二项式定理及其系数性质,会把实际问题化归为数学模型问题或方程问题去解决,就可顺利获解。
【考点pk】名师考点透析考点一、计数原理【名师点睛】1.如何选用分类加法计数原理和分步计数乘法原理。
在处理具体的应用问题时,必须先分清是“分类”还是“分步”,“分类”表现为其中任何一类均可独立完成所给事件,而“分步”必须把各步骤均完成才能完成所给事情。
2.运用分类加法计数原理,首先要根据问题的特点,确定分类标准,分类应满足:完成一件事情的任何一种方法,必须属于某一类且仅属于某一类,即类与类的确定性与并列性。
全国各地2013届高考数学 押题精选试题分类汇编10 排列组合及二项式定理 理
2013届全国各地高考押题数学(理科)精选试题分类汇编10:排列组合及二项式定理一、选择题1 .(2013届天津市高考压轴卷理科数学)二项式8(2x -的展开式中常数项是( )A .28B .-7C .7D . -28 【答案】C【解析】展开式的通项公式为488831881()(()(1)22k k k k k k kk x T C C x ---+==-,由4803k -=得6k =,所以常数项为6866781()(1)72T C -=-=,选 C .2 .(2013届广东省高考压轴卷数学理试题)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 ( ) A .60 B .48 C .42 D .36【答案】B 先把两个女生选好在捆绑在一起22326C A =假设捆在一起的女生记为A,B,另一个女生记为C,两个男生记为甲乙,从左到右编号1~5 (一)A,B 排在1,2号,那么甲可以选3,4.若甲选3,则C,乙无要求,有2种;如果甲选4号,则C 只能选5号,有一种.则共3种情形(二)A,B 排在2,3号,那么甲只能选4号, C 只能选5号,有一种. (三)A,B 排在3,4号,那么甲只能选2号, C 只能选1号,有一种. (二)A,B 排在4,5号,情形同(一)共3种 则总数为N=6*8=48种 3 .(2013届浙江省高考压轴卷数学理试题)若从1,2,3,,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有 ( ) A .60种 B .63种 C .65种 D .66种 【答案】A【解析】 若四个数之和为奇数,则有1奇数3个偶数或者3个奇数1个偶数.若1奇数3个偶数,则有1354=20C C 种,若3个奇数1个偶数,则有3154=40C C ,共有2040=60+种.4 .(2013届全国大纲版高考压轴卷数学理试题)一圆形餐桌依次有 ( ) A . B . C . D .E 、F 共有6个座位.现让3个大人和3 个小孩入座进餐,要求任何两个小孩都不能坐在一起,则不同的入座方法总 数为 ( ) ( ) A .6 B .12 C .72 D .144【答案】C .若( ) A .C .E 坐大人,则B .D .F 坐小孩;EFDCBA若 B .D .F 坐大人,则( ) A .C .E 坐小孩.共有3333272A A =种方法.5 .(2013新课标高考压轴卷(一)理科数学)设0(cos sin )a x x dx π=⎰-,则二项式26()ax x+展开式中的3x 项的系数为 ( )A .-20B .20C .-160D .160【答案】C 【解析】因为00(cos sin )(sin cos )2a x x dx x x ππ=⎰-=+=-,所以二项式为26262()()a x x x x+=-,所以展开式的通项公式为261231662()()(2)k k k k k k k T C x C x x--+=-=-,由1233k -=得3k =,所以333346(2)160T C x x =-=-,所以3x 项的系数为160-.选C .6 .(2013新课标高考压轴卷(一)理科数学)某车队准备从甲、乙等7辆车中选派4辆参加救援物资的运输工作,并按出发顺序前后排成一队,要求甲、乙至少有一辆参加,且若甲、乙同时参加,则它们出发时不能相邻,那么不同排法种数为 ( ) A .360 B .520 C .600 D .720【答案】C 【解析】若甲乙只有一个参加,则有124254480C C A =.若甲、乙同时参加,则有222523120C A A =,所以共有600种排法,选C . 7 .(2013届山东省高考压轴卷理科数学)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有 ( ) A .12 B .18 C .24 D .48【答案】C 【解析】分三步:把甲、乙捆绑为一个元素A ,有22A 种方法;A 与戊机形成三个“空”,把丙、丁两机插入空中有23A 种方法;考虑A 与戊机的排法有22A 种方法.由乘法原理可知共有22A 23A 22A 24=种不同的着舰方法.故应选C .二、填空题8 .(2013届全国大纲版高考压轴卷数学理试题)若()1,112>∈⎪⎭⎫ ⎝⎛-n N n x n的展开式中4-x 的系数为,n a 则⎪⎪⎭⎫⎝⎛+++∞→n n a a a 111lim 32 =.【答案】2.22(1)(1)2n n n n a C -=-=1112()1n a n n ⇒=-- 23111111111212122311lim 212n n a a a n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫∴-= ⎪⎝⎭ 9 .(2013届新课标高考压轴卷(二)理科数学)二项式9)1(xx -的展开式中含x 5的项的系数是( )【答案】3610.(2013届陕西省高考压轴卷数学(理)试题)若7)1(axx -展开式中含x 的项的系数为280,则a =【答案】21-【解析】77217711rrr r r r r T C x C x ax a --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以33471T C x a ⎛⎫=- ⎪⎝⎭,所以33711280,.2C a a ⎛⎫-==- ⎪⎝⎭11.(2013届上海市高考压轴卷数学(理)试题)6)1(xx -的展开式中,系数最大的项为第_______________项.【答案】3或5【解析】6)1(xx -的展开式中系数与二项式系数只有符号差异,又中间项的二项式系数最大,中间项为第4项其系数为负,则第3,5项系数最大. 12.(2013届四川省高考压轴卷数学理试题)七名同学站成一排合影留念,要求甲必须站在正中间,乙丙两位同学要站在一起,则不同的站法有__________种. 【答案】24013.(2013届湖南省高考压轴卷数学(理)试题)若())(...2120132013102013R x x a x a a x ∈+++=-,【答案】-114.(2013届福建省高考压轴卷数学理试题)从3,2,1,0中任取三个数字,组成无重复数字的三位数中,偶数的个数是________(用数字回答).【答案】10【解析】考虑三位数“没0”和“有0”两种情况.【1】没0:2必填个位,22A 种填法;【2】有0:0填个位,23A 种填法;0填十位,2必填个位,12A 种填法;所以,偶数的个数一共有22A +23A +12A =10种填法.15.(2013届安徽省高考压轴卷数学理试题)已知二项式51cos )(+θx 的展开式中2x 项的系数与445)(+x 的展开式中3x 项的系数相等,则θcos =_______________.【答案】51cos )(+θx 中2x 的系数是325cos C θ,445)(+x 中3x 的系数是1454C ⨯,所以令321545cos 4C C θ=⨯得,cos θ=16.(2013届江西省高考压轴卷数学理试题)已知展开式66106)1(x a x a a x +++=- ,则06a a +的值为______.【答案】217.(2013届浙江省高考压轴卷数学理试题)521⎪⎭⎫ ⎝⎛+x x 展开式中4x 的系数为_______(用数字作答) .【答案】10【解析】251031551()()rr r r r r T C x C x x--+==,10-3r=4,r=2,代入得2443510T C x x ==18.(2013届山东省高考压轴卷理科数学)(2013滨州市一模)设6sin (a xdx,π=⎰则二项式的展开式中的常数项等于________. 【答案】-160词【解析】,3,2)1(,)12()1(,2|)cos (sin 36616600=∴-=-=-∴=-==--+⎰r x C T x x x x a x dx x a r r r r r ππ所以常数项为-160.19.(2013届广东省高考压轴卷数学理试题)若23*0123(1)()n n n x a a x a x a x a x n N -=++++⋅⋅⋅+∈,且13:1:7a a =,则5_____a =【答案】56- ()()1133111276n n C a n n n a C -===---得n=8,55856a C =-=-。
高考数学 全国统考区(甘肃、贵州、云南)精选试题分类汇编10 排列、组合及二项式定理
备战2014年高考之2013届全国统考区(甘肃、贵州、云南)精选理科试题(大部分详解)分类汇编10:排列、组合及二项式定理一、选择题1 .(【解析】贵州省四校2013届高三上学期期末联考数学(理)试题)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的种数为( ) A .24种 B .30种 C .36种 D .81种【答案】B 【解析】甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生则,从4人中先选2人一个班,然后在分班,有234336C A =种。
若甲乙两人分在一个班则有336A =种,所以甲、乙两名学生不能分到同一个班,则不同的分法的种数为36630-=种,选 B .2 .(云南省玉溪一中2013届高三第五次月考理科数学)从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( ) A .24 B .18 C .12 D .6【答案】B 【解析】若选0,0只能放在十位上,此时从1,3,5中选2个奇数的排成三位奇数有236A =种。
若选2,从1,3,5中选1个奇数排在个位,然后从剩下俩个奇数选一个和2进行全排列放在十位和百位,共有2232=12A ⨯⨯种,所以共有18种排法,选B .3 .(【解析】云南省玉溪一中2013届高三上学期期中考试理科数学)某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),那么这位教师一天的课的所有排法有( ) A .474种 B .77种 C .462种 D .79种【答案】A 【解析】首先求得不受限制时,从9节课中任意安排3节,有39504A =种排法,其中上午连排3节的有33318A =种,下午连排3节的有33212A =种,则这位教师一天的课表的所有排法有504-18-12=474种,故选A .4 .(甘肃省兰州一中2013届高三上学期12月月考数学(理)试题)51()(2)a x x x x +-展开式中各项系数的和为2,则该展开式中的常数项为( )A .40-B .20-C .20D .40【答案】D 【解析】令1x =,得12a +=,所以1a =,所以55111()(2)()(2)a x x x x x x x x +-=+-,51(2)x x -的展开通项为:()()5552551212rr rrr rr C x C x x ---⎛⎫-=- ⎪⎝⎭,由521,2,52-1,3,r r r r -==-==得由得所以51(2)x x -展开式中x 项的系数为80,51(2)x x -展开式中1x -项的系数为-40,所以511()(2)x x x x +-的展开式中常数项为80-40=40。
全国各地2013届高考数学 押题精选试题分类汇编10 排列组合及二项式定理 文
2013届全国各地高考押题数学(文科)精选试题分类汇编10:排列组合及二项式定理一、选择题1 .(2013届四川省高考压轴卷数学文试题)某教师一天上3个班级的课,每班1节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5节和第6节不算连上),那么这位教师一天的课表的所有排法有()A.474种B.77种C.462种D. 79种【答案】A2 .(2013届全国大纲版高考压轴卷数学文试题(一))某班在5男生4女生中选择4人参加演讲比赛,选中的4人中有男有女,且男生甲和女生乙最少选中一个,则不同的选择方法有()A.91种B.90种C.89种D.86种【答案】D3 .(2013届全国大纲版高考压轴卷数学文试题(二))将编号为1、2、3、4、5的五个球放入编号为1、2、3、4、5的五个盒子,每个盒子放一个球,若恰好有两个球的编号与盒子编号相同,则不同的投放方法有()A.10B.20C.30D.36【答案】B4 .(2013届全国大纲版高考压轴卷数学文试题(二))若二项式2)nx的展开式的第五项是常数项,则自然数n的值是()A.6B.16C.12D.15【答案】B二、填空题5 .(2013届新课标高考压轴卷(二)文科数学)二项式9)1(xx -的展开式中含x 5的项的系数是__________【答案】366 .(2013届上海市高考压轴卷数学(文)试题)设1111221010)2()2()2()32)(2(+++++++=++x a x a x a a x x ,则+++210a a a 11a + 的值为_______________..【答案】1【解析】令1,x =则有012111=...a a a a ++++。
高考(2013-2015)数学(理)试题分项:专题11 排列组合、二项式定理
高考(2013-2015)数学(理)试题分项:专题11 排列组合、二项式定理一、选择题1.【2014天津,理6】如图,ABC 是圆的内接三角形,BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论: ①BD 平分CBF ;②2FB FD FA ;③AE CE BE DE ;④AF BD AB BF .则所有正确结论的序号是 ( )EFDABC(A )①② (B )③④ (C )①②③ (D )①②④2. 【2015高考天津,理5】如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为( ) (A )83 (B )3 (C )103 (D )523. 【2014高考广东卷.理.8】设集合(){}{}12345,,,,1,0,1,1,2,3,4,5iA x x x x x x i =∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A .60B .90C .120D .1304. 【 2014湖南4】5122x y ⎛⎫- ⎪⎝⎭的展开式中32y x 的系数是( )A.20-B.5-C.5D.205. 【2013山东,理10】用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为().A .243B .252C .261D .2796. 【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .77.【2013课标全国Ⅱ,理5】已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =().A .-4B .-3C .-2D .-18. 【2014四川,理2】在6(1)x x +的展开式中,含3x 项的系数为( )A .30B .20C .15D .109. 【2014四川,理6】六个人从左至右排成一行,最左端只能排甲或乙,学科网最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种10. 【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个11.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )6012. 【2013课标全国Ⅰ,理9】设m 为正整数,(x +y )2m展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .813. 【2014年.浙江卷.理5】在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 21014.【2014高考重庆理第9题】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.16815. 【2014年普通高等学校招生全国统一考试湖北卷2】若二项式7)2(x a x +的展开式中31x的系数是84,则实数=a ( )A.2B. 54C. 1D.4216. 【2015高考湖北,理3】已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.122 B .112 C .102D .9218. (2013辽宁,理7)使3nx⎛+ ⎝(n ∈N +)的展开式中含有常数项的最小的n 为( ).A .4B .5C .6D .719. 【2014辽宁理6】把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )A .144B .120C .72D .2420.【2015湖南理2】已知5的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-621. 【2013四川理8】从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b-的不同值的个数是( )(A )9 (B )10 (C )18 (D )20二、填空题1.【2013天津,理10】6x⎛- ⎝的二项展开式中的常数项为__________.2. 【2013天津,理11】已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为π4,3⎛⎫⎪⎝⎭,则|CP |=__________.3. 【2013天津,理13】如图,△ABC 为圆的内接三角形,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .若AB =AC ,AE =6,BD =5,则线段CF 的长为__________.4. 【2014天津,理13】在以O 为极点的极坐标系中,圆4sin 和直线sin a 相交于,A B 两点.若AOB 是等边三角形,则a 的值为___________.5. 【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .6. 【2013高考北京理第12题】将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__________.7. 【2014高考北京理第13题】把5件不同产品摆成一排,若产品A 与产品B 相邻, 且产品A 与产品C不相邻,则不同的摆法有 种.8. 【2015高考北京,理9】在()52x +的展开式中,3x 的系数为.(用数字作答)9. 【2014高考广东卷.理.11】从0.1.2.3.4.5.6.7.8.9中任取七个不同的数,则这七个数的中位数是6的概率为 .10. 【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 .11. 【2015高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答)12.【2014山东.理14】 若26()b ax x+的展开式中3x 项的系数为20,则22b a +的最小值 . 13.【2014新课标,理13】 ()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 14.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.15. 【2013四川,理11】二项式5()x y +的展开式中,含23x y 的项的系数是____________.(用数字作答) 16. 【2015高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答).17. 【2014课标Ⅰ,理14】甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时,甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市. 丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________18. 【2014课标Ⅰ,理13】()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案) 19. 【2014年.浙江卷.理14】在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).20. 【2013年.浙江卷.理11】设二项式53x x ⎛- ⎪⎝⎭的展开式中常数项为A ,则A =__________. 21. 【2013年.浙江卷.理14】将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有__________种(用数字作答).22.【2013高考重庆理第13题】从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是__________(用数字作答).23. 【2015高考重庆,理12】532x x ⎛+ ⎪⎝⎭的展开式中8x 的系数是________(用数字作答). 24. 【2014,安徽理13】设n a ,0≠是大于1的自然数,na x ⎪⎭⎫ ⎝⎛+1的展开式为nn x a x a x a a ++++ 2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a .25. 【2013,安徽理11】若83x x ⎛ ⎝的展开式中4x 的系数为7,则实数a =______. 26.【2015高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案)27.【2013上海,理5】设常数a ∈R .若25()a x x+的二项展开式中x 7项的系数为-10,则a =______. 28.【2015高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答)。
全国高考理科数学试题分类汇编:排列组合及二项式定理.doc
2016年全国高考理科数学试题分类汇编10:排列、组合及二项式定理一、选择题1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯W ORD 版含答案))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )A .4-B .3-C .2-D .1-【答案】D2 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279【答案】B3 .(2013年高考新课标1(理))设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5B .6C .7D .8【答案】B4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))()()8411+x y +的展开式中22x y 的系数是 ( )[来源:学§科§网Z §X §X §K]A .56B .84C .112D .168【答案】D5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .10【答案】B6 .(2013年上海市春季高考数学试卷(含答案))10(1)x +的二项展开式中的一项是( )A .45xB .290xC .3120xD .4252x【答案】C7 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得()3nx n N n x x +⎛+∈ ⎝的展开式中含有常数项的最小的为( )A .4B .5C .6D .7【答案】B [来源:学&科&网Z&X&X&K][来源:学&科&网] 8 .(2013年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是( )A .9B .10C .18D .20【答案】C9 .(2013年高考陕西卷(理))设函数61,00.,(),x x f x x x x ⎧⎛⎫-<⎪ ⎪=⎝-≥⎭⎨⎪⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为( )A .-20B .20C .-15D .15【答案】A10.(2013年高考江西卷(理))(x 2-32x)5展开式中的常数项为 ( )A .80B .-80C .40D .-40【答案】C 二、填空题11.(2013年上海市春季高考数学试卷(含答案))36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为________________________【答案】483612.(2013年高考四川卷(理))二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答)【答案】10 [来源:学科网ZXXK]13.(2013年上海市春季高考数学试卷(含答案))从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).【答案】4514.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)【答案】48015.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答) 【答案】59016.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))6x x ⎛- ⎪⎝⎭的二项展开式中的常数项为______.【答案】1517.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设二项式53)1(xx -的展开式中常数项为A ,则=A ________.[来源:学科网] 【答案】10- [来源:学科网ZXXK]18.(2013年高考上海卷(理))设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =[来源:]【答案】2a =-19.(2013年高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.【答案】9620.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若83x x ⎛+ ⎪⎝⎭的展开式中4x 的系数为7,则实数a =______.【答案】21[来源:学|科|网Z|X|X|K][来源:学|科|网] 21.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答).[来源:]【答案】480。
2013年高考数学试题分类汇编——排列组合与二项式定理
2012年高考数学试题分类汇编——排列组合1、将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()(A)12种(B)18种(C)36种(D)54种2,将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()(A) 12种 (B) 18种 (C) 36种 (D) 54种3、某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有()(A)30种(B)36种(C)42种(D)48种4、某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有() A. 504种 B. 960种 C. 1008种 D. 1108种5 、8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为()(A)(B)(C)(D)6、由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()(A)72 (B)96 (C) 108 (D)1447、如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用()种。
(A)288 (B)264 (C)240 (D)1688、某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有()(A) 30种 (B)35种 (C)42种 (D)48种9由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是()(A)36 (B)32 (C)28 (D)2410、现有名同学支听同时进行的个课外知识讲座,名每同学可自由选择其中的一个讲座,不同选法的种数是()(A).(B).(C).(D).11、在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为() (A).10 (B).11 (C).12 (D).1512、现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国高考理科数学试题分类汇编10:排列、组合及二项式定理
一、选择题
1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯W ORD 版含答案))已知5
)1)(1(x ax ++的
展开式中2
x 的系数为5,则=a ( )
A .4-
B .3-
C .2-
D .1-
【答案】D
2 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重
复数字的三位数的个数为
( )
A .243
B .252
C .261
D .279
【答案】B
3 .(2013年高考新课标1(理))设m 为正整数,2()m x y +
展开式的二项式系数的最大值为a ,21
()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =
( )
A .5
B .6
C .7
D .8
【答案】B
4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))()
()
8
4
11+x y +的展
开式中22
x y 的系数是 ( )
A .56
B .84
C .112
D .168
【答案】D
5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈
-,且关
于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )
A .14
B .13
C .12
D .10
【答案】B
6 .(2013年上海市春季高考数学试卷(含答案))10
(1)x +的二项展开式中的一项是
( )
A .45x
B .2
90x
C .3
120x
D .4
252x
【答案】C
7 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得
()3n
x n N n
+⎛
+∈ ⎝
的展开式中含有常数项的最小的为
( )
A .4
B .5
C .6
D .7
【答案】B
8 .(2013年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到
lg lg a b -的不同值的个数是
( )
A .9
B .10
C .18
D .20
【答案】C
9 .(2013年高考陕西卷(理))
设函数6
1,00.,
()x x f x x x ⎧⎛⎫
-<⎪ ⎪=⎝≥⎭
⎨⎪
⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为
( )
A .-20
B .20
C .-15
D .15
【答案】A
10.(2013年高考江西卷(理))(x 2
-
32x
)5
展开式中的常数项为 ( )
A .80
B .-80
C .40
D .-40
【答案】C 二、填空题
11.(2013年上海市春季高考数学试卷(含答案))36的所有正约数之和可按如下方法得到:因为22
36=23⨯,
所以36的所
有正
约
数之和为
22
2
2
22
(133)
(22323)(
+
+
++⨯+⨯++⨯+(
参照上述方法,
可求得2000的所有正约数之和为________________________
【答案】4836
12.(2013年高考四川卷(理))二项式5
()x y +的展开式中,含2
3
x y 的项的系数是_________.(用数字作答)
【答案】10
13.(2013年上海市春季高考数学试卷(含答案))从4名男同学和6名女同学中随机选取3人参加某社团活
动,选出的3人中男女同学都有的概率为________(结果用数值表示).
【答案】
4
5
14.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))将F E D C B A ,,,,,六个字母
排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)
【答案】480
15.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))从3名骨科.4名脑外科和5名内
科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种
数是___________(用数字作答) 【答案】590
16.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案)
)6
x ⎛
⎝
的二项展开式中的常数
项为______. 【答案】15
17.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设二项式5
3)1(x
x -
的展开式中常数项为A ,则=A ________. 【答案】10-
18.(2013年高考上海卷(理))设常数a R ∈,若5
2a x x ⎛⎫+ ⎪⎝
⎭的二项展开式中7
x 项的系数为10-,则
______a =
【答案】2a =-
19.(2013年高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果
分给同一人的2张参观券连号,那么不同的分法种数是_________.
【答案】96
20.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若8
x ⎛ ⎝
的展开式中4
x 的系数为7,则实数a =______.
【答案】
2
1
21.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))6个人排成一行,其
中甲、乙两人不相邻的不同排法共有____________种.(用数字作答).
【答案】480。