王万良、赵燕伟《自动控制原理》机工版习题解答

合集下载

自动控制原理_王万良(课后答案3

自动控制原理_王万良(课后答案3

(3)当 D1 ( z ) = 1 , D 2 ( z ) = 0 时, 由(2)得
Φ( z ) =
Gh G1G2 ( z ) 1 + D1 ( z ) ⋅ Gh G1G2 ( z )
代入数据,化简可得:
Φ( z ) =
k (1 − e −T ) z + k (1 − e −T ) − e −T
4
G ( z ) = K (1 − z −1 ) Z [ 1 = K (1 − z −1 )[ 1 − z −1 K (1 − e −T ) z −1 = 1 − e −T z −1
(2) Φ ( z ) =
C ( z) G( z) K (1 − e −T ) z −1 = = R ( z ) 1 + G ( z ) 1 + ( K − e −T − Ke −T ) z −1
k =0

F ∗ ( s ) = ∑ kTe − akT e − kTs
k =0 ∞

(2) f (t ) =

∑ e −akT sin ωkTδ (t − kT )
k =0
F ∗ ( s ) = ∑ e − akT sin ωkTe − kTs
k =0
3.2 求下列序列的 Z 变换,设 k < 0 时 f ( k ) = 0 。 (1) 1, λ , λ , λ , Λ Λ
G1 ( z ) R( z ) 1 + G1G2 ( z ) + G1 ( z )G3 ( z )
3.8 如图题 3.8 所示采样控制系统 (1)求在输入和扰动共同作用下的输出量的 Z 变换表达式; (2)求系统输出 C ( z ) 与输入 R( z ) 之间的 Z 传递函数; (3)设 D1 ( z ) = 1 , D 2 ( z ) = 0 , G1 ( s ) =

(完整版)自动控制原理课后习题答案

(完整版)自动控制原理课后习题答案

第一章引论1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。

答:自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。

控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。

如下图所示为自动控制系统的基本组成。

开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。

此时,系统构成没有传感器对输出信号的检测部分。

开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。

闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。

闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。

1-2 请说明自动控制系统的基本性能要求。

答:自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。

稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。

稳定性通常由系统的结构决定与外界因素无关。

对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。

对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。

快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。

在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。

准确性用稳态误差来衡量。

在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。

显然,这种误差越小,表示系统的精度越高,准确性越好。

当准确性与快速性有矛盾时,应兼顾这两方面的要求。

自动控制原理_王万良(课后答案2

自动控制原理_王万良(课后答案2

第2章习题2.1 列写如图题2.1所示电路中以电源电压U 作为输入,电容1C ,2C 上的电压1c U 和2c U 作为输出的状态空间表达式。

图题2.1答案:X L R LL M C R M C M C R M C C X ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−+−=211321321100)(& X y ⎥⎦⎤⎢⎣⎡=010001其中)(3221311C C C C C C R M ++=2.2 如图题2.2所示为RLC 网络,有电压源s e 及电流源s i 两个输入量。

设选取状态变量23121,,C C L u x u x i x ===;输出量为y 。

建立该网络动态方程,并写出其向量-矩阵形式(提示:先列写节点a ,b 的电流方程及回路电势平衡方程)。

图题2.2*答案:⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−+⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡−−+−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s s e i C L L R C C L L L RR 0001100100111x x x 12121321&&&U 3+-se[]111−−−=R y ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x +[]⎥⎦⎤⎢⎣⎡s s e i R 11 2.3 列写图题2.3所示RLC 网络的微分方程。

其中,r u 为输入变量,c u 为输出变量图题2.3答案:r c cc u u dt du RC dtu d LC =++22 2.4 列写图题2.4所示RLC 网络的微分方程,其中r u 为输入变量,c u 为输出变量。

图题2.4答案:r c cc uu dt du R L dtu d LC =++22 2.5 图题2.5所示为一弹簧—质量—阻尼器系统,列写外力)(t F 与质量块位移)(t y 之间)(t图题2.5答案:)()()()(22t f t ky dt t dy f dtt y d m =++ 2.6 列写图题2.6所示电路的微分方程,并确定系统的传递函数,其中r u 为输入变量,cu 为输出变量。

自动控制原理_王万良(课后答案7

自动控制原理_王万良(课后答案7

⎧ ⎪ ⎪
20 lg 5 × 1 ω1 a
验证
Hg ∗

− 10
=
⎪ ⎨

20 lg 5 × 1 ω12 a
⎪⎪20 lg ⎩
ω12
5 × 0.5ω1
×
1 a
ω1 < 1 1 < ω1 < 2
ω1 > 2
ω1 = 1.32
φ′( jω1) = −1780 > −1800
满足幅值裕量条件,所以
G′(s)
拓宽频率。即
G1 (s)
=
s(0.2s
40 + 1)(0.00625s
+ 1)
L (ω
)
=
⎧ ⎪ ⎪⎪ ⎨ ⎪ ⎪⎪⎩20
lg
20
lg
40 ω
20
lg
ω
40 × 0.2ω
40
ω × 0.2ω × 0.00625ω
ω <5 5 < ω < 160
ω > 160
γ

= 1800
− 900

arctg
(0.2ω
φG ( jω2 ) = arctg(0.088ω2 ) − 90 − arctg(0.2ω2 ) − arctg(0.00625ω2 ) − arctg(0.035ω2 ) = −155.50 > −1
校正后系统满足幅值裕量的条件。 7.2 设开环传递函数
G(s) =
K
s(s + 1)(0.01s + 1)
γ ′′ > γ ∗
ωc″ > ωc∗
T = 1/(ωc″ a ) = 0.067

《自动控制原理》习题及答案

《自动控制原理》习题及答案

《自动控制原理》习题解答(教学参考用书)自动控制原理教学组西北工业大学自动化学院2009年7月前言这本《自动控制原理习题解答》与西北工业大学自动化学院自动控制原理教学组编写(卢京潮主编)、西北工业大学出版社出版的国家教委“十一五”规划教材《自动控制原理》配套使用。

供任课教师在备课和批改作业时参考。

新的“十一五”规划教材是在原《自动控制原理》教材基础上经修改完成的,新教材基本保留了原教材的体系结构,主要在具体内容上作了进一步的完善和充实,习题也做了相应调整。

这本习题解答的内容主要由负责各章编写任务的老师提供。

为方便教学,在习题解答之后编入了课程进程表和教学大纲(96学时),供任课教师参考查阅。

对教材或习题解答中发现的错误和不妥之处,恳请各位读者及时记录,并转告编者,以便尽快纠正。

谢谢!。

联系人:卢京潮电 话:88431302 (办公室)135******** (手机)Email: lujc0129@编者2009.5目录一.习题解答 (1)第1章习题及解答 (1)第2章习题及解答 (10)第3章习题及解答 (32)第4章习题及解答 (64)第5章习题及解答 (86)第6章习题及解答 (133)第7章习题及解答 (157)第8章习题及解答 (181)二.课程进程表 (208)三.自动控制原理教学大纲 ( 96时) (210)一、 习 题 及 解 答第1章习题及解答1-1 根据图1-15所示的电动机速度控制系统工作原理图,完成:(1) 将a ,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。

解 (1)负反馈连接方式为:,d a ↔c b ↔;(2)系统方框图如图解1-1 所示。

1-2 图1-16是仓库大门自动控制系统原理示意图。

试说明系统自动控制大门开、闭的工作原理,并画出系统方框图。

图1-16 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。

自动控制原理_王万良(课后答案5

自动控制原理_王万良(课后答案5

第5章习题5.1 已知系统的单位阶跃响应为t te et c 10602.12.01)(−−−+=,试求:(1) 系统的传递函数;(2) 系统的阻尼比ξ和自然振荡频率n ω。

*答案:(1))10)(60(600)(++=s s s s G(2)43.1=ξ 5.24=n ω5.2 设单位反馈系统的开环传递函数为)1(1)(+=s s s G试求系统的上升时间r t 、超调时间p t 、超调量%p σ和调节时间s t 。

*答案:42.2=r t 625.3=p t%3.16=σ ⎩⎨⎧=∆=∆=2856s t5.3 要求图题5.3所示系统具有性能指标:%20%=p σ,s t p 1=。

试确定系统参数K 和A ,并计算r t ,s t 。

图题5.3*答案:5.60=K 135.0=A5.4图题5.4所示控制系统,为使闭环极点为s j1=−±,试确定K 和α的值,并确定这时系统阶跃响应的超调量。

*答案: 2=K1=α 35.0=r t ⎩⎨=∆=5654.0s t5.5 设典型二阶线性定常系统的单位阶跃响应曲线如图题5.5所示 (1)求阻尼比ς和自然振荡频率n ω;(2)画出等效的单位反馈系统; (3)写出相应的开环传递函数。

)10(100)(+=S S s G 图题5.5*答案(1)4.0=ζ 4.11=n ω(3)9.12)s(s 129.96)(+=s G5.6图题5.6所示采样控制系统,已知图中线性网络部分的单位阶跃响应为1−−e t,采样周期为T ,求系统在输入单位阶跃信号时的输出响应y nT ()。

零阶保持器线性网络uy T图题5.6*答案:nTenT y −=1)(5.7 试求下列状态方程的解,设初始状态为)0(x 。

x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=300020001& 答案:)0()(32x e e e t x t tt⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=−−−5.8 求下列状态方程在单位阶跃输入作用下的响应。

自动控制原理_高等教育出版社_王万良__课后答案

自动控制原理_高等教育出版社_王万良__课后答案
2.7 简化图题 2.7 所示系统的结构图,并求传递函数 C ( s) 。 R( s)
G1 ( s )
R ( s) + −
G2 ( s )
C ( s)
图题 2.7 解:传递函数为:
C ( s) G2 ( s )[1 + G1 ( s)] = R( s ) 1 + G2 ( s)
2.8 简化图题 2.8 所示系统的结构图,并求传递函数 C ( s) 。 R( s )
2.4 设运算放大器放大倍数很大,输入阻抗很大,输出阻抗很小。求图题 2.4 所示运算放大 电路的传递函数。其中, u i 为输入变量, u o 为输出变量。
R1
i
C
− +
ui
R2
图题 2.4
uo
解:
iR1 = u i 1 − id t = u o C ∫
整理得传递函数为:
uo (s) 1 =− ui ( s) R1CS
2.13
求图题 2.13 所示系统结构图的传递函数 C ( s) / R( s) 和 C ( s ) / N ( s ) 。
N(s) G3 (s) R(s)
⊗ −
G1 (s)


G2 (s) G4 (s) G5 (s)

C(s)

H(s)
图题 2.13 解:求 C ( s) / R( s) 时,令 N(s)=0,系统结构图变为
2.10 简化图题 2.10 所示系统的结构图,并求传递函数
C ( s) 。 R(s)
+
G3 (s )
R( s ) + −
G1 ( s) G 4 (s)
G 2 ( s)

(完整版)自动控制原理课后习题及答案

(完整版)自动控制原理课后习题及答案

第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。

用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。

(2)弊端:不可以自动调理被控量的偏差。

所以系统元器件参数变化,外来未知扰动存在时,控制精度差。

2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。

它是一种按偏差调理的控制系统。

在实质中应用宽泛。

⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。

1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。

闭环控制系统常采纳负反应。

由1-1 中的描绘的闭环系统的长处所证明。

比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。

1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。

控制的目的是保持水位为必定的高度。

王万良自动控制原理第二版习题解答

王万良自动控制原理第二版习题解答

王万良,《自动控制原理》,2版,高等教育出版社,2014.2习题解答第1章习题解答1.1 试举几个开环控制系统与闭环控制系统的例子,画出它们的框图,并说明它们的工作原理。

解:开环:原始的蒸汽机速度控制系统、烧开水等; 闭环:直流电动机自动调速系统等;框图和工作原理略1.2 根据图题1.2所示的电动机速度控制系统工作原理图(1)将a ,b 与c ,d 用线连接成负反馈系统; (2)画出系统方框图。

图题1.2解:(1)a 与d 接,b 与c 接(2)系统方框图如下:电动机速度控制示意图E1.1 单闭环速度控制系统原理图如图题E1.1所示。

(1) 说明工作原理,指出哪些元件起测量、放大和执行作用。

系统的参考输入和干扰分别是什么?(2) 画出系统方框图。

图题E1.1E1.1解(1)测速发动机起测量作用;晶闸管整流电路起放大和执行作用。

系统的参考输入是电位+-器电压;电动机负载变化以及电网电压波动等是干扰。

(2)E1.2 图题E1.2所示为液位自动控制系统原理示意图。

在任何情况下,希望液面高度c维持不变,说明系统工作原理并画出系统方框图。

图题E1.2E1.2解:当液面下降时,浮子会带动电位器触头向上,使电动机电枢两端出现正电压,使电动机正向运转,通过减速器来增加控制阀的开度,增加进水量,从而使液面上升。

同理,当液面上升时,浮子会带动电位器触头向下,使电动机电枢两端出现负电压,使电动机反向运转,通过减速器来减小控制阀的开度,减少进水量,从而使液面下降。

因此,尽管用水量发生变化,总能够保持液位不变。

液位自动控制方框图如下:液位自动控制示意图第2章习题解答2.1 列写图题2.1所示RLC 电路的微分方程。

其中,i u 为输入变量,o u 为输出变量。

RL图题2.12.1解:设电路中电流为 ,则:o o idu i C dtdi iR L u udt ⎧=⋅⎪⎪⎨⎪++=⎪⎩整理得:22o oo i d u du LC RC u u dt dt++=2.2 列写图题2.2所示RLC 电路的微分方程,其中,i u 为输入变量,o u 为输出变量。

自动控制原理_王万良(课后答案4

自动控制原理_王万良(课后答案4

⎡0 1 0 ⎤ ⎢ ⎥ x ( k + 1) = ⎢ 0 0 1 ⎥ x ( k ) ⎢0 k 0 ⎥ ⎣ 2 ⎦
试求使系统渐进稳定的 K 值范围。 *答案: 0 < K < 2 时系统渐进稳定。
K>0
4.13 非线性系统线性部分的极坐标图,非线性部分的负倒幅特性如图题 4.13 所示。试判断系统是否稳 定,是否存在自激振荡。 图题 4.13 I
4.7 已知闭环离散系统的特征方程为 D(z) = z + 0.2z + z + 0.36z + 0.8 = 0 试判断系统的稳定性。 答案:临界稳定 4.8 如图题 4.8 所示离散系统,采样周期 T=1s,Gh(s)为零阶保持器,而
4 3 2
G (s) =
Κ s ( 0 . 2 s + 1)
要求: (1)K=5 时,分析系统的稳定性; (2)确定使系统稳定的 K 值范围。
第 4 章习题 4.1 已知系统特征方程如下,试用劳斯判据判别系统稳定性,并指出位于右半 S 平面和虚轴上的特征根的 数目。 (1) D( s) = s + s + 4 s + 4 s + 2 s + 1 = 0
5 4 3 2
(2) D( s) = s + 3s + 5s + 9 s + 8s + 6s + 4 = 0
闭环特征方程为:
s ( s − 1) + 10(1 + k n s ) = 0
即 s + (10k n s − 1) s + 10 = 0
2
s2 1 10 1 s 10k n − 1 s0 10 10 k n − 1 > 0, k n > 0.1 稳定 当 k n = 0.1 时,临界稳定 非最小相位系统,当速度及增量 k n 越大,越稳定

王万良、赵燕伟《自动控制原理》机工版习题解答

王万良、赵燕伟《自动控制原理》机工版习题解答

Q1
o +
浮子
电位器
减速器
c
o -
SM 用水开关
电动机
o
+

if
o
-
Q2
图题 1.3
1
王万良,赵燕伟编著《自动控制原理》 (非自动化类) (机械工业出版社)习题解答
解:当液面下降时,浮子会带动电位器触头向上,使电动机电枢两端出现正电压,使电动机 正向运转,通过减速器来增加控制阀的开度,增加进水量 ,从而使液面上升。同理,当液面 上升时,浮子会带动电位器触头向下,使电动机电枢两端出现负电压,使电动机反向运转, 通过减速器来减小控制阀的开度,减少进水量 ,从而使液面下降。因此,尽管用水量发生变 化,总能够保持液位不变。 液位自动控制方框图如下:
式中,系统输入变量为 r (t ) = σ (t ) ,并设 y (0) = y (0) = 0 ,求系统的输出 y (t ) 。 解: (1)对微分方程进行拉氏变换得

s 2Y ( s ) + 2 sY ( s ) + 2Y ( s ) = 1
(2)由上式求出系统输出量的表达式
Y (s) =
(3)对上氏进行拉氏反变换,求出 y (t ) 。
−2 t −t −2 t
2 s 2 − 5s + 1 s ( s 2 + 1)
3s 2 + 2 s + 8 s( s + 2)(s 2 + 2 s + 4)
− e − t cos 3t
2.3 已知系统的微分方程为
d 2 y (t ) dy (t ) +2 + 2 y (t ) = r (t ) 2 dt dt

自动控制原理_王万良(课后答案8

自动控制原理_王万良(课后答案8

⎢⎢0⎥⎥ ⎢⎣1⎥⎦
=
⎡b1 ⎢⎣b2
⎤ ⎥ ⎦
[ ] 设能使观测器的两个极点均位于-4 处的输出内反馈增益阵为 m = m1 m2 m3 T
则得 det[sI − ( A11 + mA21 )] = (s + 4)2
即 s2 + (−3m1 + 2m2 + 1)s + (2m1 − 8m2 −1) = s2 + 8s + 16
⋅1

⎡ − 12.5 ⎢⎣− 5.75
11 ⎤⎡ − 4.5 ⎤ 4.5⎥⎦⎢⎣− 3.25⎥⎦
=
⎡− 21.375⎤
⎢ ⎣
− 4.75
⎥ ⎦
H
=ቤተ መጻሕፍቲ ባይዱ
b1
+
Mb2
=
⎡0⎤ ⎢⎣0⎥⎦
+
m
=
⎡ − 4.5 ⎤ ⎢⎣− 3.25⎥⎦
⎡1 0 0⎤⎡1 0⎤ ⎡1 0 ⎤
R
=
T
−1
⎡I ⎤ ⎢⎣0⎥⎦
=
⎢⎢0 ⎢⎣1
8.2 设系统的状态方程为
⎡0 1
x&=
⎢ ⎢0
0
0 ⎤ ⎡0⎤
1
⎥ ⎥x
+
⎢⎥ ⎢0⎥u
⎣⎢0 − 72 − 18⎦⎥ ⎣⎢1⎦⎥
(1)设计状态反馈矩阵 F,使闭环系统的极点配置在 − 100 , − 7.07 ± j7.07 :
(2)画出状态反馈系统的结构图。 解:系统为可控标准形
要使闭环极点配置在 − 100 , − 7.07 ± j7.07
则 h1 = 3 , h2 = 2
8.6 已知系统{A b c}

自动控制原理-课后习题及答案

自动控制原理-课后习题及答案

第一章 绪论1-1 试比较开环控制系统和闭环控制系统的优缺点.解答:1开环系统(1) 优点:结构简单,成本低,工作稳定。

用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。

(2) 缺点:不能自动调节被控量的偏差。

因此系统元器件参数变化,外来未知扰动存在时,控制精度差。

2 闭环系统⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。

它是一种按偏差调节的控制系统。

在实际中应用广泛。

⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。

>1-2 什么叫反馈为什么闭环控制系统常采用负反馈试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。

闭环控制系统常采用负反馈。

由1-1中的描述的闭环系统的优点所证明。

例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。

1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非线性,定常,时变)(1)22()()()234()56()d y t dy t du t y t u t dt dt dt ++=+(2)()2()y t u t =+(3)()()2()4()dy t du t ty t u t dt dt +=+ (4)()2()()sin dy t y t u t tdt ω+=(5)22()()()2()3()d y t dy t y t y t u t dt dt ++=—(6)2()()2()dy t y t u t dt +=(7)()()2()35()du t y t u t u t dtdt =++⎰解答: (1)线性定常 (2)非线性定常 (3)线性时变(4)线性时变 (5)非线性定常 (6)非线性定常 (7)线性定常1-4 如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。

自动控制原理习题答案

自动控制原理习题答案

自动控制原理习题答案1. 请计算以下系统的开环传递函数,并画出相应的极点图和零点图。

系统一:$$。

G(s) = \frac{10(s+1)}{s(s+2)(s+5)}。

$$。

系统二:$$。

G(s) = \frac{5(s+3)}{(s+1)(s+4)}。

$$。

系统三:$$。

G(s) = \frac{20}{s(s+2)(s+3)}。

$$。

2. 请计算以下系统的闭环传递函数,并判断系统的稳定性。

系统一:$$。

G(s) = \frac{10}{s(s+1)}。

$$。

系统二:$$。

G(s) = \frac{5}{s^2+4s+3}。

$$。

系统三:$$。

G(s) = \frac{20(s+2)}{s(s+1)(s+3)}。

$$。

3. 请利用根轨迹法分析以下系统的稳定性,并画出根轨迹图。

系统一:$$。

G(s) = \frac{10}{s(s+1)(s+2)}。

$$。

系统二:$$。

G(s) = \frac{5(s+3)}{s(s+1)(s+4)}。

$$。

系统三:$$。

G(s) = \frac{20(s+1)}{s(s+2)(s+3)}。

$$。

4. 请利用Nyquist稳定性判据分析以下系统的稳定性,并画出Nyquist图。

系统一:$$。

G(s) = \frac{10(s+1)}{s(s+2)(s+5)}。

$$。

系统二:$$。

G(s) = \frac{5(s+3)}{(s+1)(s+4)}。

$$。

系统三:$$。

G(s) = \frac{20}{s(s+2)(s+3)}。

$$。

5. 请利用频率响应法分析以下系统的稳定性,并画出Bode图。

系统一:$$。

G(s) = \frac{10}{s(s+1)}。

$$。

系统二:$$。

G(s) = \frac{5}{s^2+4s+3}。

$$。

系统三:$$。

G(s) = \frac{20(s+2)}{s(s+1)(s+3)}。

自控原理习题答案(全)

自控原理习题答案(全)

普通高等教育“十一五”国家级规划教材全国高等专科教育自动化类专业规划教材《自动控制原理》习题答案主编:陈铁牛机械工业出版社1-11-21-3闭环控制系统主要由被控对象,给定装置,比较、放大装置,执行装置,测量和变送装置,校正装置等组成。

被控对象:指要进行控制的设备和过程。

给定装置:设定与被控量相对应给定量的装置。

比较、放大装置:对给定量与测量值进行运算,并将偏差量进行放大的装置。

执行装置:直接作用于控制对象的传动装置和调节机构。

测量和变送装置:检测被控量并进行转换用以和给定量比较的装置。

校正装置:用以改善原系统控制性能的装置。

题1-4答:(图略)题1-5答:该系统是随动系统。

(图略)题1-6答:(图略)题2-1 解:(1)F(s)=12s 1+-Ts T(2)F(s)=0.5)421(2+-s s(3)F(s)=428+⋅s es sπ(4)F(s)=25)1(12+++s s(5)F(s)=32412ss s ++ 题2-2 解:(1) f(t)=1+cost+5sint (2) f(t)=e -4t(cost-4sint)(3) f(t)=t t t te e e 101091811811----- (4) f(t)= -tt t te e e ----+-3118195214(5) f(t)= -tt e e t 4181312123--+++题2-3 解:a)dtdu u C R dt du R R c c r 22111=++)( b)r c c u CR dt du R R u C R dt du R R 1r 12112111+=++)( c) r r r c c c u dtdu C R C R dtu d C C R R u dtdu C R C R C R dtu d C C R R +++=++++)()(1211222121122111222121 题2-4 解:a) G(s)=1)(212++s T T sT (T 1=R 1C, T 2=R 2C )b) G(s)=1)(1212+++s T T s T (T 1=R 1C, T 2=R 2C )c) G(s)= 1)(1)(32122131221+++++++s T T T s T T s T T s T T (T 1=R 1C 1, T 2=R 1C 2, T 3=R 2C 1, T 4=R 2C 2 )题2-5 解:(图略)题2-6 解:33)(+=Φs s 题2-7 解:a) ksf ms s +-=Φ21)(b) )()()(1))(1)(()(21221s G s G s G s G s G s +++=Φc) )()(1)())()(()(31321s G s G s G s G s G s ++=Φd) )()()()(1))()()(323121s G s G s G s G s G s G s -+-=Φe) G(s)=[G 1(s)- G 2(s)]G 3(s)f) )()()()()()()()()()(1)()()()()(43213243214321s G s G s G s G s G s G s G s G s G s G s G s G s G s G s +-++=Φg) )()()()()()()()(1)()()()(43213212321s G s G s G s G s G s G s G s G s G s G s G s -+-=Φ题2-8 解:102310)1()()(k k s s T Ts k k s R s C ⋅++++⋅=1023101)1()()(k k s s T Ts k k s N s C ⋅++++⋅=1023102)1()()(k k s s T Ts s T k k s N s C ⋅++++⋅⋅⋅= 题2-9 解:)()()()(1)()()(4321111s G s G s G s G s G s R s C +=)()()()(1)()()(4321222s G s G s G s G s G s R s C +=)()()()(1)()()()()(432142121s G s G s G s G s G s G s G s R s C +=)()()()(1)()()(4321412s G s G s G s G s G s R s C += 题2-10 解:(1)3212321)()(k k k s k k k s R s C +=3212032143)()()(k k k s s G k k k s k k s N s C +⋅+= (2) 2140)(k k sk s G ⋅-= 题2-11 解:122212211111)()1()()(z z s T s T T C s T T s T k k s s m m d e L ⋅++⋅+++⋅=ΘΘ (T 1=R 1C, T 2=R 2C, T d =L a /R a , T m =GD 2R a /375C e C m )第三章 习题答案3-1. s T 15=(取5%误差带) 3-2. 1.0=H K K=2 3-3.当系统参数为:2.0=ξ,15-=s n ω时,指标计算为:%7.52%222.0114.32.01===-⨯---e eξξπσs t ns 352.033=⨯==ξωs t n p 641.02.01514.3122=-⨯=-=ξωπ当系统参数为:0.1=ξ,15-=s n ω时,系统为临界阻尼状态,系统无超调,此时有:st ns 95.057.10.145.67.145.6=-⨯=-=ωξ3-4.当110-=s K 时,代入上式得:110-=s n ω,5.0=ξ,此时的性能指标为:%3.16%225.0114.35.01===-⨯---e eξξπσs t ns 6.0105.033=⨯==ξωs t n p 36.05.011014.3122=-⨯=-=ξωπ当120-=s K 时,代入上式得:11.14-=s n ω,35.0=ξ,此时的性能指标为:%5.30%2235.0114.335.01===-⨯---e eξξπσs t ns 6.01.1435.033=⨯==ξω由本题计算的结果可知:当系统的开环放大倍数增大时,其阻尼比减小,系统相对稳定性变差,系统峰值时间变短,超调量增大,响应变快,但由于振荡加剧,调节时间不一定短,本题中的调节时间一样大。

《自动控制原理》课后习题答案

《自动控制原理》课后习题答案

掌握自动控制系统的一般概念(控制方式,分类,性能要求)6.(1)结构框图:Ug U Udn Uc UUr给定输入量: 给定值Ug 被控制量: 加热炉的温度扰动量: 加热炉内部温度不均匀或坏境温度不稳定等外部因素 被控制对象:加热器控制器: 放大器、发动机和减速器组成的整体 (2)工作原理:给定值输入量Ug 和反馈量Ur 通过比较器输出 U , 经放大器控制发动机的转速n ,再通过减速器与调压器调节加热器的电压U 来控制炉温。

T Ur U Ud n Uc U T7.(1)结构框图 略给定输入量:输入轴θr 被控制量: 输出轴θc扰动量: 齿轮间配合、负载大小等外部因素 被控制对象:齿轮机构 控制器: 液压马达 (2)工作原理:θc Ue Ug i θm θc比较器 放大器 减速器 调压器 电动机 加热器 热电偶干扰量实际温度掌握系统微分方程,传递函数(定义、常用拉氏变换),系统框图化简;1.(a)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=dtdu C i R u i i u iR u t ct ct t r )(02)(0)(01)()2......()1(.......... 将(2)式带入(1)式得:)()(01)(021)(0t r t t t u dtdu C R u R R u =++拉氏变换可得)()(01)(0221s r s s U CsU R u R R R =+⎪⎪⎭⎫ ⎝⎛+整理得 21212)()(0)(R R Cs R R R U U G S r S s ++==1.(b)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=dtdi L u R u i i u iR u Lt o t Lt t r )(2)(0)(01)()2........()1......(.......... 将(2)式代入(1)式得)()(0221)(01t r t t u u R R R dt u L R =++⎰ 拉氏变换得)()(0221)(01s r s s U U R R R U Ls R =++ 整理得LsR R R R LsR U U G s r s s )(21212)()(0)(++==2.1)微分方程求解法⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-=+=-31224203221211111Rudt du c Ruu R u R u Rudt du c R u u c c c c c c c c r中间变量为1c u,2c u及其一阶导数,直接化简比较复杂,可对各微分方程先做拉氏变换⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-=+=-3122423221211111RUU sc R U U RU R U RUU sc R U U c c c c c c c c r移项得⎪⎪⎪⎩⎪⎪⎪⎨⎧++==++=2432432211211)11()111(c c c c rUR R sc RU R RU U U R R sc R U可得11121432432143214320)111()11(RR sc R R R R sc R R R R R R R R sc R R sc Ur U ++++=++++=2)复阻抗法⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧+=+++=++=2211232223234212121111*11*11sc R sc z U sc R sc z U sc R sc R R z sc R sc R R z r解得:1112143243RR sc R R R R sc R R Ur U ++++=3.分别以m 2,m 1为研究对象(不考虑重力作用)⎪⎪⎩⎪⎪⎨⎧--=---=11212121121222222)()()(ky dty y d c dt y d m dty y d cdt dy c t f dt y d m 中间变量含一阶、二阶导数很难直接化简,故分别做拉氏变换⎪⎩⎪⎨⎧--=---=112112112122222)()()(kY Y Y s c Y s m Y Y s c sY c s F Y s m 消除Y1中间变量21211222))1(()(Yk s c s m sc s c s c s m s F s++-++=10.系统框图化简:G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)H 3(s)H 2(s)---++G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)H 3(s)H 2(s)/G 1(s)G 3(s)---+G 1(s)/(1+G 1(s)H 1(s))G 2(s)G 3(s)/(1+G 3(s)H 3(s))X i (s)X o (s)+H 2(s)/G 1(s)G 3(s)-G 1(s)G 2(s)G 3(s)/(1+G 1(s)H 1(s))(1+G 3(s)H 3(s))X i (s)X o (s)+H 2(s)/G 1(s)G 3(s)- +1.综合点前移,分支点后移G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)H 3(s)H 2(s)/G 1(s)G 3(s)---++2.交换综合点,交换分支点3.化简1231133221231133221133()()()()()(1()())(1()())()()()()()1()()()()()()()()()()o i X s G s G s G s X s G s H s G s H s G s H s G s G s G s G s H s G s H s G s H s G s H s G s H s =+++=++++11.系统框图化简:G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)-++ 1.综合点前移,分支点后移2.交换综合点,合并并联结构H 4(s)G 4(s)H 2(s)H 3(s)++--G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)/G 1(s)G 4(s)-+H 4(s)/G 1(s)G 2(s)G 4(s)H 2(s)/G 4(s)H 3(s)++--+-G 1(s)G 2(s)G 3(s)X i (s)X o (s)+-G 4(s)H 2(s)/G 4(s)-H 3(s)-H 1(s)/G 1(s)G 4(s)+H 4(s)/G 1(s)G 2(s)3.化简G 1(s)G 2(s)G 3(s)G 4(s)X i (s)X o (s)+-H 2(s)/G 4(s)-H 3(s)-H 1(s)/G 1(s)G 4(s)+H 4(s)/G 1(s)G 2(s)12341234243114412123123212343231344()()()()()()1()()()()(()/()()()/()()()/()())()()()1()()()()()()()()()()()()()()(o i X s G s G s G s G s X s G s G s G s G s H s G s H s H s G s G s H s G s G s G s G s G s G s G s G s H s G s G s G s G s H s G s G s H s G s G s H =+--+=+--+)s第三章掌握时域性能指标,劳斯判据,掌握常用拉氏变换-反变换求解时域响应,误差等2.(1)求系统的单位脉冲响应12()()()TsY(s)+Y(s)=KX(s)X(s)=1Y(s)=1()=20e t tTT y t y t Kx t K Ts k w t e T∙--+=+=已知系统的微分方程为:对微分方程进行零初始条件的拉氏变换得当输入信号为单位脉冲信号时,所以系统输出的拉式变换为:进行拉式反变换得到系统的时域相应2.(2)求系统的单位阶跃响应,和单位斜坡响应22()()()TsY(s)+Y(s)=KX(s)X(s)=5Y(s)=1111110()10-10e ;1X(s)=Y(s)=t T y t y t Kx t KTK Ts Ts Ts sK s s s y t s∙-+=+++=-=-=已知系统的微分方程为:对微分方程进行零初始条件的拉氏变换得当输入信号为单位阶跃信号时,所以系统输出的拉式变换为:进行拉式反变换得到系统的时域相应当输入信号为单位阶跃信号时,所以系统输出的拉式变换为:22222110550111()510t+5e ;t K K KT T K Ts s s s Ts s s Ts y t -=-+=-++++=-+进行拉式反变换得到系统的时域相应9.解:由图可知该系统的闭环传递函数为22()(22)2b kG s s k s kτ=+++ 又因为:2122%0.20.512222r n n n e t k kπξξσπβωξξωτω--⎧⎪==⎪-⎪==⎨-⎪=+⎪⎪=⎩ 联立1、2、3、4得0.456; 4.593;10.549;0.104;n K ξωτ==== 所以0.76931.432p ds nt s t sπωξω====10.解:由题可知系统闭环传递函数为210()1010b kG s s s k=++ 221010n nk ξωω=⎧⎪⎨=⎪⎩ 当k=10时,n ω=10rad/s; ξ=0.5;所以有2/12%16.3%0.36130.6p n s n e t s t sπξξσπωξξω--⎧⎪==⎪⎪⎪==⎨-⎪⎪⎪==⎪⎩当k=20时,n ω=14.14rad/s; ξ=0.35;所以有2/12%30.9%0.24130.6pn s n e t s t sπξξσπωξξω--⎧⎪==⎪⎪⎪==⎨-⎪⎪⎪==⎪⎩当0<k<=2.5时,为过阻尼和临界阻尼,系统无超调,和峰值时间;其中调整时间不随k 值增大而变化; 当k>2.5时,系统为欠阻尼,超调量σ%随着K 增大而增大,和峰值时间pt 随着K 增大而减小;其中调整时间s t 不随k 值增大而变化;14.(1)解,由题可知系统的闭环传递函数为32560-1403256000056014014k 00()1440kb k k k s s s ks kG s s s s k->><<∴=+++∴⎧⎨⎩∴劳斯表系统稳定的充要条件为:14.(2)解,由题可知系统的闭环传递函数为320.60.8832430.60.80010.20.80.210.8k 00(1)()(1)k b k k k kk s s s ks k s G s s s k s k-->>>>-∴+=++-+∴⎧⎪⎨⎪⎩∴劳斯表系统稳定的充要条件为:20.解:由题可知系统的开环传递函数为(2)()(3)(1)k k s G s s s s +=+-当输入为单位阶跃信号时,系统误差的拉氏变换为11()111()lim limlim ()0k ss k ssss s s k s ss G s E G s ssE G s e →→→+=+===∞∴=又根据终值定理e 又因为25.解:由题可知系统的开环传递函数为1212()(1)(1)k k k G s T s T s =++当输入为给定单位阶跃信号时1()i X s s=,系统在给定信号下误差的拉氏变换为111211211()111()lim limlim ()11k ss k ss ss s s k s ss G s E G s ssE G s k k e k k →→→+=+===∴=+又根据终值定理e 又因为当输入为扰动信号时1()N s s=,系统扰动信号下误差的拉氏变换为22121122212212121()111()lim limlim ()111k ss k ss ss s s k s ss ss ss ss k G s k T s E G s ssE G s k k k e k k k e e e k k →→→-+-+=+===-∴=+-∴=+=+又根据终值定理e 又因为第四章 根轨迹法掌握轨迹的概念、绘制方法,以及分析控制系统4-2 (2)G(s)=)15.0)(12.0(++s s s K;解:分析题意知:由s(0.2s+1)(0.5s+1)=0得开环极点s 1=0,s 2=-2,s 3=-5。

自动控制原理课后习题答案解析王万良版

自动控制原理课后习题答案解析王万良版

1.2根据题1.2图所示的电动机速度控制系统工作原理 (1)将a,b 与c,d 用线连接成负反馈系统; (2)画出系统框图。

c d+-发电机解:(1) a 接d,b 接c.(2) 系统框图如下1.3题1.3图所示为液位自动控制系统原理示意图。

在任何情况下,希望页面高度c 维持不变,说明系统工作原理并画出系统框图。

解:工作原理:当打开用水开关时,液面下降,浮子下降,从而通过电位器分压,使得电动机两端出现正向电压,电动机正转带动减速器旋转,开大控制阀,使得进水量增加,液面上升。

同理,当液面上升时,浮子上升,通过电位器,使得电动机两端出现负向电压,从而带动减速器反向转动控制阀,减小进水量,从而达到稳定液面的目的。

系统框图如下:2.1试求下列函数的拉式变换,设t<0时,x(t)=0: (1) x(t)=2+3t+4t2解:X(S)=s 2 +23s +38s(2) x(t)=5sin2t-2cos2t解:X(S)=5422+S -242+S S=42102+-S S(3) x(t)=1-et T1-解:X(S)=S1-TS 11+= S 1-1+ST T=)1(1+ST S(4) x(t)=e t 4.0-cos12t解:X(S)=2212)4.0(4.0+++S S2.2试求下列象函数X(S)的拉式反变换x(t): (1) X(S)=)2)(1(++s s s解:=)(S X )2)(1(++s s s =1122+-+S S t t e e t x ---=∴22)((2) X(S)=)1(15222++-s s s s 解:=)(S X )1(15222++-s s s s =1512+-+S S S=1151122+-++S S S S t t t u t x sin 5cos )()(-+=∴(3) X(S)=)42)(2(82322+++++s s s s s s解:=)(S X )42)(2(82322+++++s s s s s s =2)1(12212+++++-S S S S t e e t x t t 2cos 21)(2--+-=∴2.3已知系统的微分方程为)()(2)(2)(22t r t y dt t dy dt t y d =++式中,系统输入变量r(t)=δ(t),并设y(0)=)0(y .=0,求系统输出y(t).解:)()(2)(2)(22t r t y dt t dy dt t y d =++且y(0)=)0(y .=0 两边取拉式变换得∴1)(2)(2)(2=++S Y S SY S Y S 整理得Y(S)=1)1(122122++=++S S S 由拉式反变换得y(t)=t t sin e -2.4列写题2.4图所示RLC 电路的微分方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4ε − 1
ε
〈 0 ,因此劳斯表第一列符号变化 2 次,所以系统不稳定,
有两个特征根在右半 S 平面。 (2)劳斯表结构如下
s6 s s
5 4
1 3 2 4 3 3 2 4
5 9 6 6 4
8 6 4
4 → F ( s ) = 2s 4 + 6s 2 + 4 ← F ' ( s ) = 4s3 + 6s
1 s + 2s + 2
2
y (t ) = − 4e − t sin t 此即为系统输出量 y (t ) 的状态方程。
3
王万良,赵燕伟编著《自动控制原理》 (非自动化类) (机械工业出版社)习题解答
2.4 列写图题 2.4 所示 RLC 电路的微分方程。其中, u i 为输入变量, u o 为输出变量。
X = G1 ( R − H1Y ) Y = H 2C − X C = G X 2
消去中间变量 X,Y 得传递函数为:
C(s) G1 (s)G2 (s) = R(s) 1 + G1(s)G2 (s)H1(s)H2 (s) − G1 (s)H1 (s)
2.8 简化图题 2.8 所示系统的结构图,并求传递函数
L R
u i (t )
C
u o (t )
图题 2.5 解:设流过 L 的电流为 i ,流经 R 的电流为 i1 ,流经 C 的电流为 i2 ,则:
i1 + i2 = i 1 i2 d t = u o ( t ) C ∫ , i R = u t ( ) 1 o di = u i (t ) u o (t ) + L dt d2u ( t ) L duo ( t ) 整理得: LC o2 + +uo ( t ) = ui ( t ) dt R dt
求 F(s)=0 可得 s = ± 5 j ,系统有两个跟在虚轴上,临界稳定 (4)劳斯表结构如下
8
王万良,赵燕伟编著《自动控制原理》 (非自动化类) (机械工业出版社)习题解答
s6 s5
1
−2
−7 −4
−4
1 −3
s
4
1 −3 4 −6
−3/ 2 − 50 / 3 −4
−4
−4
s3
s2 s s
1 0
2.12 简化图题 2.12 所示系统的结构图,并求传递函数
C ( s) 。 R(s)
+
G3 (s )
R( s ) + −
G1 ( s) G 4 (s)
G 2 ( s)
C ( s)
图题 2.12 解:传递函数为: C ( s ) = G1 ( s )[ G 2 ( s ) + G 3 ( s )] R ( s ) 1 + G1 ( s ) G 2 ( s ) G 4 ( s )
R
ui
L
C
uo
图题 2.4 解:设电路中电流为 ,则:
du i =C⋅ o dt iR + L di + u = u o i dt d 2uo du 整理得: LC + RC o + u o = u i 2 dt dt
2.5 列写图题 2.5 所示 RLC 电路的微分方程,其中, u i 为输入变量, u o 为输出变量。
2.6 设运算放大器放大倍数很大,输入阻抗很大,输出阻抗很小。求图题 2.6 所示运算放大 电路的传递函数。其中, u i 为输入变量, u o 为输出变量。
R1
i
C
− +
ui
ห้องสมุดไป่ตู้
R2
uo
图题 2.6 解:
uo (s) iR1 = u i , 整理得传递函数为: 1 ui ( s ) − id t = u o C ∫
第 1 章习题解答
1 .1 试举几个开环控制系统与闭环控制系统的例子,画出它们的框图,并说明它们的工作 原理。 解:开环:原始的蒸汽机速度控制系统、烧开水等; 闭环:直流电动机自动调速系统等;框图和工作原理略
1.2 根据图题 1.2 所示的电动机速度控制系统工作原理图 (1)将 a,b 与 c,d 用线连接成负反馈系统; (2)画出系统方框图。
式中,系统输入变量为 r (t ) = σ (t ) ,并设 y (0) = y (0) = 0 ,求系统的输出 y (t ) 。 解: (1)对微分方程进行拉氏变换得

s 2Y ( s ) + 2 sY ( s ) + 2Y ( s ) = 1
(2)由上式求出系统输出量的表达式
Y (s) =
(3)对上氏进行拉氏反变换,求出 y (t ) 。
−0.4 t 1 − t T
cos 12t
解: (1) X ( s ) = 2 + 3 + 8 s s2 s3 (2) X ( s) = 10 − 2 s s2 + 4 1 T (3) X(s)= 1 s( s + ) T s (4) X(s)= ( s + 0.4)( s 2 + 144) 2.2 试求下列象函 X(s)的拉氏反变换 x(t ) : s ( 1) X ( s ) = ( s + 1)( s + 2) ( 2) X ( s ) = ( 3) X ( s ) = 解: ( 1) − e + 2e (2) 1 − 5 sin t + cos t (3) 1 − 2e
−2 t −t −2 t
2 s 2 − 5s + 1 s ( s 2 + 1)
3s 2 + 2 s + 8 s( s + 2)(s 2 + 2 s + 4)
− e − t cos 3t
2.3 已知系统的微分方程为
d 2 y (t ) dy (t ) +2 + 2 y (t ) = r (t ) 2 dt dt
6
王万良,赵燕伟编著《自动控制原理》 (非自动化类) (机械工业出版社)习题解答
2.13 简化图题 2.13 所示系统的结构图,并求传递函数
C ( s) 。 R(s)
R(s)
G1 ( s ) H1 (s)
-
G2 ( s )
C ( s)
图题 2.13 G1 (s)G2 (s) 解:传递函数为: C (s) = R(s) 1 + G1 ( s) + G2 (s) + G1 ( s)G2 (s) H1
= s 5 + 3s 4 + 12 s 3 + 20 s 2 + 35s + 25 = 0
6 5 4 3 2
(4) D ( s ) = s + s − 2 s − 3s − 7 s − 4 s − 4 = 0 解: (1)劳斯表结构如下: s5 1 4 2 s4 1 4 1 3 s 1 ε 4 − 1 ε s2 1 ε 2 ε s1 1 − 4ε − 1 s0 1 因为 ε 是一个很小的正数,
C ( s)
图题 2.9 解:传递函数为:
C ( s) G2 ( s )[1 + G1 ( s)] = R( s ) 1 + G2 ( s)
5
王万良,赵燕伟编著《自动控制原理》 (非自动化类) (机械工业出版社)习题解答
2.10 简化图题 2.10 所示系统的结构图,并求传递函数 C ( s) 。 R(s )
7
王万良,赵燕伟编著《自动控制原理》 (非自动化类) (机械工业出版社)习题解答
第 3 章习题解答
3.1 已知系统特征方程如下,试用劳斯判据判别系统稳定性,并指出位于右半 S 平面和虚轴上 的特征根的数目。
(1) D ( s ) = s 5 + s 4 + 4 s 3 + 4 s 2 + 2 s + 1 = 0 (2) D ( s ) = s 6 + 3s 5 + 5 s 4 + 9 s 3 + 8 s 2 + 6 s + 4 = 0 (3) D ( s )
《自动控制原理》 自动控制原理》习题解答
(非自动化类) 非自动化类)
浙江工业大学 王万良
教材: 教材:王万良, 王万良,赵燕伟编著, 赵燕伟编著,自动控制原理, 自动控制原理,机械工业出版社, 机械工业出版社,2009.3
2009.3
王万良,赵燕伟编著《自动控制原理》 (非自动化类) (机械工业出版社)习题解答
R( s)

C ( s) 。 R(s)
G 2 (s) H 2 ( s)
C (s)
G1 ( s ) H 1 (s)

图题 2.8 解:设 G1 前为 E, G2 前为 X,根据结构图写出线性代数方程组:
E = R − H1 H 2 C X = G1 E − H 2 C C = XG 2
2 3
试用劳思判据判别系统稳定性。若系统不稳定,指出位于右半 S 平面和虚轴上的特征根的数 目。 解:闭环特征方程为: s 5 + 2 s 4 + 9 s 3 + 10 s 2 + s + 2 = 0
2
王万良,赵燕伟编著《自动控制原理》 (非自动化类) (机械工业出版社)习题解答
第 2 章习题解答
2.1 试求下列函数的拉氏变换,设 t<0 时, x (t ) = 0 : (1) x(t ) = 2 + 3t + 4t 2 (2) x(t ) = 5 sin 2t − 2 cos 2t (3) x(t ) = 1 − e (4) x(t ) = e
G1 R(s) G2
⊗_
相关文档
最新文档