第8章 单片机的I O接口技术

合集下载

第八章 单片机扩展与接口技术

第八章 单片机扩展与接口技术

最大地址:0 1 1 1 P0.7 P0.6 P0.5 P0.4 AB7 AB6 AB5 AB4 最小地址:0 0 0 0 . . . .
最大地址:1 1 1 1
1 P0.3 AB3 0 .
1
1 P0.2 AB2 0 .
1
1 1 P0.1 P0.0 AB1 AB0 0 0 . .
1 1
所以地址范围为:0110000000000000~0111111111111111
8 位 A/D 转 换 器 地址 锁存 与译码 VrefVref+
START:转换启动信号。START上跳沿时,所有内部 寄存器清0;START下跳沿时,开始进行A/D转换;
在A/D转换期间,START应保持低电平。
ADC0809的引脚
(1) ADC0801~ADC0805型 8 位MOS型A/D转换 器;
(2) ADC0808/0809 型 8 位MOS型A/D转换器; (3) ADC0816/0817 型 8 位MOS型A/D转换器;
2. 典型A/D转换器芯片ADC0809 简介 (P281-287) ADC0809 是采用CMOS 工艺制造的双列直插式 单片8 位A/D 转换器。分辨率8 位,带8 个模拟量 输入通道,有通道地址译码锁存器,输出带三态数 据锁存器。 启动信号为脉冲启动方式,最大可调节误差为 ±1LSB,ADC0809 内部没有时钟电路,故CLK 时 钟需由外部输入,fclk 允许范围为500kHz~1MHz, 典型值为640kHz。每通道的转换需时间大约 100~150μ s。 工作温度范围为-40℃~+85℃。功耗为15mW, 输入电压范围为0~5V,单一+5V 电源供电。它可 以直接与89C52、89C51、8051 等CPU 相连,也可 以独立使用。

单片机原理及接口技术

单片机原理及接口技术

单片机原理及接口技术在当今数字化时代,单片机已经成为嵌入式系统设计中不可或缺的重要组成部分。

本文将介绍单片机的工作原理以及与外部设备进行通信的接口技术。

单片机工作原理单片机是一种集成了处理器、存储器和输入输出设备等功能模块的微型计算机系统。

它通常由中央处理器(CPU)、存储器(RAM和ROM)、计时器(Timer)、串行通信接口(UART)和引脚(Port)组成。

单片机的工作原理可以简要描述为以下几个步骤:1.初始化:单片机在上电时会执行初始化程序,设置各种工作模式、配置寄存器等。

2.执行程序:单片机会根据存储器中存储的程序指令序列来执行相应的操作,包括算术逻辑运算、控制流程等。

3.输入输出操作:单片机通过输入输出接口与外部设备进行通信,如传感器、执行器等。

4.中断处理:单片机可以在特定条件下触发中断请求,暂停当前执行的程序,转而执行中断服务程序,处理相应的事件或信号。

单片机接口技术单片机与外部设备的通信主要依赖于接口技术,包括数字输入输出接口、模拟输入输出接口以及通信接口等。

数字输入输出接口数字输入输出接口用于与二进制设备进行通信,通过配置相应的引脚工作在输入或输出模式,实现信号的采集与输出。

常用的数字输入输出方式包括GPIO口、SPI接口、I2C接口等。

模拟输入输出接口模拟输入输出接口用于处理模拟信号,包括模拟输入端口和模拟输出端口。

模拟输入端口通过模数转换器将模拟信号转换为数字信号,模拟输出端口则通过数模转换器将数字信号转换为模拟信号。

通信接口通信接口是单片机与外部设备进行数据交换的重要手段,主要有串行通信接口(UART)、并行通信接口(Parallel)、CAN接口等。

通过这些通信接口,单片机可以实现与其他设备的数据交换与通信。

结语单片机原理及接口技术是嵌入式系统设计的基础知识,通过深入了解单片机的工作原理和接口技术,可以更好地应用单片机进行系统设计与开发。

希望本文对读者有所帮助,谢谢!以上是关于单片机原理及接口技术的简要介绍,希望能对读者有所启发。

51单片机IO口工作原理

51单片机IO口工作原理

51单片机IO口工作原理一、概述51单片机是一种广泛应用于嵌入式系统的微控制器,其IO口是其最基本和重要的功能之一。

IO口可以用于输入和输出信号,实现与外部设备的数据交互。

本文将详细介绍51单片机IO口的工作原理。

二、IO口的结构51单片机的IO口由多个引脚组成,每一个引脚都有特定的功能和工作模式。

通常,一个IO口引脚可以配置为输入模式或者输出模式,具体的配置由相应的寄存器控制。

三、IO口的输入模式当一个IO口引脚配置为输入模式时,它可以接收外部设备发送的信号。

在输入模式下,引脚的电平可以是高电平(1)或者低电平(0),这取决于外部设备发送的信号。

在51单片机中,可以通过P1口和P3口来配置引脚为输入模式。

当一个引脚配置为输入模式时,相应的寄存器会设置为1,表示该引脚为输入状态。

此时,我们可以通过读取相应的寄存器值来获取引脚的电平状态。

四、IO口的输出模式当一个IO口引脚配置为输出模式时,它可以向外部设备发送信号。

在输出模式下,引脚的电平可以是高电平(1)或者低电平(0),这取决于我们设置的值。

在51单片机中,可以通过P0口、P1口、P2口和P3口来配置引脚为输出模式。

当一个引脚配置为输出模式时,相应的寄存器会设置为0,表示该引脚为输出状态。

此时,我们可以通过写入相应的寄存器值来控制引脚的电平状态。

五、IO口的工作原理在51单片机中,IO口的工作原理是通过寄存器的读写操作来实现的。

通过读取或者写入相应的寄存器值,我们可以配置引脚的工作模式和控制引脚的电平状态。

对于输入模式,我们可以通过读取相应的寄存器值来获取引脚的电平状态。

通过读取P1口和P3口的寄存器值,我们可以判断引脚的电平是高电平还是低电平。

对于输出模式,我们可以通过写入相应的寄存器值来控制引脚的电平状态。

通过写入P0口、P1口、P2口和P3口的寄存器值,我们可以将引脚的电平设置为高电平或者低电平。

六、IO口的应用场景51单片机的IO口广泛应用于各种嵌入式系统中,如电子设备、家用电器、工业控制等。

单片机原理及接口技术

单片机原理及接口技术

单片机原理及接口技术单片机原理及接口技术(上)一、单片机基本原理单片机(Microcontroller)是由中央处理器(CPU)、存储器(ROM、RAM)、输入/输出接口(I/O)和定时/计数器等模块所组成的一个微型计算机系统。

单片机通过程序控制,能够完成各种控制任务和数据处理任务。

目前,单片机已广泛应用于计算机、通讯、电子、仪表、机械、医疗、军工等领域。

单片机的基本原理是程序控制。

单片机执行的程序,是由程序员以汇编语言或高级语言编制而成,存放在存储器中。

当单片机加电后,CPU按指令序列依次从存储器中取得指令,执行指令,并把执行结果存放到存储器中。

程序员通过编写的程序,可以对单片机进行各种各样的控制和数据处理。

单片机的CPU是整个系统的核心,它负责执行指令、处理数据和控制系统的各种操作。

CPU通常包括运算器、控制器、指令译码器和时序发生器等模块。

其中,运算器主要用于执行算术和逻辑运算;控制器用于执行指令操作和控制系统的运行;指令译码器用于识别指令操作码,并将操作码转化为相应的操作信号;时序发生器用于产生各种时序信号,确保系统按指定的时间序列运行。

存储器是单片机的重要组成部分,用于存储程序和数据。

存储器一般包括ROM、EPROM、FLASH和RAM等类型。

其中,ROM是只读存储器,用于存储程序代码;EPROM是可擦写可编程存储器,用于存储不经常改变的程序代码;FLASH是可擦写可编程存储器,用于存储经常改变的程序代码;RAM是随机存储器,用于存储数据。

输入/输出接口(I/O)用于与外部设备进行数据交换和通信。

单片机的I/O口可分为并行I/O和串行I/O两类。

并行I/O通常包括数据总线、地址总线和控制总线等,用于与外部设备进行高速数据传输。

串行I/O通常通过串口、I2C总线、SPI总线等方式实现,用于与外部设备进行低速数据传输。

定时/计数器是单片机中的重要组成部分,它可以产生各种时间、周期和脉冲信号,用于实现各种定时和计数操作。

微机原理与接口技术课件全 (9)

微机原理与接口技术课件全 (9)

(2)键的识别 通常有两种方法可识别被按之键:一种是“行扫描”法; 一种是“反转”法。 1)行扫描法 依次对每一行进行扫描,选使被扫描的行为低电平,其它 所有的行均为高电平,接着检测各列线的状态(称为“列”)。 若各列码均为高电平(即列码为全1),则被按之键不在这行。 继续扫描下一行;若列线不全为高电平(即列码为非全1),则 被按之在此行。根据行扫描码及列码就可知被按之键的坐标值 (即位置码)。再根据位置码通过查表可得到它的键值。查表 法的扫描子程序流程图如图7-6所示。
四、输入/输出寻址方式

当主机执行I/O操作时,应先对I/O接口中的端口进行寻址, 其寻址方式有如下两种: 此时,I/O端口单独编址。CPU指令系统中有专门用于I/O操 作的指令——I/O指令,CPU访问I/O端口时发出I/O读命令或写 命令,访问内存时发存储器读或写命令。因此,端口地址与存 储单元地址可重叠。此时,I/O端口不占用存储空间且与访问 I/O设备指令有别。 这种寻址方式中,将I/O端口与存储单元统一编址,即CPU 把I/O端口作为存储单元对待,I/O端口占用一定的存储空间。 采用这种寻址方式的CPU指令系统中没有专门的I/O指令,
微型机中常外设有LED显示器、CRT显示器、键盘、打印机、软 磁盘存储器等。单片机应用系统中常设置LED显示器、拔盘、键 盘、点阵式打印机等外设。
§8-2 键盘及其接口

返回
在微型机系统中,键盘是最常用的输入设备,键盘通常由 数字键和功能键组成,其规模取决于系统的要求。

键盘可分为编码键盘和非编码键盘两种,前者有检测键闭 合,去抖动及产生相应键编码的硬件电路,而后者则没有这些 硬件,上述功能在有少量的硬件支持下由软件来完成。由此可 见编码键盘产生键编码的速度快且基本上不占用CPU时间,但硬 件开销大,电路复杂,成本高;非编码键盘则硬件开销省,电 路简单,成本低,但占用CPU时间较长。

单片机原理及接口技术(C51编程)(第2版)-习题答案 - 第8章习题解答

单片机原理及接口技术(C51编程)(第2版)-习题答案 - 第8章习题解答

第8章思考题及习题8参考答案一、填空1、AT89S51的串行异步通信口为(单工/半双工/全双工).答:全双工。

2。

串行通信波特率的单位是。

答:bit/s3。

AT89S51的串行通信口若传送速率为每秒120帧,每帧10位,则波特率为答:12004.串行口的方式0的波特率为。

答:fosc/125.AT89S51单片机的通讯接口有和两种型式。

在串行通讯中,发送时要把数据转换成数据。

接收时又需把数据转换成数据。

答:并行,串行,并行,串行,串行,并行6.当用串行口进行串行通信时,为减小波特率误差,使用的时钟频率为 MHz.答:11。

05927.AT89S51单片机串行口的4种工作方式中, 和的波特率是可调的,与定时器/计数器T1的溢出率有关,另外两种方式的波特率是固定的.答:方式1,方式38.帧格式为1个起始位,8个数据位和1个停止位的异步串行通信方式是方式 . 答:方式1.9.在串行通信中,收发双方对波特率的设定应该是的。

答:相同的。

10.串行口工作方式1的波特率是 .答:方式1波特率=(2SMOD/32)×定时器T1的溢出率二、单选1.AT89S51的串行口扩展并行I/O口时,串行接口工作方式选择。

A。

方式0 B。

方式1 C. 方式2 D。

方式3答:A2。

控制串行口工作方式的寄存器是。

A.TCON B。

PCON C。

TMOD D.SCON答:D三、判断对错1.串行口通信的第9数据位的功能可由用户定义.对2.发送数据的第9数据位的内容是在SCON寄存器的TB8位中预先准备好的。

对3.串行通信方式2或方式3发送时,指令把TB8位的状态送入发送SBUF中.错4.串行通信接收到的第9位数据送SCON寄存器的RB8中保存。

对5.串行口方式1的波特率是可变的,通过定时器/计数器T1的溢出率设定。

对6。

串行口工作方式1的波特率是固定的,为fosc/32。

错7. AT89S51单片机进行串行通信时,一定要占用一个定时器作为波特率发生器.错8。

微机原理与单片机接口技术(第2版)李精华 第8章 微处理器控制系统的接口扩展

微机原理与单片机接口技术(第2版)李精华 第8章  微处理器控制系统的接口扩展

8.1.2 编址技术
所谓编址,就是通过51单片机地址总线,使片外扩展的存 储器和I/O口中的每个存储单元或元器件,在51单片机的寻址 范围内均有独立的地址,以便51单片机使用该地址能唯一地选 中该单元。51单片机对外部扩展的存储器和I/O设备进行编址 的方法有两种:线选法和译码法。 1、线选法
所谓线选法,就是直接选定单片机的某根空闲地址线作为 存储芯片的片选信号。 2、译码法
由P0口作为地址线低8位,P2口作为地址线高8位,构 成16位地址,寻址范围为64KB。由于P0口分时复用为 地址总线和数据总线,除提供低8位地址之外,又要 作为数据口,地址和数据分时控制输出。为避免地址 和数据的冲突,低8位地址必须用锁存器锁存。也就 是在P0口外加一个锁存器,当ALE为下降沿时,将低8 位地址锁存。
位(LSB)所对应的输入模拟电压的变化量。分辨率定义 为转换器的满刻度电压(基准电压)VFSR与2n的比值,即
分辨率= VFSR 式中,n为A/D转2换n器输出的二进制位数,n越大,分
辨率越高。分辨率取决于A/D转换器的位数,所以习惯上 用输出的二进制位数或BCD码位数表示。
8.2 A/D转换器与D/A转换器简介
2.A/D转换器的主要技术指标 • (2)量化误差:模拟量是连续的,而数字量是断续
的,当A/D转换器的位数固定后,数字量不能把模拟 量所有的值都精确地表示出来,这种由A/D转换器有 限分辨率所造成的真实值与转换值之间的误差称为量 化误差。一般量化误差为数字量的最低有效位所表示 的模拟量,理想的量化误差容限是±1/2LSB。
三、教学难点
I2C总线接口的程序设计。
四、教学方式
8.1 单片机的外部并行总线
8.1.1 并行总线结构 51单片机具有外部并行总线,分为地址总线(AB)

51单片机io口工作的基本原理

51单片机io口工作的基本原理

51单片机io口工作的基本原理51单片机是一种广泛应用于嵌入式系统开发的微控制器,其基本原理是通过控制输入/输出(I/O)口的电平状态来实现与外部设备的连接与交互。

单片机的I/O口被称为通用I/O口(General Purpose I/O,GPIO),可以通过设置其输入与输出模式以及控制电平状态来与外部设备进行数据的传输与控制。

在51单片机中,GPIO口可以进行两种模式的设置:输入模式和输出模式。

在输入模式下,GPIO口可以将外部设备的电平状态作为输入信号接收,并将该信号传送至单片机内部进行处理。

在输出模式下,单片机可以通过控制GPIO口的电平状态向外部设备发送数据或控制信号。

当GPIO口设置为输入模式时,单片机内部会初始化一个输入缓冲区,用于存储外部设备传入的电平信号。

当外部设备改变电平状态时,单片机会及时检测到,并将相应的电平状态记录在输入缓冲区中。

通过读取输入缓冲区的数值,单片机可以获取外部设备传入的数据。

这样,单片机就能够实现与外部设备的数据交互。

当GPIO口设置为输出模式时,单片机内部会初始化一个输出缓冲区,用于存储将要发送至外部设备的数据。

根据所需的传输方式,单片机可以通过改变输出缓冲区的数值来控制GPIO口的电平状态。

当输出缓冲区的数值发生改变时,单片机会通过输出电路将该数值转换为相应的电平状态,从而将数据或控制信号送至外部设备。

除了设置输入/输出模式以及控制电平状态之外,单片机还可以对GPIO口进行中断配置以及上下拉电阻的设置。

中断配置可以实现在特定事件发生时自动跳转至相应的中断服务函数,从而实现对外部设备的实时响应。

上下拉电阻则可以提供电平稳定性,防止输入口因为无输入信号而漂移到不确定状态。

综上所述,51单片机的I/O口工作基于设置输入/输出模式以及控制电平状态,通过与外部设备进行电平交互来实现数据的传输与控制。

通过合理配置中断和上下拉电阻,单片机可以实现高效稳定的IO口工作,为嵌入式系统开发提供强大的功能与灵活性。

第8章 单片机的人机接口技术

第8章 单片机的人机接口技术

第4章 单片机汇编语言程序设计
8.3.1 8279的结构与原理
3. 扫描计数器 扫描计数器为键盘和显示器共用,可提供二者所需的扫描 信号。 它有两种工作方式,按编码方式工作时,计数器以二进制 方式计数,4位计数状态从扫描线SL3~SL0输出,为键盘 和显示器提供出16位扫描线;按译码方式工作时,扫描计 数器的低二位译码后从SL3~SL0输出,提供4选1的扫描译 码。 4. 回复缓冲器与键盘去抖动控制电路 在逐行列扫描时,回复线用来搜寻每一行列中闭合的键, 当某一键闭合时,去抖电路被置位,延时等待10ms后, 再检查该键是否仍处在闭合状态。 5.FIFO/传感器RAM和显示器RAM 8279具有多个先进先出的键输入缓冲器,并提供16个字 节的显示数据缓冲器。CPU将段数据写入显示缓冲器, 8279自动对显示器扫描,将其内部显示缓冲器中的数据在 显示器上显示出来。
第4章 单片机汇编语言程序设计
8.2 键盘及其接口
8.2.1 键盘的结构与原理
1.键盘的结构 独立式按键:直接用I/O口线构成的单个按键电路,其特 点是每个按键单独占用一根I/O口线,每个按键的工作不 会影响其它I/O口线的状态。 独立式按键电路、软件简单,但每个按键占用一根I/O口 线,因此,在按键较多时,I/O口线浪费较大。
第4章 单片机汇编语言程序设计
8.2.2 键盘接口电路
LK3: MOV DPTR,#0101H MOV A,R2 MOVX @DPTR,A INC DPTR INC DPTR MOVX A,@DPTR ANL A,#0FH MOV R4,A CJNZ A,#0FH,LK4 MOV A,R2 JNB ACC.7,LK8 RL A MOV R2,A INC R3 ; 指向 8155 口A ; 行扫描值送A ; 扫描 1 行 ; 指向 8155 口C ; ; 保留低 4 ; ; 列值非全“1” ; 行扫描值送A ; ; ; 行值存入R2 ; 行号加 1

单片机原理及其接口技术--第8章 MCS-51单片机系统接口技术

单片机原理及其接口技术--第8章 MCS-51单片机系统接口技术

第二步是再识别是哪一个键按下。
键盘中哪一个键按下是由列线逐列置低电平后,检查行输 入状态,称为逐列扫描。其方法是:从列口第0位开始,依次输出
“0”,置对应的列线为低电平,然后读入行线状态,如果全为"1", 则所按下之键不在此列;如果不全为"1",则所按下的键必在此列, 而且是与0电平行线相交的交点上的那个键。
除抖动、排除多次执行键功能操作等功
能,可参考查询工作方式键盘程序。
主目录 上一页 下一页 结 束
单片机原理及其接口技术
8.1.4 键盘接口应用实例 例8.1 独立式键盘接口应用实例:电路原 理图如图所示,要求编程实现当按下任一键时,
数码管显示对应的键值。
主目录
上一页
下一页


单片机原理及其接口技术
的办法计算。
主目录
上一页
下一页


单片机原理及其接口技术 2) 定时扫描工作方式
开 始
定时扫描方式程序框图
键盘上有键闭合否
Y N KM=1 0 → KM 0 → KP Y N
Y 1 → KM
KP=1 N 查询键码 1 → KP
做两次查询,都有 键后进行键码计算。 主目录 上一页
返 回
下一页


3) 中断工作方式 单片机原理及其接口技术
1.独立式按键 2.行列式键盘
主目录
上一页
下一页


1. 独立式按键 单片机原理及其接口技术
(1).独立式按键接口结 构 一般用排阻进行上拉。
独立式按键的接口电路示意图 主目录 下一页 (b) 查询方式 结 束 (a) 中断方式 上一页
2.独立式按键的软件结构 单片机原理及其接口技术 下面是查询方式的键盘程序。 K0~K7为功能程序入口地址标号 PROM0~PROM7分别为每个按键的功能程序

单片机第八章 AT89系列单片机系统的扩展z1

单片机第八章 AT89系列单片机系统的扩展z1
#2存储器端口地址:A=1(P2.6=1),B=0(P2.7=0) ,C=0:选中#2存储器,所以#2存储器的端口地址为: 4000H~7FFFH。
8.2.3 数据存储器的扩展
1.数据存储器概述 数据存储器即随机存取存储器,用于存放可随时修改的
数据信息。它与ROM不同,对RAM可以进行读、写两种操作 。RAM为易失性存储器, 断电后所存信息立即消失。
2
2.片内无程序存储器的最小应用系统 片内无程序存储器的芯片构成最小应用系统时,必须 在片外扩展程序存储器。 由于一般用做程序存储器的 E2PROM芯片不能锁存地址,故扩展时还应加一个地址 锁存器,构成一个三片最小系统,如图8-1b所示。该 图中74LS373为地址锁存器,用于锁存低8位地址。
3
8.1.2 系统扩展的内容与方法
IN改数据指针
DJNZ R7, AGAIN ; 判断数据是否传送完成
RET
END
26
【C51程序】:
#include <AT89X51.h>
#include <absacc.h>
#define uchar unsigned char
#define uint unsigned int
11
图8-5 74LS138管脚图
图8-6 74LS138的译码关系
12
8.2存储器的扩展
8.2.1 存储器扩展概述 AT89S系列单片机具有64 KB的程序存储器空间, 其中 AT89S51单片机含有4 KB 的片内程序存储器。当单片机程 序超过4 KB时,就需要进行程序存储器的扩展。
AT89S系列单片机的数据存储器与程序存储器的地址空 间是互相独立的,其片外数据存储器的空间可达64 KB, 而片内的数据存储器空间只有128 B。如果片内的数据存 储器不够用时,则需进行数据存储器的扩展。

单片机原理与接口技术(第8章)

单片机原理与接口技术(第8章)

第8章 单片机的系统扩展
◆ 8282是一种带有三态输出缓冲的8位锁存器,其引脚说明 如下:
D0~D7:为8位数据输入端。 Q0~Q7:为8位数据输出端。 STB:数据输入锁存选通信号,高电平有效。当该信号 为高电平时,外部数据选通到内部锁存器,负跳变时,数据 锁存。 OE:数据输出允许信号,低电平有效。当该信号为低电 平时,锁存器中数据输出到数据输出线;当该信号为高电平 时,输出线为高阻态。
译码法可分为全部译码法、部分译码法。 全部译码法:是把P0口、P2口都接到译码器和芯片的地 址线上,其优点是可以充分利用单片机提供的扩展空间,连 接的存储器容量较大。
第8章 单片机的系统扩展
部分译码法:是将高位地址的一部分连接到译码器中进行 译码,高位地址的另外部分可以不连在译码器上,而作为通 用的I/O口使用。
简称DRAM(Dynamic RAM),具有容量大、功耗低、价 格便宜等优点,对外界环境、工艺结构、控制逻辑和电源质 量等的要求都很高。
存储器芯片有2816/2817(8KB×8),最大存取时间为 200ns,+5V供电,采用HMOS-D2工艺制造,其内部含有动态 刷新电路。
第8章 单片机的系统扩展
① P2口专门用于输出PCH的内容,因有锁存功能,可直 接与外部存储器的地址相连。
② P0口除了输出PCL中的地址外,还要传输从程序存储 器过来的指令代码,这就必须用ALE信号锁存PCL。
第8章 单片机的系统扩展
③ 在每个机器周期中,允许地址锁存信号ALE两次有效, 且在下降沿时锁存PCL。对来说,也是每个机器周期两次有效。 ◆所取指令是MOVX时
当ALE信号由高变低时,低8位地址被锁存到锁存器中并 向外部地址总线输出,该地址信号和P2口的高8位地址共同 组成16位地址。直到ALE信号再次变高,锁存器的地址才会 发生改变。

单片机原理及接口技术讲解

单片机原理及接口技术讲解

单片机原理及接口技术讲解单片机(Microcontroller)是一种集成电路芯片,内含有中央处理器(CPU)、存储器、输入输出端口、定时器计数器、串行通信接口等核心模块,可用于控制、计算、存储和通信等多种功能。

单片机的工作原理是通过处理器执行存储在存储器中的指令来实现各种功能。

它的内部包含一个由晶体管、逻辑门等构成的微处理器,负责执行计算和控制指令。

单片机的芯片上还集成了存储器,用于存储程序指令和数据。

输入输出端口可以与外部设备进行数据交互,定时器计数器可以实现精确的定时和计数功能。

通过串行通信接口,单片机可以与其他设备进行数据传输和通信。

单片机的接口技术是指单片机与外部设备进行数据传输和通信的技术。

常见的接口技术包括并行接口、串行接口、模拟接口等。

并行接口是通过多个并行数据线同时传输数据的接口技术。

常见的并行接口有通用并行接口(GPIO)、地址总线、数据总线等。

通用并行接口(GPIO)是一组可编程的并行输入输出线,可以被程序员控制来进行数据的输入输出。

地址总线用于传输内存或外设的地址信息,数据总线用于传输数据信息。

串行接口是通过单个数据线按照一定的时间顺序传输数据的接口技术。

常见的串行接口有串行通信接口(UART)、串行外设接口(SPI)、I²C接口等。

串行通信接口(UART)是一种通用的串行数据通信接口,用于将数据转换为串行格式进行传输。

串行外设接口(SPI)是一种高速串行接口,用于在单片机与其他外设之间进行数据传输和通信。

I²C接口是一种双线制的串行接口,用于在多个设备之间进行数据传输和通信。

模拟接口是通过模拟信号进行数据传输和通信的接口技术。

模拟接口包括模数转换接口、数字模拟转换接口等。

模数转换接口用于将模拟信号转换为数字信号,数字模拟转换接口用于将数字信号转换为模拟信号。

单片机接口技术的选择取决于具体应用的需求。

并行接口适合需要大量数据同时进行传输的场景,串行接口适合需要高速传输的场景。

单片机IO口扩展技术

单片机IO口扩展技术

单片机IO口扩展技术] 0 引言在单片机家族的众多成员中,MCS-51系列单片机以其优越的性能、成熟的技术、高可靠性和高性价比,占领了工业测控和自动化工程应用的主要市场,并成为国内单片机应用领域中的主流机型。

MCS-51单片机的并行口有P0、P1、P2和P3,由于P0口是地址/数据总线口,P2口是高8位地址线,P3口具有第二功能,这样,真正可以作为双向I/O口应用的就只有P1口了。

这在大多数应用中是不够的,因此,大部分MCS-51单片机应用系统设计都不可避免的需要对P0口进行扩展。

由于MCS-51单片机的外部RAM和I/O口是统一编址的,因此,可以把单片机外部64K字节RAM空间的一部分作为扩展外围I/O口的地址空间。

这样,单片机就可以像访问外部RAM存储器单元那样访问外部的P0口接口芯片,以对P0口进行读/写操作。

用于P0口扩展的专用芯片很多。

如8255可编程并行P0口扩展芯片、8155可编程并行P0口扩展芯片等。

本文重点介绍采用具有三态缓冲的74HC244芯片和输出带锁存的74HC377芯片对P0口进行的并行扩展的具体方法。

1 输入接口的扩展MCS-51单片机的数据总线是一种公用总线,不能被独占使用,这就要求接在上面的芯片必须具备“三态”功能,因此扩展输入接口实际上就是要找一个能够用于控制且具备三态输出的芯片。

以便在输入设备被选通时,它能使输入设备的数据线和单片机的数据总线直接接通;而当输入设备没有被选通时,它又能隔离数据源和数据总线(即三态缓冲器为高阻抗状态)。

1.1 74HC2244芯片的功能如果输入的数据可以保持比较长的时间(比如键盘),简单输入接口扩展通常使用的典型芯片为74HC244,由该芯片可构成三态数据缓冲器。

74HC244芯片的引脚排列如图1所示。

74HC244芯片内部共有两个四位三态缓冲器,使用时可分别以1C和2G作为它们的选通工作信号。

当1 C和2G都为低电平时,输出端Y和输入端A状态相同;当1G和2G都为高电平时,输出呈高阻态。

《单片机微型计算机原理与接口技术》第八章 80C51单片微机的系统扩展原理与接口技术

《单片机微型计算机原理与接口技术》第八章 80C51单片微机的系统扩展原理与接口技术

②开始数据传送 在串行时钟线(SCL)保持高电平的情况下,串行数据线(SDA )上发生一个由高电平到低电平的变化作为起始信号(START) ,启动I2C 总线。I2C总线所有命令必须在起始信号以后进行。 ③停止数据传送 在串行时钟线(SCL)保持高电平的情况下,串行数据线 (SDA)上发生一个由低电平到高电平的变化,称为停止信号( STOP)。这时将停止I2C 总线上的数据传送。 ④数据有效性 在开始信号以后,串行时钟线(SCL)保持高电平的周期 期间,当串行数据线(SDA)稳定时.串行数据线的状态表示数 据线是有效的。需要一个时钟脉冲。 每次数据传送在起始信号(START)下启动,在停止信号 (STOP)下结束。 在I2C总线上数据传送方式有两种,主发送到从接收和从发 送到主接收。它们由起始信号(START)后的第一个字节的最低 位(即方向位R/W)决定。
①串行数据线(MISO、MOSI) 主机输入/从机输出数据线(MISO)和主机输出/ 从机输入数据线(MOSI),用于串行数据的发送和接收。 数据发送时.先传送MSB(高位),后传送LSB(低位)。 在SPI设置为主机方式时,MISO线是从机数据输入线 ,MOSI是主机数据输出线;在SPI设置为从机方式时, MISO线是从机数据输出线,MOSI是从机数据输入线。
8.1.1外部并行扩展原理
单片微机是通过芯片的引脚进行系统扩展的。 80C51系列带总线的单片微机芯片引脚可以构成图8-1所 示的三总线结构.即地址总线(AB)数据总线(DB)和控制总 线(CB)。具有总线的外部芯片都通过这三组总线进行扩展。 (1)地址总线(AB) 地址总线由单片微机P0口提供 低8位地址A0~A7,P2口提 供高8位地址A8~A15。P0口是地址总线低8位和8位数据总线复 用口,只能分时用作地址线。故P0口输出的低8位地址A0~A7必 须用锁存器锁存。 锁存器的锁存控制信号为单片微机ALE引脚输出的控制信 号。在ALE的下降沿将P0口输出的地址A0~A7锁存。P0、P2口 在系统扩展中用做地址线后便不能作为一般I/O口使用。 由于地址总线宽度为16位,故可寻址范围为64 KB。 (2)数据总线(DB) 数据总线由P0口提供,用D0~D7表示。P0口为三态双向

单片机的系统扩展原理及接口技术 第8章习题答案 高锋第二版

单片机的系统扩展原理及接口技术  第8章习题答案  高锋第二版

第8章思考与练习题解析【8—1】简述单片机系统扩展的基本原则和实现方法。

【答】系统扩展是单片机应用系统硬件设计中最常遇到的问题。

系统扩展是指单片机内部各功能部件不能满足应用系统要求时,在片外连接相应的外围芯片以满足应用系统要求。

80C5 1系列单片机有很强的外部扩展能力,外围扩展电路芯片大多是一些常规芯片,扩展电路及扩展方法较为典型、规范。

用户很容易通过标准扩展电路来构成较大规模的应用系统。

对于单片机系统扩展的基本方法有并行扩展法和串行扩展法两种。

并行扩展法是指利用单片机的三组总线(地址总线AB、数据总线DB和控制总线CB)进行的系统扩展;串行扩展法是指利用SPI三线总线和12C双线总线的串行系统扩展。

1.外部并行扩展单片机是通过芯片的引脚进行系统扩展的。

为了满足系统扩展要求,80C51系列单片机芯片引脚可以构成图8-1所示的三总线结构,即地址总线AB、数据总线DB和控制总线CB。

单片机所有的外部芯片都通过这三组总线进行扩展。

2.外部串行扩展80C51.系列单片机的串行扩展包括:SPI(Serial Peripheral Interface)三线总线和12C双总线两种。

在单片机内部不具有串行总线时,可利用单片机的两根或三根I/O引脚甩软件来虚拟串行总线的功能。

12C总线系统示意图如图8—2所示。

【8—2】如何构造80C51单片机并行扩展的系统总线?【答】80C51并行扩展的系统总线有三组。

①地址总线(A0~A15):由P0口提供低8位地址A0~A7,P0 口输出的低8位地址A0~A7必须用锁存器锁存,锁存器的锁存控制信号为单片机引脚ALE输出的控制信号。

由P2口提供高8位地址A8~A1 5。

②数据总线(DO~D7):由P0 口提供,其宽度为8位,数据总线要连到多个外围芯片上,而在同一时间里只能够有一个是有效的数据传送通道。

哪个芯片的数据通道有效则由地址线控制各个芯片的片选线来选择。

③控制总线(CB):包括片外系统扩展用控制线和片外信号对单片机的控制线。

单片机 io口反序

单片机 io口反序

单片机 io口反序
对于单片机IO口反序的问题,我们可以从硬件和软件两个角度
来进行讨论。

首先从硬件角度来看,单片机的IO口反序可以通过外部硬件电
路来实现。

一种常见的方法是使用74LS244等反向器件,将IO口的
信号经过反向器件进行反向处理,从而实现IO口的反序输出。

这种
方法需要在电路设计中考虑反向器件的引入,以及反向器件的连接
方式和控制信号。

其次从软件角度来看,单片机的IO口反序也可以通过软件编程
来实现。

在程序中可以通过位操作指令对IO口的输出进行反向处理,从而实现IO口的反序输出。

具体的实现方法取决于单片机的型号和
使用的编程语言,一般需要使用位操作指令来对IO口的相应位进行
取反操作。

总的来说,单片机的IO口反序可以通过外部硬件电路和软件编
程两种方式来实现。

在实际应用中,需要根据具体的需求和条件选
择合适的方法来进行实现。

希望这个回答能够帮助到你。

单片机原理及接口技术(C51编程)(第2版)-习题答案汇总

单片机原理及接口技术(C51编程)(第2版)-习题答案汇总

单片机答案第1章思考题及习题1参考答案一、填空1. 除了单片机这一名称之外,单片机还可称为或。

答:微控制器,嵌入式控制器。

2。

单片机与普通微型计算机的不同之处在于其将、、和三部分,通过内部连接在一起,集成于一块芯片上。

答:CPU、存储器、I/O 口、总线3. AT89S51单片机工作频率上限为 MHz.答:24MHz。

4。

专用单片机已使系统结构最简化、软硬件资源利用最优化,从而大大降低和提高 .答:成本,可靠性。

二、单选1。

单片机内部数据之所以用二进制形式表示,主要是A.为了编程方便B.受器件的物理性能限制C.为了通用性D.为了提高运算速度答:B2. 在家用电器中使用单片机应属于微计算机的。

A.辅助设计应用B.测量、控制应用C.数值计算应用D.数据处理应用答: B3. 下面的哪一项应用,不属于单片机的应用范围。

A.工业控制 B.家用电器的控制 C.数据库管理 D.汽车电子设备答:C三、判断对错1. STC系列单片机是8051内核的单片机。

对12。

AT89S52与AT89S51相比,片内多出了4KB的Flash程序存储器、128B的RAM、1个中断源、1个定时器(且具有捕捉功能)。

对3. 单片机是一种CPU.错4。

AT89S52单片机是微处理器。

错5. AT89S51片内的Flash程序存储器可在线写入(ISP),而AT89C52则不能。

对6. 为AT89C51单片机设计的应用系统板,可将芯片AT89C51直接用芯片AT89S51替换。

对7. 为AT89S51单片机设计的应用系统板,可将芯片AT89S51直接用芯片AT89S52替换。

对8. 单片机的功能侧重于测量和控制,而复杂的数字信号处理运算及高速的测控功能则是DSP的长处。

对第2章思考题及习题2参考答案一、填空1. 在AT89S51单片机中,如果采用6MHz晶振,一个机器周期为。

答:2µs2. AT89S51单片机的机器周期等于个时钟振荡周期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章
单片机的I/O接口技术
8.2 常用的并口扩展芯片
可编程并行接口芯片8255A
1. 8255A内部结构和引脚功能(1/6)
8255A是通用的可编程并行接口芯片,功能强,使用灵活。 适合一些并行输入/输出设备的使用。 三个数据端口:三个8位数据端口A、B、C。均可以用作 输入、输出的数据端口。
端口A:(带锁存器、双向)输入、输出端口。 端口B:(单向)输出有锁存器,输入无锁存器但有输入缓 冲器。 端口C:结构和端口B相似。通常用来配合A,B端口发 送控制和状态信息。
4.定时器/计数器
作用——14位减法计数器。用来对TIMER IN输入的外部事件计数。 当达到规定计数值,就从TIMER OUT输出一定形式的方波或者脉冲 信号。 计数寄存器的控制字——用来设定计数器的长度和计数方式:低8位 和高6位(T13~T0)用来设定计数长度,范围是2H~3FFFH;最高2位 (T15~T14)用来设定输出波形的形式:00-单方波,01-连续方波(计数器 在减1回0时,自动装初值,可以输出连续方波),10-单脉冲,11-连续 脉冲(自动装初值,可以输出连续方波) 。
第八章
单片机的I/O接口技术
可编程并行接口芯片8255A
2. 8255A的工作方式及其选择(2/5)
Mode 2:带联络信号双向输入/输出方式,只有PA口可 工作在此方式,即可做输入又可做输出。这时,PB口只 能工作在Mode 0方式,PC口仍然作为信息信号状态口, 起联络作用。
C端口联络信号:输入选通信号(STB),输入中断请求信号(INTR), 输入缓冲器满信号(IBF),输出缓冲器满信号(OBF),外设响应信号 (ACK) ,输出中断请求信号(INTR)
定时器低八位(A2A1A0=100);
定时器高六位和两位计数器方式位(A2A1A0 = 101);
第八章
单片机的I/O接口技术
可编程并行接口芯片8155H
2.引线、端口及其地址分配(2/2) 随机存储器RAM寻址范围00~FFH,与AD7~ AD0直接相 连接;
IO/M控制端: IO/M=0,表示CPU选择8155片内RAM, AD7~AD0输入的是RAM地址;否则, CPU选择I/O端口。 ALE, CE, RD, WR, RESET, 分别为地址锁存信号输入, 片选,读,写,复位信号线输入端口。 TIMER IN:定时器的输入线, 该引脚输入定时器所需的时 钟信号。 TIMER OUT:定时器的输出线, 由定时器的工作方式来决 定输出方波或脉冲波的种类。
第八章
单片机的I/O接口技术
可编程并行接口芯片8255A
5. 8255A芯片与MSC51的连接
8255与CPU连接如下图:读写和复位直接连接。片选连 P2.7(A15), P0.0,P0.1连接8255的A0,A1。除了加一个锁存 器,用来锁存地址信号,其他均直接相连。片选信号的 连接与外设的实际情况有关。
第八章
单片机的I/O接口技术
第8章
单片机的接口技术
第八章
单片机的I/O接口技术 本章内容
介绍常用的接口技术
并行接口的扩展 键盘、数码管与单片机的连接
打印机与单片机的连接
单片机A/D和D/A转换
第八章
单片机的I/O接口技术 学习目的
掌握常用的接口技术
掌握8155,8255对并行接口扩展
第八章
单片机的I/O接口技术
可编程并行接口芯片8255A
2. 8255A的工作方式及其选择(1/5)
Mode 0:单向基本输入/输出方式(无条件传送方式), PA 、PB、PC口均可工作在此方式,均可规定为输入或 输出方式。PC口可以高低4位分开,一边输出,一边输 入。 Mode 1:选通输入/输出方式(有条件传送方式或中断), PA 、PB可工作在此方式,而PC口为PA 、PB口提供控 制和联络信号(P204表8-2)。
M2 M1 T13
T8Leabharlann T7T0第八章
单片机的I/O接口技术
可编程并行接口芯片8155H
5.工作方式及其选择(1/2)
PA口、PB口、 PC口—(1)基本I/O(输入或输出)方式:(联络线由程序 指定,对计数器不起控制作用,无中断);(2)选通I/O方式:由PC口的 低3位作为联络线(其余作为I/O线),可以选通数据锁存,有无中断等作 用。 PC口—输入/输出联络信号;PC口的工作方式及各位的功能如下表: 其中:INTR(中断请求输出标志,高电平有效),BF(A/B口缓冲器“满 (1)/空(0)”输出信号), STB\ (外设发出数据选通信号,低电平有效).
输入联络信号 输入选通信号(STB\(Strobe))—当8255A接收到该信 号,表示外设输入的数据将装入8255A的锁存器;低电 平有效。 输入缓冲器满信号(IBF(Input Buffer Full))—当 IBF=1时,表示锁存器已装入数据,CPU可以读取。 输入中断请求信号(INTR(Interrupt Request))—当 IBF=1, STB=0时,表示锁存器已装入数据,向CPU 提出中断申请,通知CPU可以读取数据。
第八章
单片机的I/O接口技术
可编程并行接口芯片8255A
2. 8255A的工作方式及其选择(3/5)
控制寄存器端口——有2个功能,最高位为1时,用来设 定三个端口的工作方式(工作方式控制字),为0时对C位 中某一位作清零或置位操作(端口C位控制字)。具体设置 见下表:
第八章
单片机的I/O接口技术
可编程并行接口芯片8255A
2. 8255A的工作方式及其选择(4/5) 工作方式控制字
第八章
单片机的I/O接口技术
可编程并行接口芯片8255A
2. 8255A的工作方式及其选择(5/5) 端口C位控制字
第八章
单片机的I/O接口技术
可编程并行接口芯片8255A
3. C口状态信息及联络信号(1/2)
第八章
单片机的I/O接口技术
可编程并行接口芯片8255A
1. 8255A内部结构和引脚功能(5/6)
A1 0 0 1 0 0 1 1 A0 0 1 0 0 1 0 1 RD 0 0 0 1 1 1 1 0 1 WR 1 1 1 0 0 0 0 1 1 CS 0 0 0 0 0 0 0 1 0 0 工作状态 数据总线 (读) 数据总线 ( 写) PA口数据 PB口数据 PC口数据 PA口 PB口 PC口 控制字寄存器 说明 CS=0选中 RD=0有效, CPU读数据 WR=0有效, CPU写数据或 发出命令
第八章
1.特点
单片机的I/O接口技术
可编程并行接口芯片8155H
带静态RAM(256字节);带14位减法定时器/计数 器。
第八章
单片机的I/O接口技术
可编程并行接口芯片8155H
2.引线、端口及其地址分配(1/2) 两个八位并行输入/输出端口PA(A2A1A0=001), PB(A2A1A0=010); 一个六位并行输入/输出端口PC(A2A1A0=011); 一个命令/状态寄存器(A2A1A0=000);
第八章
单片机的I/O接口技术
可编程并行接口芯片8155H
3.命令/状态寄存器 二者共用一个地址。只写时:控制命令寄存器, 用来设定PA口、PB口、PC口的工作方式、是否允 许中断和定时器的设置;只读时:存放PA口、PB 口的状态标志,供CPU查询。
第八章
单片机的I/O接口技术
可编程并行接口芯片8155H
第八章
单片机的I/O接口技术
8.2 常用的并口扩展芯片
可编程并行接口芯片8255A
1. 8255A内部结构和引脚功能(2/6)
第八章
单片机的I/O接口技术
可编程并行接口芯片8255A
1. 8255A内部结构和引脚功能(3/6) PA口(8位) PC口(高4位) PB口(8位) PC口(低4位) A组 与外设连接
第八章
单片机的I/O接口技术
可编程并行接口芯片8255A
6. 8255A芯片应用举例
8255与单片机连接如图。PA口作为输出 口,接8个LED发光管。PB口作为输入 口,接8个按键开关。都工作在0方式。 C口不用。任务:实现按下任意键,对 应的LED发光。程序清单:
MOV MOV MOVX LOOP: MOV MOVX MOV MOVX SJMP DPTR , #0FF7FH A , #82H @DPTR, A DPTR , #0FF7DH A , @DPTR DPTR , #0FF7CH @DPTR,A LOOP ;指向8255A的控制口 ;工作方式控制字送A ;写控制字(PA口输出,PB口输入) ;指向8255A的PB口 ;读PB口按键状态 ;指向8255A的PA口 ;从PA口输出,驱动LED发光 ;
第八章
单片机的I/O接口技术
可编程并行接口芯片8255A
3. C口状态信息及联络信号(2/2)
输出联络信号 输出缓冲器满信号(OBF\(Output Buffer Full))—当 OBF=0时,表示CPU已将数据送入锁存器,告知外 设可以读取。 外设响应信号(ACK\(Acknowledge))—通知CPU,外 设已读取了锁存器里的数据。 输出中断请求信号(INTR)—当外设已读取了锁存器 里的数据,且OBF\和ACK\均为1时,通知CPU可以 发送下一个数据。
1 1
数据总线为高阻状态 非法状态 数据总线为高阻状态
第八章
单片机的I/O接口技术
可编程并行接口芯片8255A
1. 8255A内部结构和引脚功能(6/6)
工作方式控制电路——A/B两组控制电路,用于决定PA, PB和PC的工作方式,由端口控制寄存器控制。 A组控 制PA和PC的高4位,B组控制PB和PC的低4位。 端口地址及工作状态表:4个端口PA,PB、 PC和控制 寄存器端口(工作方式控制字和端口C位控制字)地址由 A1A0和片选信号决定。在片选的基础上加上A1A0,就是 端口地址。例:1 00,选中PA口, 1 01,选中PB口, 1 10,选中PC口, 1 11, 选中控制字寄存器端口。
相关文档
最新文档