机械设计第八章PPT课件
合集下载
《机械设计基础》第八章 间歇运动机构
因运动系数不可能大于1,即
1 1 n( ) 1 2 z
2z 由此得槽数z与圆销数n的关系: n≤ z2
槽 数z 圆销数 n
3 1~6
4 1~4
5、 6 1~3
7、 8 1~2
三、槽轮机构的特点和应用
优点:结构简单,工作可靠,能准确控制转动的角度。常用于要求 恒定旋转角的分度机构中。
第八章
间歇运动机构
(intermittent mechanism)
§8-1 棘轮机构
(ratchet mechanism)
一、棘轮机构的工作原理
组成构件: 摇杆1、棘爪4、棘轮3、止动爪5、机架2
为保持棘爪、止动爪与棘轮始终接触,可
在其旁边增设弹簧。 棘轮固联在轴O上,其轮齿分布在轮的外
A 4 1 n
四、棘轮机构的特点及应用
有齿的棘轮机构运动可靠,从动棘轮容易实现有级调节,但是有噪声、 冲击,轮齿易摩损,高速时尤其严重,常用于低速、轻载的间歇传动。 起重机、绞盘常用棘轮机构使提升的重物能停在任何位置,以防止由 于停电等原因造成事故。
§8-2 槽轮机构
(geneva mechanism)
一、槽轮机构的工作原理
槽轮的形式
二、槽轮机构的主要参数
槽轮机构的主要参数是:槽数z和拨盘圆销数n 为了使槽轮2在开始和终止转动时的瞬时 角速度为零,以避免圆销与槽发生撞击,圆 销进入或脱出径向槽的瞬时,槽的中心线O2A 应与O1A垂直。 设z为均匀分布的径向槽数目,则槽轮2转 过2φ2=2π/z弧度时,拨盘1的转角2φ1将为
21 22
2 z
在一个运动循环内,槽轮2的运动时间td 对拨盘1的运动时间t之比值τ称为运动特性系 数。
1 1 n( ) 1 2 z
2z 由此得槽数z与圆销数n的关系: n≤ z2
槽 数z 圆销数 n
3 1~6
4 1~4
5、 6 1~3
7、 8 1~2
三、槽轮机构的特点和应用
优点:结构简单,工作可靠,能准确控制转动的角度。常用于要求 恒定旋转角的分度机构中。
第八章
间歇运动机构
(intermittent mechanism)
§8-1 棘轮机构
(ratchet mechanism)
一、棘轮机构的工作原理
组成构件: 摇杆1、棘爪4、棘轮3、止动爪5、机架2
为保持棘爪、止动爪与棘轮始终接触,可
在其旁边增设弹簧。 棘轮固联在轴O上,其轮齿分布在轮的外
A 4 1 n
四、棘轮机构的特点及应用
有齿的棘轮机构运动可靠,从动棘轮容易实现有级调节,但是有噪声、 冲击,轮齿易摩损,高速时尤其严重,常用于低速、轻载的间歇传动。 起重机、绞盘常用棘轮机构使提升的重物能停在任何位置,以防止由 于停电等原因造成事故。
§8-2 槽轮机构
(geneva mechanism)
一、槽轮机构的工作原理
槽轮的形式
二、槽轮机构的主要参数
槽轮机构的主要参数是:槽数z和拨盘圆销数n 为了使槽轮2在开始和终止转动时的瞬时 角速度为零,以避免圆销与槽发生撞击,圆 销进入或脱出径向槽的瞬时,槽的中心线O2A 应与O1A垂直。 设z为均匀分布的径向槽数目,则槽轮2转 过2φ2=2π/z弧度时,拨盘1的转角2φ1将为
21 22
2 z
在一个运动循环内,槽轮2的运动时间td 对拨盘1的运动时间t之比值τ称为运动特性系 数。
最新8机械设计第八章讲解课件ppt
(1)发生线在基圆上滚过的一段 长度等于基圆上相应被滚过的一段弧 长。
(2)因N点是发生线沿基圆滚动时的
速度瞬心,故发生线KN是渐开线K点的 N
法线。又因发生线始终与基圆相切,所
以渐开线上任一点的法线必与基圆相切。
rb
(3)发生线与基圆的切点N即为渐 II
开线上K点的曲率中心,线段为K点的 曲率半径。随着K点离基圆愈远,相应 的曲率半径愈大;而K点离基圆愈近, 相应的曲率半径愈小。
规定标准值:α=20°
④齿顶高系数:ha* 齿顶高:ha=ha*m 标准值: ha*=1
⑤顶隙系数: c* 标准值: c*=0.25
顶隙:c=c*m
8.3.2 标准直齿圆柱齿轮传动的几何尺寸
名 称 代号
齿数 z
模数 m
压力角 α
分度圆直 径
d
齿顶高 ha
齿根高 hf
齿全高 h
公式与说明
根据工作要求确定,大于最小值 由轮齿承载能力确定,取标准值
一固定直线,它与连心线O1O2的 交点C必是一定点。C点称节点,
2
对应的圆为节圆。齿轮传动可理 解为两节圆作滚动。
O2 图 8-4
由上图知,两轮的传动比为
i12 12 O O12C Crrbb12
r2 r1
上式表明:两轮的传动比为一定值,并与两轮的基 圆半径成反比。公法线与连心线O1O2的交点C称为节 点,以O1、o2为圆心,、为半径作圆,这对圆称为齿 轮的节圆,
se ha
齿厚- sk 任意圆上的弧长
h
hf
齿槽宽- ek 弧长
齿距 (周节)- pk= sk +ek 同侧齿廓弧长
B pk sk ek
rb
机械设计8—滑动轴承
3. 许用油膜厚度[h] ] 在其他条件不变的情况下, 在其他条件不变的情况下,外载荷 F↑,动压润滑轴承的 ↑ hmin↓ ,轴承、轴颈表面的微观凸峰可能直接接触,而不能实现 轴承、轴颈表面的微观凸峰可能直接接触, 液体润滑。 液体润滑。 显然,要想实现液体润滑,应满足如下条件: 显然,要想实现液体润滑,应满足如下条件: hmin ≥ [h]= S ( Rz1 + Rz2 ) ] 式中: 式中: S — 安全因数 , S ≥2,一般可取 S=2 一般可取 RZ1,RZ2 —轴颈和轴承孔表面粗糙度,µm 轴颈和轴承孔表面粗糙度, 轴颈和轴承孔表面粗糙度
特点
应用
2.极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的 3.结构上要求剖分的场合;如曲轴用轴承。 结构上要求剖分的场合; 结构上要求剖分的场合 如曲轴用轴承。 4.受冲击与振动的场合;如轧钢机。 受冲击与振动的场合;如轧钢机。 受冲击与振动的场合
ψ = δ /r → δ = ψ . r =0.001x60 = 0.06mm x χ = 1-[h]/δ = 1 -9.6x10-3/0.06 = 0.84 - ] x
查表12-7,B/d = 108/120=0.9 得到 , / 查表 /
χ
Cp
0.80 3.067
0.85 4.459
插值计算:Cp = 4.181
§8-2 径向滑动轴承的主要类型
一、整体式 结构简单,成本低, 间隙无法 结构简单,成本低,但间隙无法 补偿,且只能从轴端装入, 补偿,且只能从轴端装入,适用 低速、轻载或间歇工作的场合。 低速、轻载或间歇工作的场合。 无法用于曲轴。 无法用于曲轴。 二、对开式(剖分式) 对开式(剖分式)
机械设计基础第八章
27
蜗杆蜗轮啮合
n1 z 2 i12 n2 z1
方向如图中箭头所示
28
定轴轮系
n1 i14 ? n4
29
n1 z2 i12 n2 z1
i23 z3 n2 n3 z2
n3 z4 i34 n4 z3
30
n2 n2
n1 n2 n3 i12 i23 i34 n2 n3 n4 z3 z2 z4 ( ) ( ) z1 z 2 z3
时针(h)
分针(m)
12
滚齿机:实现轮坯与滚刀范成运动。轴I的运动和 动力经过锥齿轮1、2传给滚刀,经过齿轮3、4、5、 6、7和蜗杆传动8、9传给轮坯。
13
6. 运动的合成和分解
运动的合成 将两个独立的转动合成为一个转动。 运动的分解 将一个转动分解成两个独立的转动。
14
二、轮系的分类
根据轮系在传动中各齿轮轴线的 位置是否固定,将轮系分类。
A 13
z2 z3 101 99 (1) z1 z2 100 100 n1 101 99 1 1 nA 100 100 10000
2
iA1 nA n1 10000
系杆转10000圈,齿轮1同向转1圈 四个齿轮的齿数相差不多,但可得到大的传动比
52
如果齿轮3的齿数由99改为100
注意的问题
(1)n1、nk、nH必须 是轴线平行的相应构 件的转速; (2)各转速代入公式 时,应带有本身的正
n1 nH i nk nH
H 1k
号或负号。
49
例题6 如图所示行星轮系,各轮 齿数为z1=40, z2=20,z3=80。 试计算中心轮1和系杆H的传动 比i1H。
机械设计第8章带传动
设带的总长不变,则紧边拉力的增量应等于松边拉力的减量:
F1 + F2 = 2 F0
①取绕在主动轮一侧的带为分离体:
F2 Ff
O1
T=0
D1 D1 D1 Ff F2 F1 0 2 2 2
n1
Ff F1 F2
上式表明:摩擦力Ff 提供了松边、紧边的拉力差。
主动轮
F1
②取主动轮及绕于其上的带为分离体:
2)V带
应用最广的带传动,在同样的张紧力下, V带传动较平带传动能产生更大的摩擦力。
普通V带
窄V带
宽V带
FQ
FN FQ
/2
平带传动----平面摩擦
FN= FQ
摩擦力: F f = FN f = f FQ
V带传动----槽面摩擦
FN sin /2 FQ= 2 2
/2
FN=
FQ
sin /2
三、带传动的特点(主要针对摩擦型)
优点:
☻ 缓冲,吸振,平稳无噪音。
用于高速轴:★电机→带传动→齿轮传动→工作机 ☻ 适宜远距离传动。
☻ 过载时打滑可防止其它零件损坏。
☻结构简单、成本低廉。
缺点:
☻有弹性滑动,传动比不稳定。 ☻带的寿命较短,传动效率较低。 ☻需要张紧装臵。
☻ 不宜用于高温、易燃、易爆场合。
中性层
bp 节宽bp:节面的宽度。
节面
dd
带轮槽宽尺寸等于带的节宽bp处的直径---基准直径dd
V带在规定的张紧力下,位于带轮基准直径上的周线长度---带的基准长度Ld
表8-2 V带的基准长度系列及长度系数KL 基准长度 KL 基准长度 KL Ld / mm Y Z A B C Ld / mm Z A B C 200 0.81 2000 1.08 1.03 0.98 0.88 224 0.82 2240 1.10 1.06 1.0 0.91 250 0.84 2500 1.30 1.09 1.03 0.93 280 0.87 2800 1.11 1.05 0.95 315 0.89 3150 1.13 1.07 0.07 355 0.92 3550 1.17 1.07 0.97 400 0.96 0.79 4000 1.10 1.13 1.02 450 1.00 0.80 4500 1.15 1.04 500 1.02 0.81 5000 1.18 1.07 560 0.82 5600 1.09 630 0.84 0.81 6300 1.12 710 0.86 0.83 7100 1.15 800 0.90 0.85 8000 1.18 900 0.92 0.87 0.82 9000 1.21 1000 0.94 0.89 0.84 10000 1.23 1120 0.95 0.91 0.86 11200 1250 0.98 0.93 0.88 12500 1400 1.01 0.96 0.90 14000 1600 1.04 0.99 0.92 0.83 16000 1800 1.06 1.01 0.95 0.86
机械设计基础第8章
螺纹的形成动画
螺纹种类
粗牙:普通联接使用 普通螺纹 细牙:小载荷、调整机构。 自锁性好。 圆柱管螺纹:管路联接 联接螺纹 管螺纹 圆锥管螺纹:具有自封性。 螺纹 高温、高压管路。 圆锥螺纹:管路联接(与圆锥管螺纹相似) 传动螺纹:有矩形螺纹;梯形螺纹;双向传动; 锯齿型螺纹:单向
一般螺杆的选用原则如下:
高精度传动大多选碳素工具钢 需要较高硬度,可采用铬锰合金钢或者采用65M钢 一般情况下可用45、50钢 螺母材料可采用铸造锡青铜,重载低速的场合可选用铸造铝铁青 铜,而轻载低速时也可选用耐磨铸铁。
8.7
联接的组成
键联接
机械联接一般由被联接件和联接件组成,有些时候被联接件 之间进行直接联接,并无独立的联接件。
5.导程(S)——同一螺旋线上相邻两牙在中径圆柱 面的母线上的对应两点间的轴向距离。 6.线数n——螺纹螺旋线数目,一般为便于制造n≤4。 螺距、导程、线数之间关系:L=nP 7.螺旋升角ψ :中径圆柱上,螺旋线的切线与垂直 于螺纹轴线的平面的夹角。 8.牙型角α :螺纹牙型两侧边的夹角。
8.1.3
螺纹的类型、特点及应用
根据螺旋线绕行的方向,螺纹可分为右旋螺纹 和左旋螺纹。按螺纹的线数,螺纹可分为单线螺 纹、双线螺纹和多线螺纹。由于加工制造的原因, 多线螺纹的线数一般不超过4。
(a) 右旋螺纹(单线)
(b) 左旋螺纹(双线)
1、三角形螺纹(普通螺纹) 牙型角为 60 º ,可以分为粗牙和细牙,粗牙用于一般 联接;与粗牙螺纹相比,细牙由于在相同公称直径时,螺 距小,螺纹深度浅,导程和升角也小,自锁性能好,宜用 于薄壁零件和微调装置。 2、管螺纹 多用于有紧密性要求的管件联接,牙型角为55º,公称 直径近似于管子内径,属于细牙三角螺纹。 3、梯形螺纹 牙型角为30º,是应用最为广泛的传动螺纹。 4、锯齿型螺纹 两侧牙型角分别为3º和30º,3º的一侧用来承受载荷, 可得到较高效率; 30º一侧用来增加牙根强度。适用于单 向受载的传动螺纹。 5、矩形螺纹 牙型角为0º,适于作传动螺纹。
机械设计第八章 齿轮传动
2.齿轮传动的设计准则
磨损、弹性变形计算尚不成熟;胶合计算复杂且无必要
主要针对轮齿疲劳折断和齿面疲劳点蚀这两种失效形式 齿轮工作时,要保证足够的齿根弯曲疲劳强度和齿面接触疲劳强度
1、闭式软齿面 主要失效:疲劳点蚀
一对齿轮啮合,材料相同,谁更容易受到疲劳破坏? 按接触疲劳强度设计, 校核弯曲疲劳强度
2、闭式硬齿面
9
一、齿轮传动概述
1 齿轮传动工作原理与特点 (2)齿轮传动特点——缺点 ①制造安装精度要求高,成适于中心距较大的场合。
10
一、齿轮传动概述
2 齿轮传动类型 (1)按轴的相互位置 (2)按工作条件
(3)按齿面硬度
(4)按齿形分 (5)按使用功能分
11
受力:像悬臂梁一样承受弯矩,齿根处弯曲应力最大,且 齿根处本身存在应力集中。 疲劳断裂:循环变化的弯曲应力(什么类型?) →疲劳裂纹 脉动循环 (哪一侧?) →裂纹逐渐扩展→齿根弯曲疲劳折断。 受拉侧
过载折断:轮齿过载或受冲击载荷作用时,突然弯曲折断。 尤其是脆性材料
直齿轮易发生全齿折断,斜齿轮易发生局部折断。 如何改善或避免?
主要失效:轮齿折断
再校核sH≤[sH] 先按sF≤[sF]算出齿轮的主要尺寸m,
先按sH≤[sH]算出齿轮主要尺寸d,再校核sF≤[sF]
按弯曲疲劳强度设计,校核接触疲劳强度
一、齿轮传动概述
2 齿轮传动类型 (1)按轴的相互位置 (2)按工作条件
(3)按齿面硬度
(4)按齿形分 (5)按使用功能分 (6)其他 高速
圆周速度
中速 低速
重载
承 载
中载 轻载
21
一、齿轮传动概述
1、在机械传动中,理论上能保证瞬时传动比为常数的是 。
磨损、弹性变形计算尚不成熟;胶合计算复杂且无必要
主要针对轮齿疲劳折断和齿面疲劳点蚀这两种失效形式 齿轮工作时,要保证足够的齿根弯曲疲劳强度和齿面接触疲劳强度
1、闭式软齿面 主要失效:疲劳点蚀
一对齿轮啮合,材料相同,谁更容易受到疲劳破坏? 按接触疲劳强度设计, 校核弯曲疲劳强度
2、闭式硬齿面
9
一、齿轮传动概述
1 齿轮传动工作原理与特点 (2)齿轮传动特点——缺点 ①制造安装精度要求高,成适于中心距较大的场合。
10
一、齿轮传动概述
2 齿轮传动类型 (1)按轴的相互位置 (2)按工作条件
(3)按齿面硬度
(4)按齿形分 (5)按使用功能分
11
受力:像悬臂梁一样承受弯矩,齿根处弯曲应力最大,且 齿根处本身存在应力集中。 疲劳断裂:循环变化的弯曲应力(什么类型?) →疲劳裂纹 脉动循环 (哪一侧?) →裂纹逐渐扩展→齿根弯曲疲劳折断。 受拉侧
过载折断:轮齿过载或受冲击载荷作用时,突然弯曲折断。 尤其是脆性材料
直齿轮易发生全齿折断,斜齿轮易发生局部折断。 如何改善或避免?
主要失效:轮齿折断
再校核sH≤[sH] 先按sF≤[sF]算出齿轮的主要尺寸m,
先按sH≤[sH]算出齿轮主要尺寸d,再校核sF≤[sF]
按弯曲疲劳强度设计,校核接触疲劳强度
一、齿轮传动概述
2 齿轮传动类型 (1)按轴的相互位置 (2)按工作条件
(3)按齿面硬度
(4)按齿形分 (5)按使用功能分 (6)其他 高速
圆周速度
中速 低速
重载
承 载
中载 轻载
21
一、齿轮传动概述
1、在机械传动中,理论上能保证瞬时传动比为常数的是 。
《机械设计基础》第8章 齿轮系
z 2 z3 1H 1 H H i13 H 3 3 H z1 z2
48 24 4 48 18 3
250 H 4 100 H 3
H 2
2
1
2‘ H
3
3H
3
1
H 1
H 50
周转轮系传动比计算方法小结:
定轴齿轮系
平面定轴齿轮系 空间定轴齿轮系
二.行星齿轮系
1. 定义
在齿轮系运转时,若至少有一个齿轮的几何轴线 绕另一齿轮固定几何轴线转动,则该齿轮系称为行星 齿轮系(如图8-3)。它主要由行星齿轮、行星架(系 杆)、和中心轮所组成。
2. 基本构件
行星齿轮系中由于一般都以中心轮和行星架作 为运动的输入或输出构件,故称它们为行星齿轮系 的基本构件
上角标 H
周转轮系
-w
H
正负号问题
转化机构:假想的定轴轮系
i1H n 1 n H i1n
计算转化机构的传动比 计算周转轮系传动比
1H z 2 z n i H z1 z n1 n
H 1n
i1 n 1
n
例题8-2 :
一差动齿轮系如图 所示,已知个轮齿数为: z1 16, z 2 24, z3 64, 当轮1和轮3的转速为:
式中:G为主动轮,K为从动轮,中间各轮的主 从地位也应按此假定判定。m为齿轮G至K间外啮合 的次数。
求行星齿轮系传动比时,必须注意以下几点:
(1) nG , K ,nH 必须是轴线平行或重合的相应齿轮的 n 转速。 (2)将nG,nK,nH 的已知值代入公式时必须带正 号或负号。
H (3) i GK i GK。 i GK为转化机构中轮G与K的转速之 比,其大小与正负号应按定轴齿轮系传动比的计算 方法确定。
48 24 4 48 18 3
250 H 4 100 H 3
H 2
2
1
2‘ H
3
3H
3
1
H 1
H 50
周转轮系传动比计算方法小结:
定轴齿轮系
平面定轴齿轮系 空间定轴齿轮系
二.行星齿轮系
1. 定义
在齿轮系运转时,若至少有一个齿轮的几何轴线 绕另一齿轮固定几何轴线转动,则该齿轮系称为行星 齿轮系(如图8-3)。它主要由行星齿轮、行星架(系 杆)、和中心轮所组成。
2. 基本构件
行星齿轮系中由于一般都以中心轮和行星架作 为运动的输入或输出构件,故称它们为行星齿轮系 的基本构件
上角标 H
周转轮系
-w
H
正负号问题
转化机构:假想的定轴轮系
i1H n 1 n H i1n
计算转化机构的传动比 计算周转轮系传动比
1H z 2 z n i H z1 z n1 n
H 1n
i1 n 1
n
例题8-2 :
一差动齿轮系如图 所示,已知个轮齿数为: z1 16, z 2 24, z3 64, 当轮1和轮3的转速为:
式中:G为主动轮,K为从动轮,中间各轮的主 从地位也应按此假定判定。m为齿轮G至K间外啮合 的次数。
求行星齿轮系传动比时,必须注意以下几点:
(1) nG , K ,nH 必须是轴线平行或重合的相应齿轮的 n 转速。 (2)将nG,nK,nH 的已知值代入公式时必须带正 号或负号。
H (3) i GK i GK。 i GK为转化机构中轮G与K的转速之 比,其大小与正负号应按定轴齿轮系传动比的计算 方法确定。
机械设计基础课件08回转件的平衡
当回转件平衡后,e=0,即总质心与回转轴线重合,此时 回转件质量对回转轴线的静力矩也为零mge=0,这说明该回 转件可以在任意位置保持静止,而不会自行转动,我们将这种 平衡称为静平衡(工业上也称单面平衡)。
求平衡质量的大小和向径的方法有三种:解析法、图解法和 试验法。解析法精确,图解法直观,试验法实用。下面由例题 简述解析法和图解法的具体求解方法。
式中P、Pb和Pi分别表示总离心力、平衡质量的离心力和原有质量离心力的 合力。代入离心力计算式,并消除ω后,可得
式中,m、e为回转件的总质量和总质心向径,mb、rb为平衡质量及其质心 的向径,mi、ri为原有各质量及其质心的向径。
由上式可知,当回转速度ω一定时,离心力的大小和方向只 与各个质量的大小和向径有关,我们把质量与向径的乘积称为 质径积。
为了使转子达到动平衡,通常采用动平衡试验法,即将回 转件在动平衡试验机上运转,然后在两个选定的平面内分别找 出所需的质径积的大小和方位,通过逐步调整,最终使转子达 到动平衡。
显然动平衡条件中包含了静平衡条件,也就是说动平衡的转子一定也是静平衡的,
但静平衡的转子不一定是动平衡的。
为了使转子达到动平衡,通常采用动平衡试验法,即将回转件在动平衡试验机 上运转,然后在两个选定的平面内分别找出所需的质径积的大小和方位,通过逐步 调整,最终使转子达到动平衡。
上述动平衡机的结构和测试方法都比较简陋,因而灵敏度
和平衡精度都较低。目前已有大量的机电一体的动平衡机,关 于这些动平衡机的详细情况,请读者参阅有关的文献和资料。
导轨式静平衡加简单可靠,其精度也能满足一般机械生 产的需要。
8.2.2 质量分布不在同一回转面内
对于轴向尺寸较大的回转件,即称为轴类零件,如电动机的转子、机床 主轴等,其质量分布不能近似地认为是位于同一回转面内。这类回转件转 动时产生的离心力不再是平面力系,而是空间力系。因此,单靠在某一回 转面内加一平衡质量的静平衡方法不能使这类回转件转动时达到平衡。
求平衡质量的大小和向径的方法有三种:解析法、图解法和 试验法。解析法精确,图解法直观,试验法实用。下面由例题 简述解析法和图解法的具体求解方法。
式中P、Pb和Pi分别表示总离心力、平衡质量的离心力和原有质量离心力的 合力。代入离心力计算式,并消除ω后,可得
式中,m、e为回转件的总质量和总质心向径,mb、rb为平衡质量及其质心 的向径,mi、ri为原有各质量及其质心的向径。
由上式可知,当回转速度ω一定时,离心力的大小和方向只 与各个质量的大小和向径有关,我们把质量与向径的乘积称为 质径积。
为了使转子达到动平衡,通常采用动平衡试验法,即将回 转件在动平衡试验机上运转,然后在两个选定的平面内分别找 出所需的质径积的大小和方位,通过逐步调整,最终使转子达 到动平衡。
显然动平衡条件中包含了静平衡条件,也就是说动平衡的转子一定也是静平衡的,
但静平衡的转子不一定是动平衡的。
为了使转子达到动平衡,通常采用动平衡试验法,即将回转件在动平衡试验机 上运转,然后在两个选定的平面内分别找出所需的质径积的大小和方位,通过逐步 调整,最终使转子达到动平衡。
上述动平衡机的结构和测试方法都比较简陋,因而灵敏度
和平衡精度都较低。目前已有大量的机电一体的动平衡机,关 于这些动平衡机的详细情况,请读者参阅有关的文献和资料。
导轨式静平衡加简单可靠,其精度也能满足一般机械生 产的需要。
8.2.2 质量分布不在同一回转面内
对于轴向尺寸较大的回转件,即称为轴类零件,如电动机的转子、机床 主轴等,其质量分布不能近似地认为是位于同一回转面内。这类回转件转 动时产生的离心力不再是平面力系,而是空间力系。因此,单靠在某一回 转面内加一平衡质量的静平衡方法不能使这类回转件转动时达到平衡。
机械原理--平面连杆机构及其设计 ppt课件
9
平行四边形机构应用举例
天平
B C
A
D
平行四边形机构运动不确定问题 第一种可能 第二种可能 改进措施 加虚约束构件 或加焊接构件
注意:在长边做机架的平行四边形机构中,当各构件位于一
条直线时(两曲柄与机架共线时)从动曲柄有可能反转,即
在曲柄通过机架位置时,存在pp运t课件动不确定。
10
3)逆(反)平行四边形机构
通过机构的倒置,曲柄摇杆机构可演变成如下机构:
C
C
B
B
A
D
曲柄摇杆机构
C
A
D
双曲柄机构 C
B
B
A
D
A
D
曲柄摇杆机构
ppt课件 双摇杆机构
26
•讨论1 (1)当已判明四杆机构有曲柄存在时,取不同构件为 机架会得到不同的机构: ■取与最短杆相邻的构件为机架则为曲柄摇杆机构 ■取与最短杆相对的构件为机架则为双摇杆机构 ■取最短杆为机架则为双曲柄机构
θ称为极位夹角。
摇杆的最大摆角:
注意:急位夹角为曲柄 两特殊位置间所夹锐角
BB
1 AA
B1
C1C
B2 B B
CC
CCC2
DD
BB
ppt课件
28
急回特性 摇杆的第一个极位
进程:摇杆从第一个极位DC1摆向第二个极位DC2的运动过程
对应进程曲柄转过的角度:α1 =180°+θ
对应摇杆从 C1D 位置摆到 C2D 转过的角度:φ
(4) 机构急回特性用于非工作行程可以节省时间
本节课后作业:8-1~8-3,8-5~8-9
ppt课件
32
曲柄滑块机构急回特征的判断
《机械设计基础》第八章 键联接和销联接
花键联接的许用挤压应力、许用压强(MPa)见下表
机械设计基础
许用挤压应力、许用压强 联接工作方式
使用和制造情况 不良
齿面未经热处理 30~50 60~100 80~120 15~20 20~30 25~40 ——
齿面经热处理 40~70 100~140 120~200 20~35 30~60 40~70 3~10 5~15 10~20
键用螺钉固定在轴槽中,键与毂槽为间隙配合,故轮毂件可 在键上作轴向滑动,此时键起导向作用。为了拆卸方便,键上制 有起键螺孔,拧入螺钉即可将键顶出。
导向平键用于轴上零件移动量不大的场合,如变速箱中的滑 移齿轮与轴的联接。
机械设计基础
(3)滑键联接 当零件滑移的距离较大时,因所需导向平键的长度过大,制 造困难,故宜采用滑键。
《机械设计基础》
机械设计基础
第八章 键联接和销联接
8.1 概 述 • 联接的组成 机械联接一般由被联接件和联接件组成,有些时候被联接件 之间进行直接联接,并无独立的联接件。 联接的类型 动联接 各种运动副 静联接 • 联接的目的 动联接: 实现机械运动 便于机械的制造、装配、运输、安装和维护,降低 静联接: 成本。 机械设计方头
单圆头
A型键轴向定位好,应用广泛,但轴上键槽端部的应力集 中较大。C型键只能用于轴端。A、C型键的轴上键槽用立铣 刀切制。B型键的轴上键槽用盘铣刀铣出。B型键避免了圆 头平键的缺点,单键在键槽中的固定不好,常用紧定螺钉进 行固定。 机械设计基础
(2)导向平键联接 导向平键与普通平键结构 相似,但比较长,其长度等于 轮毂宽度与轮毂轴向移动距离 之和。
滑键比较短,固定在轮毂上,而轴上的键槽比较长,键与轴 槽为间隙配合,轴上零件可带键在轴槽中滑动。 滑键主要用于轴上零件移动量较大的场合,如车床光杠与溜 板箱之间的联接。 机械设计基础
机械设计基础-第8章-轮系
构件
太阳轮1 行星轮2 太阳轮3 行星架H
行星齿轮系中的 转化齿轮系中的
转速
转速
n1
n1H n1 nH
n2
n2H n2 nH
n3
n3H n3 nH
nH
nHH nH nH 0
转化机构中1、3两轮的传动比可以根据定轴齿轮系传动的计算方法得出
i1H3
n1H n3H
n1 nH n3 nH
[解]
该齿轮系为一平面定轴齿轮系,齿轮 2和4为惰轮,齿轮系中有两对外啮合齿 轮,根据公式可得
i 15
n1 n5
(1)2
z3z5 z1 z3'
因齿轮1、2、3的模数相等,故它们之间
的中心距关系为
m 2
( z1
z2
)
m 2
(z3
z2
)
因此: z1 z2 z3 z2
同理:
z3 z1 2z2 20 2 20 60 z5 z3' 2z4 20 2 20 60
在机床、计算机构和补偿装置等得到广泛应用。
滚齿机中的差动齿轮系(下图)
如图所示为滚齿机中的差动
齿轮系。滚切斜齿轮时,由齿轮4
传递来的运动传给中心轮1,转速
为n1;由蜗轮5传递来的运动传给 H,使其转速为nH。这两个运动 经齿轮系合成后变成齿轮3的转速
n3输出。
因 Z1 Z3
则
i1H3
n1 nH n3 nH
i 12
z 1 2
2
z1
z 3' i 3'4
4;3
'
2 3
3
Z
' 2
i 45
z 4 5
5
机械设计基础课件第八章回转件的平衡
机械设计基础课件第八章 回转件的平衡
回转件是指在运动中具有旋转不对称性的机械零件,回转件的平衡性是机械 设计中非常关键的问题。
回转件的定义
常见的回转件
钻孔加工机,车削加工机,制动盘,离合器曲 轴等等。
重心与惯性矩
回转件的平衡与其重心位置和惯性矩有关,理 解这些概念有助于确定平衡条件。
特殊的回转件
手表的自动上弦装置,自行车的飞轮等,这些 回转件的平衡问题需要特殊考虑。
平衡的概念与判定条件
1 平的定义
指回转件在运动过程中,不外力不产生力矩。
2 判定条件
回转件的平衡需要满足两个条件:对重心的合外力与合外力矩均为零。
3 举个例子
一辆自行车,骑行过程中不会翻倒,就是因为车轮的平衡可以满足平衡条件。
平衡解法的基本原理
1
受力分析
分解合外力,计算受力点至重心的距离
2
力矩计算
动平衡
回转件在运动状态下的平衡状态,即回转件所受 合外力矩仍然为零。
静平衡与动平衡的判定条件
1
静平衡的判定条件
寻找合力的作用点和力矩的方向,可用物理方法求解。
2
动平衡的判定条件
刚体转动惯量必须大于等于对象所受扭矩的一部分,常用解析法求解。
3
复杂的案例
比如飞机的旋翼系统、燃气轮机的转子系统等,需要结合实验证验验证平衡性。
实例分析与课后习题
实例分析
分析一些实际的产品的平衡性,如汽车发动机的销轴、建筑杆塔的吊臂等等。
课后习题
巩固所学知识,设计一些有挑战性的习题帮助学生掌握平衡原理。
计算受力点的力矩,与重心至该点的距离相乘
3
平衡条件
平衡条件为合外力与合外力矩均为零,利用方程组求解
回转件是指在运动中具有旋转不对称性的机械零件,回转件的平衡性是机械 设计中非常关键的问题。
回转件的定义
常见的回转件
钻孔加工机,车削加工机,制动盘,离合器曲 轴等等。
重心与惯性矩
回转件的平衡与其重心位置和惯性矩有关,理 解这些概念有助于确定平衡条件。
特殊的回转件
手表的自动上弦装置,自行车的飞轮等,这些 回转件的平衡问题需要特殊考虑。
平衡的概念与判定条件
1 平的定义
指回转件在运动过程中,不外力不产生力矩。
2 判定条件
回转件的平衡需要满足两个条件:对重心的合外力与合外力矩均为零。
3 举个例子
一辆自行车,骑行过程中不会翻倒,就是因为车轮的平衡可以满足平衡条件。
平衡解法的基本原理
1
受力分析
分解合外力,计算受力点至重心的距离
2
力矩计算
动平衡
回转件在运动状态下的平衡状态,即回转件所受 合外力矩仍然为零。
静平衡与动平衡的判定条件
1
静平衡的判定条件
寻找合力的作用点和力矩的方向,可用物理方法求解。
2
动平衡的判定条件
刚体转动惯量必须大于等于对象所受扭矩的一部分,常用解析法求解。
3
复杂的案例
比如飞机的旋翼系统、燃气轮机的转子系统等,需要结合实验证验验证平衡性。
实例分析与课后习题
实例分析
分析一些实际的产品的平衡性,如汽车发动机的销轴、建筑杆塔的吊臂等等。
课后习题
巩固所学知识,设计一些有挑战性的习题帮助学生掌握平衡原理。
计算受力点的力矩,与重心至该点的距离相乘
3
平衡条件
平衡条件为合外力与合外力矩均为零,利用方程组求解
《机械设计基础》第八章-轮系解析
➢上述这种运用相对运动原理,将周转轮系转化成 假想的定轴轮系,然后计算其传动比的方法,称为 相对速度法或反转法。
8.3周转轮系及其传动比
例:图示行星轮系中,各轮的齿数为:z1=27,z2=17,z3=61。 已知n1=6000r/min,求传动比i1H和转臂H的转速nH。
n1 nH z3
n3 nH
z5=78
- 差动轮系中 n1 nH Z2Z3 52 78
n3 nH
Z1Z 2
24 21
定轴轮系中
i35
n3 n5
z5 z3
78 18
13 n3 3 nH
代入上式,得
n1 nH 169
13 3
nH
nH
21
i1H 43.9
8.5轮系的应用
一、相距较远的两轴之间的传动
较远距离传动
8.5轮系的应用
二、实现变速传动
多级传动比传动
当主动轴转速不变时,利用轮系可使从动轴获得多 种工作转速。
8.5轮系的应用
三、获得大的传动比
行星轮系
8.5轮系的应用
四、合成运动和分解运动
8.5轮系的应用
差动轮系可分解运动
1.图示轮系中,已知Z1=Z2'=51,Z2=Z3=49, 试求传动比iH1。
1 800 80
10r / min
8.3周转轮系及其传动比
差动轮系
一、周转轮系的组成 两个原动件
行星轮系 一个原动件
2-行星轮
每个单一的周转轮系具有一个系 杆,中心轮的数目不超过二个。
H-转臂(系杆)
1,3-中心轮(太阳轮)
系杆和两个中心轮的几何轴线必 需重合,否则不能转动。
8.3周转轮系及其传动比
8.3周转轮系及其传动比
例:图示行星轮系中,各轮的齿数为:z1=27,z2=17,z3=61。 已知n1=6000r/min,求传动比i1H和转臂H的转速nH。
n1 nH z3
n3 nH
z5=78
- 差动轮系中 n1 nH Z2Z3 52 78
n3 nH
Z1Z 2
24 21
定轴轮系中
i35
n3 n5
z5 z3
78 18
13 n3 3 nH
代入上式,得
n1 nH 169
13 3
nH
nH
21
i1H 43.9
8.5轮系的应用
一、相距较远的两轴之间的传动
较远距离传动
8.5轮系的应用
二、实现变速传动
多级传动比传动
当主动轴转速不变时,利用轮系可使从动轴获得多 种工作转速。
8.5轮系的应用
三、获得大的传动比
行星轮系
8.5轮系的应用
四、合成运动和分解运动
8.5轮系的应用
差动轮系可分解运动
1.图示轮系中,已知Z1=Z2'=51,Z2=Z3=49, 试求传动比iH1。
1 800 80
10r / min
8.3周转轮系及其传动比
差动轮系
一、周转轮系的组成 两个原动件
行星轮系 一个原动件
2-行星轮
每个单一的周转轮系具有一个系 杆,中心轮的数目不超过二个。
H-转臂(系杆)
1,3-中心轮(太阳轮)
系杆和两个中心轮的几何轴线必 需重合,否则不能转动。
8.3周转轮系及其传动比
机械设计第8章
平带 Ff=N ·f=FN ·f V带 Ff=2Nf
=
FN f
sin( /
2) =
FN ·f′
当量摩擦系数 f′>f,
V带传动能力更大。 注意:V带楔角为40° 带轮槽角小于40°。
二、带传动的结构(阅读)
带传动概述
机构传动中应用最广的是普通V带传动。(窄V带、宽V带、大 楔角V带、汽车V带) 普通V带是标准件,制成无接头的环形,按剖面尺寸大小分为 Y、Z、A、B、C、D、E七种型号,剖面尺寸由小到大。注意: 节宽bp、节径dp和基准直径dd,基准长度Ld。
4)带传动在工__,其中在所有 横剖面上都相等的应力是_____ ,带中的最大应力将产生在_____。
5) _____滑动是带传动的固有特性,它是_____的,也是_____避免的,而 打滑是由于有效拉力F达到或超过_____时,带与带轮在整个接触弧上发生相 对滑动所产生的,这是_____避免的。
三、带传动的特点
带传动概述
优点: (1)传动平稳、噪声小。 (2)过载保护。 (3)适于中心距大场合。 (4)结构简单,成本低。 缺点:
(1)传动比不恒定。 (2)效率低、寿命短。 (3)外廓尺寸大。 (4)支承带轮的轴和轴承受力较大。 (5)不宜用于高温、易燃场合。 带传动常用于第一级传动,功率p≤80kw,带速 V=5~25m/s,传动比=2-4,效率η=0.91~0.96。
引入滑动率ε来表达滑动的大小: = (v1 - v2 )/v1 注意:弹性滑动不可避免,打滑可以避免。
带传动的几何计算及基本理论
五、带传动的主要失效形式及设计准则
1、主要失效形式
(1)打滑。当传递的圆周力F超过了带与带轮之间摩擦力 总和的极限时,发生过载打滑,使传动失效。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 带传动
.
1
带传动图
带传动实体图
带传动示意图
.
2
带传动分类
.
开式 交叉式 直角转角式
3
带传动分类
定传动比 有级变速 无级变速
.
4
带的类型
平带
鼓形平带轮
.
5
带的类型
.
6
带的类型
V带
.
7
带的类型
.
8
带的类型
.
9
带的类型
圆带
.
10
带的类型
多楔带
.
11
带的类型
.
12
带的类型
.
13
结构
普通V带结构
.
14
受力分析
.15应力分析来自离心力与离心拉力.
16
应力分析
.
17
带轮结构
.
18
带轮结构
.
19
带轮结构
.
20
带轮结构
.
21
带的张紧
带的张紧力控制
.
22
张紧装置
带的定期张紧装置
.
23
张紧装置
张紧轮装置
.
24
应用
拖拉机(普通V带)
.
理石切割机(平带)
25
应用
工业机器人关节(同步带)
.
26
END
.
27
.
1
带传动图
带传动实体图
带传动示意图
.
2
带传动分类
.
开式 交叉式 直角转角式
3
带传动分类
定传动比 有级变速 无级变速
.
4
带的类型
平带
鼓形平带轮
.
5
带的类型
.
6
带的类型
V带
.
7
带的类型
.
8
带的类型
.
9
带的类型
圆带
.
10
带的类型
多楔带
.
11
带的类型
.
12
带的类型
.
13
结构
普通V带结构
.
14
受力分析
.15应力分析来自离心力与离心拉力.
16
应力分析
.
17
带轮结构
.
18
带轮结构
.
19
带轮结构
.
20
带轮结构
.
21
带的张紧
带的张紧力控制
.
22
张紧装置
带的定期张紧装置
.
23
张紧装置
张紧轮装置
.
24
应用
拖拉机(普通V带)
.
理石切割机(平带)
25
应用
工业机器人关节(同步带)
.
26
END
.
27